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Abstract

One of the most profound challenges of modern machine learning is performing
well on the long-tail of rare and underrepresented features. Large general-purpose
models are trained for many tasks, but work best on high-frequency use cases.
After training, it is hard to adapt a model to perform well on specific use cases
underrepresented in the training corpus. Relying on prompt engineering or few-shot
examples to maximize the output quality on a particular test case can be frustrating,
as models can be highly sensitive to small changes, react in unpredicted ways
or rely on a fixed system prompt for maintaining performance. In this work, we
ask: Can we optimize our training protocols to both improve controllability and
performance on underrepresented use cases at inference time? We revisit the divide
between training and inference techniques to improve long-tail performance while
providing users with a set of control levers the model is trained to be responsive
to. We create a detailed taxonomy of data characteristics and task provenance to
explicitly control generation attributes and implicitly condition generations at
inference time. We fine-tune a base model to infer these markers automatically,
which makes them optional at inference time. This principled and flexible approach
yields pronounced improvements in performance on examples from the long tail
of the training distribution. Overall, we observe lifts of 5.7% across all tasks.
However, treasure markers are particularly effective at finding difficult to obtain
gains in the long-tail. We observe relative lifts of up to 14.1% on underrepresented
tasks like CodeRepair and absolute improvements of 35.3% on length instruction
following evaluations.

1 Introduction

Large language models (LLMs) are expected to perform well on many different tasks. Therefore,
training data is a heterogeneous mix, where instances can vary greatly in terms of format, contents,
tasks, and languages, e.g. code generation [31, 33, 20, 63] vs. MCQA [48, 39]. At inference time,
data points are not equally relevant, but it is often prohibitively expensive to go back and change
the training distribution for each individual inference request. Hence, there is a mismatch in the
distribution at training and inference time: training time distribution is often determined by ease of
access to prior data collections and prior data augmentation efforts, while at inference time, new use
cases might be underrepresented in the data but highly relevant to the user.

*Equal Mentorship.
†Work done at Cohere Labs.
Corresponding authors: {danieldsouza, juliakreutzer, ahmet}@cohere.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Distribution at Inference
if length_bucket=concise if length_bucket=medium if length_bucket=long

200 400 600 800 1000 1200 1400

200

400

600

800

C
o
u
n
t 200

400

600

800

200 400 600 800 1000 1200 1400

Tokens Tokens Tokens

200

400

600

800

200 400 600 800 1000 1200 1400

Figure 1: Tapping into Distributions: (above) illustrates the representation of various length buckets
in the training distribution. (below) demonstrates the flexibility of the marker intervention on the
mArena Hard test distribution. By modifying the <length_bucket>..</length_bucket> marker,
the model can effectively tap into diverse training distributions, even for underrepresented length
buckets.

To overcome this mismatch, techniques have been proposed to improve the conditioning of the
output generation at inference. These involve prompt engineering [57, 60, 54], multi-shot examples
[5, 29, 55, 30], chain-of-thought [53, 52, 41] or decoding strategies [46, 49]. However, these
approaches place an enormous burden on practitioners and developers to anticipate what strategies
deliver the best performance. Furthermore, the effectiveness is dependent on the exact configuration
for a particular model, e.g. the order of multi-shot examples plays a role [32], and the wording
of the prompt [2]. In this work, we ask Can we optimize our training protocols to both improve
controllability by the user and improve performance on rare use cases at inference time?

Our approach amounts to building a treasure map of hyper-detailed task-specific markers, to allow
for real-time automatic targeting of long-tail features during inference. We note that some of the
earliest generative models have used tags to improve performance. However, these often targeted
a single feature at a time or were applied uniformly to an entire dataset. These early tags fell out
of favor over the last few years, with the focus turning to prompt engineering for users to guide the
generation themselves. However, there have been a few wider ecosystem changes which prompt (no
pun intended) revisiting the paradigm of adding markers to training, and also motivate this work: 1)
LLMs are now used by a far wider group of everyday users who can’t be expected to be familiar with
the complexities of prompt engineering, 2) Many models are now served using an API which means
training markers can be added automatically behind the API call (not visible to users), and hence can
be far more complex and varied to guide and improve generations.

Our work is motivated by these two trends. We take a far wider view of training markers and explore
a setting where a single data point can have up to 90 complex characteristics. We describe these as
Treasure markers, introduced at training time to provide a map to guide towards higher performance
at inference time. We motivate that this approach is particularly beneficial for long-tail modeling.
Our goal is that the treasure map approach is robust at test-time, so we also aggressively experiment
with marker dropout during training. This is akin to asking the model to still find the treasure even
with missing clues.

In this work, our primary contributions are as follows:

1. Introducing a more general framework for controllability. We show that explicitly targeting
controllability during training leads to pronounced gains at inference time, with little burden placed
on the user. Training markers leads to significant downstream gains, ranging from a win rates
increase on open ended generations of 5.7% on ArenaHard [27] across the entire distribution of
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tasks relative to a model with no tags. We also see radical improvements in instruction following,
with a 35.3% absolute decrease in violation rates on length instruction following tasks. Our training
marker framework offers remarkable flexibility, allowing for control over both aspects of form
(output format, length) and semantic qualities (quality, tone, style) while also being completely
optional at inference, because the markers can be inferred accurately.

2. Long Tail Lifts The training with explicit markers is an effective method for leveraging long-
tail features at inference time, unlocking high-performance even for the distributions that are
underrepresented in the training data. While our framework enables a relative improvement of
7.9% on Code tasks over the baseline, we observe relative lifts of up to 14.1% on tasks like
CodeRepair, which are highly underrepresented in the training data.

3. Modeling Underlying Relationships: We demonstrate that our approach effectively models
underlying relationships in the data, as evidenced by a drastic violation reduction (36.58% →
1.25%) in length-constraint evaluation, despite never seeing a training sample with a prompt
instruction designating length constraints.

2 Methodology

2.1 Overview of Training Time Markers

We condition the output sequence y given an instruction x with added training markers m:

p(y|x,m) =

n∏
i=1

p(yi | x,m, y<i). (1)

These markers encompass several different attributes of the data, including estimated quality scores,
domains, and languages (2.2), which we store as a list of markers associated with a given data point
(see Table 1 for an example). This template is treated as natural language and encoded with the same
tokenizer as the text. We include the markers in both input (appended to the prompt) and output space
(prepended to the completion), to induce the model to associate the properties of the generations with
these characteristics. This reduces the burden on the practitioner or researcher at inference time, as
the model learns to infer the correct markers.

⟨MARKER_LIST⟩
⟨domain⟩ Sciences ⟨ /domain⟩
⟨language⟩ French ⟨ /language⟩
⟨/MARKER_LIST⟩

Table 1: An example list of training
time markers formatted in a standard-
ized template.

The finetuning objective thus becomes to minimize the
negative log likelihood of the target generations includ-
ing the template, given a prompt with an optional input
template:

− 1

|D|

|D|∑
d=1

log pθ(yd,md | dropout(md), xd) (2)

This approach ensures that the model learns to faithfully
generate and adhere to the training markers when provided
on the prompt side.

Training markers dropout To avoid the model from becoming overly reliant on markers for
completion or learning to trivially replicate the markers, we employ dual dropout strategies (dataset-
level, sample-level) on the prompt space. In dataset-level dropout, we completely remove the training
markers from the prompt for a random selection (defined as a percentage of the dataset). In sample-
level dropout, we completely remove a random subset of training markers from each example (defined
as a percentage of all markers associated with a given example). To ensure the model consistently
produces markers at inference time, we do not introduce dropout on the generation side.

2.2 Taxonomy of Training Markers

We develop a comprehensive taxonomy around distinct groups of desired characteristics to capture
key attributes of the training data, such as quality of the data, style, format, domain, and task. Table 8
contains the taxonomy with definitions and the set of valid marker values. Our goal was to study
a broad range of markers encompassing both deterministic properties (e.g., length, language) and
annotatable attributes (e.g., domain, task) to better characterize the SFT data mix. We selected
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Figure 2: Long tail domains benefit more from training markers: (left) Domain distribution in the
training data used to fine-tune the model. (right) Improvements in win rates over the baseline against
Gemma2-9B on both majority and minority subsets on Arena-Hard-Auto dataset [27]. We group the
test data into two sets of domains that have high (>5%) and low (< 5%) presence in training data.
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(a) Baseline Model
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(b) TreasureMarked
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(c) TreasureMarked (fixed)

Figure 3: Modeling data features flexibly with training time markers: Results on the length
instruction following on the AlpacaEval-Length-Instructed(LI) dataset. While (a) the baseline violates
the length constraint with 36.58%, (b) using the TreasureMarked model and allowing to infer tags
on the exact same dataset reduces the violation to 24.7%. (c) Conveying the requirement via an
explicitly inserted length marker to the prompts, the TreasureMarked model violates the instruction
on only 1.25% of the dataset.

this taxonomy with inference-time use cases in mind: properties like quality, tone, style, and
completion length are very desirable to control at inference. Moreover, to assess gains across both
well-represented and low-frequency features, we intentionally designed the taxonomy to capture the
inherent skew in data distributions. To that end, we add hyper-detailed markers for task, domain and
code type which tend to have highly skewed frequencies with some instances occurring far more
frequently than others.

To assign markers to samples in the training dataset, we utilize dataset-related information whenever
possible and use an LLM to tag missing meta-information. Specifically, we use the multilingual open-
weights model Command R+1 for tagging of markers for <domain>, <task>, <format> whenever
unavailable from the dataset. To improve tagging performance, we use detailed definitions paired
with few-shot examples to provide context for markers during annotation. We add markers across 23
languages, so we use in-language few-shot examples in each language.

Our extensive set of 90 unique markers fall into 13 categories such as Length, Style, Format,
Quality, Source, Domain, Task. We include an extensive description of all markers in appendix A.
We describe the most frequently referenced categories below:

• Length: are markers that allow for control of completion length. It includes a level of granular-
ity ranging from <length_tokens> and <length_sentences> to broader categories such as
concise, medium, and long.

• Language: <lang> describes the language the completion is written in (i.e. Arabic, Japanese),
enabling the model to improve language-specific generations and reduce language switching during

1Release blog of Command R+ https://cohere.com/blog/command-r-plus-microsoft-azure
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inference. <code_type> is specifically used to identify programming languages for coding-related
tasks (i.e. python, c++).

• Quality: <quality> provides a measurable score indicating the quality of a sample, often
derived from human annotations or a Reward Model (RM). We also create a categorical marker
<quality_bucket> by using quartiles within language-specific subsets into {1,2,3,4}, offering
a broader description of quality.

• Domain: overarching category of the knowledge required to answer a given prompt (i.e. Sciences,
Technology, Medical). We annotate domain markers either using LLM tagging or derive from the
source of the dataset for domains like Math and Code.

• Task: <task> helps capture more fine-grained differences in task characteristics within a domain
(i.e. summarization, reasoning, openended, explanation). Similar to the domain marker, we use
LLM tagging or the data source information for obtaining task markers.

2.3 Experimental Set-up

Training with Markers We use a 7-billion parameters proprietary base model which is pretrained
using a data mixture that consists of texts from 23 languages covering half the worlds population.
We train our base model on a training corpus containing 2.7M examples made up of our mixture of
instruction-style data sources. See Appendix B for full list of languages covered and more granular
details about the training protocol.

Inference Settings At inference time, we evaluate performance gains under two different settings.
In the default setting, which we refer to as "TreasureMarked", we do not fix any of the markers at
inference. This setting asks: Has the model learnt to infer the right markers without any intervention?
In the second setting which we refer to as "TreasureMarked (fixed)", we explicitly hardcode some
of the markers at inference. This asks: if we manually set the value of some markers, can we drive
gains in performance? This is very reasonable for cases like quality, where we always want to steer
model behavior towards higher quality generations.

We compare both "TreasureMarked" and "TreasureMarked (fixed)" against a model trained on the
same data, but without added markers that we refer to as Baseline. This allows for a clean comparison,
and controls for the same amount of data seen in both variants.

Core experimental variants and ablations In the next section, we evaluate a variety of ways
a model trained with markers shines at inference time. We inspect three axes of control: (1)
quality in section 3.1.1, (2) length in section 3.3, and (3) language in section 3.5). Furthermore,
we show how long-tail examples benefit from markers, even when only inferred at inference time
(section 3.1), specifically in coding tasks (section 3.2) and for long generations (section 3.3). We
present key experimental ablations, including understanding the impact of dropout applied to markers
on downstream performance at inference time (Section 4).

2.3.1 Evaluation

Open-ended generation quality We evaluate the impact of markers on both the English Arena-
Hard-Auto v0.1 [27], and a translated version of this dataset, m-Arena Hard [8] used for multilingual
evaluation. Arena-Hard-Auto is a challenging open-ended generation benchmark with prompts
selected from user queries on Chatbot Arena. We measure Win Rate % against our Baseline model
using GPT-4o.2

Task-specific evaluations In addition, we evaluate the models on benchmarks specific to tasks such
as code (generation, repair, translation) and length conditioned instruction following to narrow in
on long-tail effects and controllability levers. We introduce each of these evaluations within the
respective results sections.

2We used gpt-4o-2024-05-13 as our judge model. Details: https://platform.openai.com/docs/
models/gpt-4o
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3 Results

3.1 Impact of Treasure Markers on Open-Ended Generation

Open ended performance gains. We measure Win Rates (%) of the Baseline and TreasureMarked
models against Gemma2-9B [51] as a common point of comparison, visualized in Figure 2. We first
consider our TreasureMarked variant, markers are only included in training but are inferred from the
model itself during inference. Overall, we obtain an absolute increase of 5.7% in Win Rates from
32.1% to 37.8% across all tasks. This is reassuring, because it shows that markers at training time of
the TreasureMarked model can already make a positive change at inference time, even when only
inferred by the model itself, and even if the respective markers are rarely seen during training (e.g.,
for underrepresented domains).

Performance on the long-tail One of our core hypotheses is that treasure markers will be particularly
helpful at preserving or unearthing gains on the long-tail. To validate this hypothesis, we evaluate
performance post-training on domains represented with different frequencies in the training-set. As
seen in Figure 2, SocialScience, Sciences, Finance, Medical, and Legal domains are
particularly sparsely represented in the training data, each making up less than 5% of the training
data. In contrast, Code is best represented in the training dataset. With inferred treasure markers,
while there is an improvement of +5.7% across the higher-represented domains, we observe an even
more pronounced gain of +9.1% in the underrepresented domains.

3.1.1 Fixed Treasure Markers
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<quality_bucket> . . .  </quality_bucket>
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Figure 4: Levers for Controlling
Quality: Changing the <quality>,
<quality_bucket> markers at inference
time provides control over generation quality
with Win Rates (as measured by internal Re-
ward Model) going from 48.21% → 56.5%
over the Baseline model, demonstrating
successful control over quality as annotated
in the training data.

We also explore adding explicit markers in Treasure-
Marked (fixed). Here, we specifically target quality
and ask Can we control the generation quality of
the model as a latent feature, using training time
markers? To test this, we measure generation quality
on m-ArenaHard [8] across 23 languages, by only
adding markers related to quality. For each value
[1,2,3,4] of <quality_bucket>, we also include
a <quality> score in conjunction with it. To obtain
the <quality> score, we pick the 95% percentile
calculated language-wise from the samples in the
training data from each respective bucket. As evalu-
ation, we measure the generation quality by the same
Reward Model used to score the data during training
to compute win rates against the Baseline model.

Figure 4 demonstrates the amount of control intro-
duced by training time markers with win rates under
the RM going from 48.21% → 56.5% just by chang-
ing <quality>, <quality_bucket> at inference.
These results showcase the potential of our frame-
work, where markers representing a desired quality
metric used during training yields control levers to
leverage generations that tap into that quality metric
at inference time.

3.2 Impact of Treasure Markers on Targeted Performance of Specific Sub-tasks

3.2.1 Code Performance

For code, we evaluate our model on three tasks from HumanEvalPack [38] dataset, and measure
pass@1 rates. We use CodeSynthesis, CodeRepair, and CodeTranslation3, covering python, rust, java,
javascript, go, c++. These map to the following task markers in our taxonomy: CodeGeneration,
CodeFix, and CodeTranslation.

3The CodeTranslation task is created by an all-to-all mapping between the 6 languages in HumanEvalPack
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Figure 5: Improvement on the Long Tail for Code tasks: (left) Frequency of coding <task>s in the
training dataset. (right) Despite being poorly represented in the training data, CodeRepair achieves a
14.1% relative improvement by leveraging targeted markers during inference further improving on
the performance from the TreasureMarked model with inferred markers.

Original AlpcaEval-LI TreasureMarked (fixed)

Answer the following instruction
using 199 words or less.

What are the names of some famous
actors that started their careers
on Broadway?

What are the names of some famous
actors that started their careers
on Broadway?
<MARKER_LIST>
<length_tokens>199</length_tokens>
</MARKER_LIST>

Table 3: Examples of length control strategies: (left) Original instruction from AlpacaEval-LI
dataset; (right) Modified instruction with constraint in the marker list.

During training, code comprises of 27.2% of the overall training corpus. However, we specifically
pick this domain because the distribution of coding subtasks differs significantly in frequency in the
training corpus, as shown in Figure 5. CodeRepair and CodeTranslation are very rare coding
subproblems, while CodeGeneration is heavily represented at 75.8% within the coding data.

Long-tail gains We observe the largest gains on the long-tail code tasks. As seen in Figure 5, whether
we provide the markers (TreasureMarked (fixed)) or the model infers them, both rare coding problems
(CodeTranslation and CodeRepair) show large improvements of 0.597 → 0.636(+3.9% absolute,
+6.5% relative) and 0.216 → 0.246(+3% absolute, +14.1% relative) over the baseline respectively.
We note that these gains are far higher than the gains observed for the far more frequent task of
CodeGeneration, which only improves 0.406 → 0.419 (+1.3% absolute, +3.2% relative). This
shows that our framework benefits all parts of the distribution, but has disproportionate success
enabling large lifts to highly infrequent features during training.

3.3 Length Control in Inference Time Model Violation Win Rate
Baseline 36.58% 14.36%
TreasureMarked 24.74% 19.48%
+ (fixed) 1.25% 21.22%

Table 2: Length Instruction Following
& generation quality on Alpaca-Eval LI.

To assess the impact of length conditioning during infer-
ence, we benchmark on the AlpacaEval-LI dataset [61],
which evaluates how faithfully LLMs adhere to length
constraints. We complement the measurements for length
violation with Win Rates(%) by evaluating valid samples
against the dataset provided completions using GPT-4o. We establish our baseline using completions
generated by the Baseline model. Following a similar approach to [61], we assess Violation(%) as
the proportion of samples exceeding the specified length constraint. We include additional details in
Appendix B.

Improvements to length control. In Table 2, we show improvements of up to 35.3% in length
violation rates. This pronounced improvement results in a mere 1.25% remaining violations for this
evaluation set (essentially close to saturating performance on this evaluation). Even when the treasure
markers are not explicitly provided but inferred directly by the model, we observe up to 11.8%
absolute decrease in violation rates. These improvements to instruction following are non-trivial, and
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also lead to overall win-rate gains of up to 6.86%, ensuring quality is not compromised as length
constraints are enforced.

3.4 Machine Translation

To study the effects of the markers on machine translation, we benchmark on WMT’24++[10] and
report translation performance from English to 22 languages (en → xx) based on the languages
seen in pretraining. We use XCOMET-XL [7] for evaluation, a state-of-the-art machine translation
evaluation metric [12] via the comet-compare4 library to conduct statistical significance analyses
based on paired t-tests and bootstrap resampling.

Table 4 shows the results with the relative improvement over the Baseline. Training the model with
markers and using them at inference time improves performance on 5 languages (es, id, it, pt, ro)
significantly with up to 1.18 point gains, while retaining performance on all other languages. This
constitutes a remarkable improvement, especially given that the training data, up to the markers, is
identical. According to the metric delta analysis in [21], improvements of such magnitudes are very
likely to be confirmed in human evaluations.

en → xx ar cs de el es fa fr he hi id it
Baseline .6865 .7485 .8824 .7463 .8249 .7099 .789 .7214 .5158 .776 .8126

TreasureMarked (fixed) .6844 .755 .8848 .7500 .8307 .7072 .7948 .7166 .5229 .7874 .8194
(-0.21) (+0.65) (+0.24) (+0.37) (+0.58) (-0.27) (+0.58) (-0.48) (+0.71) (+1.14) (+0.68)

en → xx ja ko nl pl pt ro ru tr uk vi zh
Baseline .7368 .7281 .8103 .7578 .822 .8048 .7675 .6669 .7625 .7593 .7176

TreasureMarked (fixed) .7342 .7318 .8117 .7546 .8281 .8166 .7627 .6723 .7575 .756 .7200
(-0.26) (+0.37) (+0.14) (-0.32) (+0.61) (+1.18) (-0.48) (+0.54) (-0.50) (-0.33) (+0.24)

Table 4: X-CometXL scores [7] on WMT’24++ test sets [10]. Bold differences are significant at p ≤
0.05 according to a paired T-Test and bootstrap resampling [22] as implemented in comet-compare

3.5 Language Control in Inference Time

As the final set of results, we focus on the effect of our training markers on ensuring a model responds
in the language specified by the user. To evaluate this, we use the Language Confusion Benchmark
[35] which measures the ability of a model to follow cross-lingual instructions such as “Respond in
French...”, to request completions in another language. We measure performance on the Complex
Prompts subset of the cross-lingual benchmark across 14 languages. Following [35], we measure
Line-level Pass Rate (LPR) that only deems a response "correct" if all lines in the generation match
the user’s desired language.

Table 5 shows results across 14 languages. Our model with training markers significantly improves
language control performance in 13 out of 14 languages with an absolute gain of 10.98% on average
across 14 languages, showcasing a remarkable improvement in controllability of inference time. We
observe the largest gains for Russian (+18.6%) and the lowest gains for Chinese (+5.5%).

ar de es fr hi id it ja ko pt ru tr vi zh Avg.
Baseline 81.1 71.9 65.7 70.4 68.0 49.0 72.5 68.4 75.8 60.6 68.0 84.7 67.4 57.1 68.6
TreasureMarked (fixed) 88.4 84.4 82.7 79.8 73.7 66.7 82.8 83.8 85.0 72.2 86.6 78.6 82.8 62.6 79.58 (↑ 10.98)

Table 5: Line-level pass rate on Complex Prompts from the Language Confusion Benchmark [35].

4 Key ablations and Discussion

How do markers interact? We perform an additional ablation on the AlpacaEval-LI dataset
from section 3.3 to study the effect of adding more useful markers at inference time. In ad-
dition to the <length_tokens> marker that conveys the explicit length constraint, we anno-
tate and add the <domain> marker, which we suspect carries implicit length biases (e.g. le-
gal text might be longer than conversations), but should add helpful context to the prompt.

4https://unbabel.github.io/COMET/html/running.html

8

https://unbabel.github.io/COMET/html/running.html


Model Violation Win Rates
TreasureMarked (fixed) 1.25% 21.22%

+ <domain> 1.87% 24.72%

Table 6: Multidimensional control (Alpaca-Eval
LI): Adding <domain> marker improves generation
quality and hence Win Rates by +3.5% working in
conjunction with <length_tokens>, without hurt-
ing the length control.

With this we ask – If multiple markers are
added at inference, do their effects add up or
cancel out?

From Table 6, we observe that the effect of
adding <domain> has a positive impact on the
generation quality with a +3.5% jump in win
rates albeit at the cost of a slight increase in
Violation Rate(%). This indicates that there
are multidimensional relationships that form
between treasure markers during training and
can be leveraged in conjunction to achieve
desired characteristics at inference.

What is the impact of the dropout on the marker prediction?
To understand the impact of the marker dropout (§ 2.1), we train three variants with dataset-level
dropouts of [0%, 50%, 70%] while sample-level dropout is fixed to 50%. Our goal with dropout is
to teach the model to infer markers without needing explicit guidance at inference time. However, too
much dropout may impede the model from learning key patterns between tags and output properties.
To evaluate this, we calculate the accuracy of the markers inferred by the model to the underlying
markers assigned to m-Arena Hard and average across all 23 languages [8]

dataset_sample <domain> <task> <format> <lang>

0_50 3.3% 1.9% 7.3% 1.2%
50_50 74.9% 53.6% 47.4% 99.2%
70_50 75.1% 51.4% 46.8% 99.1%

Table 7: Effect of dropout on marker predic-
tion. Using no dropout (dataset-level) prevents
the model to learn predicting the correct marker
across categories, hence, hurts the flexibility of our
framework.

In Table 7, we observe that the least extreme
dataset-level dropout variant 0_50 struggles
to predict the correct marker at inference time.
This is expected performance, since at training
time, 0% dropout of markers across the dataset
implies all training sample prompts have mark-
ers associated with it which makes it overly de-
pendent on the presence of markers at inference
time. At inference time, as this is not provided,
accuracy is very low at 3.42%. We note that at
both 50% and 70% dataset level dropout, we
observe similar final abilities to infer the correct
markers. Given this, unless specified elsewhere, 50% dataset-level dropout is the default specification
used throughout experiments since it strikes the best balance between learning and generalization.

5 Related Work

The idea of marking inputs goes back to works in neural sequence prediction before LLMs. The
motivation was similar: to leverage discrete features to overcome data sparsity or imbalance and
introduce levers of control. There are many individual works targeting one or two characteristics
at a time, targeting special models and datasets, spanning diverse aspects such as language [17],
quality [6, 50, 13] and domain [19, 4]. We build a much more general framework on top of a vast
multi-task training corpus. We design a flexible approach that can be used for any text generation task
with many characteristics, encompassing the above. Furthermore, we explicitly care about improving
performance on the long-tail of underrepresented features.

LLM control has been pursued with respect to web domains in pretraining [18] and length in
finetuning [61]. At inference time, values for these markers are specified to steer the generation. [14]
further proposes a cooldown schedule in pretraining going from tagged data to untagged data in order
to not require prefixes during inference. We focus on the instruction finetuning stage and incorporate
nuanced multi-dimensional markers (i.e. the user can specify length and domain and format). We
circumvent a cooldown schedule with dropout, hence not requiring a complete population of markers
at inference time.

Related prefix and prompt tuning methods [28, 26, 45] use continuous embeddings learned for special
tokens representing markers in training to condition predictions for specific tasks at inference time.
In our case, we directly embed prefixes with the same vocabulary as the LLM, smoothly integrating
them into the sequence. In our experiments in section 3.3, we found that this helps format following
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even when specified in natural language and not markers. We include a more detailed discussion of
the relevant literature in Appendix C.

6 Limitations

Firstly, although we design a comprehensive taxonomy for our training markers, there can be alternate
categorizations of domains and tasks, and other data properties. However, our work primarily
showcases the benefits of various data markers and how to leverage them during training (to model)
and inference (to guide model outputs). We also acknowledge that our annotation setup of restricting
each example to a single value per marker was adopted for simplicity. In practice, examples often
span multiple overlapping concepts. Therefore, we believe that an extended taxonomy and annotation
setup would likely further improve the results we demonstrate.

Secondly, we conduct experiments using a 7-billion parameters language model. We opt for 7B
parameter scale to be able to run more experiments with different test cases as presented in the
paper, instead of using a much larger model size with very limited experiments due to the underlying
compute costs. However, considering a larger model could learn to model training-time markers with
higher performance, we believe that our findings hold for larger model sizes.

Finally, we showcase the effectiveness of learning training-time markers in the supervised fine-tuning
phase. We did not experiment with learning these markers in the pre-training phase as pre-training
requires multiple degrees of higher costs. Therefore, we leave this exploration to the future work.

7 Conclusion

In this work, we proposed adding markers to training data to map out potential “treasures” that can
be retrieved at inference time, such as specific task configurations or quality characteristics. In our
experiments on multilingual instruction-finetuning, we showed that these markers are a powerful
tool to execute control (quality, length, output language) over generations, and at the same time have
beneficial effects for generation quality of underrepresented portions of the training data, such as rare
coding tasks. We found that dropout of training markers trains the model to infer missing markers at
inference time. With this flexibility, we allow users to “hunt treasures” without having to tediously
engineer prompts or few-shot examples for optimized performance.
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A Taxonomy for training time markers

A.1 Categories for Training Markers

Length: <length_tokens>, <length_sentences>, and <length_paragraphs> models granu-
lar control in generation length. We tokenize using language-specific Spacy models[15] to obtain
token and sentence counts. For paragraph counts, we use the "\n\n" delimiter. <length_bucket>
categorizes generations into broader categories such as concise (under 300 tokens), medium (between
300 and 1,000 tokens) or long (over 1,000 tokens), providing a more general level of control when
needed.

Format: <format> is used to describe generations with specific output structures such as: JSON,
Markdown, or tabular formats. This is particularly useful to condition stricter format requirements
needed for real world use cases.

Style: <style> captures tone and manner of communication, distinguishing between different modes
of expression such as "Formal" and "Informal". We also add a "Custom" value to model for training
examples where the user specifies a particular format. For instance, at inference if a user asks,
"Respond like Yoda you will" this marker will allow the model to adapt its response to match
the requested style. We annotate this marker by using dataset-related information.

Language: <language> describes the natural language of the generation, enabling us to model
responses in specific languages during inference. We provide detailed markers across the 23 languages
covered by our model. Our goal with this tag is to improve language-specific generations and reduce
language switching where a prompt specified by a user in one language is not responded to in the same
language in the completion. <code_type> is specifically used to model programming languages for
coding-related tasks. We annotate this marker by using dataset-related information.

Quality: <quality> provides a measurable score indicating the quality of a sample, often derived
from human annotations or a Reward Model (RM). We utilize a proprietary reward model5 to assign
rewards to a subset of our training data. We also use these rewards to create a categorical marker
<quality_bucket> by using quartiles within language-specific subsets into {1,2,3,4}, offering a
broader description of quality.

Source: <source> describes the origin of the data, distinguishing between human-generated content
and other methods of data creation like synthetic and translation. We annotate this marker by using
dataset-related information.

Domain: <domain> ensures that domain-specific knowledge is captured from training subsets, which
can then be leveraged at inference to generate content that is relevant and accurate within a particular
field. This is particularly crucial for inputs that could belong to multiple fields. For instance, when
a user asks, "How do I calculate a factorial?", specifying the <domain> as either Code or Math
provides valuable context for modeling the interaction. In cases where this marker cannot be obtained
from the dataset information, we employ an LLM to annotate and provide our detailed prompt in D

Task: <task> defines the overall objective of the generation and helps capture task-specific behaviors,
especially when outputs involve complex combinations of formats or actions. This marker is useful
to model dataset-wise characteristics. We hypothesize this is particularly helpful for indicating
complex workflows during inference. For example, distinguishing between Translation and
CodeTranslation, or Rewrite and CodeFix, enhances the descriptiveness of datapoints within
the same training pool. In cases where this marker cannot be obtained from the dataset information,
we employ an LLM to annotate and provide our detailed prompt in D

B Additional details about experimental sections and key ablations.

Languages covered by Markers We cover 23 languages: Arabic, Chinese (simplified & traditional),
Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean,
Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian and Vietnamese.

Training protocol Training for each variant spanned 8,000 steps, employed a cosine learning rate
schedule with a warm-up phase, using a batch size of 32 and an evaluation batch size of 64. We train

5The RM is competitive with leading reward models on the RewardBench Leaderboard [24](https://
huggingface.co/spaces/allenai/reward-bench)
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category definition values

<quality> Score indicating the quality
assigned to a sample as an-
notated by a human or a Re-
wardModel(RM).

float

<quality_bucket> <quality> bucketed into
quartiles (calculated by lan-
guage).
1 indicating highest quality
and 4 indicating lowest qual-
ity

{1,2,3,4}

<length_tokens> # of tokens int
<length_sentences> # of sentences int
<length_paragraphs> # of paragraphs int
<length_bucket> <length_tokens> buck-

eted by defined response
length ranges

concise, medium, long

<task> Task-related information {OpenEnded, Explanation,
Translation, Classification,
CreativeWriting,
QuestionAnswering,
InformationExtraction,
Summarization, Rewrite,
Reasoning, CodeGeneration,
CodeFix, CodeTranslation,
CodeExplanation}

<domain> Domain-related information {Sciences, Technology,
SocialSciences, Culture, Medical,
Legal, Unspecified, Conversation,
Code, Math}

<code_type> (coding tasks) Programming
languages

{python, javascript, cpp, cobol,
java, go, rust, swift, csharp,
php, typescript, shell, c,
kotlin, ruby, haskell, sql}

<format> To model desired generation
format

{MCQAnswer, ChainOfThought, XML,
JSON, Enumeration, Tabular,
Markdown, Latex}

<source> To model the data-
generation/annotation
source

{Human, Translation, Synthetic,
Others}

<style> To model tone and style of
the generation

{Formal, Informal, Custom}

<lang> To model the 23 languages
present in the training data

{English, French, Spanish,
Italian, German, Portuguese,
Japanese, Korean, Arabic,
Chinese, Russian, Polish,
Turkish, Vietnamese, Dutch,
Czech, Indonesian, Ukrainian,
Romanian, Greek, Hindi, Hebrew,
Persian}

Table 8: Comprehensive taxonomy for training time markers: Our taxonomy contains 13 cate-
gories shown with their descriptions and values.
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for 2 epochs with a peak learning rate of at 2.5 × 10−4, achieved through 10 warm-up steps starting
from a learning rate of 0.0, and then decay back to 1.25 × 10−4. One fine-tuning run using 8,000
steps on 128 Nvidia H100 GPUs takes around 6 hours.

Length Evaluations Given the original instruction in the AlpacaEval-LI dataset [61] contains the
exact constraint, our TreasureMarked and TreasureMarked (fixed) both contain explicit reference
to the contraint. For TreasureMarked, we present the original length-instructed prompt, allowing the
model to deduce the associated tags. This approach evaluates the model’s ability to extrapolate tags
from instructions. in contrast, for TreasureMarked (fixed), since the original instruction contains the
exact constraint, we investigate an additional control strategy where we provide the constraint in the
marker template if the taxonomy directly supports it. We remove the length instruction and append
the corresponding <length_tokens> tag with the appropriate value. Table 3 provides an example
of an edited prompt. This strategy assesses the model’s adherence to known templates and its ability
to follow explicit length requirements that are only provided via the marker template.

Language Control We insert training markers present in the data into the prompt, but leave out the
<lang> marker, since it is already present in the prompt.

C Extended Related Work

From one- to multi-dimensional training data tagging The idea of tagging inputs in neural
sequence prediction goes back to early applications in machine translation and language modeling.
The motivation there was to leverage discrete features to overcome data sparsity or imbalance
and introduce levers of control. In early neural LMs, often tokens were added to target a very
specific attribute such as topic [37] or auxiliary features [3] including genre and length. A specific
token for example was added at inference time to control a feature in translation like the target
language [17], or desired output quality [6, 42, 36, 25, 13] and text complexity [1, 34] but also
language-specific nuanced attributes like politeness [44, 11], the voice [58], gender [23]. domains [19,
4], or diversity [47] of translations. Other works enriched the input representation during training
with discrete linguistic features [43] or document information [16] for a better contextualization
at inference time. Where and how tags should be placed best differed across applications [16, 56].
Some tags were combined into multidimensional tagging [50, 40] All of these were individual efforts
that target one or two dimensions at a time, highly specialized for one trained target model and with
training data for one particular task. In contrast, our focus is on a much more general framework
with a vast training corpus that targets general performance. Our approach is similarly general,
where instead of a single feature, we want to enable a flexible approach that can be used for any text
generation task. Furthermore, our goal is to explicitly target improving performance on the long-tail
of underrepresented features.

From control in pretraining to control in instruction finetuning In LLM research, there are
several related works that experiment with adding prefixes for control in pretraining: [18] add
control codes for desired text features in pretraining of a LLM derived from the structure of their
source, i.e., subdomains or links of online texts and specific task labels for translation and QA. At
inference time, values for these control codes are specific to steer the generation. [14] further propose
a cooldown schedule in pretraining going from tagged data to untagged data in order to not require
prefixes at inference. [61] focus on length control by adding natural language length specification
templates to fine-tuning data for DPO. In our work we focus on the instruction finetuning stage and
incorporate nuanced multi-dimensional tags (i.e. the user can specify length and domain and format).
We circumvent a cooldown schedule by simply introducing tag dropout, hence requiring a much
smaller volume of tagged data at training time, and not a complete population of tags at inference
time.

From encododed to inferred meta-information Related prefix and prompt tuning methods [28, 26]
use continuous embeddings learned for special tokens representing tags in training to condition
predictions for specific tasks at inference time. [45] further break those into separate tags for domain
and function tags. In our case, we directly embed prefixes with the same vocabulary as the LLM,
smoothly integrating them into the sequence. In our experiments, we find that this helps format
following even when specified in natural language and not tags.
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Attribute-based control in LLM generations has also been pursued with other methods, such as
attribute classifiers [9] or learned attribute vectors [59] — see [62] for a comprehensive survey.

D LLM Annotation

For the following training markers : <domain>, <task>, <format> we annotate using the multi-
lingual open-weights model Command R+.

We provide definitions and multilingual few-shot examples (except for <format>) to obtain high-
quality annotations from the LLM. The prompt used for tagging is as follows:

D.0.1 <domain>

You are a helpful assistant whose goal is to classify the given prompt into
a single class given the following definitions↪→

`Sciences` : Topics related to the broad area of knowledge encompassing all
scientific disciplines, including biology, chemistry, physics, earth
sciences, and astronomy, which study the natural world through
observation, experimentation, and analysis, aiming to understand
fundamental principles and phenomena across various scales and aspects
of the universe

↪→

↪→

↪→

↪→

↪→

`Technology` : Topics related to the broad area of knowledge encompassing
all engineering and technical disciplines, including Computer Science,
Software Engineering, Internet of Things(IoT), Cybersecurity, Data
Science, Artificial Intelligence, Machine Learning and various
engineering disciplines like Mechanical Engineering, Civil Engineering
and Biotechnology

↪→

↪→

↪→

↪→

↪→

`SocialSciences` : Topics related to the broad area of knowledge
encompassing all academic disciplines dedicated to the systematic study
of human society, social relationships, and the structures that shape
them, including fields like anthropology, economics, political science,
psychology, and sociology, all focused on understanding how individuals
and groups interact within a society and the factors influencing their
behavior, cultural norms, and societal institutions

↪→

↪→

↪→

↪→

↪→

↪→

`Culture` : Topics related to the broad area of knowledge encompassing all
cultural practices or beliefs within societies, including related
concepts or behaviors that people within a culture group share and
understand as belonging together, like food, art, language, family
structure, societal norms or religious rituals

↪→

↪→

↪→

↪→

`Medical` : Topics related to the broad area of knowledge and practice
encompassing all medicine and healthcare, including diagnosing and
treating diseases, preventative measures, specialties like surgery,
cardiology, oncology, pediatrics, and more, all built upon the
foundation of basic medical sciences and patient care principles

↪→

↪→

↪→

↪→

`Finance` : Topics related to the broad area of knowledge encompassing
activities like managing money, business ethics, investing, borrowing,
lending, trading, budgeting, saving, and forecasting, essentially
focusing on the acquisition, allocation, and management of capital
within businesses

↪→

↪→

↪→

↪→

, individuals, and governments across various financial markets and
instruments↪→

`Legal` : Topics related to the broad area of knowledge encompassing
Private, Public and Criminal Law, Criminal Justice, Law Enforcement,
Policing, Justice Systems or Crime

↪→

↪→

`Conversation` : Topics related to Conversation, Chit-Chat or Roleplay
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`Code` : Topics related to a specific subject/field within computer
programming where software is designed and developed to solve problems
related to a particular industry, business function, or area of
expertise, essentially defining the target audience and unique
requirements for the code being written including tasks like Code
Generation, Code Fix and Code Explanation

↪→

↪→

↪→

↪→

↪→

`Math` : Topics related to the broad field of study that uses numbers,
shapes, and formulas to describe and quantify the world, including
areas like Logical Reasoning, Quantitative Calculation, Pattern
Recognition, Formulating Conjectures, Arithmetic, Algebra, Geometry,
Number Theory, Set Theory and Analysis

↪→

↪→

↪→

↪→

If you are unable to confidently assign one of the above classes, you will
simply respond with `Unspecified` and nothing else.↪→

Note:
- You are only to respond with the name of the class you believe best

matches the domain of the example.↪→

- You are only allowed to classify the example into one of the following
tags :↪→

[`Sciences`, `Technology`, `SocialSciences`, `Culture`, `Medical`,
`Finance`, `Legal`, `Conversation`, `Code`, `Math`, `Unspecified`]↪→

Here are a few examples :

Prompt : What is photosynthesis?
Answer : `Sciences`

Prompt : What is the TCP/IP protocol and how does it work ?
Answer : `Technology`

Prompt : How has globalization affected social cohesion ?
Answer : `Social Sciences`

Prompt : What is an example of a popular dish that is available in multiple
communities but known under different names?↪→

Answer : `Culture`

Prompt : How long does one have to fast before a fasting sugar blood test?
Answer : `Medical`

Prompt : Analyze the impact of microfinance initiatives on poverty
alleviation in developing countries.↪→

Answer : `Finance`

Prompt : What is the difference between a first-degree crime and a
second-degree crime?↪→

Answer : `Legal`

Prompt : Hey! How are you?
Answer : `Conversation`

Prompt : Given a variable x=3.142 in Python, how would I use an f-string to
show just 1 decimal value?↪→

Answer : `Code`

Prompt : Solve the quadratic equation: x² + 5x - 6 = 0
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Answer : `Math`

Prompt : Use ABC notation to write a melody in the style of a folk tune.
Answer :

D.0.2 <task>

You are a helpful assistant whose goal is to classify the given prompt into
a single class given the following definitions↪→

`CodeTranslation` : Tasks related to the process of converting source code
from one programming language to another while preserving the code's
functionality

↪→

↪→

`CodeExplanation` : Tasks related to the specific process of explaining a
snippet of code in a programming language↪→

`CodeGeneration` : Tasks related to the specific process of generating a
snippet of code in a programming language↪→

`Explanation` : Tasks related to explaining a concept in any domain
`CreativeWriting` : Tasks related to any form of writing that employs

creative, literary or poetic techniques that displays imagination or
invention including role-play

↪→

↪→

`QuestionAnswering` : Tasks related to any form of question answering,
including open-ended questions, closed-ended questions about a given
context and requests for information about a particular entity. This
will also generally include your `what`, 'which', 'who', 'when' type
questions

↪→

↪→

↪→

↪→

`OpenEnded` : Tasks related to any form of open-ended text generation like
chat, conversation or chit-chat↪→

`InformationExtraction` : Tasks related to any form of information
extraction usually involving some context↪→

`Summarization` : Tasks related to any form of summarization including but
not limited to abstractive summarization, extractive summarization or
concise descriptions of content

↪→

↪→

`CodeFix` : Tasks related to the specific process of correcting/fixing a
piece of code to achieve the desired result.↪→

`Reasoning` : Tasks involving any form of Ideation, Reasoning, Problem
Solving, Instruction Following or Chain-of-Thought(CoT) in order to
achieve the desired result.

↪→

↪→

`Rewrite` : Tasks involving any form of
re-writing/re-phasing/re-wording/re-framing in order to achieve the
desired result.

↪→

↪→

`Classification` : Tasks related to specific request of classification
where you are required to assign a thing to one of several groups↪→

`Translation` : Tasks related to specific request of translating a given
piece of text from one language to another language↪→

If you are unable to confidently assign one of the above classes, you will
simply respond with `Unspecified` and nothing else.↪→

Note:
- You are only to respond with the name of the class you believe best

matches the domain of the example.↪→

- You are only allowed to classify the example into one of the following
tags :↪→

[`CodeTranslation`, `CodeExplanation`, `CodeGeneration`, `Explanation`,
`CreativeWriting`, `QuestionAnswering`, `OpenEnded`,
`InformationExtraction`, `Summarization`, `CodeFix`, `Reasoning`,
`Rewrite`, `Classification`, `Translation`, `Unspecified`]

↪→

↪→

↪→

Here are a few examples :
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Prompt : Translate the following Python function to equivalent JavaScript
code that checks if a string is a palindrome.↪→

def is_palindrome(str):
return str == str[::-1]

Answer : `CodeTranslation`

Prompt : Explain the following python function :
def is_palindrome(str):

return str == str[::-1]
Answer : `CodeExplanation`

Prompt : Generate a Python function to check whether a string is a
palindrome.↪→

Answer : `CodeGeneration`

Prompt : Explain briefly how the water cycle works
Answer : `Explanation`

Prompt : Translate the following sentence from English to Spanish, using a
formal tone: 'We are pleased to announce the new partnership with our
company.'

↪→

↪→

Answer : `Translation`

Prompt : You're a talk show host. Pick two guests that are wildly different
from each other. Briefly introduce them↪→

Answer : `CreativeWriting`

Prompt : Classify the sentiment of the following review as positive,
negative, or neutral: 'The product exceeded my expectations!'↪→

Answer : `Classification`

Prompt : What is the capital city of France?
Answer : `QuestionAnswering`

Prompt : Describe your ideal work environment
Answer : `OpenEnded`

Prompt : From the following news article, extract the names of the
companies involved in the recent merger, along with the date the merger
was announced.

↪→

↪→

Context:In a significant development in the tech industry, two leading
companies have announced their merger, marking a new era of innovation
and collaboration. The merger, which was officially announced on March
15, 2025, brings together TechInnovate Inc. and DigitalSolutions Corp,
two giants in their respective fields. TechInnovate Inc, known for its
cutting-edge research and development in artificial intelligence and
machine learning, has been at the forefront of technological
advancements. With a team of over 5,000 engineers and scientists, the
company has consistently delivered groundbreaking solutions that have
transformed various industries. DigitalSolutions Corp, on the other
hand, is renowned for its expertise in software development and digital
transformation. The company has a proven track record of helping
businesses across the globe to modernize their

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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operations and enhance their digital capabilities. With a workforce of
over 10,000 professionals, DigitalSolutions Corp. has been a key
player in driving digital innovation. The merger is expected to create
a powerhouse in the tech industry, combining the strengths of both
companies to offer comprehensive solutions that address the evolving
needs of businesses and consumers. The combined entity will leverage
TechInnovate's AI and machine learning capabilities with
DigitalSolutions' software development expertise to develop
next-generation technologies. Industry analysts predict that this
merger will lead to significant advancements in areas such as
autonomous systems, smart cities, and personalized healthcare. The
synergy between the two companies is anticipated to drive innovation,
improve efficiency, and create new opportunities for growth.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Answer : `InformationExtraction`

Prompt : Given the following story, provide a title that summarizes the
idea behind the story:↪→

Context:
There once was a girl who was frustrated with life and asked her father for

advice. He asked her to bring an egg, two tea leaves, and a potato. He
then started boiling water in three separate vessels. He put the egg,
potato, and tea leaves in one vessel each. After a few minutes, he
asked her to peel the egg and potato and strain the leaves. He
explained to his daughter that:

↪→

↪→

↪→

↪→

↪→

The soft egg was now hard.
The hard potato was now soft.
The tea had changed the water itself.
When adversity is at our door, we can respond to it in different ways.

Moral: We decide how to respond to difficult situations.
Answer : `Summarization`

Prompt : Fix the code below to correctly identify a palindrome:
def is_palindrome(str):

return str == str[-1]
Answer : `CodeFix`

Prompt : John has one pizza, cut into eight equal slices. John eats three
slices, and his friend eats two slices. How many slices are left?
Explain your reasoning step by step.

↪→

↪→

Answer : `Reasoning`

Prompt : Exaggerate this product description : 'Our new sneakers are
comfortable, lightweight, and stylish.' to a paragraph that can be used
by the marketing team

↪→

↪→

Answer : `Rewrite`

Prompt : Use ABC notation to write a melody in the style of a folk tune.
Answer :

D.0.3 <format>

You are a helpful assistant whose goal is to classify the given prompt into
a single class given the following definitions↪→
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`MCQAnswer` : Tasks related to multiple-choice type question answering.
These prompts will typically contain multiple choices provided either
in bullet form or eumerated numerically/alphabetically. This also
contains multiple-choice question answer generation tasks.

↪→

↪→

↪→

`ChainOfThought` : Tasks related to Chain-of-Thought(CoT) style question
answering. This also contains CoT style question answer generation
tasks

↪→

↪→

`Enumeration` : Tasks that involve enumeration, bullet points, lists or
itemization of any form↪→

`XML` : Tasks that involve XML generation, validation or processing in any
form↪→

`Tabular` : Tasks that involve table generation, validation or processing
in any form↪→

`JSON` : Tasks that involve JSON generation, validation or processing in
any form↪→

`Markdown` : Tasks that involve Markdown generation, validation or
processing in any form↪→

If you are unable to confidently assign one of the above classes, you will
simply respond with `Unspecified` and nothing else.↪→

Note:
- You are only to respond with the name of the class you believe best

matches the domain of the example.↪→

- You are only allowed to classify the example into one of the following
tags :↪→

[`MCQAnswer`, `ChainOfThought`, `Enumeration`, `XML`, `Tabular`, `JSON`,
`Markdown`, `Unspecified`]↪→

Prompt : Use ABC notation to write a melody in the style of a folk tune.
Answer :
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

• Framework for controllability: “We create a detailed taxonomy of data characteristics
and task provenance to explicitly control generation attributes and implicitly condition
generations at inference time.”: The taxonomy is provided in section 2.2, with the
definition of training objective in section 2

• Experimental scope: “We fine-tune a base model to infer these markers automatically,
which makes them optional at inference time.”: The method is described in section 2,
the process of finetuning in section 2.3, and the empirical evidence for not requiring
the markers in training time is provided in section 3.1

• Long tail lift: “This principled approach yields pronounced improvements in perfor-
mance on examples from the long tail of the training distribution. ”: Experimental
evidence is reported in section 3.2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 discusses the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

26



• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Finetuning settings are reported in section 2.3, base and LLM judge mod-
els are also specified including version. Evaluation paradigms are explained with each
experiment section 2.3 and follow standard metrics of the respective benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Code, model and data are not released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: section 2.3 specify hyperparameters, with additional details about the evalua-
tions in appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We only report significance tests for the machine translation experiments, in
section 3.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the required compute and estimated time for each training run in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There is no violation with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impact is presented in the introduction in section 1, potential
negative impacts are discussed with the limitations in section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No release of models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets are credited in section 2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No such studies conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLMs for annotating the training markers used in our framework
(§ 2.2) and during evaluation (§ 2.3.1).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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