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ABSTRACT

Permutation invariant neural networks are a promising tool for predictive modeling
of set data. We show, however, that existing architectures struggle to perform well
when they are deep. In this work, we mathematically and empirically analyze
normalization layers and residual connections in the context of deep permutation
invariant neural networks. We develop set norm (SN), a normalization tailored for
sets, and introduce the “clean path principle” for equivariant residual connections
alongside a novel benefit of such connections, the reduction of information loss.
Based on our analysis, we propose Deep Sets++ and Set Transformer++, deep
models that reach comparable or better performance than their original counterparts
on a diverse suite of tasks. We additionally introduce Flow-RBC, a new single-
cell dataset and real-world application of permutation invariant prediction. We
open-source our data and code here: link-omitted-for-anonymity.

1 INTRODUCTION

(a) Deep Sets

(b) Set Transformer

Figure 1: Deep versions of ex-
isting models perform worse.

Many real-world tasks involve predictions on sets or multisets, from
point cloud classification (Guo et al., 2020; Wu et al., 2015; Qi
et al., 2017a) to the prediction of health outcomes from single-cell
data (Regev et al., 2017; Lähnemann et al., 2020; Liu et al., 2021;
Yuan et al., 2017). In the context of health prediction among other
applications, there is the need for reliable methods that can be applied
by application-based practitioners without the additional requirement
of engineering models for every application task.

An important property of models applied to input sets is permutation
invariance: for any permutation of the instances in the input set, the
model prediction stays the same. Deep Sets (Zaheer et al., 2017)
and Set Transformer (Lee et al., 2019) are two general-purpose deep
permutation invariant models. Such models have been proven to be
universal approximators of permutation invariant functions under
the right conditions (Zaheer et al., 2017; Wagstaff et al., 2019). In
practice, however, the architectures are tailored to specific tasks to
achieve good performance.

In this work, we explore a more general approach to achieving good
performance: making networks deeper, a strategy which has yielded
benefit across many tasks (He et al., 2016b; Wang et al., 2019b).
We first note that naively stacking more layers on both the Deep
Sets and Set Transformer architectures hurts performance. Consider
Figure 1. Deep Sets 50 layers (panel (a)) has significantly worse
performance than Deep Sets 3 layers due to the problem of vanishing
gradients. Residual connections are often used to combat vanishing
gradients, but even the Set Transformer architecture which consists of residual connections has
worse performance at a higher depth (panel (b)). Another strategy often used in combination with
residual connections in deep architectures is the use of normalization layers, but the use of layer
norm does not improve or deteriorates performance of both architectures at high depths, one with
residual connections (Set Transformer) and one without (Deep Sets). In fact, the Set Transformer
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paper (Lee et al., 2019) mentions layer norm as a component of their architecture but turns it off in
actual implementation.

In this work, we tackle the challenge of designing deep permutation invariant networks with the aim
of providing general purpose architectures.

• Based on real-world applications, we formalize desiderata for normalization layers when inputs
are sets and systematically analyze options based on a unified framework. We introduce set
norm, aimed at optimizing the desiderata we introduce. Set norm is a general, easy-to-implement
normalization that can be applied on any architecture. We empirically demonstrate its benefit with
ablation studies (Section 3, Section 5).

• We consider settings for residual connections which prevent vanishing gradients and maintain
permutation equivariance. Through extensive experiments, we show that the best setting is that of
equivariant residual connections (ERC) coupled the “clean residual path” principle (Section 4).
To the best of our knowledge, we are the first to analyze this principle across architectural designs
and to suggest a new benefit of certain residual connections: alleviation of information loss
(Section 5).

• We develop Deep Sets++ (DS++) and Set Transformer++ (ST++), leveraging set norm and ERC.
We demonstrate that both models yield comparable or improved performance over their existing
counterparts across a variety of tasks (Section 5). Among other results, these new architectures
yield better accuracy on point cloud classification than the task-specific architectures proposed in
the original Deep Sets and Set Transformer papers. The fact that set norm and equivariant residual
connections yield improvements on two different architectures suggests that they may also be able
to benefit other permutation invariant architectures in the future.

• Given growing interest in single-cell analysis (Regev et al., 2017) and the need for methods which
can extract signal from single-cell data (Lähnemann et al., 2020), we introduce a novel clinical
single-cell dataset for prediction on sets called Flow-RBC. The dataset consists of red blood cell
(RBC) measurements and hematocrit levels (i.e. the fraction of blood volume occupied by RBCs)
for 100,000+ patients. The size and presence of a prediction target (hematocrit) makes this dataset
unique, even among single-cell datasets in established repositories like the Human Cell Atlas
(Regev et al., 2017). Flow-RBC not only provides a new real-world benchmark for methodological
innovation but also a potential source of information for biomedical science (Section 5).

2 BACKGROUND

Let S be the number of samples in a set. A function f : XS ! Y is permutation invariant if any
permutation ⇡ of the input set results in the same output: f(⇡x) = f(x). A function � : XS ! YS

permutation equivariant if, for any permutation ⇡, the outputs are permuted accordingly: �(⇡x) =
⇡�(x). A sum/max-decomposable function f : XS ! Y is one which can be expressed via an
equivariant encoder � : XS ! ZS that maps each input sample in X to a latent space Z , a sum or
max aggregation over the sample dimension of the encoder output, and an unconstrained decoder
⇢ : Z ! Y:

f(x) = ⇢
⇣X

�(x)
⌘
. (1)

An architecture is a universal approximator of permutation invariant functions if and only if it is
sum/max-decomposable with sufficient conditions on the latent space dimension (Wagstaff et al.,
2019). Both the Deep Sets and Set Transformer architectures can be written in the form of Equation (1).
Concretely, Deep Sets architecture consists of an equivariant encoder made up of feedforward layers,
a sum or max aggregation, and a decoder also made up of feedforward layers (Zaheer et al., 2017).
The Set Transformer encoder consists of multi-attention blocks called inducing point attention blocks
(Lee et al., 2019), a variant of the original transformer block (Vaswani et al., 2017) modified to handle
large set sizes. The aggregation is learned via attention, and the decoder consists of transformer
blocks with self-attention.

Both architectures are permutation invariant since they consist of a permutation equivariant encoder
and a permutation invariant aggregation over the outputs of the encoder. In order to maintain
permutation invariance of the architectures upon modification, one needs to ensure that changes to
the encoder preserve permutation equivariance, and changes to the aggregation maintain permutation
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invariance. In the next two sections, we discuss how to incorporate normalization layers and residual
connections while maintaining permutation invariance overall.

3 NORMALIZATION FOR SET DATA

Incorporating normalization layers into the permutation equivariant encoders requires careful consid-
eration, as not all normalization layers are appropriate to use. We study normalization layers which
consist of two operations, standardization and transformation. This setting captures most common
normalizations (Ioffe & Szegedy, 2015; Ba et al., 2016; Ulyanov et al., 2016).

Let a 2 RB⇥S⇥D be the activation before the normalization operation, where B is the size of the
batch, S is the number of samples in a set (the tensor is zero-padded to the largest sample size), and
D is the feature dimension. First, the activations are standardized based on a setting L which defines
which dimensions utilize separate statistics. For instance, L = {B,S} denotes that each set in a
batch and each sample in a set gets its own mean and standard deviation for standardization, which
are repeated over the D dimension so that µL(a),�L(a) 2 RB⇥S⇥D match the original activation
tensor for elementwise subtraction and division. A standardization operation can be defined as:

¯aL =

a � µL(a)
�L(a)

. (2)

Next, the standardized activations are transformed through learned parameters which differ only over
a setting of dimensions M . For instance, M = {D} denotes that each feature is transformed by a
different scale and bias, which are shared across the sets in the batch and samples in the sets. Let
�!� M ,

�!
� M 2 RB⇥S⇥D denote the learned parameters and � represent elementwise multiplication,

any transformation operation can be defined as:

ˆaM =

¯a ��!� M +

�!
� M . (3)

We can now summarize a wide array of normalization possibilities simply via choice of L and M .

3.1 NORMALIZATION DESIDERATA

We formally introduce the desiderata for a general-purpose normalization layer for prediction on sets.
In particular:

(i) The normalization must be permutation equivariant.
(ii) The computation of the statistics for standardization (µL(a),�L(a)) should not be affected

by the presence of sets of varying sizes.
(iii) The normalization should not deteriorate performance due to removal of information that is

useful for prediction.

Item (ii) is meant to address the concern that real-world set inputs are often not all the same size, e.g.
not all point cloud objects are made up of the same number of points, and not all patients will have
the same number of cells in a blood sample. If the presence of different set sizes forces a choice for
an application-specific implementation of a normalization layer, then such a normalization is not
general-purpose. Item (iii) refers to the fact that the standardization operation in a normalization layer
incurs a loss of information, as activations which were once of varying means and variances across
certain dimensions are now forced to be zero mean and unit variance. For real-valued sets in particular,
this can greatly limit predictive performance, e.g. if the removed means and variances would help in
the output prediction. As an example, the mean cell volume of a blood sample can be indicative of
patient health, and a normalization layer that makes it impossible to distinguish between patients’
mean cell volumes will restrict performance across a wide variety of health outcomes predictions.

3.2 THE ONLY SUITABLE TRANSFORMATION FOR SETS IS ON THE FEATURE DIMENSION.

Only normalization layers adopting a per feature transformation, i.e. M = {D}, meet the permutation
equivariance desiderata (i), as per sample transformations break permutation equivariance and per
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Figure 2: We can represent normalization layers by the dimensions they perform standardization
(blue) and the dimensions they perform transformation (yellow). Green indicates overlap of yellow
and blue.

set transformations cause the prediction output to change when an element’s position in the batch
changes (see Appendix B for proofs).

Proposition 1. Per feature transformation is the only setting which maintains permutation equivari-
ance and prediction behavior which is agnostic to batch position.

Thus, to systematically compare normalizations, we only need to consider the settings for L.

3.3 EXISTING NORMALIZATIONS DO NOT MEET ALL DESIDERATA.

We now consider possible settings for standardization: {}, {B}, {S}, {D}, {B,S}, {B,D}, {S,D}.
We first note that L = {S} and L = {S,D} destroy permutation equivariance (see Appendix B, for
proof). Of the remaining settings, we note that two already exist in the literature. The first, which
we call feature norm, is used in the permutation invariant PointNet and PointNet++ architectures for
point cloud classification (Qi et al., 2017a;b) and performs a per feature standardization followed by
a per feature transformation, i.e. L = {D},M = {D} (see Figure 2 (i)). The second is layer norm,
used in Set Transformer, which applies standardization individually to each set and each sample and
transformation separately per feature, i.e. L = {B,S},M = {D} (see Figure 2(ii)).

Both these normalization layers have drawbacks. Feature norm calculates statistics over the batch and
consequently may exhibit batch effects: sets in the batch are no longer independent, and performance
can be heavily impacted by batch size (Hoffer et al., 2017). Additionally, like in batch norm, in
feature norm sets are standardized differently at training and test time.1 Moreover, in the context of
sets of varying sizes, each possible implementation of feature norm (e.g. computing statistics over
the batch, averaging statistics computed on each set separately) will lead to each set (or samples in
the set) having a different impact in the computation of the statistics. Therefore, the use of feature
norm requires careful consideration, especially in applications having as input real-valued sets with
wide ranges of both set sizes and first moments. A similar property holds for normalizations which
calculate statistics over the batch (B 62 L) such as L = {}.

Layer norm, on the other hand, removes information which may be particularly useful for set
prediction tasks. By performing standardization on each sample in each set separately, layer norm
maps two samples whose activations differ in only a scale and bias to the same output. The inability
to distinguish such samples after layer norm can hurt prediction, as we see in Section 5.3.

Proposition 2. Applying layer norm in its most common placement (after linear projection, before
non-linearity) removes mean and variance information from each sample.

The use of layer norm can present a representation issue similar to the oversmoothing problem in
Graph Convolutional Networks (Li et al., 2018), where nodes (samples) get mapped to the same
value as the number of layers in the network increase and neighborhoods of nodes become similar in
representation.

1Feature norm is implemented as batch norm on a transposed tensor. Thus, test batches are standardized by a
running mean and variance while training batches are standardized by their own batch statistics.
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(a) Non-clean path
for Deep Sets

(b) Clean path for
Deep Sets

(c) Non-clean path
for Set Transformer

(d) Clean path for
Set Transformer

Figure 3: (Non-) clean path visual representation for Deep Sets and Set Transformer. In (c), weight*
is also part of the attention computation.

3.4 SET NORM

We introduce a new normalization layer which exhibits a reasonable trade-off over the three desiderata.
Our proposed normalization, set norm (SN), is a per set standardization, per feature transformation,
i.e. L = {B},M = {D}, see Figure 2(iii):

SN(absd) =
ab � µb

�b
� �d + �d, µb =

1

S

1

D

SX

s=1

DX

d=1

absd, �2

b =

1

S

1

D

SX

s=1

DX

d=1

(absd � µb)
2

SN is permutation equivariant (see Appendix B for proof) and, since is a per set standardization, it
naturally handles sets of different sizes It also avoids batch effects that may arise when using feature
norm while resulting in less information loss than layer norm. In fact, the per set standardization of
set norm, i.e. L = {B}, removes the least information of any standardization which acts on each set
separately (see Appendix B for proof). It is for this reason that we propose set norm over another per
set standardization, e.g. per set per feature.

Proposition 3. Among all standardizations which are applied separately per set, the per set stan-
dardization of set norm results in minimal loss of information.

Experimental results (Section 5) confirm our hypothesis that set norm is generally preferable to
feature norm and layer norm. However, set norm does remove some information, namely the global
mean and variance of each set (as does any standardization with B 2 M ). In the next section, we
discuss how we can alleviate this information loss through the use of residual connections.

4 RESIDUAL CONNECTIONS FOR SET DATA

Residual connections can be incorporated into an equivariant encoder in two ways: either adding each
sample input to its corresponding output (equivariant residual connection) or adding an aggregated
function over all the samples (aggregated residual connection).

An equivariant residual connection (ERC) is a residual connection that acts on every sample. Let
f be an equivariant function where X = Y = Rd, i.e. f : RM⇥d ! RM⇥d. A function g which
adds single sample equivariant residual connections to any equivariant function f is also permutation
equivariant:

g(⇡x) = f(⇡x) + ⇡x = ⇡f(x) + ⇡x = ⇡g(x).
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An aggregated residual connection (ARC) is a residual connection that sums a permutation-invariant
aggregated function of the samples (e.g. sum, mean, max). A function g which adds aggregated
equivariant residual connections to any equivariant function f is also permutation equivariant:

g(⇡x) = f(⇡x) + pool(x
1

, . . . , xS) = ⇡f(x) + pool(x
1

, . . . , xS) = ⇡g(x).

One major benefit of residual connections is that of addressing vanishing gradients. We show in
Appendix F that ERCs and ARCs (mean and max) offer this benefit. While a sum aggregation does
as well, we see empirically that such networks often explode in their outputs and therefore do not
report results on it.

4.1 THE CLEAN PATH PRINCIPLE

There are many existing arrangements of residual pipelines (He et al., 2016b;a; Vaswani et al., 2017;
2018). We hypothesize that the best way to implement residual connections is to leave a clean
path from input to output without other operations in between; we call this the clean residual path
principle, where the residual path is the shortest path from input to output of a block (see Figure 3
for illustration). Our hypothesis aligns well with previous literature on non permutation invariant
architectures showing how the presence of certain operations between skip connections could yield
undesirable effects (He et al., 2016a; Wang et al., 2019a; Xiong et al., 2020) (see Appendix C for more
details). Concretely, we propose the use of the pipeline in Figure 3(b) over the pipeline in Figure 3(a)
for DeepSets, as well as the pipeline in Figure 3(d) over the one in Figure 3(c) for SetTransformer
(He et al., 2016a;b; Klein et al., 2017; Vaswani et al., 2018; Xiong et al., 2020) for all possible
implementation of residual connections that respect permutation invariance.

We additionally hypothesize a further benefit of the clean path principle, i.e. skip connections alleviate
information loss due to normalization. While this is true in general, for applications involving images
or text (the bulk of the DNN literature) information loss to normalization may be less important than
specific data invariances. For prediction on real-valued sets like in distribution regression, on the
other hand, this information is fundamental for good performance.

4.2 RESIDUALS CAN ALLEVIATE LOSS OF INFORMATION FROM NORMALIZATION

In specific tasks such as distribution regression, moments are often crucial to reach good performance.
Applying normalization techniques that rely on standardization leads to the loss of information on the
first two moments along some dimension. Clean path equivariant and aggregated residual connections
will alleviate this issue as they help reintroduce such information.

Consider set norm placed before the nonlinearity in Deep Sets, e.g. f(x) = relu(SN(xW )) for a
single layer. If two sets are scaled and translated versions of each other, i.e. y = ax + b, then
without residual connections, the network with set norm will map both inputs to the same output,
i.e. f(x) = f(y). On the other hand, Deep Sets with a residual connection (both aggregated or
equivariant) will result in different outputs: g(x) = x + f(x) 6= g(y). Consider now layer norm
in the same placement. If two samples in a set are mapped to the same output, an ERC will pass
each sample forward, alleviating information loss, while ARCs will only pass the same aggregated
function forward. Therefore, ERCs can alleviate information loss to a greater extent than ARCs
can. This difference can have large implications for performance on some tasks (see Section 5.3).
Moreover, ARCs could lead to similar representations across sample activations if the aggregated
activations become larger in magnitude than the single sample ones they are added to. This resembles
the concept of oversmoothing for graph neural networks (Li et al., 2018).

5 EXPERIMENTS

We run our experiment on tasks with diverse inputs (point cloud, continuous, images) and outputs
(regression, classification). On these tasks we compare the original architectures with normalization
and residual connection choices described in the previous sections. For all experiments, we fix the
decoder and aggregation to their original versions, focusing on the effect of the encoder changes.
Since the decoder is an unconstrained network, we expect general architectural principles non-specific
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Table 1: Adding set norm and feature norm improves performance of Deep Sets (50 layers), while
adding layer norm does not.

Hematocrit (MSE) Point Cloud (CE) MNIST Var (MSE) Normal Var (MSE)

no norm 25.8791± 0.0014 3.6090 ± 0.0003 5.5545 ± 0.0014 8.0228 ± 0.0017
layer norm 25.8748 ± 0.0018 3.6186 ± 0.0001 5.5651 ± 0.0006 7.9512 ± 0.0026
feature norm 25.8749 ± 0.0018 0.9940 ± 0.0045 2.2629 ± 0.2715 0.3965 ± 0.0059
set norm 25.8749 ± 0.0018 1.5423 ± 0.0862 0.2578 ± 0.0031 5.4131 ± 0.0081

Table 2: The setting of Deep Sets which performs best overall uses set norm with a clean residual
path (highlighted gray). First row is the original Deep Sets architecture.

Path Residual type Norm Hematocrit (MSE) Point Cloud (CE) Mnist Var (MSE) Normal Var (MSE)
none none none 25.8791 ± 0.0014 3.6090 ± 0.0003 5.5545 ± 0.0014 8.0228 ± 0.0017
non-clean path equivariant layer norm 19.6063 ± 0.0137 0.5982 ± 0.0064 0.3528 ± 0.0063 0.1641 ±0.0386

feature norm 19.9801 ± 0.0862 0.6541 ± 0.0022 0.3371 ± 0.0059 0.4762 ± 0.0832
set norm 19.3146 ± 0.0409 0.6055 ± 0.0007 0.3421 ± 0.0022 0.2711 ± 0.0813

clean path equivariant layer norm 19.5236 ± 0.0132 0.6522± 0.0072 0.3529 ± 0.0063 0.1641 ±0.0386
feature norm 19.3917 ± 0.0685 0.7148 ± 0.0164 0.3368 ±0.0049 0.1162 ± 0.0177
set norm 19.2118 ± 0.0762 0.7096 ± 0.0049 0.3441 ±0.0036 0.0320 ± 0.0118

clean path mean layer norm 21.0247 ± 0.0503 0.8656 ± 0.0059 1.1732 ± 0.0259 3.6164 ± 0.1397
feature norm 18.9233 ± 0.0638 0.9773 ± 0.0288 1.1296 ± 0.0222 1.9861 ± 0.8488
set norm 19.3462 ± 0.0260 0.8585 ± 0.0253 1.2808 ± 0.0101 0.8287 ± 0.1818

clean path max layer norm 21.9485 ±0.0181 0.9637 ±0.0048 1.3373 ±0.0124 0.7133 ±0.0395
feature norm 21.0755 ±0.0440 0.9092 ±0.0248 1.4285 ±0.0174 1.0224 ±0.0956
set norm 19.8171 ±0.0266 0.8758 ±0.0196 1.3798 ±0.0162 0.9084 ±0.0910

to sets to be applicable, and because of our focus is scaling architectures to large depths, we do not
modify the aggregation, which itself is typically a single block.

5.1 ARCHITECTURES

To incorporate normalization layers and residual connections to Deep Sets and Set Transformer,
we modify the equivariant encoder to consist of residual blocks (See Figure 3). For the clean path
version of Deep Sets, we precede the first residual block with a linear layer and no bias and place a
normalization-relu-weight sequence after the final residual block, following (He et al., 2016a). When
we use equivariant clean path residuals with set norm, we called the architecture Deep Sets++ or Set
Transformer++. The clean path Set Transformer block architecture resembles that of the Pre-LN
Transformer (Klein et al., 2017; Vaswani et al., 2018).

5.2 DATASETS & TASKS

We use four main datasets for ablations (Hematocrit, Point Cloud, Mnist Var and Normal Var) and
one (CelebA) for validation of the models.

• Hematocrit Regression from Blood Cell Cytometry Data (Hematocrit). The prediction of
hematocrit (the fraction of blood volume occupied be RBCs) from a set of individual RBC mea-
surements (volume and hemoglobin) aims to answer an open biological and clinical question:
are characteristics of individual cells predictive of their prevalence in the blood? On this task,
increases in performance provide exciting scientific signal which can help lead to a deeper under-
standing of RBC production and regulation.2 The dataset consists of 98240 train and 23104 test
volume/hemoglobin distribution coupled with their hematocrit levels. We select the first visit for a
given patient such that each patient only appears once in the dataset, and there is no patient overlap
between train and test. We subsample for each distribution to 1,000 cells. See Appendix A for
complete details about the dataset.

• Point Cloud Classification (Point Cloud). Following Zaheer et al. (2017); Lee et al. (2019), we
use the ModelNet40 dataset (Wu et al., 2015) (9840 train and 2468 test clouds), randomly sample
1,000 points per set, and standardize each object to have mean zero and unit variance. We report
ablation results as entropy loss to facilitate the readability of the tables, i.e. lower is better.

2As an analogy, imagine we learned for the first time that the distribution of individual leaf colors predicted
the number of leaves on a tree. This insight would provide strong evidence for scientists to look for an underlying
mechanism for this relationship, e.g. understanding how deciduous trees change in the fall.
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Table 3: The setting of Set Transformer which performs best overall uses set norm with a clean
residual path (highlighted gray). First row is the original Set Transformer.

Path Residual type Norm Hematocrit (MSE) Point Cloud (CE) MNIST Var (MSE) Normal Var (MSE) Improved tasks

non-clean path equivariant none 18.7982 ± 0.0086 0.9217 ± 0.0119 6.2663 ±0.3307 0.0015 ± 0.0001 -
non-clean path equivariant layer norm 19.0904 ± 0.1003 0.9219 ± 0.0052 2.0663 ± 1.0039 0.0597 ± 0.0157 1/4

feature norm 19.4968 ± 0.1442 0.8251 ±0.0025 0.4043 ± 0.0078 0.0884 ± 0.0092 2/4
set norm 19.0521 ±0.0288 1.9167 ± 0.4880 0.4064 ± 0.0147 0.0627 ± 0.0217 1/4

clean path equivariant layer norm 18.8857 ± 0.0583 0.6656 ± 0.0148 0.6383 ± 0.0020 0.0053 ± 0.0015 2/4
feature norm 19.1967± 0.0330 0.6188 ± 0.0141 0.7946 ±0.0065 0.0224 ± 0.0061 2/4
set norm 18.6883 ± 0.0238 0.6280 ± 0.0098 0.7921 ± 0.0006 0.0068 ± 0.0008 3/4

clean path mean layer norm 19.8620 ± 0.0963 0.8745 ± 0.0079 1.2562 ± 0.0611 0.1123 ± 0.0158 2/4
feature norm 19.3714 ± 0.1143 0.8657 ± 0.0106 1.8169 ± 0.0052 0.1407 ± 0.0398 2/4
set norm 19.6945 ± 0.1067 0.8111 ± 0.0453 1.6273 ± 0.0335 0.0512 ± 0.0179 2/4

Table 4: Deep Sets++ and Set Transformer++ outperform their Deep Sets and Set Transformer
counterparts at 50 and 16 layers respectively.

Hematocrit (MSE) Point Cloud (CE) MNIST Var (MSE) Normal Var (MSE) CelebA (accuracy)

DeepSets (3 layers) 19.1257 ± 0.0361 0.7357 ± 0.0119 0.4520 ± 0.0111 0.0417 ± 0.0074 0.3808 ± 0.0016
Deep Sets (50 layers) 25.8791± 0.0014 3.6090 ± 0.0003 5.5545 ± 0.0014 8.0228 ±0.0017 0.1005 ± 0.0000
DeepSets ++ (3 layers) 19.5882 ± 0.0555 0.6703 ± 0.0093 0.5895 ± 0.0114 0.0707 ± 0.0326 0.5730 ± 0.0016
Deep Sets++ (50 layers) 19.2118 ± 0.0762 0.7096 ± 0.0049 0.3441 ±0.0036 0.0320 ± 0.0118 0.5763 ± 0.0134
Set Transformer (2 layers) 18.8750 ± 0.0058 0.7487 ± 0.0381 0.6151 ± 0.0072 0.0016 ± 0.0005 0.1292 ± 0.0012
Set Transformer (16 layers) 18.7436 ± 0.0148 0.9217 ± 0.0119 6.2663 ±0.3307 0.0015 ± 0.0001 0.4570 ± 0.0540
Set Transformer++ (2 layers) 18.9223 ± 0.0273 0.6366 ± 0.0004 1.1525 ± 0.0158 0.0050 ± 0.0008 0.6533 ± 0.0012
Set Transformer++ (16 layers) 18.7258 ± 0.0342 0.6280 ± 0.0098 0.7921 ± 0.0006 0.0068 ± 0.0008 0.6587 ± 0.0016

• Variance Prediction, Image Data (MNIST Var). We implement empirical variance regression on
MNIST digits as a proxy for real-world tasks with sets of images, e.g. prediction on blood smear or
histopathology slides. We sample 10 images uniformly from the training set and use the empirical
variance of the digits as a label. Test set and training set images are non-overlapping. Training set
size is 50,000 sets, and test set size is 1,000 sets. We represent each image as 1D vector.

• Empirical Variance Prediction, Real Data (Normal Var). Each set is a collection of samples
(sample size 1000) from a univariate normal distribution. Means are drawn uniformly in [-10, 10],
and variances are drawn uniformly in [0, 10]. The target for each set is the empirical variance of the
samples (regression task) in the set. Training set size is 10,000 sets, and test set size is 1,000 sets.

• Supervised set anomaly detection (CelebA). Following Zaheer et al. (2017), we construct 18,000
sets of 10 CelebA images (each 64⇥64) where one does not belong. For each set, we randomly
select two attributes out of the 40 total and select 9 images which share both attributes and one
which does not exhibit either. Train and test do not contain the same individuals.

Results are reported in Mean Squared Error (MSE) on the test set for the regression experiments
and in cross entropy loss (CE) for point cloud classification, averaged over three seeds. We fix all
hyperparameters, including epochs, and use the model at the end of training for evaluation. We notice
no signs of overfitting from the loss curves. For further details, see Appendix D.

5.3 MAIN RESULTS

Set norm has better performances than feature norm and layer norm. We compare how feature
norm, layer norm, and set norm affect performance of a deep Deep Sets model (50 encoder layers) in
Table 1. In general, set norm and feature norm both improve results compared to no normalization
while layer norm often does not. We hypothesize that the problem is primarily information loss
and explore in Appendix E.4 why layer norm may be suitable for categorical text data and not for
real-valued sets. A similar phenomenon seems to exist for set norm on Normal Var, but we show
next that we can ameliorate the effect with residual connections. Feature norm greatly improves
performance on Point Cloud, which we speculate is due to specific invariances that hold for clouds of
points. We provide an experiment in Appendix E with additional evidence to support this hypothesis.
While feature norm performs well in Table 1 in particular, set norm tends to perform better overall
once other considerations such as residual connections are taken into account (Table 2, Table 3).
Additionally, set norm does not require additional considerations under sets of varying sizes. This
makes it the best choice for a general purpose architecture.
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Equivariant residual connections following the clean path principle have best performance
overall. Experiments in Table 2 and Table 3 confirm that clean path ERCs pipelines generally yield
the best performance across set tasks, with ERCs performing better than ARCs both for Deep Sets
(Table 2) and Set Transformer (Table 3). The effect of clean path ERCs is especially evident on Deep
Sets with set norm on Normal Var: the clean path residual (3e-2) especially improves performance
over the non-clean path residual (1e-1) and no residual (5.4), a testament to the ability of a clean
path residual pipeline to make up for the loss of global scale information by the set norm operation.
Clean path ARCs perform worse than both non-clean and clean path ERCs. We hypothesize that this
may be due to a problem similar to oversmoothing. Note that table 3 does not have max aggregation
results as at least one seed failed for all experiments due to problems in training.

Deep Sets++ and Set Transformer++ outperform existing architectures. Table 4 shows that deep
DS++ and ST++ generally yield better or comparable performance to deep and shallow Deep Sets
and Set Transformer. We note that depth plays a role in the improved performance, as shallow DS++
and ST++ do not improve results in general. When deep, Deep Sets++ consistently improves over
Deep Sets, sometimes with orders of magnitude improvement in test loss. Set Tranformer++ improves
performance on Point Cloud and MNIST Var and reaches comparable performance on Hematocrit
and Normal Var. In Appendix E, we show on an official point cloud benchmark repository (Goyal
et al., 2021a) that DS++ and ST++ without any modifications outperform versions of Deep Sets and
Set Transformer tailored for point cloud classification (87% vs 86% accuracy). On the unseen set
anomaly task (CelebA), both DS++ and ST++ perform significantly better than their counterparts.
On Hematocrit, results surpass a model that uses the clinical baseline as well as prediction from
moments computed on the distribution. The best performing model is ST++ with 18.73 MSE, a 28%
error reduction over the clinical baseline (25.85 MSE).

6 RELATED WORK

There exist several permutation invariant neural architectures in the literature, including Deep Sets
(Zaheer et al., 2017) and Set Transformer (Lee et al., 2019) for general-purpose sets and PointNet (Qi
et al., 2017a) and PointNet++ (Qi et al., 2017b) specialized for point cloud data. Previous efforts to
design residual connections (He et al., 2016b; Veit et al., 2016; Yao et al., 2020) or normalization
layers (Ioffe & Szegedy, 2015; Ba et al., 2016; Santurkar et al., 2018; Ghorbani et al., 2019; Luo
et al., 2019; Xiong et al., 2020; Cai et al., 2021) have often been motivated by particular applications;
our work is the first to design residual connections and normalization layers for prediction on sets
in general. Efforts to build deep neural architectures exist in computer vision (He et al., 2016b),
natural language (Wang et al., 2019b), and graphs (Li et al., 2019; Chen et al., 2020; Zhao & Akoglu,
2019). While graph convolutional networks also encode permutation equivariance, in this paper we
address distributional real-valued data as well as sets of high-dimensional inputs where no external
information about graph structure is available.

7 CONCLUSION

We introduce set norm (SN) and equivariant residual connections (ERCs) and illustrate the benefits
of both in comparison to other choices of normalization layers and residual pipelines. Using set
norm and equivariant residual connections, we developed Deep Sets++ and Set Transformer++, deep
permutation invariant architectures which improve upon the current state-of-the-art models. Such
architectures are general-purpose architectures and the first permutation invariant architectures of their
depth that show good performance on a variety of tasks without task-specific architectural changes.
Interestingly, between Deep Sets++ and Set Transformer++, there is not a best choice in architecture
across tasks, so the choice for which to use may often come down to computational resources and
time. Set Transformer++ with 16 layers has more expensive computational and memory requirements
than Deep Sets++ with 50 layers, so Deep Sets++ may be preferred under limited resources. Lastly,
we introduced a new open-source dataset, Flow-RBC, which provides a real-world application of
permutation invariant prediction in clinical science. With data from over 100,000 patients, including
an external clinical measurement (i.e. hematocrit), Flow-RBC is uniquely suited among single-cell
datasets to be a benchmark for deep predictive modeling on sets. We believe our new models and
dataset have the potential to motivate future work and applications of prediction on sets.
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