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Abstract

Spiking neural networks (SNNs) are bio-inspired networks that mimic how neurons
in the brain communicate through discrete spikes, which have great potential in
various tasks due to their energy efficiency and temporal processing capabilities.
SNNs with self-attention mechanisms (spiking Transformers) have recently shown
great advancements in various tasks, and inspired by traditional Transformers,
several studies have demonstrated that spiking absolute positional encoding can
help capture sequential relationships for input data, enhancing the capabilities of
spiking Transformers for tasks such as sequential modeling and image classification.
However, how to incorporate relative positional information into SNNs remains
a challenge. In this paper, we introduce several strategies to approximate relative
positional encoding (RPE) in spiking Transformers while preserving the binary
nature of spikes. Firstly, we formally prove that encoding relative distances with
Gray Code ensures that the binary representations of positional indices maintain a
constant Hamming distance whenever their decimal values differ by a power of two,
and we propose Gray-PE based on this property. In addition, we propose another
RPE method called Log-PE, which combines the logarithmic form of the relative
distance matrix directly into the spiking attention map. Furthermore, we extend
our RPE methods to a two-dimensional form, making them suitable for processing
image patches. We evaluate our RPE methods on various tasks, including time
series forecasting, text classification, and patch-based image classification, and the
experimental results demonstrate a satisfying performance gain by incorporating
our RPE methods across many architectures. Our results provide fresh perspectives
on designing spiking Transformers to advance their sequential modeling capability,
thereby expanding their applicability across various domains. Our code is available
at https://github.com/microsoft/SeqSNN.

1 Introduction

Spiking Neural Networks (SNNs) [1] are a class of bio-inspired models designed to emulate the
communication process of biological neurons, which transmit information through discrete spikes.
In contrast to artificial neural networks (ANNs) that operate on continuous values, SNNs process
information in the form of spikes occurring at precise moments in time. The temporal characteris-
tics of spikes make SNNs particularly well-suited for tasks involving sequential data or dynamic

*The work was conducted during the internship of Changze Lv at Microsoft Research Asia.
†Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/microsoft/SeqSNN


environments, such as sensory processing [2, 3], patch-based image classification [4, 5], time-series
forecasting [6–8], and natural language processing [9–11].

In the vanilla Transformer architecture [12], positional encoding serves as a critical mechanism
for modeling sequential dependencies in input data. Beyond absolute positional encoding, relative
positional encoding (RPE) [13, 14] has emerged as an effective approach to represent inter-element
distances, enabling models to capture relational patterns within sequences dynamically. Although
RPE has demonstrated effectiveness in improving language modeling [13] and visual recognition tasks
[15], its integration into SNNs remains underexplored. Existing methodologies for implementing
positional encoding in spiking Transformers either suffer from ambiguous spike representations across
positions [4, 16], or neglect to integrate relative positional relationships entirely [7]. Directly adapting
current RPE techniques, such as Attention with Linear Biases (ALiBi) [13] and Rotary Position
Embedding (RoPE) [14], to spiking Transformers encounters significant challenges. Specifically,
spiking neural architectures exhibit intrinsic difficulty in decoupling relative positional information
from their sparse, event-driven representations. This limitation, empirically demonstrated in Section
5.2, underscores the necessity for rethinking RPE integration to align with neuromorphic computing
principles, such as temporal sparsity and spike-based communication.

In this paper, we first propose that the Hamming distance [17], which quantifies the number of ones
resulting from the XOR operation between two binary strings, serves as an appropriate metric for
measuring relative distances when both the query and key matrices are binary. Consequently, we
refine the spiking self-attention mechanism [4] by replacing dot-product operations with exclusive-
NOR (XNOR) logic operations. Then we present two novel approximation strategies for integrating
RPE into spiking Transformers, while strictly preserving the binary activation dynamics inherent to
spiking neurons. First, we propose Gray-PE, a method exploiting the properties of Gray Code [18]
to binarize relative positional distances. We theoretically prove that encoding relative distances via
Gray Code ensures a constant Hamming distance between the binary representations of positional
indices whose decimal differences equal 2n, where n ≥ 0 (See Theorem 1). This property guarantees
that any pair of positions separated by a relative distance of 2n in decimal space exhibits invariant
Hamming distances in their Gray Code-encoded representations. Such invariance stabilizes positional
relationship modeling for power-of-two intervals, addressing a critical limitation in existing spiking
neural architectures. Second, we propose Log-PE, a method adapting insights from ALiBi [13] and
Rectified RoPE [19]. Log-PE integrates a non-negative logarithmic transformation of the relative
distance map directly into the spiking attention map, inducing a decaying sensitivity to positional
relationships akin to windowed attention mechanisms. Moreover, we extend the proposed RPE
methods to their two-dimensional form, making them suitable for processing image patches.

To systematically evaluate the efficacy of our proposed RPE methods, we benchmark them across
three cross-domain tasks: time series forecasting, text classification, and patch-based image classifica-
tion. We employ three representative spiking Transformer architectures as backbones: Spikformer [4],
the Spike-driven Transformer [5], and QKFormer [20]. Experimental results demonstrate consistent
performance gains across all tasks when integrating our RPE approaches, affirming that explicit
modeling of relative positional relationships addresses a critical limitation in existing spiking Trans-
former designs. Furthermore, we conduct experiments on ablation study, long sequence modeling,
and sensitivity analysis to validate the inner properties of our proposed RPE method.

This work establishes a framework for integrating relative positional encoding (RPE) into spiking
Transformers, advancing their applicability in neuro-inspired machine learning paradigms. Our
primary contributions are summarized as follows:

• Two RPE Methods for Spiking Transformers. To our knowledge, this study is among the
first to explore RPE adaptations for spiking architectures systematically. While Gray-PE
and Log-PE operate as principled approximations constrained by binary spike dynamics,
they address a critical gap in positional modeling for neuromorphic computation.

• Theoretical Foundations and Empirical Analysis. In addition to empirical validation, we
provide theoretical guarantees demonstrating that our methods can partially encode relative
positional information. Furthermore, we offer necessary analysis on the internal properties
of RPE and their robustness facing long sequences.

• Consistent Performance Gains Across Architectures and Tasks. Our proposed RPE
methods consistently improve the performance of spiking Transformers across various
sequential tasks, including time-series forecasting and text classification.
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Figure 1: Illustration of preliminary knowledge. (a) Spike dynamics of LIF neurons. (b) Illustration
of vanilla spiking self-attention in Spikformer [4]. (c) An example of Hamming Distance between
two spike trains. (d) The calculation process of the classic Reflected Gray Code.

2 Related Work

Positional encoding serves as an indispensable mechanism for preserving the order of input elements
in sequential modeling tasks. Traditional absolute positional encoding assigns static, predefined
embeddings to individual tokens based on their sequential indices. In contrast, relative positional
encoding (RPE) dynamically models the pairwise distances between tokens, enabling the self-
attention mechanism to prioritize interactions based on their relative proximity. RPE allows the model
to generalize across different sequence lengths and better capture relationships between tokens.

Despite the importance of PE in sequence-aware architectures, its application to SNNs is limited.
Existing implementations, such as Spikformer [4] and Spike-driven Transformer [5, 16, 21], incorpo-
rate a combination of convolutional layers, batch normalization, and spiking neuron layers to derive
learnable positional encodings. However, we argue that this approach functions more similarly to a
spike-element-wise residual connection [3] than to a conventional positional encoding module. A prin-
cipled PE module should offer unique representations for positions, but the spike-position matrices
generated by these methods may lead to identical spike representations for different positions.

CPG-PE, proposed by [7], introduces a spiking absolute positional encoding inspired by central pattern
generators [22], generating unique periodic binary spike patterns for each position. However, their
approach is based on absolute positional encoding and, thus, does not capture the time-translational
invariance property in many sequential modeling problems, which, however, is an important advantage
of relative positional encoding methods.

3 Preliminary

3.1 Spiking Neurons

We take the leaky integrate-and-fire (LIF) neuron [1] as our building brick of SNNs, which is governed
by the input current I[t], influencing the membrane potential U [t] and the spike output S[t] at each
time step t. The dynamic of the LIF neuron is captured by the following system of equations:

U [t] = H[t](1− S[t]) + UresetS[t], S[t] = Θ(H[t]− Uthr), (1)

H[t] = U [t− 1] +
1

τ
(I[t]− (U [t− 1]− Ureset)), (2)

where τ is the membrane time constant. The spike S(t) will be triggered when the membrane
potential H(t) exceeds a threshold Uthr, right after which U [t] will be reset to Ureset.

3.2 Spiking Self-Attention

Spiking self-attention (SSA) is a spiking version of self-attention [12], which was proposed in
Spikformer [4]. The vital design is to utilize discrete spikes to approximate the vanilla self-attention
mechanism. It can be written as:

Q,K,V = SN (BN (X ·WQ,K,V )) ∈ {0, 1}T×L×D (3)

where SN is a spike neuron layer described in Equation 1. The input is denoted as X ∈ {0, 1}T×L×D,
where T is the number of time steps. BN represents batch normalization, and σ is a scaling factor.
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The attention map AttnMap is then computed as the dot product between Q and KT:

SSA (Q,K,V) = SN (BN(( Q ·KT︸ ︷︷ ︸
AttnMap

·V ∗ σ) ·W)). (4)

As a result, the attention map AttnMap ∈ NT×L×L
0 , where N0 denotes the set of non-negative

integers. The outputs of the SSA, as well as Q, K, and V, are all spike matrices containing only
values of 0 and 1. The parameters WQ, WK , WV , and W are all learnable parameters.

Recent studies, including Spike-Driven Transformer (SDT) [5, 16, 21], SpikingResFormer [23],
and QKFormer [20], have proposed various modifications to the standard SSA mechanism. For
our empirical evaluation, we selectively employ architectures demonstrating compatibility with our
proposed relative position encoding methods.

3.3 Relative Positional Encoding

Relative positional encoding (RPE) in Transformers primarily introduces bias terms into the self-
attention mechanism that dynamically encode pairwise token distances. A common implementation
of RPE, as demonstrated in prior work [15, 24], is formalized as follows:

Attention(Q,K,V) = Softmax
(
Q ·KT

√
dk

+Ri,j

)
︸ ︷︷ ︸

AttnMap

·V. (5)

Here, Ri,j represents the relative positional bias between the i-th query and the j-th key positions.

Beyond additive bias terms, another widely adopted form of RPE leverages relative positional
embeddings directly in the attention computation, where query–position and key–position interactions
are parameterized separately. For example, RoPE [14] can be expressed as

Attention(Q,K,V) = Softmax
(
(QRi) · (KRj)

T

√
dk

)
︸ ︷︷ ︸

AttnMap

·V, (6)

where Ri and Rj are position-dependent rotation operators applied to the i-th query and j-th key
vectors, respectively.

A critical aspect of RPE is its adherence to distance consistency: the magnitude of Ri,j is determined
exclusively by the relative positional offset |i−j|, ensuring that the model systematically differentiates
between proximal and distant tokens. This property enhances the model’s capacity to capture long-
range dependencies and generalize across variations in sequence length and structure.

3.4 Hamming Distance

The Hamming distance [17] between two binary strings of equal length is the number of bit positions
at which the corresponding bits are different. Formally, for two binary strings A and B of length m,

dH(A,B) =

m∑
i=1

δ(Ai, Bi), where δ(Ai, Bi) =

{
1 if Ai ̸= Bi,

0 otherwise.
(7)

Hamming distance is suitable for measuring the relative distances when Q and K are spike matrices.

3.5 Gray Code

Gray Codes [18], also known as reflected binary codes, are binary numbering systems where adjacent
values differ by precisely one bit. For a non-negative integer x, the standard binary reflected Gray
Code G(x) is defined by the following bitwise operation:

G(x) = x⊕ (x ≫ 1) , (8)

where ⊕ denotes the bitwise XOR operation, and ≫ denotes the arithmetic right shift.

Since the preliminary knowledge involved is extensive and loosely connected, we have provided
Figure 1 to help readers visually grasp the key concepts of each section.
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Figure 2: Overview of Our Method. (a) XNOR-based spiking self-attention. We illustrate the
computation flow for Q and K in a PyTorch-style notation. (b) Gray-PE. Position indices differing
by 2n exhibit a consistent Hamming distance on their Gray code representations. Gray-PE is
implemented by concatenating G(l) along the D dimension on both Q and K. (c) Log-PE. A pre-
assigned relative distance encoding map Ri,j ∈ N0 is added to the original attention map AttnMap.
(d) 2D Form of Gray-PE. A 2D RPE is more suitable than the 1D version for image patches, as it
captures the spatial relationships more effectively.

4 Method

4.1 Design Principles

Relative position encoding (RPE) aims to encode the relative distances between positional indices
within a sequence. In many spiking Transformers, such as Spikformer, Spike-Driven Transformer,
and QKFormer, both the Q and K matrices are binary. Consequently, their relative distances can
be computed using the Hamming distance, which corresponds to the number of ones resulting from
the XOR operation between Q and K. To better align with this Hamming distance-based similarity
measure, we replace the traditional dot-product spiking self-attention (SSA) mechanism with an
XNOR-based SSA. Inspired by RPE strategies in Transformers, we propose two approaches for
incorporating relative distance information into spiking attention mechanisms: (1) Gray-PE: Gray-
Code-based positional encoding concatenated to Q and K, and (2) Log-PE: logarithmic positional
encoding applied directly to the attention map.

4.2 XNOR-Based Spiking Self-Attention

In the original Transformer [12], the attention map is computed via the dot product between the
query and key matrices, AttnMap = Q ·KT, which effectively captures similarity of Q and K.
As mentioned above, in order to capture the relative distances of spiking matrices while effectively
measuring the similarity, we design the XNOR-based SSA. Unlike the dot-product operation, XNOR
accounts for both spiking state (1) and the resting state (0).

Formally, we modify Equation 4 as follows:

AttnMap =

D∑
i=0

¬(Q⊕K), (9)

where ¬ denotes the Not operation, ⊕ denotes the XOR operation, and D represents the channel
dimension. Note that every token in Q will perform XOR with every token in K, so we sum over the
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channel dimension D to get AttnMap ∈ NT×L×L
0 , shown in Figure 2 (a). The scale factor σ in

Equation 4 should be set to a smaller value or treated as a learnable parameter, ensuring that the firing
rate of SN does not become excessively large. We will empirically demonstrate that this XNOR
modification does not negatively impact the performance of the vanilla spiking self-attention.

4.3 Gray-PE

We propose that the Gray Code can serve as an approximate approach to relative positional encoding
for spiking Transformers. This is supported by the following Theorem 1:

Theorem 1. (Proof in Appendix A) For two position indices differing by 2n(n ≥ 0), their Gray
Code representations have a consistent Hamming distance. Specifically, ∀ position i, we have:

dH(G(i), G(i+ 2n)) =

{
1 if n = 0,

2 if n ≥ 1.
(10)

As illustrated in Figure 2 (b), the Hamming distance dH(G(0), G(1)) and dH(G(1), G(2)) both equal
1 because their relative distance is 1, i.e., 2n, n = 0. Similarly, dH(G(0), G(2)) = dH(G(1), G(3)),
and dH(G(0), G(4)) = dH(G(1), G(5)), as their relative distances are the power of 2. That said,
Gray Code ensures the consistency of relative distance representations for every 2n (n ≥ 0) relative
distance.

For implementation, we concatenate the Gray Code representations of each position index to both
the query matrix Q ∈ NT×L×D

0 and key matrix K ∈ NT×L×D
0 , leaving the remaining operations

unchanged. We use concatenation instead of addition because Q and K are spike matrices, and
addition would compromise their binary nature. Formally, the attention map AttnMap will be:

AttnMap =

D∑
i=0

¬([Q ∥ G(l)]⊕ [K ∥ G(l)]), (11)

where G(·) represents the function that converts integers into their binary Gray Code representations.
The vector l denotes an array of position indexes, specifically [0, 1, 2, . . . , L − 1], where L is the
sequence length of Q and K. ∥ denotes concatenation on the channel dimension D.

Notably, the binary nature of Gray Code (comprising only 0 and 1) aligns intrinsically with the
spike-based computation paradigm, avoiding the need for floating-point operations that impose
significant implementation overhead on neuromorphic hardware.

4.4 Log-PE

Although Gray-PE can partially capture relative distances, it faces significant challenges when the
input sequence is long or when the downstream task is highly sensitive to long-range dependencies.
For instance, when L ≥ 102, the distinguishable range of relative distances under Gray-PE becomes
constrained by its power-of-two quantization mechanism. To mitigate this, we propose Log-PE that
integrates logarithmic positional bias into spiking-based self-attention. Specifically, we simulate
Equation 5 and follow ALiBi [13] to directly add a pre-assigned relative position map, denoted as
Rij , to the attention map produced by SSA:

AttnMap =

(
D∑
i=0

¬(Q⊕K)

)
+Ri,j , where Ri,j = [Ri,j ] =

[
⌈log2( L−1

|i−j|+1 )⌉
]
. (12)

Here, ⌈.⌉ denotes the round-up function, L is the sequence length, and i, j is position indices.

Figure 2 (c) shows an illustration of Log-PE. Since the original AttnMap is a matrix composed of
non-negative integers, we aim to ensure accurate relative distance consistency while preserving the
effectiveness of spiking self-attention. Theoretically, if we set the Ri,j as L−1

|i−j|+1 , we could obtain a
complete RPE for the spiking Transformers. However, we choose not to pursue this solution, because
for long sequence lengths L, the large values of L−1

|i−j|+1 would catastrophically overshadow the
original spiking attention activations (See Appendix B). Therefore, using the logarithmic form Ri,j

represents a compromise that balances the values between the spiking attention map and complete-
RPE, while partially capturing relative position information.
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4.5 Two-Dimensional Form for Image Patches

CNN-based SNN models, such as Spiking VGG [25] and SEW-ResNet [3], do not incorporate the
concept of “positional encoding” in their spike representations. Vision Transformer [26] reformulated
traditional image classification into a patch-based approach, dividing images into smaller patches.
Unlike 1D positional encoding, which only considers the linear sequence of patches, 2D RPE accounts
for both the horizontal and vertical positions of the patches in the image grid. This ensures that the
model can recognize the relative positions along a single axis and the crucial interactions between
patches across both dimensions. We show our 2D form in Figure 2 (d). In our implementation,
we assign horizontal and vertical positions with independent dimensions to store the Gray Code.
Formally, the attention map AttnMap is:

AttnMap =

D∑
i=0

¬ ([Q ∥ G(h) ∥ G(w)]⊕ [K ∥ G(h) ∥ G(w)]) . (13)

Here, h is the array of position indices, specifically h = [0, 1, 2, . . . , h − 1], where h denotes the
maximum patch index along the height axis. Similarly, w is along the width axis. As for the 2D form
of Log-PE, we can add Rh

i,j and Rw
i,j on AttnMap, replacing the sequence length L in Equation

12 with h or w. However, in our pre-experiments, we found that spiking Transformers with Log-2D
failed to converge due to the excessive magnitude. Therefore, we abandon the 2D form of Log-PE.

5 Experiments

5.1 Datasets

To evaluate the RPE capabilities of the compared models, we conduct experiments on two sequential
tasks: time-series forecasting and text classification. Following [6], we choose 4 real-world
datasets for time-series forecasting: Metr-la [27], Pems-bay [27], Electricity [28], Solar [28]. For text
classification, we follow [7] and conduct experiments on six benchmark datasets: Movie Reviews
[29], SST-2 [30], SST-5, Subj, ChnSenti, and Waimai. Additionally, to demonstrate the versatility of
our RPE method in image processing, we perform patch-based image classification experiments on
two static datasets, CIFAR and Tiny-ImageNet, and one neuromorphic dataset, CIFAR10-DVS [2].
The details of these datasets, metrics, and training hyperparameters are provided in Appendix D.

5.2 Time-Series Forecasting

We follow the SeqSNN [6] framework to conduct time-series forecasting experiments. Specifically,
we take Spikformer [4], Spikingformer [31], Spike-driven Transformer (SDT) V1 [5], and the current
visual state-of-the-art (SOTA) model, QKFormer [20], as the backbone architectures. We modify the
SSA mechanism as outlined in Section 4.2 to create two variants: Spikformer-XNOR and QKFormer-
XNOR. SDT adopts a variant of SSA, which makes it only able to integrate Log-PE but not Gray-PE.
We present the performance of the compared SNN models with various positional encoding methods
in Table 1. The key findings are as follows:

(1) Directly applying RPE methods to spiking Transformers is ineffective. Specifically, Spikform-
ers that are directly equipped with RoPE or ALiBi exhibit poor performance across all benchmarks.
As discussed in Section 1, we argue that this limitation stems from the binary nature of spiking
neurons during the computation of Q and K, which makes it difficult to disentangle positional
information from sparse spiking activations.

(2) The XNOR modification does not impact the performance of the original SNN models. The
average performance of Spikformer with Conv-PE is nearly identical to that of Spikformer-XNOR
with Conv-PE. This suggests that our XNOR modification of the SSA does not affect the performance
of the original SNN models.

(3) Gray-PE and Log-PE, enable spiking Transformers to achieve the best performance among
their variants. CPG-PE is a spiking version of absolute PE designed for SNNs. Spikformer and
QKFormer, when equipped with our proposed Gray-PE and Log-PE, consistently outperform all
other corresponding variants.
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Table 1: Experimental results of time-series forecasting on 4 benchmarks with various prediction
lengths 6, 24, 48, 96. “PE” stands for positional encoding. “R” denotes relative PE, while “A” denotes
absolute PE. “w/” denotes “with”. The best results for each series of spiking Transformers are
highlighted in bold font. ↑ (↓) indicates that the higher (lower) the better. Results highlighted with
shading are ours. All results are averaged across 3 random seeds.

Models PE Metric Metr-la (L = 12) Pems-bay (L = 12) Solar (L = 168) Electricity (L = 168) Avg.Spike Type 6 24 48 96 6 24 48 96 6 24 48 96 6 24 48 96

Transformer w/ RoPE ✗ R R2↑ .729 .560 .416 .306 .787 .730 .694 .676 .951 .854 .763 .720 .984 .978 .974 .968 .756
RSE↓ .548 .696 .802 .878 .499 .563 .600 .617 .225 .373 .492 .539 .251 .274 .341 .420 .507

Transformer w/ ALiBi ✗ R R2↑ .725 .558 .409 .293 .782 .727 .690 .677 .924 .845 .741 .665 .984 .980 .976 .968 .747
RSE↓ .556 .700 .814 .885 .507 .569 .606 .615 .281 .393 .527 .602 .250 .271 .339 .422 .521

Transformer w/ Sin-PE ✗ A R2↑ .727 .554 .413 .284 .785 .734 .688 .673 .953 .858 .759 .718 .978 .975 .972 .964 .752
RSE↓ .551 .704 .808 .895 .502 .558 .610 .618 .223 .377 .504 .545 .260 .277 .347 .425 .512

Spikformer w/ Conv-PE (Original) ✓ A R2↑ .713 .527 .399 .267 .773 .697 .686 .667 .929 .828 .744 .674 .959 .955 .955 .954 .733
RSE↓ .565 .725 .818 .903 .514 .594 .606 .621 .272 .426 .519 .586 .373 .371 .379 .382 .541

Spikformer w/ ALIBi R2↑ .665 .483 .380 .104 .760 .644 .348 .064 .080 .080 .080 .080 .710 .710 .710 .710 .413
✗ R RSE↓ .622 .768 .833 1.02 .529 .709 .870 1.04 1.01 1.01 1.01 1.01 1.03 1.03 1.03 1.03 .909

Spikformer w/ RoPE R2↑ .699 .493 .390 .243 .768 .699 .680 .664 .911 .820 .714 .644 .954 .951 .949 .940 .720
✗ R RSE↓ .584 .757 .835 .920 .519 .591 .614 .625 .294 .441 .550 .633 .375 .383 .384 .454 .559

Spikformer w/ CPG-PE R2↑ .726 .526 .419 .287 .780 .712 .690 .666 .937 .833 .757 .707 .972 .970 .966 .960 .744
✓ A RSE↓ .553 .720 .806 .890 .508 .580 .602 .622 .257 .420 .506 .555 .299 .310 .314 .355 .519

Spikformer-XNOR w/ Conv-PE ✓ A R2↑ .718 .531 .405 .269 .771 .693 .690 .665 .928 .829 .740 .669 .960 .957 .955 .953 .733
RSE↓ .559 .721 .813 .910 .518 .599 .613 .628 .273 .421 .527 .595 .365 .371 .376 .384 .542

R2↑ .728 .544 .414 .295 .782 .724 .694 .673 .936 .840 .756 .710 .974 .972 .966 .962 .748Spikformer-XNOR w/ Gray-PE ✓ R RSE↓ .546 .706 .806 .885 .506 .578 .597 .618 .257 .409 .507 .546 .276 .304 .320 .342 .513
R2↑ .735 .535 .424 .290 .789 .717 .691 .670 .933 .841 .758 .734 .978 .974 .968 .964 .750Spikformer-XNOR w/ Log-PE ✓ R RSE↓ .543 .719 .799 .876 .496 .575 .601 .620 .265 .408 .504 .525 .272 .300 .314 .340 .509

R2↑ .717 .530 .362 .212 .800 .704 .681 .629 .934 .751 .518 .381 .973 .971 .967 .964 .693Spikingformer w/o PE (Original) – – RSE↓ .560 .720 .842 .936 .483 .587 .611 .659 .258 .500 .694 .788 .299 .305 .325 .340 .557
R2↑ .720 .537 .396 .260 .820 .714 .681 .646 .934 .832 .535 .420 .970 .973 .973 .965 .711Spikingformer-XNOR w/ Gray-PE ✓ R RSE↓ .558 .712 .819 .907 .459 .578 .610 .643 .257 .421 .663 .768 .305 .293 .294 .338 .539
R2↑ .737 .535 .403 .260 .816 .719 .682 .640 .939 .854 .544 .434 .977 .974 .972 .967 .716Spikingformer-XNOR w/ Log-PE ✓ R RSE↓ .540 .714 .814 .906 .463 .573 .609 .652 .246 .382 .651 .759 .270 .292 .293 .336 .531

SDT-V1 w/ Conv-PE (Original) R2↑ .689 .517 .409 .253 .769 .700 .647 .630 .917 .819 .723 .655 .956 .952 .949 .950 .721
✓ A RSE↓ .604 .735 .811 .915 .522 .596 .665 .673 .286 .439 .538 .602 .371 .376 .388 .386 .557

SDT-V1 w/ CPG-PE R2↑ .701 .525 .418 .257 .778 .716 .660 .656 .919 .820 .710 .644 .963 .960 .958 .952 .727
✓ A RSE↓ .585 .724 .799 .920 .515 .578 .633 .642 .285 .439 .558 .637 .361 .368 .370 .376 .548

R2↑ .714 .531 .415 .265 .784 .709 .672 .654 .921 .820 .730 .674 .972 .968 .963 .957 .734SDT-V1 w/ Log-PE ✓ R RSE↓ .554 .713 .807 .904 .502 .585 .629 .641 .280 .437 .527 .598 .353 .356 .360 .366 .538

QKFormer w/ Conv-PE (Original) ✓ A R2↑ .717 .513 .376 .246 .767 .706 .681 .654 .920 .748 .512 .416 .970 .967 .963 .958 .695
RSE↓ .561 .735 .832 .917 .521 .586 .609 .635 .289 .515 .716 .784 .306 .319 .355 .367 .565

QKFormer w/ CPG-PE ✓ A R2↑ .740 .554 .419 .276 .783 .714 .702 .660 .922 .754 .702 .604 .977 .969 .968 .963 .732
RSE↓ .536 .704 .803 .896 .503 .578 .589 .633 .285 .520 .581 .645 .266 .312 .315 .332 .531

R2↑ .742 .551 .418 .274 .799 .715 .691 .674 .927 .817 .710 .691 .974 .970 .968 .965 .742QKFormer-XNOR w/ Gray-PE ✓ R RSE↓ .534 .711 .804 .898 .484 .577 .601 .616 .276 .438 .556 .570 .277 .310 .314 .331 .519
R2↑ .742 .541 .416 .265 .801 .710 .707 .661 .928 .818 .748 .698 .978 .974 .972 .966 .746QKFormer-XNOR w/ Log-PE ✓ R RSE↓ .535 .715 .805 .903 .482 .581 .585 .629 .274 .437 .515 .564 .264 .285 .296 .328 .514

(4) For long input sequences, Log-PE is more effective than Gray-PE in capturing relative
positional information. The input sequence length for Metr-la and Pems-bay is 12, whereas for Solar
and Electricity, it is 168. On the long-sequence datasets Solar and Electricity, spiking Transformers
equipped with Log-PE consistently outperform those with Gray-PE across nearly all prediction length
settings. This result indicates that Log-PE is more effective for processing long input sequences.

5.3 Text Classification

We conduct experiments to assess the efficacy of spiking Transformers with Gray-PE and Log-PE in
text classification tasks. By comparing them against alternative PE techniques, we demonstrate their
superior ability to model complex linguistic structures and contextual dependencies. Our experimental
setup strictly adheres to the methodology outlined in [7], and the results are shown in Table 2.

Table 2: Accuracy (%) on 6 text classification benchmarks. Note that QKFormers fail to converge in
the text classification task. Experimental results are averaged across 5 random seeds.

Model PE Param(M) English Dataset (Length = 128) Chinese Dataset (Length = 32) Avg.Spike Type MR SST-2 Subj SST-5 ChnSenti Waimai
Fine-tuned BERT ✗ A 109.8 87.63±0.18 92.31±0.17 95.90±0.16 50.41±0.13 89.48±0.16 90.27±0.13 84.33
Spikformer w/o PE – – 109.8 75.87±0.35 81.71±0.31 91.60±0.30 41.84±0.39 85.62±0.25 86.87±0.28 77.25
Spikformer w/ CPG-PE ✓ A 110.4 82.42±0.42 82.90±0.33 92.50±0.25 43.62±0.36 86.54±0.26 88.49±0.29 79.41
Spikformer-XNOR w/o PE – – 109.8 75.80±0.40 81.74±0.40 91.50±0.29 41.88±0.38 85.64±0.31 86.66±0.33 77.20
Spikformer-XNOR w/ Gray-PE ✓ R 109.8 83.73±0.45 84.52±0.39 92.50±0.33 44.06±0.48 87.41±0.36 88.40±0.30 80.11
Spikformer-XNOR w/ Log-PE ✓ R 109.8 83.88±0.40 84.64±0.37 92.80±0.30 44.52±0.43 87.95±0.34 88.46±0.28 80.38

Based on the results in Table 2, it is evident that our proposed Gray-PE and Log-PE significantly
outperform the other spiking positional encoding methods across several key benchmarks. Both Gray-
PE and Log-PE demonstrate superior accuracy on the English and Chinese datasets, with particularly
notable improvements on MR, SST-2, Subj, and ChnSenti. However, the performance of RPE on
the Waimai dataset is not as strong as that of CPG-PE. We attribute this to the nature of the dataset,
which consists of user reviews often containing informal language, typos, or mixed expressions.
This noise can hinder the model’s ability to extract meaningful patterns. These results highlight the
advantages of our proposed spiking RPE techniques, especially in handling the dependencies and
varying word order in text classification tasks. Unlike spiking absolute PE, i.e., CPG-PE, which
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struggles to adapt to the nuances of language, Gray-PE and Log-PE provide a more flexible and
context-sensitive representation, improving the model’s ability to classify sentences accurately.

5.4 Patch-based Image Classification

Table 3: Accuracy (%) on image classification benchmarks. Numbers with ∗ denote our implemen-
tations. The best and second-best results are highlighted in bold and underlined formats, respectively.
The results with shading are ours. Results are averaged across 4 random seeds.

Model PE CIFAR10 CIFAR10-DVS CIFAR100 Tiny-ImageNet Avg.Spike Type Param (M) Acc Param (M) Acc Param (M) Acc Param (M) Acc
Vision-Transformer ✗ A 9.32 96.73 – – 9.36 81.02 9.40 62.18 –
Spikformer w/ Conv-PE (Original) ✓ A 9.32 94.80∗ 2.57 78.10∗ 9.36 77.04∗ 9.40 48.10∗ 74.51
Spikformer w/ CPG-PE ✓ A 8.17 95.06 2.06 78.40 8.20 77.82 8.24 48.52∗ 74.95
Spikformer-XNOR w/ Gray-PE 1D ✓ R 8.00 95.46 1.99 77.90 8.04 78.12 8.08 48.33 74.95
Spikformer-XNOR w/ Gray-PE 2D ✓ R 8.00 95.66 1.99 78.70 8.04 78.45 8.08 48.74 75.39

In this section, we evaluate ViT-based SNNs, Spikformer, which adopts a patch-splitting processing
approach. To enhance compatibility with this framework, we extend Gray-PE into a 2D form and
integrate it into the patch-based architecture. The experimental results are summarized in Table 3.
We draw conclusions that:

(1) Gray-PE enhances the performance of Spikformer while maintaining parameter efficiency.
Both 1D and 2D variants of Gray-PE consistently improve classification accuracy. Notably, Gray-
PE surpasses spiking absolute PE (CPG-PE), indicating its superior ability to model inter-patch
dependencies within images, even as an approximation of RPE.

(2) The 2D variant of Gray-PE demonstrates superior performance over its 1D counterpart in
processing image patches. Empirical comparisons between Spikformers equipped with Gray-PE 1D
and 2D reveal that the two-dimensional form is highly effective. Specifically, Gray-PE 2D achieves
an average accuracy improvement of 0.44% over Gray-PE 1D.

Furthermore, we present the image classification performance of the state-of-the-art QKFormer
integrated with our proposed RPE methods in Appendix C.

5.5 Capability of Processing Long Sequences

In this section, we assess the effectiveness of our proposed relative positional encoding methods in
handling long sequences within spiking Transformers. To this end, we use two text classification
datasets characterized by long input samples: AGNEWS [32] and IMDB [33]. Following [34], we fix
the sequence max length to 1024 for AGNEWS and 2048 for IMDB. We train the Spikformer model
using various positional encoding strategies on these datasets, and present the results in Table 4.

Table 4: Accuracy (%) on 2 long text classification bench-
marks. We set the sentence length to 1024 for AGNEWS and
2048 for IMDB.

Model PE AGNEWS IMDB Avg.Spike Type
Fine-tuned BERT ✗ A 94.50 92.10 93.30
Spikformer w/ Conv-PE (Original) ✓ A 83.84 79.08 81.46
Spikformer w/ CPG-PE ✓ A 84.70 79.47 82.09
Spikformer-XNOR w/ Gray-PE ✓ R 84.92 79.79 82.36
Spikformer-XNOR w/ Log-PE ✓ R 86.77 80.46 83.62

As shown in Table 4, although Spik-
former models lag behind the fine-
tuned BERT in overall performance,
both Log-PE and Gray-PE demon-
strate effectiveness when handling
long input sequences. Notably, Log-
PE yields substantial performance im-
provements, suggesting its strong suit-
ability for processing long texts. This
outcome is expected, as Log-PE is
specifically designed to accommodate long-range dependencies.

5.6 Discussion on Hardware-Friendliness and Computing Efficiency

Table 5: Evaluation of both time consumption and GPU
memory usage for SNNs on Electricity dataset.

Model Time Consumption GPU Memory Usage
s/epoch MB

Spikformer (Original) 137.48 10572.56
Spikformer-XNOR 139.66 10608.32
Spikformer w/ CPG-PE 140.56 10963.88

Although traditional SSA benefits from
highly optimized matrix multiplication
(GEMM) on GPUs, we would like to clar-
ify that our XNOR-based SSA also retains
computational efficiency for the following
reasons: First, the core of XNOR-based
SSA relies on XNOR and bit-count opera-
tions, which are natively supported by dig-

9



ital hardware and neuromorphic processors. These are much cheaper than floating-point multipli-
cations and additions in terms of energy and hardware complexity. Secondly, many neuromorphic
accelerators (e.g., Loihi [35], TrueNorth [36]) natively support spike-based bitwise logic, making our
XNOR mechanism better aligned with the target deployment platform than conventional floating-
point matrix products. Lastly, while matrix multiplication benefits from BLAS acceleration, XNOR
and summation over dimensions are also highly parallelizable, and can be efficiently implemented
using tensor intrinsics (e.g., bitwise_xnor, popcount, reduce_sum).

We benchmarked both time consumption and GPU memory usage for SNNs in a time-series fore-
casting task, mainly on the Electricity dataset with 24 of horizon length, as shown in 5. For more
analysis on the hardware-friendliness of Log-PE, please refer to the Appendix E.

5.7 Analysis and Ablation

In this section, we analyze the following aspects: (1) The influence of internal properties in Gray-PE,
(2) Ablation studies on XNOR and Log-PE (shown in Appendix B).
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Figure 3: Spikformer-XNOR with Gray-PE across various
bit numbers ranging from 2 to 12 on (a) time-series forecast-
ing tasks and (b) text classification tasks.

Consider that: If the number of bits
used for encoding relative positions
in Gray Code is b, then the total num-
ber of unique encodings possible is 2b.
We set the maximum sequence length
is L, so relative distances range from 0
to L−1. According to the pigeonhole
principle, if L − 1 > 2b, there will
be at least two distances that are rep-
resented identically. This issue can be
mitigated by increasing b to cover the
range of relative distances up to L−1.
From Figure 3 (a), we observe that for
long-sequence datasets, such as Solar
and Electricity (Length = 168), the
number of bits should be at least 7 to
avoid Gray-PE missing relative positional information. However, for shorter datasets like Metr-la
(Length = 12) and ChnSenti (Length = 32), 5 bits are sufficient.

6 Conclusion

In this work, we have designed several RPE methods for spike Transformers. Our approach preserves
the spiking nature of SNNs while effectively representing relative positions. Experimental evaluations
on time series forecasting, text classification, and image classification demonstrate significant perfor-
mance improvements. These empirical results, together with theoretical analysis of the proposed RPE
methods, highlight the potential to enhance the versatility and applicability of SNNs across various
domains. Future work and limitations are discussed in Appendix F.

Broader Impact

This work aims to advance the field of spiking neural networks. We hope our work can open
new avenues for embedding relative positional encoding within SNNs, thereby expanding their
applicability across a wide range of domains. We do not see negative societal impacts of this work.

Acknowledge

The authors would like to thank the anonymous reviewers for their valuable comments. This work
was partially supported by the National Natural Science Foundation of China (No. 62076068).

10



References
[1] Wofgang Maass. Networks of spiking neurons: the third generation of neural network models.

Neural Networks, 14:1659–1671, 1997.

[2] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: An event-
stream dataset for object classification. Frontiers in Neuroscience, 11, 2017.

[3] Wei Fang, Zhaofei Yu, Yanqing Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. In Neural Information Processing Systems,
2021.

[4] Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023, 2023.

[5] Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, XU Bo, and Guoqi Li. Spike-
driven transformer. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[6] Changze Lv, Yansen Wang, Dongqi Han, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng
Li. Efficient and effective time-series forecasting with spiking neural networks. In Forty-first
International Conference on Machine Learning (ICML), 2024.

[7] Changze Lv, Dongqi Han, Yansen Wang, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng
Li. Advancing spiking neural networks for sequential modeling with central pattern generators.
Advances in Neural Information Processing Systems, 37:26915–26940, 2024.

[8] FENG SHIBO, Wanjin Feng, Xingyu Gao, Peilin Zhao, and Zhiqi Shen. Ts-lif: A temporal
segment spiking neuron network for time series forecasting. In The Thirteenth International
Conference on Learning Representations, 2025.

[9] Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason Eshraghian. SpikeGPT: Generative pre-trained
language model with spiking neural networks. Transactions on Machine Learning Research,
2024.

[10] Changze Lv, Jianhan Xu, and Xiaoqing Zheng. Spiking convolutional neural networks for text
classification. In The Eleventh International Conference on Learning Representations (ICLR),
2023.

[11] Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Yequan Wang, Jiajun Zhang,
Guoqi Li, et al. Spikelm: Towards general spike-driven language modeling via elastic bi-spiking
mechanisms. In Forty-first International Conference on Machine Learning, 2024.

[12] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[13] Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. In International Conference on Learning Representations,
2017.

[14] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[15] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[16] Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and
Guoqi Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the
design of next-generation neuromorphic chips. In The Twelfth International Conference on
Learning Representations, 2024.

11



[17] Richard W Hamming. Coding and information theory. Prentice-Hall, Inc., 1986.

[18] Frank Gray. Pulse code communication. United States Patent Number 2632058, 1953.

[19] Jianlin Su. ReRoPE, 2023.

[20] Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan,
Zhengyu Ma, Huihui Zhou, and Yonghong Tian. QKFormer: Hierarchical Spiking Transformer
using Q-K Attention. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

[21] Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao,
Luziwei Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike
firing approximation training. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2025.

[22] Eve Marder and Dirk Bucher. Central pattern generators and the control of rhythmic movements.
Current biology, 11(23):R986–R996, 2001.

[23] Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: bridging resnet and vision
transformer in spiking neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5610–5619, 2024.

[24] Yanbin Hao, Diansong Zhou, Zhicai Wang, Chong-Wah Ngo, and Meng Wang. Posmlp-video:
spatial and temporal relative position encoding for efficient video recognition. International
Journal of Computer Vision, 132(12):5820–5840, 2024.

[25] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in
spiking neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95,
2019.

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[27] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations,
2018.

[28] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pages 95–104, 2018.

[29] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In ACL, 2005.

[30] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, A. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, 2013.

[31] Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural
network. arXiv preprint arXiv:2304.11954, 2023.

[32] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

[33] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies, pages 142–150,
2011.

12



[34] Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiaoqing Zheng, Qi Zhang, Kai-Wei
Chang, and Cho-Jui Hsieh. Searching for an effective defender: Benchmarking defense against
adversarial word substitution. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 3137–3147, 2021.

[35] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[36] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul
Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design
and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions
on computer-aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

[37] Zhiyang Chen, Yousong Zhu, Chaoyang Zhao, Guosheng Hu, Wei Zeng, Jinqiao Wang, and
Ming Tang. Dpt: Deformable patch-based transformer for visual recognition. In Proceedings of
the 29th ACM international conference on multimedia, pages 2899–2907, 2021.

[38] Usman Muhammad, Md Ziaul Hoque, Weiqiang Wang, and Mourad Oussalah. Patch-based
discriminative learning for remote sensing scene classification. Remote Sensing, 14(23):5913,
2022.

[39] Li Zhu, Chenglong Jiang, and Minghu Wu. A patch information supplement transformer for
person re-identification. Electronics, 12(9):1997, 2023.

[40] Hongyi Wang, Yingying Xu, Qingqing Chen, Ruofeng Tong, Yen-Wei Chen, Hongjie Hu, and
Lanfen Lin. Adaptive decomposition and shared weight volumetric transformer blocks for
efficient patch-free 3d medical image segmentation. IEEE Journal of Biomedical and Health
Informatics, 27(10):4854–4865, 2023.

[41] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[42] Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing
Zheng, and Xuanjing Huang. Spikebert: A language spikformer learned from bert with
knowledge distillation. 2023.

[43] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[44] Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and
spike-driven inference spiking neural network for high-performance and energy-efficient object
detection. In European Conference on Computer Vision, pages 253–272. Springer, 2024.

[45] Zhanfeng Liao, Yan Liu, Qian Zheng, and Gang Pan. Spiking nerf: Representing the real-world
geometry by a discontinuous representation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 13790–13798, 2024.

13



A Proof of Theorem 1

This section provides a detailed mathematical proof of Theorem 1. We use the standard Reflected
Binary Code (RBC) G(x) as our Gray Code:
Definition 1. The Reflected Binary Code (Gray Code) of an integer x is defined as:

G(x) = x⊕ (x ≫ 1), (14)

where ⊕ denotes the bitwise XOR operation, and ≫ denotes the arithmetic right shift.

and we restate Theorem 1 here:
Theorem 1. For any non-negative integer n, and for any pair of decimal integers a and b = a+ 2n,
the Hamming distance between their Gray Code representations G(a) and G(b) is consistently:

dH(G(a), G(b)) =

{
1 if n = 0,

2 if n ≥ 1.
(15)

Here, Hamming distance is the number of different bits between two binary representations.

Proof. For n ≥ 1, consider b = a+ 2n. We analyze the XOR of their Gray Codes:

G(a)⊕G(a+ 2n) = [a⊕ (a ≫ 1)]⊕ [(a+ 2n)⊕ ((a+ 2n) ≫ 1)] . (16)

Using the associativity and commutativity of XOR, we regroup:

G(a)⊕G(a+ 2n) = [a⊕ (a+ 2n)]⊕ [(a ≫ 1)⊕ ((a+ 2n) ≫ 1)] . (17)

Let us denote:
∆1 = a⊕ (a+ 2n) , ∆2 = (a ≫ 1)⊕ ((a+ 2n) ≫ 1) . (18)

Case 1: n = 0

In this case, b = a+ 1, and it is well known that adjacent integers in the Gray code differ by exactly
one bit. Therefore, we have dH(G(a), G(b)) = dH(G(a), G(a+ 1)) = 1.

Case 2: n ≥ 1

We consider two subcases based on the bit at position n in a.

Subcase A: Bit n in a is 0

Then a+ 2n flips bit n from 0 to 1, with no carry. Hence:

∆1 = 2n, ∆2 = 2n−1. (19)

Therefore,
G(a)⊕G(b) = 2n ⊕ 2n−1. (20)

This value has exactly two bits set (at positions n and n− 1), so the Hamming distance is 2.

Subcase B: Bit n in a is 1

Then adding 2n to a causes a carry from bit n upwards. Let c be the smallest index greater than n
such that bit c in a is 0; bits n through c− 1 are all 1. Then:

∆1 = a⊕ (a+ 2n) =

c∑
i=n

2i = 1 . . . 1︸ ︷︷ ︸
c−n+1

0 . . . 0︸ ︷︷ ︸
n

(2), (21)

has ones at bits n through c. We denote ·(2) for binary representation. Similarly,

∆2 = (a ≫ 1)⊕ ((a+ 2n) ≫ 1) =

c−1∑
i=n−1

2i = 1 . . . 1︸ ︷︷ ︸
c−n+1

0 . . . 0︸ ︷︷ ︸
n−1

(2), (22)
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has ones at bits n− 1 through c− 1. Thus,

G(a)⊕G(b) = ∆1 ⊕∆2 = (

c∑
i=n

2i)⊕ (

c−1∑
i=n−1

2i) = 2c + 2n (23)

has ones at only positions c and n− 1, and all other bits are canceled due to alignment. The result
has exactly two bits set, so the Hamming distance is 2.

Combining all cases, we conclude that for any non-negative integer n:

dH(G(a), G(a+ 2n)) =

{
1 if n = 0,

2 if n ≥ 1.
(24)

This rigorously proves the observed property of Gray Codes concerning the Hamming distance
between numbers differing by powers of two.

B Ablation Study on Log-PE and XNOR

In this section, we compare the performance of vanilla spiking Transformers with Log-PE, XNOR
variants with Log-PE, and models equipped with complete relative positional encoding (C-RPE). As
discussed in Section 4.4, C-RPE is implemented by setting Ri,j =

L−1
|i−j|+1 and adding it directly to

the attention scores.

Table S1: Ablation study on XNOR and Log-PE. We take
the time-series forecasting performance of SNNs on Metr-la
and Electricity as examples. C-RPE denotes Complete RPE.
↑ (↓) indicates that the higher (lower) the better. ∗ denotes
failure to converge.

Model (Prediction Length = 24) Metr-la (L = 12) Electricity (L = 168)
R2 ↑ RSE ↓ R2 ↑ RSE ↓

Spikformer w/ Log-PE .484 .763 .710∗ 1.03∗

Spikformer-XNOR w/ Log-PE .535 .719 .974 .300
Spikformer-XNOR w/ C-RPE .158∗ .967∗ .710∗ 1.03∗

QKFormer w/ Log-PE .475 .788 .710∗ 1.03∗

QKFormer-XNOR w/ Log-PE .541 .715 .974 .285
QKFormer-XNOR w/ C-RPE .430 .824 .710∗ 1.03∗

As shown in Table S1, both Spik-
former and QKFormer with C-RPE
perform significantly worse than their
Log-PE counterparts, with some vari-
ants failing to converge entirely. This
degradation is attributed to the overly
large positional encodings disrupt-
ing the training dynamics. Further-
more, observed from vanilla Spik-
former with Log-PE, we confirm that
the dot product, which does not use
Hamming distance to measure relative
distance, is not suitable for RPE meth-
ods.

C Performance of QKFormers on Image Classification

In this section, we conduct experiments on current SOTA spiking Transformer, QKFormer [20].

Table S2: Accuracy (%) of QKFormer on image classification benchmarks. Numbers with ∗

denote our implementations. “PE” stands for positional encoding. “R” denotes relative PE, while “A”
denotes absolute PE. Results are averaged across 4 random seeds.

Model PE CIFAR10 CIFAR10-DVS CIFAR100 Tiny-ImageNet Avg.Spike Type Param (M) Acc Param (M) Acc Param (M) Acc Param (M) Acc
Vision-Transformer ✗ A 9.32 96.73 – – 9.36 81.02 9.40 62.18 –
QKFormer w/ Conv PE (Original) – – 6.74 96.32∗ 1.50 83.40∗ 6.76 80.90∗ 6.78 58.07∗ 79.67
QKFormer w/ CPG-PE ✓ A 7.01 96.30 1.58 82.00 7.04 80.52 7.08 56.75∗ 78.89
QKFormer-XNOR w/ Gray-PE 1D ✓ R 6.02 96.22 1.41 82.20 6.04 80.48 6.06 57.21 79.03
QKFormer-XNOR w/ Gray-PE 2D ✓ R 6.02 96.36 1.41 83.10 6.04 80.82 6.06 57.94 79.56

As shown in Table S2, we find that: QKFormer exhibits insensitivity to positional encoding in image
classification. QKFormer exhibits minimal performance gains, or even degradation, when augmented
with PE techniques, including both CPG-PE and Gray-PE. We attribute this to its attention design,
which aggregates queries along the channel dimension before the dot product with keys. This design
inherently biases the model toward spatially specific features while suppressing temporal dependen-
cies. Previous studies [37–40] have shown that patch-based image classification primarily focuses
on spatial (i.e., channel-wise) information rather than the sequential dependencies between patches.
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This contrasts with sequence modeling tasks such as time-series forecasting and text classification,
where capturing inter-token dependencies is crucial. In image classification, our positional encoding
encourages the model to emphasize sequential relationships between patches, which introduces a
conflict with the QKFormer’s attention mechanism, ultimately hindering performance in this domain.

D Experimental Settings

D.1 Datasets

D.1.1 Time-series Forecasting

We strictly follow the dataset settings of CPG-PE [7]. The datasets we used are as follows: Metr-la
[27]: Average traffic speed data collected from highways in Los Angeles County. Pems-bay [27]:
Average traffic speed data from the Bay Area. Electricity [28]: Hourly electricity consumption data
in kilowatt-hours (kWh) of 321 clients. Solar [28]: Solar power production. The detailed statistical
characteristics and distribution ratios for each dataset are presented below:

Table S3: The statistics of time-series datasets.
Dataset Samples Variables Observation Length Train-Valid-Test Ratio
Metr-la 34, 272 207 12, (short-term) (0.7, 0.2, 0.1)
Pems-bay 52, 116 325 12, (short-term) (0.7, 0.2, 0.1)
Solar-energy 52, 560 137 168, (long-term) (0.6, 0.2, 0.2)
Electricity 26, 304 321 168, (long-term) (0.6, 0.2, 0.2)

D.1.2 Text Classification

For text classification, we follow [10] to conduct experiments on six easy discrimination tasks,
covering both English and Chinese datasets. Here are the datasets we used in text classification
experiments:

AGNEWS [32] is a large-scale text classification benchmark derived from AG’s corpus of news
articles, containing 120, 000 training samples and 7, 600 valid samples evenly distributed across four
categories—World, Sports, Business, and Science/Technology. IMDB [33] is a benchmark for binary
sentiment classification, containing 50, 000 movie reviews labeled as positive or negative, split evenly
into training and test sets to evaluate natural language understanding and opinion mining models.
The MR dataset, which stands for Movie Review, contains movie-review documents labeled based on
their overall sentiment polarity (positive or negative) or subjective rating [29]. SST-5 includes 11, 855
sentences from movie reviews for sentiment classification across five categories: very negative,
negative, neutral, positive, and very positive [30]. SST-2 is the binary version of SST-5, containing
only two classes: positive and negative. The Subj dataset is designed to classify sentences as either
subjective or objective*. ChnSenti consists of approximately 7, 000 Chinese hotel reviews, each
annotated with a positive or negative label†. Waimai contains around 12, 000 Chinese user reviews
from a food delivery platform, intended for binary sentiment classification (positive and negative)‡.

D.1.3 Image Classification

Here are the datasets we used in image classification experiments:

The CIFAR dataset is one of the most widely used benchmarks for image classification, comprising
a collection of 60, 000 color images, each with a resolution of 32 × 32 pixels. These images are
partitioned into 50, 000 training samples and 10, 000 test samples. The dataset includes 10 classes,
each containing 6, 000 images, and spans a variety of object categories such as airplanes, cars, birds,
and cats. The relatively low resolution of the images makes the dataset a challenging benchmark for
evaluating model performance in small-scale image classification tasks.

The Tiny-ImageNet dataset is a simplified subset of the original ImageNet, designed for efficient
experimentation in image classification and deep learning research. It consists of 200 object classes,

*https://www.cs.cornell.edu/people/pabo/movie-review-data/
†
https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/ChnSentiCorp_htl_all/

ChnSentiCorp_htl_all.csv
‡
https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv
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each containing 500 training images, 50 validation images, and 50 test images (totaling 100, 000
training, 10, 000 validation, and 10, 000 test images). All images are downsampled to a resolution of
64 × 64 pixels, balancing computational feasibility with visual complexity Designed for efficient
deep learning research, it reduces computational costs while maintaining diversity.

The CIFAR10-DVS dataset represents a neuromorphic adaptation of the original CIFAR10 set,
where static images have been converted into dynamic representations that simulate the recording
capabilities of a Dynamic Vision Sensor (DVS) camera. Unlike traditional cameras, a DVS captures
changes in the scene as individual events, rather than capturing full-frame images at fixed time
intervals. This conversion results in a dataset that is more aligned with how biological vision systems
process information. The CIFAR10-DVS dataset consists of 9, 000 training samples and 1, 000 test
samples, with a higher resolution of 128 × 128 pixels compared to the original CIFAR10. The
event-driven nature of this dataset presents unique challenges in terms of processing and model
adaptation, as it requires handling sparse, asynchronous event streams rather than dense, synchronous
pixel data. This dataset is particularly valuable for testing models designed for neuromorphic systems
and event-based vision tasks, offering a more realistic and biologically plausible approach to image
classification.

D.2 Time-series Forecasting

Metrices The metrics we used in time-series forecasting are the coefficient of determination (R2)
and the Root Relative Squared Error (RSE).

R2 =
1

MCL

M∑
m=1

C∑
c=1

L∑
l=1

[
1−

(Y m
c,l − Ŷ m

c,l )
2

(Y m
c,l − Ȳc,l)2

]
, (25)

RSE =

√√√√∑M
m=1 ||Ym − Ŷm||2∑M
m=1 ||Ym − Ȳ||2

. (26)

In these formulas, M represents the size of the test set, C denotes the number of channels, and L
signifies the length of the predictions. Ȳ is the average of Ym. The term Y m

c,l refers to the l-th future
value of the c-th variable for the m-th sample, while Ȳ c, l represents the mean of Y mc, l across all
samples. The symbols Ŷm and Ŷ m

c,l are used to denote the predicted values. Compared to Mean
Squared Error (MSE) or Mean Absolute Error (MAE), these metrics exhibit greater resilience to the
absolute values of the datasets, making them especially valuable in time-series forecasting tasks.

Model Architecture All SNNs take 4 time steps for spiking neurons. We construct all Spikformer
as 2 blocks, setting the feature dimension as 256, and the hidden feature dimension in FFN as 1024.
As for QKFormer, we set the block number as 4, 2 of which are QK blocks and the other 2 are
Spikformer blocks.

Training Hyper-parameters we set the training batch size as 32 and adopt Adam [41] optimizer
with a cosine scheduler of learning rate 1× 10−4. An early stopping strategy with a tolerance of 30
epochs is adopted. For other configurations, we honestly follow the SeqSNN framework § proposed
by [6]. We conducted time-series forecasting experiments on 24G-V100 GPUs. On average, a single
experiment takes about 1 hour under the settings above.

D.3 Text Classification

Model Achirecture All Spikformers are with 12 encoder blocks and 768 feature embedding
dimension. We have substituted layer normalization of SpikeBERT [42] with batch normalization in
our directly-trained Spikformer models for text classification tasks.

Training Hyper-parameters We directly trained Spikformers with arctangent surrogate gradients
on all datasets. We use the BERT-Tokenizer in Huggingface¶ to tokenize the sentences to token

§https://github.com/microsoft/SeqSNN
¶https://huggingface.co/
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sequences. We pad all samples to the same sequence length of 256. We conducted text classification
experiments on 4 RTX-3090 GPUs, and set the batch size as 32, optimizer as AdamW [43] with
weight decay of 5× 10−3, and set a cosine scheduler of starting learning rate of 5× 10−4. What’s
more, in order to speed up the training stage, we adopt the automatic mixed precision training strategy.
On average, a single experiment takes about 1.5 hours under the settings above.

D.4 Image Classification

Model Architecture For all Spikformer models, we standardized the configuration to include 4
time steps. Specifically, for the CIFAR10 and CIFAR100 datasets, the models were uniformized
with 4 encoder blocks and a feature embedding dimension of 384. For the CIFAR10-DVS dataset,
the models were adjusted to have 2 encoder blocks and a feature embedding dimension of 256. For
all QKFormers, we set the block number as 4, where 2 blocks are QK blocks and the other 2 are
Spikformer blocks.

Training Hyper-parameters We honestly follow the experimental settings in Spikformer [4] and
QKFormer [20], whose source code and configuration files are available at https://github.com/
ZK-Zhou/spikformer and https://github.com/zhouchenlin2096/QKFormer. As the training
epochs are quite big (300 or 400 epochs) in their settings, we choose to use one 80G-A100 GPU, and
it takes about 3 hours to conduct a single experiment, on average.

E Analysis on Hardware-Friendliness of Log-PE

First, Log-PE doesn’t need to perform logarithmic operations directly on hardware during inference.
Specifically, the relative position bias is defined as Ri,j =

[
⌈log2

(
L−1

|i−j|+1

)
⌉
]
, where ⌈·⌉ denotes

the ceiling (round-up) function, and L is the maximum sequence length. Since this bias depends only
on the relative positions and the predefined sequence length, the entire bias matrix can be computed
offline and stored ahead of time, eliminating the need for any runtime computation.

Secondly, even if one wishes to compute the logarithmic transformation on hardware, this can be
efficiently achieved using a lookup table (LUT) implementation. Given an unsigned integer input of
N bits, we partition the input range into K intervals. Each interval is approximated using a piecewise
linear function y = ax+ b, with the parameters (a, b) stored in the LUT. The total LUT storage cost
is: K · (N + 2P ) bits ≈ K·(N+2P )

8 bytes, where P is the bit width of the parameters.

This strategy is similar to existing SNN approximations for exponential/leaky functions and has been
successfully deployed in many types of neuromorphic chips, such as Intel Loihi [35]. Hence, the
hardware implementation of Log-PE is efficient, low-cost, and practically feasible.

F Limitations and Future Work

F.1 Limitations

Despite the promising enhancements introduced by our relative positional encoding method for
spiking Transformers, several limitations must be acknowledged. Firstly, the current implementation
may encounter scalability issues when applied to extremely long input (such as ultra-long texts with
the length of 10240) sequences. Additionally, while Gray-PE and Log-PE effectively preserve binary
spike representations, they may limit the flexibility and adaptability of the encoding scheme across
diverse data modalities and task requirements. Furthermore, our evaluations have been confined to
specific applications such as time series forecasting, text classification, and image patch classification,
which may not fully capture the method’s performance in other domains, such as object detection
[44] and real-world geometry representation [45].

F.2 Future Work

Future work should focus on optimizing the Gray Code-based RPE to enhance its scalability and
efficiency, enabling its deployment in larger and more intricate SNN models. Exploring alternative
encoding strategies or hybrid approaches could provide greater flexibility and improve the robustness
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of positional encoding across various data types and tasks. Expanding the scope of evaluation
to include a wider range of applications would offer a more comprehensive understanding of the
method’s effectiveness. Additionally, integrating Gray Code-based RPE with other advanced neural
network components, such as attention mechanisms or neuromorphic hardware, could further elevate
the performance and practical utility of SNNs. These efforts will contribute to the advancement of
more versatile and powerful biologically inspired neural network architectures.
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• If the authors answer NA or No, they should explain why their work has no societal
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets we used in the paper are all public datasets. Please refer to
Appendix D for details of datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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