
Under review as a conference paper at ICLR 2021

CAN WE USE GRADIENT NORM AS A MEASURE OF
GENERALIZATION ERROR FOR MODEL SELECTION IN
PRACTICE?

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent theoretical investigation (Li et al., 2020) on the upper bound of general-
ization error of deep neural networks (DNNs) demonstrates the potential of using
the gradient norm as a measure that complements validation accuracy for model
selection in practice. In this work, we carry out empirical studies using several
commonly-used neural network architectures and benchmark datasets to under-
stand the effectiveness and efficiency of using gradient norm as the model selec-
tion criterion, especially in the settings of hyper-parameter optimization. While
strong correlations between the generalization error and the gradient norm mea-
sures have been observed, we find the computation of gradient norm is time
consuming due to the high gradient complexity. To balance the trade-off be-
tween efficiency and effectiveness, we propose to use an accelerated approxima-
tion (Goodfellow, 2015) of gradient norm that only computes the loss gradient in
the Fully-Connected Layer (FC Layer) of DNNs with significantly reduced com-
putation cost (200∼20,000 times faster). Our empirical studies clearly find that
the use of approximated gradient norm, as one of the hyper-parameter search ob-
jectives, can select the models with lower generalization error, but the efficiency
is still low (marginal accuracy improvement but with high computation overhead).
Our results also show that the bandit-based or population-based algorithms, such
as BOHB, perform poorer with gradient norm objectives, since the correlation
between gradient norm and generalization error is not always consistent across
phases of the training process. Finally, gradient norm also fails to predict the gen-
eralization performance of models based on different architectures, in comparison
with state of the art algorithms and metrics.

1 INTRODUCTION

Generalization performance of deep learning through stochastic gradient descent-based optimiza-
tion has been widely studied in recent work (Li et al., 2020; Chatterjee, 2020; Negrea et al., 2019;
Thomas et al., 2019; Zhu et al., 2019; Hu et al., 2019; Zhang et al., 2016; Mou et al., 2017). These
studies initialize the analysis from the learning dynamics’ perspectives and then extend to the up-
per bound estimation of generalization errors (Mou et al., 2017). More recently, researchers have
shifted their focuses onto providing some theoretical or empirical measures on generalization per-
formance (Li et al., 2020; Negrea et al., 2019; Thomas et al., 2019; Cao & Gu, 2019; He et al., 2019;
Frei et al., 2019) with respect to deep architectures, hyper-parameters, data distributions, learning
dynamics and so on. This work studies the use of generalization performance measures (Li et al.,
2020; Negrea et al., 2019) for model selection purposes (Cawley & Talbot, 2010).

Prior to the endeavor of deep learning, the generalization gap has been used as a straightforward
measure. Given a set of N training samples{x1, x2, x3, . . . xN}, a deep learning model θ and a loss
function L(θ;x) based on the sample x, the generalization gap G is defined as

G(θ) = E
x∼X

L(θ;x)− 1

N

N∑
i=1

L(θ;xi), (1)

where X is defined as the distribution of data, and Ex∼X L(θ;x) refers to the expected loss. To
quantify the generalization gap, validation or testing samples have been frequently used to measure
the expected loss (Kohavi et al., 1995). Such that given a validation/testing dataset with M samples

1

Under review as a conference paper at ICLR 2021

{y1, y2, y3, . . . , yM}, the empirical generalization gap ĜM is estimated as

ĜM (θ) =
1

M

M∑
i=1

L(θ; yi)−
1

N

N∑
i=1

L(θ;xi), (2)

and limM→∞ ĜM = G. However, due to the limited amount of samples, the accurate estimation
of generalization gap is not always available (Cawley & Talbot, 2010). It has been evidenced that
performance tuning based on validation set frequently causes overfitting to the validation set (Recht
et al., 2018) in deep learning settings.

Rather than the use of empirical generalization gap, some advanced measure has been proposed (Li
et al., 2020; Negrea et al., 2019; Thomas et al., 2019) to provide data-dependent characterization on
the generalization performance for deep learning. For example, Thomas et al. (2019) derived the
Takeuchi information criterion (TIC) using the Hessian and covariance matrices of loss gradients
with low-complexity approximation. They then propose to use TIC as an empirical metric that cor-
relates to the generalization gap. As the calculation of TIC relies on the use of validation set, TIC
for deep learning is a posterior measure. Further, Negrea et al. (2019) improved mutual informa-
tion bounds for Stochastic Gradient Langevin Dynamics via some data-dependent measure. More
specifically, the squared norm of gradients have been used as the data-dependent priors to tightly
bound the generalization gap through measuring the flatness of empirical risk surface.

More recently, the squared norm of gradients over the learning dynamics has been studied as the
measure to upper-bound the generalization gap (Li et al., 2020; Negrea et al., 2019). All above
methods connect the generalization gap of deep learning to the gradients and Hessians of loss func-
tions. While Thomas et al. (2019) is a posterior measure relying on the validation datasets, the two
studies (Li et al., 2020; Negrea et al., 2019) provide “prior” measure that uses training datasets.
More specifically, Li et al. (2020) proves that the generalization error is upper bounded by the em-
pirical squared gradient norm along the optimization path. Formally, they show that, given a model
trained with n samples in dataset X = {x1, x2 . . . xn} for a total of T iterations using a C-bounded
loss function is used, the theoretical generalization gap of the DNN θT is bounded as follows,

G(θT) ≤
2
√
2C

n

√√√√E
X

[
T∑
t=1

γ2t
σ2
t

ge(t)

]
, (3)

where ge(t) = Eθt−1
[1n

∑n
i=1 ‖∇L(θt−1, xi)‖

2
2] is the empirical squared gradient norm in the tth

iteration, γt is the learning rate and σt indicates the standard deviation of Gaussian noise in the
stochastic process. Their result directly shows that empirical squared gradient norm along the opti-
mization path is a good indicator of a model’s generalization ability. Therefore, we are interested in
using this signal as a criterion in model selection, so as to find an optimal set of hyper-parameters.

Our Contributions. In this work, we follow the theoretical investigation in (Li et al., 2020) and try
to use the squared gradient norms (GN) over the optimization path as a data-dependent generaliza-
tion performance measure for DNN model selection. In an empirical manner, the proposed metric
GN here should be able to measure the generalization gap of the DNN model θT , which has been
trained with T iterations and N training samples, as follows

GN(θT) =

T∑
t=1

[
1

N

N∑
i=1

‖∇L(θt;xi)‖22

]
, (4)

where ∇L(θt;xi) refers to the loss gradient using the model of the tth iteration and the ith training
sample in {x1, x2, . . . , xN}. Based on the data-dependent measure GN, our work make three pieces
of significant technical contributions as follows

(1) Approximated Gradient Norm (AGN) as an accelerated and low-complexity approximation to
GN. Despite the fact that GN can measure the generalization error of a DNN model, the time
consumption for GN is high, due to the complexity of gradient estimation using every training sam-
ple in every iteration. To lower the computational complexity, we propose Approximated Gradient
Norm (AGN) that only uses the summation of loss gradients of the Fully-Connected (FC) Layer in
DNN by the end of every epoch (rather than every iteration) as an approximation of GN. Further-
more, the calculation of FC Layer gradient per sample could be further accelerated by Goodfellow

2

Under review as a conference paper at ICLR 2021

(2015) with extremely low costs. Our empirical evaluation finds that, over various DNN models
trained with different hyper-parameters, the metrics GN(θT) and AGN(θT) behave identically with
respect to empirical generalization gap ĜM (θT). This approximation makes it feasible to carry out
experiments that evaluate the effectiveness of GN for model selection.

(2) To validate the correlations between generalization performance and AGN(θT), we carry out
extensive experiments using various deep neural networks, such as Multi-Layer Perception (MLP),
LeNet (LeCun et al., 1998), and ResNet (He et al., 2016), on top of benchmark datasets including
MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and
CIFAR (Krizhevsky et al., 2009). Observation 1: It has been observed that, when the models are
well-fitted (i.e., with low training loss or high training accuracy), AGN(θT) well corresponds with
the empirical generalization gap ĜM (θT) while models with lower/higher AGN(θT) are consis-
tently with lower/higher ĜM (θT) and better/poorer generalization performance. On the other hand,
when models are not well-fitted or namely under-fitted, either due to the use of inappropriate hyper-
parameters or a training process not converged (e.g., T is small), the correlations between ĜM (θT)
and AGN(θT) are not always consistent while the direction of correlation somtimes is even opposite
to the theoretical investigation in Li et al. (2020) and Eq. (3).

(3) To understand the effectiveness and efficiency of using AGN(θT) for model selection, we extend
our experiments to use AGN(θT) as an objective for hyper-parameter selection, under both black-
box optimization (Escalante et al., 2009; Loshchilov & Hutter, 2016) and bandit-based search (Li
et al., 2017; Falkner et al., 2018) settings. Observation 2: We find that, through the combina-
tion with training or validation loss, AGN(θT) can help black-box optimization algorithms, such as
particle swarm (PSO) (Escalante et al., 2009) or covariance matrix adaption based evolving strate-
gies (CMA-ES) (Loshchilov & Hutter, 2016), search the models (hyper-parameters) with equivalent
or marginally better performance than using validation loss/accuracy as the search objective. The
training procedure can somehow avoid the potential overfitting to the validation set (Recht et al.,
2018). However the use of AGN(θT) requests more prior knowledge (additional parameters) to
balance the weights of training/validation loss and AGN(θT) in the combined objective during the
search, which might be sensitive for model selection. Observation 3: Further, our research finds that
bandit-based search algorithms, such as Bayesian optimization over HyperBand (BOHB) (Falkner
et al., 2018), cannot work well with gradient norms. Because BOHB selects and drops models dur-
ing the learning process with respect to the intermediate measures on performance, while within an
end-to-end learning process AGN(θt) (for θ1, θ2, θ3 . . . , θT) cannot always provide consistent mea-
sures on the generalization performance. Observation 4: In addition to hyper-parameter selection
for deep learning, our experiment finally finds that AGN(θT) fails to predict the the generalization
performance of the models based on different deep architectures, in comparison to some state of the
art algorithms and metrics (Jiang et al., 2019; Nagarajan & Kolter, 2019).

We believe the most relevant studies to this work are those done by Li et al. (2020); Negrea et al.
(2019); Thomas et al. (2019) (that measure the generalization performance of DNN using deriva-
tives, such as gradients and Hessian matrices, of the loss), and the contribution made by our work is
unique. Compared to Thomas et al. (2019), the measure AGN studied here is also a data-dependent
metric to characterize the generalization performance. AGN uses gradients and avoids the use of
validation sets, while Thomas et al. (2019) is based on Hessian matrices and relies on validation data.
Compared to Li et al. (2020); Negrea et al. (2019), our work studies the feasibility of using gradient
norms over learning process for model selection in empirical settings, where we first provide AGN
as a low-complexity implementation to accelerate the computation of gradient norms, then we con-
duct extensive results to demonstrate the pros and cons of using gradient norms or AGN for model
selection in two major hyper-parameter search settings. Our result demonstrates the potentials but
also limitations in the adoption of current theoretical results (Li et al., 2020; Negrea et al., 2019) as
an objective for model selection.

2 GRADIENT NORM AND ITS APPROXIMATION

Given a DNN model θT that has been trained with T iterations, the straightforward way to compute
GN(θT) is to first collect and store the weights of the model for every iteration during the training
process (i.e., θ1, θ2, . . . , θT), then compute the gradient for every training sample (N in total) on
every model (T in total) through backpropagation (BP) over the whole DNN for N × T times. In

3

Under review as a conference paper at ICLR 2021

practice, such computation cost is far too high. In this section, we present AGN(θT) as a low-
complexity approximation to GN(θT) and then discuss the approximation performance.

2.1 AGN: APPROXIMATED GRADIENT NORM

We propose AGN(θT) as a low-complexity approximation to accelerate the computation of GN(θT)
using acceleration strategies as follows.

300 400 500 600 700 800 900
GN(T)

0.05

0.10

0.15

0.20

0.25

0.30

(
T)

50 100 150 200 250
AGN(T)

AGN(T)
GN(T)

(a) MLP on MNIST

300 400 500 600 700 800 900
GN(T)

50

100

150

200

250

AG
N(

T)

(b) MLP on MNIST

200 400 600 800 1000 1200 1400
GN(T)

2
3
4
5
6
7
8

(
T)

50 100 150 200 250 300 350
AGN(T)

AGN(T)
GN(T)

(c) LeNet-5 on MNIST

200 400 600 800 1000 1200 1400
GN(T)

0

50

100

150

200

250

300

350

AG
N(

T)

(d) LeNet-5 on MNIST

50 100 150 200 250
GN(T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AG
N(

T)

Pearson coeff = 0.871
p-value=8.3e-26

ResNet-20 on Fashion-MNIST
Epoch 1-80

0.5 1.0 1.5 2.0 2.5
GN(T)

0.01

0.00

0.01

0.02

0.03

0.04

AG
N(

T)

Pearson coeff = 1.0
p-value=4.62e-76

ResNet-20 on Fashion-MNIST
Epoch 81-120

0.270 0.275 0.280 0.285 0.290 0.295 0.300
GN(T)

0.0024

0.0025

0.0026

0.0027

0.0028

0.0029

0.0030

AG
N(

T)

Pearson coeff = 0.989
p-value=5.38e-33

ResNet-20 on Fashion-MNIST
Epoch 121-160

(e) ResNet-20 on Fashion-MNIST(validating the positive correlation
between GN(θT) and AGN(θT) in larger neural networks).

150 200 250 300
GN(T)

1

2

3

4

5

6

7

AG
N(

T)

Pearson coeff = 0.408
p-value=0.000173

ResNet-56 on CIFAR-100
Epoch 1-80

70 75 80 85 90 95 100 105
GN(T)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

AG
N(

T)

Pearson coeff = 0.995
p-value=8.14e-40

ResNet-56 on CIFAR-100
Epoch 81-120

46 48 50 52 54 56 58 60 62
GN(T)

0.55

0.60

0.65

0.70

0.75

AG
N(

T)
Pearson coeff = 0.961

p-value=6.44e-23

ResNet-56 on CIFAR-100
Epoch 121-160

(f) ResNet-56 on CIFAR-100 (validating the positive correlation be-
tween GN(θT) and AGN(θT) in larger neural networks).

Figure 1: Comparison between GN(θT) and AGN(θT)
in terms of effectiveness to reflect generalization error.
In Fig. 1a to Fig. 1d, we pick 9 sets of random hyper-
parameters for MLP and 12 sets for LeNet-5. We then
train the model for 40 epochs and plot their results. For
the two architectures we have tested on MNIST, both
AGN(θT) and GN(θT) exhibit identical trends when
generalization error is plotted against them respectively.
Strong positive correlation is observed between GN and
AGN in each setting as well, with Pearson correlation
coefficients 0.962 for MLP and 0.987 for LeNet-5. We
carry out additional experiments using deeper neural
network models in Fig. 1e and Fig. 1f in order to ver-
ify the existence of strong positive correlation between
AGN(θT) and GN(θT). We follow a piecewise learn-
ing rate decay policy in these experiments. Thus, there
are three plots for each ResNet setting.

Depth-wise Acceleration. While DNNs
frequently composes hundreds of layers,
AGN(θT) approximates to GN(θT) using the
gradients of last Fully-Connected (FC) Layer
of DNNs.

Sample-wise Acceleration. While the compu-
tation of GN(θT) needs to run time-consuming
BP for every training sample, AGN(θT) uses
the low-complexity per-sample gradient esti-
mation algorithm (Goodfellow, 2015) to com-
pute the gradients of FC layers without BP.

Epoch-wise Acceleration While the computa-
tion of GN(θT) aggregates the gradient norms
for every iteration, AGN(θT) approximates to
GN(θT) via the summation of squared norms
of gradients collected by the end of every
epoch. Given the batch size B for every itera-
tion, each epoch consists of NB gradient descent
iterations, the learning process with T iterations
takes TB

N epochs for completion, and θ τN
B

for
τ = 1, 2, . . . , TBN refer to the model obtained
by the end of every epoch.

In this way, we propose to compute AGN(θT)
as follows

AGN(θT) =

TB/N∑
τ=1

[
1

N

N∑
i=1

∥∥∥∇LFC(θ τN
B

;xi)
∥∥∥2
2

]
,

(5)
where ∇LFC(θ;x) refers to the gradient of FC
layer based on the model θ and the sample x
and is accelerated by using the algorithm pro-
posed by Goodfellow (2015).

2.2 APPROXIMATION PERFORMANCE

We discuss the approximation performance of
AGN(θT) to GN(θT) from efficiency and ef-
fectiveness perspectives, in comparison with
validation accuracy, as ways of generalization
performance measurements.

Effectiveness Comparison. We find that
AGN(θT) preserves the effectiveness of
GN(θT) as a generalization performance indi-
cator. In Figure 1, we illustrate the comparison
between AGN(θT) and GN(θT) using 9 Multi-Layer Preceptors (MLP) models and 12 LeNet-5
models trained using 9 and 12 sets of random hyper-parameters on MNIST datasets. For every
model here, we train the model with 40 epoch, measure the generalization gap using the validation
set, and estimate GN(θT) and AGN(θT) respectively. In Figure 1(a) and (c), we plot GN(θT) and
AGN(θT) of these models against their generalization gaps. It shows that, despite the different
scales of the two measures, the trends of GN(θT) and AGN(θT) behave identically with respect

4

Under review as a conference paper at ICLR 2021

to the generalization gaps. Further, we correlate GN(θT) and AGN(θT) for every model and
demonstrate the correlations in Figure 1 (b) and (c). We carry out additional experiments on larger
neural networks. The results in Fig. 1e and Fig. 1f also validate that the correlations between
GN(θT) and AGN(θT) are strong, significant, and consistent.

LeNet-5 with

 Reduced MNIST

 batch size
=64

LeNet-5 with

 Full M
NIST

 batch size
=64

LeNet-5 with

 Reduced MNIST

 batch size
=500

ResNet-20 with

 Reduced SVHN

 batch size
=64

ResNet-20 with

 Full SVHN

 batch size
=64

ResNet-20 with

 Reduced SVHN

 batch size
=500

ResNet-56 with

 Reduced CIFAR-100

 batch size
=64

ResNet-56 with

 Full CIFAR-100

 batch size
=64

ResNet-56 with

 Reduced CIFAR-100

 batch size
=500

101

102

103

104

105

106

Av
er

ag
e

Ti
m

e
Co

m
su

m
pt

io
n

(s
)

2.53 2.53 2.53
7.53 7.53 7.53

3.48 3.48 3.48
10.39

35.07

8.24
16.86

61.22

14.69 17.28

67.69

12.15

6507.55

142683.28

1816.59

46178.84

1100779.05

18057.54
54380.75

1386956.95

21812.12

Validation
Accuracy
AGN
GN

Figure 2: Comparisons in computation time for the three general-
ization performance measurements.

Efficiency Comparison. We find
that the computation of AGN(θT)
is much faster than GN(θT) while
it still consumes significantly more
time than using validation set for
the measurement of generalization
performance. In Figure 2, we plot
the time consumption per epoch of
the three generalization performance
measurements, i.e., AGN(θT),
GN(θT), and validation accuracy, using LeNet-5, ResNet-20, and ResNet-56 on (parts of) MNIST,
SVHN, and CIFAR-100 datasets. To simulate the settings of realistic hyper-parameter search,
we collect time consumption of the three measurements using full and reduced (20%) datasets
separately. The comparison results show that AGN(θT) is 220x∼20,489x faster than GN(θT)
while it still consumes 95%∼ 1845% more time than using validation accuracy. Note that, for the
comparison, we originally collect the time consumption of GN(θT) for a single iteration, and then
rescale the figures to one epoch.

In summary, we conclude that AGN(θT) is a low-complexity but tight approximation to GN(θT)
for generalization performance measurement.

3 USING AGN AS A GENERALIZATION PERFORMANCE INDICATOR

To understand the correlations between AGN(θT) and generalization performance, we propose to
measure ĜM (θT) and AGN(θT) of a wide range of DNN models using ResNet-20, ResNet-56,
ResNet-110, and DenseNet100x24 (Huang et al., 2017) based on CIFAR-10 datasets. For each
architecture, we train 32 DNN models, each of which is with a random set of hyper-parameters and
the same number of epochs. Specifically, we hope to discuss the correlations in two scenarios –
the model is well-fitted or under-fitted. With sufficient number of training iterations and appropriate
settings of hyper-parameters, the models are usually trained to well-fit the training datasets with low
training loss and high training accuracy. However, due to the lack of convergence or inappropriate
setting, some models are under-fitted even using a large number of iterations.

200 400 600 800 1000 1200 1400
AGN(T)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(
T)

ResNet-20

500 1000 1500 2000
AGN(T)

0

5

10

15

20

(
T)

ResNet-56

500 1000 1500 2000 2500 3000 3500
AGN(T)

0

5

10

15

20

25

(
T)

ResNet-110

250 500 750 1000 1250 1500
AGN(T)

0

5

10

15

20

25

30

(
T)

DenseNet100x24

Top 50%
Bottom 50%

(a) Generalization error against AGN shows an inverted checkmark trend.

300 400 500 600
AGN(T)

14

16

18

20

(
T)

R2 = 0.066
 Pearson = 0.257

ResNet-20

200 300 400 500 600 700
AGN(T)

12

14

16

18

20

22

24

(
T)

R2 = 0.27
 Pearson = 0.519

ResNet-56

200 400 600 800 1000 1200
AGN(T)

14

16

18

20

22

24

26

28

(
T)

R2 = 0.277
 Pearson = 0.527

ResNet-110

200 300 400 500 600
AGN(T)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

(
T)

R2 = 0.24
 Pearson = 0.49

DenseNet100x24

Top 50%

(b) Positive correlation between AGN(θT) and ĜM (θT) for well-fitted models.

600 800 1000 1200
AGN(T)

2

0

2

4

6

8

10

12

(
T)

R2 = 0.928
 Pearson = -0.963

ResNet-20

500 1000 1500 2000
AGN(T)

5

0

5

10

15

20

25

(
T)

R2 = 0.882
 Pearson = -0.939

ResNet-56

1500 2000 2500 3000
AGN(T)

5

0

5

10

15

20

25

(
T)

R2 = 0.931
 Pearson = -0.965

ResNet-110

400 600 800 1000 1200 1400 1600
AGN(T)

0

5

10

15

20

25

30

(
T)

R2 = 0.156
 Pearson = -0.395

DenseNet100x24

Bottom 50%

(c) Negative correlation between AGN(θT) and ĜM (θT) for under-fitted models.

Figure 3: Inconsistent correlation between empirical squared gra-
dient norm and generalization error depending on how well a
model is trained.

Observation 1 The correlations
between AGN(θT) and ĜM (θT) are
not consistent from models to mod-
els. AGN(θT) is positively cor-
related with ĜM (θT) when models
are well-fitted. Otherwise, an op-
posite trend is observed for under-
fitted models. Fig. 3 illustrates
that the inconsistent correlations be-
tween AGN(θT) and ĜM (θT) ap-
pear in all these architectures. For
each architecture, 32 random hyper-
parameter configurations were cho-
sen to train 32 models, and we ob-
tain each model’s AGN(θT) at the
end of 160 epochs as well as its gen-
eralization error, plotted in Fig. 3a.
We observe that the scatters exhibit
a trend that looks like an inverted
checkmark. This shape indicates that
the correlation between AGN(θT) and generalization error behave differently based on model con-

5

Under review as a conference paper at ICLR 2021

vergence. Due to this inconsistent behavior, it is not always possible to use AGN(θT) as an indicator
of generalization performance unless the models are well-fitted.

Positive correlation between AGN(θT) and ĜM (θT) for well-fitted models We identify the models
with top 50% training accuracy. These models have fitted the training set with at least 88% accuracy
and hence they are well-fitted models. These models show positive correlation between AGN(θT)

and ĜM (θT), as shown in Fig. 3b. It is feasible to use AGN(θT) as an alternative generalization
performance indicator, in addition to the validation loss/accuracy, under these settings. This observa-
tion coincides with the theoretical findings in Li et al. (2020) and Eq. (3). However, the p-values for
Pearson correlation in Fig.3(b) are 0.336, 0.039, 0.036, and 0.053 respectively. These values overall
indicate weak positive correlation between generalization gap and AGN(θT) as three of them are
close to or lower than 0.05. This weak correlation is most likely a result of that GN(θT) does not
work very well as a metric in practice, since we have already shown the experimental results that
indicate good approximation of AGN(θT) to GN(θT) in Fig. 1.

Negative correlation between AGN(θT) and ĜM (θT) for under-fitted models In contrast, we also
identify the models with bottom 50% training accuracy. Such models are under-fitted models due
to inappropriate settings of hyper-parameters or lack of convergence in the training process. Fig. 3c
shows that AGN(θT) is negatively correlated with ĜM (θT) for under-fitted models. We however do
not consider this observation conflicts with the theoretical findings in Li et al. (2020) or Eq. (3), be-
cause Li et al. (2020) actually studied the learning dynamics of DNN in asymptotic settings, where
authors derived the upper bound of generalization error using gradient norms when T → ∞ (the
training procedure has been well converged and models are well-fitted). Nonetheless, it still seems
to be surprising that there is a negative correlation between AGN(θT) and ĜM (θT). We offer an
intuitive explanation here. The trend is that gradient norm gradually decreases as training proceeds
while generalization gap increases (also reported in Li et al. (2020)). Across models with differ-
ent hyper-parameters, these two quantities could possibly change their magnitude at very different
speed. A model that remains under-fitted throughout training has low generalization gap (it makes
almost random guesses on both training and test sets), but the training samples are likely to con-
sistently produce large gradients. As a result, under-fitted models with smaller generalization gaps
have larger AGN(θT), contributing to the negative correlation shown in Fig. 3c.

4 USING AGN FOR MODEL SELECTION

In this section, we investigate the feasibility of using AGN(θT) as a generalization performance
indicator for model selection. We consider two possible applications of AGN(θT), where the first
one is to incorporate AGN(θT) as an objective for hyper-parameter search for a fixed architecture,
and the second one is using AGN(θT) to predict cross-architectural models’ generalization error.

4.1 USE CASE 1: HYPER-PARAMETER SEARCH FOR DEEP NEURAL NETWORKS

To address the fitness issues from Observation 1, we propose to include the training loss and/or
validation loss as the search objectives as follows

ObjectiveAGN+Train(θT) = α ·AGN(θT) +
1

N

N∑
i=1

L(θT ;xi),

ObjectiveAGN+Val(θT) = α ·AGN(θT) +
1

M

M∑
i=1

L(θT ; yi),

(6)

where {x1, x2, . . . , xN} and {y1, y2, . . . , yM} refer to the training and validation sets respectively,
and α is a weight to balance the training/validation loss and AGN(θT).

We test the effectiveness of the above two search objectives by conducting hyper-parameter search
using ResNet-20 and ResNet-56 on Fashion-MNIST, SVHN, and CIFAR datasets respectively. The
results of Fashion-MNIST and SVHN are found in the appendix. On top of the two objectives
in Eq. (6), we try multiple settings of α and adopt two commonly-used black-box optimization
algorithms, including CMA-ES (Loshchilov & Hutter, 2016) and PSO (Escalante et al., 2009), for
hyper-parameter search with a computation budget of 5,120 GPU×epochs, where we take a reduced
training set with 20% training samples (Cubuk et al., 2019) to accelerate the search procedure. The
search space is with Batch Size [32, 1000], Learning Rate [1 × 10−7, 0.50], Momentum [0, 0.99],
and Weight Decay [5 × 10−7, 0.05], while initial settings are Batch Size = 100, Learning Rate =
0.01, Momentum = 0.6, and Weight Decay = 0.0005.

6

Under review as a conference paper at ICLR 2021

Table 1: Results for CIFAR-10 and CIFAR-100 using CMA-ES and PSO.

CIFAR-10 CIFAR-100

Method ResNet-20 ResNet-56 ResNet-20 ResNet-56

Default 91.70±0.16 92.97±0.18 66.73±0.56 70.37±0.46

CMA-ES(Val) 91.86±0.13 92.74±0.20 68.28±0.46 67.08±0.68
PSO(Val) 92.26±0.09 93.15±0.09 67.85±0.25 72.11±0.39

CMA-ES(AGN+Train,α=0.05) 92.22±0.09 93.97±0.28 64.90±0.20 71.30±0.17
CMA-ES(AGN+Train,α=0.01) 90.46±0.09 91.59±0.19 64.62±0.04 72.37±0.12
CMA-ES(AGN+Train,α=0.005) 90.36±0.04 93.75±0.18 66.37±0.38 72.18±0.21

CMA-ES(AGN+Val,α=0.1) 91.94±0.07 93.09±0.04 64.64±0.50 69.14±0.17
CMA-ES(AGN+Val,α=0.05) 91.56±0.14 92.92±0.15 66.65±0.46 70.04±0.11
CMA-ES(AGN+Val,α=0.005) 92.08±0.08 93.77±0.06 66.31±0.11 72.49±0.46

PSO(AGN+Train,α=0.05) 90.56±0.11 91.66±0.06 62.09±0.26 69.28±0.16
PSO(AGN+Train,α=0.01) 91.51±0.04 91.32±0.10 67.46±0.18 67.55±0.52
PSO(AGN+Train,α=0.005) 91.92±0.14 91.99±0.31 64.91±0.17 67.05±0.43

PSO(AGN+Val,α=0.1) 90.38±0.03 92.55±0.06 66.57±0.16 67.92±0.39
PSO(AGN+Val,α=0.05) 91.67±0.18 91.76±0.05 65.53±0.35 71.42±0.13
PSO(AGN+Val,α=0.005) 90.66±0.08 93.76±0.17 67.02±0.12 71.51±0.19

Default hyper-parameter setting For every pair of dataset and the DNN architecture, there exists
a “default” set of hyper-parameters that has been frequently used/suggested by practitioners, or
published in their official releases. For example, the hyper-parameters including Batch Size = 128,
Learning Rate = 0.1, Momentum = 0.9, and Weight Decay = 10−4 have been frequently used to train
ResNet-20 on CIFAR-10. In the tables following, “Default” refers to models trained with the default
hyper-parameter configuration.

Observation 2.When combining AGN(θT) with training or validation loss as search objectives,
black-box optimization algorithms can search the hyper-parameters with performance marginally
better than using validation accuracy only, whilst models can avoid overfitting to the validation
set (Recht et al., 2018). However, such practice requests prior knowledge (i.e., α in Eq. (6)) to
balance the two factors in the search objective. Table 1 and Table 4 (in appendix) present the results
of comparisons, where we include the testing accuracy of the models trained using full training set
and the hyper-parameters found by black-box optimization algorithms. For every set of searched
hyper-parameters, the model has been trained and tested three times with error bars estimated. For
both CMA-ES and PSO algorithms, the two objectives can help search the models with significantly
better or worse testing accuracy than the one selected by using validation accuracy as objectives.

Furthermore, the use of these two objectives can fix the issues of overfitting to the validation set
for model selection. For example, the result of ResNet-20 on Fashion-MNIST using validation set
in Table 4 has a lower test set accuracy than the model trained with default hyper-parameters. This
phenomenon is likely due to overfitting the validation set since ResNet-20 has a rather large capacity
to learn and Fashion-MNIST is a relatively easy dataset. In contrast, AGN+Train or AGN+Val leads
to slightly better result than the default model, significantly outperforming using validation loss.
The final model selection highly depends on the choice of α. We however do not know such prior
in advance, while trends of performance over α are not consistent or obvious. In this way, we can
conclude that there exists potentials of using AGN(θT) as part of search objectives for black-box
hyper-parameter optimization when the prior knowledge on the settings of α is known. Otherwise,
the use of AGN(θT) might even hurt the hyper-parameter search, no matter whether it is combined
with training or validation loss.

Observation 3. AGN(θT) sometimes cannot work well with bandit-based hyper-parameter
search, as the correlation between AGN(θT) and generalization performance is not always con-
sistent during the training process from under-fitted to well-fitted status. We carry out the similar
hyper-parameter search experiments using BOHB algorithm under the same settings (search space,
initial values, and computation budget). For fair comparison, BOHB normalizes AGN(θt) in the
objectives (and the setting of α is slightly different from the black-box optimization settings), since
BOHB has to compare AGN(θt) of models obtained from different iterations t of the training pro-
cess while the scale of AGN(θt) varies significantly.

7

Under review as a conference paper at ICLR 2021

Table 2: Results for ResNet-20 on Fashion-MNIST, CIFAR-10, and CIFAR-100 using BOHB.

Fashion-MNIST CIFAR-10 CIFAR-100

Default 93.34±0.07 91.70±0.16 66.73±0.56

BOHB (Val) 92.58±0.64 90.46±0.65 66.02±0.32

BOHB (AGN+Train, α=0.9) 91.87±0.51 89.73±0.17 66.53±0.37
BOHB (AGN+Train, α=0.5) 89.25±2.00 85.02±0.19 62.19±0.44
BOHB (AGN+Train, α=0.1) 93.41±0.17 91.18±0.09 59.67±0.10

BOHB (AGN+Val, α=0.9) 93.01±0.20 85.88±0.87 63.30±0.41
BOHB (AGN+Val, α=0.5) 82.53±9.58 89.07±0.47 66.73±0.33
BOHB (AGN+Val, α=0.1) 93.27±0.06 90.61±0.16 64.05±0.09

In Table 2, we present the testing accuracy of the models that are trained using the hyper-parameters
searched by BOHB with the objectives. The results show that, though it is able to outperform the
default one (such as ResNet-20 on Fashion-MNIST using AGN+Train, α = 0.1), using AGN(θt)
within BOHB cannot produce better results than the default setting in most cases. Since the cor-
relation between AGN(θt) and ĜM (θt) is not always consistent over the optimization path, AGN
gives BOHB inaccurate feedback on model generalization performance in early stage of training.
Consequently, BOHB tends to early terminate some good models and continue training the inferior
ones. This results in deteriorated model performance through the bandit-based search.

4.2 USE CASE 2: CROSS-ARCHITECTURAL GENERALIZATION ERROR PREDICTION

Table 3: Cross-architectural gen-
eralization error prediction scores
of complexity measures. VC di-
mension (Vapnik & Chervonenkis,
2015), Jacobian Norm with respect
to intermediate layers (Jiang et al.),
Distance of trained weights from ini-
tialization (θ0) (Nagarajan & Kolter,
2019), and Sharpness of local min-
ima (Jiang et al., 2019)

Method Score

VC Dimension 0.019598841
Jacobian Norm 2.061258975
AGN 3.955067687
Distance to θ0 4.921479998
Sharpness 10.66711408

We evaluate a series of complexity measures to test their ef-
fectiveness of predicting generalization error using the public
dataset provided in a competition at NeurIPS 2020 named “Pre-
dicting Generalization in Deep Learning” (Jiang et al.). The de-
scriptions of experimental setup and public dataset are available
in the official document of competition details. Briefly, we use
150 trained VGG-like architectures (along their datasets used
during training, namely SVHN and CIFAR-10) as datum and
predict their generalization error with the listed theoretical com-
plexity measures in Table 3. The predictions are evaluated us-
ing conditional mutual information. The possible scores are be-
tween 0 and 100. A higher score indicates that the complexity
measures is able to more accurately and consistently predict the
generalization error. The results in Table 3 show that although
AGN(θT) is able to outperform some baseline theoretical com-
plexity measures in predicting generalization error, its effective-
ness is largely limited. The ineffectiveness of using AGN(θT)
to perform cross-architectural generalization error prediction implies it is also ineffective to use
GN(θT) in practice since we have shown that AGN(θT) approximates GN(θT) very well.

5 CONCLUSION

In this paper, we have studied the feasibility of using AGN(θT), an approximated form of squared
norms of loss gradients over optimization path (Li et al., 2020), to measure generalization er-
ror in practice. We find the correlations between AGN(θT) and ĜM (θT) are completely oppo-
site for under-fitted and well-fitted models, where the positive correlations between the two vari-
ables found in well-fitted models coincide with the theorems by Li et al. (2020). Furthermore, the
use of AGN(θT) to complement the validation accuracy as the objectives can marginally improve
the performance of hyper-parameter optimization, however the computational overhead caused by
AGN(θT) estimation and the lack of some prior knowledge makes such paradigm neither efficient
nor effective. In the meanwhile, the same set of objectives does not bring any improvements for
bandit-based algorithms such as BOHB, partially due to the inconsistent correlation between the ob-
jective and generalization performance throughout the training phase. As a result, using the gradient
norms for model selection in practice remains challenging due to the high computation overhead
(using the approximated version is up to 18 times slower than standard training) and limited effec-
tiveness. Our experiments also show that AGN(θT) cannot effectively predict generalization error
given different architectures. In conclusion, we do not recommend using GN(θT) or AGN(θT) for
model selection in practice.

8

Under review as a conference paper at ICLR 2021

REFERENCES

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Advances in Neural Information Processing Systems, pp. 2546–2554, 2011.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. In Advances in Neural Information Processing Systems, pp. 10835–10845,
2019.

Gavin C Cawley and Nicola LC Talbot. On over-fitting in model selection and subsequent selec-
tion bias in performance evaluation. Journal of Machine Learning Research, 11(Jul):2079–2107,
2010.

Sat Chatterjee. Coherent gradients: An approach to understanding generalization in gradient
descent-based optimization. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=ryeFY0EFwS.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 113–123, 2019.

Hugo Jair Escalante, Manuel Montes, and Luis Enrique Sucar. Particle swarm model selection.
Journal of Machine Learning Research, 10(Feb):405–440, 2009.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. In International Conference on Machine Learning, pp. 1437–1446, 2018.

Spencer Frei, Yuan Cao, and Quanquan Gu. Algorithm-dependent generalization bounds for over-
parameterized deep residual networks. In Advances in Neural Information Processing Systems,
pp. 14769–14779, 2019.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,
2015.

Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning rate to generalize
well: Theoretical and empirical evidence. In Advances in Neural Information Processing Systems,
pp. 1141–1150, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Wenqing Hu, Zhanxing Zhu, Haoyi Xiong, and Jun Huan. Quasi-potential as an implicit regularizer
for the loss function in the stochastic gradient descent. arXiv preprint arXiv:1901.06054, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Yiding Jiang, Pierre Foret, Scott Yak, Behnam Neyshabur, Isabelle Guyon, Hossein Mobahi,
Gintare Karolina, Daniel Roy, Suriya Gunasekar, and Samy Bengio. Predicting generalization
in deep learning, competition at neurips 2020. URL https://sites.google.com/view/
pgdl2020/home?authuser=0.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In International Joint Conference on Artificial Intelligence, volume 14, pp. 1137–1145.
Montreal, Canada, 1995.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

9

https://openreview.net/forum?id=ryeFY0EFwS
https://sites.google.com/view/pgdl2020/home?authuser=0
https://sites.google.com/view/pgdl2020/home?authuser=0

Under review as a conference paper at ICLR 2021

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. AT&T Labs [On-
line]. Available: http://yann. lecun. com/exdb/mnist, 2:18, 2010.

Jian Li, Xuanyuan Luo, and Mingda Qiao. On generalization error bounds of noisy gradient methods
for non-convex learning. In International Conference on Learning Representations, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural networks.
ICLR Workshop, 2016.

Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of sgld for non-
convex learning: Two theoretical viewpoints. arXiv preprint arXiv:1707.05947, 2017.

Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of distance from
initialization. arXiv preprint arXiv:1901.01672, 2019.

Jeffrey Negrea, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, and Daniel M Roy.
Information-theoretic generalization bounds for sgld via data-dependent estimates. In Advances
in Neural Information Processing Systems, pp. 11013–11023, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Mangazol, Yoshua
Bengio, and Nicolas Le Roux. Information matrices and generalization. arXiv preprint
arXiv:1906.07774, 2019.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Measures of complexity, pp. 11–30. Springer, 2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. ArXiv, abs/1708.07747, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochas-
tic gradient descent: Its behavior of escaping from sharp minima and regularization effects. In
Proceedings of International Conference on Machine Learning, pp. 7654–7663, 2019.

10

Under review as a conference paper at ICLR 2021

A EXPERIMENTS

A.1 EXPERIMENTAL SETUP

Datasets and Data Augmentation We briefly introduce the benchmark datasets used in this paper
and the data augmentation methods we applied when loading the data.

• Fashion-MNIST (Xiao et al., 2017) is a benchmark dataset similar to the popular MNIST
dataset (LeCun et al., 2010). It has 70,000 grayscale images in the size of 28×28, dividing
into 10 classes. The training set has 6,000 images from each class while the rest make up
the test set. We normalize the input data as done in common practice.

• SVHN is a benchmark dataset composing house-number signs in street level images (Net-
zer et al., 2011). We use the cropped digits dataset for training and testing. We normalize
the input data as done in common practice.

• The CIFAR-10 dataset has 6,000 examples of each of 10 classes and the CIFAR-100 dataset
has 600 examples of each of 100 non-overlapping classes (Krizhevsky et al., 2009). We
apply standard data augmentation the same way as the Pytorch official examples on CIFAR-
10 and CIFAR-100 classification tasks. Specifically, we pad the input images by 4 pixels,
and then randomly crop a sub-region of 32 × 32 and randomly do a horizontal flip. We
normalize the input data as done in common practice.

Reduced Dataset To reduce the expensive computation cost for training a model for multiple
rounds, we train the model on the reduced dataset when searching for hyper-parameters, where only
a random but fixed 20% subset of the standard dataset participates in the training. Training on the
reduced dataset gives us a set of hyper-parameters, which is then used to train a separate model
with the standard training set. The newly trained model is then validated on the standard test set.
We report the final test performance in the main paper. The strategy of using a reduced dataset for
hyper-parameter search is also used by Cubuk et al. (2019).

ResNet Training Details For different architectures of ResNet, we train them for 160 epochs. For
the default baseline model, we set the initial learning rate to be 0.1 and decay it by 1/10 and 1/100 at
epoch 80 and 120 respectively. Momentum is set to be 0.9 and weight decay is 0.0001. The default
batch size is 128. The loss function used for all experiments in the paper is cross entropy loss.

Blackbox Optimization Setup The process of blackbox hyper-parameter optimization is split
into 4 rounds. We train 8 models with different sets of hyper-parameters in parallel in one round.
At the end of each round, a blackbox optimization algorithm is run based on the model score com-
puted by using a validation set or using our metric. The algorithm generates the next 8 sets of
hyper-parameters to search for the optimal ones. We use two blackbox optimization algorithms
for hyper-parameter search, which are Covariance Matrix Adaptation - Evolution Strategy (CMA-
ES) (Bergstra et al., 2011) and Particle Swarm Optimization (PSO) (Escalante et al., 2009).

BOHB Hyper-parameter Search Setup We use BOHB (Falkner et al., 2018) to test how our
proposed objectives work with bandit based training hyper-parameter optimization algorithms. For
all ResNet architectures, the minimum budget is 40 and maximum is 160. We pick η to be 2 so
that the total number of training epochs using BOHB would be the same as that using blackbox
optimization algorithms. This ensures fair comparison across the two types of hyper-parameter
optimization algorithms.

A.2 NOTES ON TIME CONSUMPTION ANALYSIS

Interpretation of Figure. 2 in the Main Paper Each bar in the plot represents the total time
consumption in one epoch, including time spent forwarding the data, updating the model parameter
with backpropagation, and computing GN(θT) or AGN(θT) if needed. The results are obtained by
running models multiple times on 1080Ti GPUs.

GPU×epochs We define 1 GPU×epoch as iterating through the training set for one round on one
GPU. Note that 1 GPU×epoch corresponds to different amount of wall clock time depending on the

11

Under review as a conference paper at ICLR 2021

0 20 40 60 80 100 120 140 160
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

train
test

(a) Default

0 5 10 15 20 25 30 35 40
Epoch

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Lo
ss

train
test

(b) RS(Val)

0 20 40 60 80 100 120 140 160
Epoch

0
1
2
3
4
5
6
7

Lo
ss

train
test

(c) CMA-ES(Val)

0 20 40 60 80 100 120 140 160
Epoch

0.1

0.2

0.3

0.4

Lo
ss

train
test

(d) CMA-ES(AGN+Train,α=0.1)

Figure 4: Training behavior of ResNet-20 on Fashion-MNIST with the default or learned hyper-parameters
from various methods. “RS” refers to random search.

architecture, dataset as well as batch size. Figure 2 in the main paper shows some examples of the
wall clock time that 1 GPU×epoch costs under those settings.

When running hyper-parameter search algorithms, we keep GPU×epochs as a constant variable to
ensure each algorithm iterates through the training set the same number of times. As mentioned
in the main paper, we set the total budget to be 5,120 GPU×epochs for all hyper-parameter search
algorithms. Blackbox optimization algorithms used in this paper, namely CMA-ES and PSO, ex-
plores 32 sets of hyper-parameters whereas BOHB, as a more efficient search algorithm with early
termination of poorly performing models, explores 36 sets of hyper-parameters in total.

Specific time cost for hyper-parameter search. The time cost for hyper-parameter search using
the reduced training set with validation accuracy as the criterion for ResNet-56 on CIFAR-10 is 856s
per model on average. When AGN is used to complement validation accuracy, the average is 3,633s
for one model.

A.3 DISCUSSION ON TRAINING BEHAVIOR

Fig. 4 shows the training behavior of ResNet-20 on Fashion-MNIST with four different hyper-
parameter settings. We analyze how the training and test losses vary under these settings and obtain
the observations below.

AGN Helps Reduce the Generalization Gap First, Fig. 4a indicates a gradually enlarging gap
between the training loss and testing loss. This phenomenon is likely due to that we train ResNet-20
models for 160 epochs, which is easy to overfit the Fashion-MNIST dataset. As a result, there exists
a generalization gap, where the training loss is very close to zero, but test loss is about 0.325. In
contrast, when AGN and training loss are used as a combined objective in CMA-ES hyper-parameter
optimization (Fig. 4d), the final generalization gap is 0.259, which is 20.3% lower than the gener-
alization gap using the default hyper-parameter. This decrease in the magnitude of generalization

12

Under review as a conference paper at ICLR 2021

Table 4: Results for Fashion-MNIST and SVHN using CMA-ES and PSO.

Fashion-MNIST SVHN

Method ResNet-20 ResNet-56 ResNet-20 ResNet-56

Default 93.34±0.07 93.21±0.24 95.67±0.02 96.11±0.14

CMA-ES (Val) 93.35±0.08 93.03±0.76 96.26±0.08 95.90±0.44
PSO (Val) 91.13±0.32 92.04±0.49 96.05±0.10 94.78±0.24

CMA-ES (AGN+Train, α=0.05) 93.10±0.08 93.62±0.08 95.52±0.09 95.84±0.13
CMA-ES (AGN+Train, α=0.01) 93.38±0.18 93.39±0.06 95.67±0.02 94.39±1.42
CMA-ES (AGN+Train, α=0.005) 92.61±0.39 93.39±0.20 95.48±0.03 94.51±1.45

CMA-ES (AGN+Val, α=0.1) 93.27±0.04 93.43±0.08 96.24±0.04 95.59±0.05
CMA-ES (AGN+Val, α=0.05) 93.42±0.16 93.45±0.17 95.63±0.02 95.96±0.04
CMA-ES (AGN+Val, α=0.005) 93.19±0.19 93.60±0.05 95.97±0.13 96.13±0.07

PSO (AGN+Train, α=0.05) 93.29±0.28 92.96±0.10 91.87±0.24 95.70±0.17
PSO (AGN+Train, α=0.01) 93.21±0.06 92.90±0.03 95.79±0.13 96.04±0.02
PSO (AGN+Train, α=0.005) 93.36±0.11 92.95±0.03 95.55±0.24 96.14±0.02

PSO (AGN+Val, α=0.1) 93.91±0.04 93.82±0.08 95.33±0.13 93.90±0.30
PSO (AGN+Val, α=0.05) 92.35±0.11 93.46±0.07 96.10±0.12 95.78±0.11
PSO (AGN+Val, α=0.005) 93.09±0.10 93.82±0.01 95.52±0.07 96.39±0.13

gap demonstrates the effectiveness of using AGN to complement hyper-parameter optimization al-
gorithm.

AGN Helps Avoid Overfitting the Validation Set An interesting observation is that using the
method HS1 + Val to search for hyper-parameters yields worse test set performance than the model
trained with default hyper-parameters. This is likely because the model is able to overfit the val-
idation set after multiple rounds of training during hyper-parameter optimization. Consequently,
the model cannot generalize well on the test set. In contrast, when AGN is used in the metric, we
can further improve the baseline model with default hyper-parameters by 0.21% (the test perfor-
mance using default hyper-parameter is 93.34 ± 0.07 whereas using CMA-ES(AGN+Train,α=0.1)
is 93.51± 0.19.

AGN Helps Hyper-parameter Optimization Algorithm Find More Stable Settings When
compared to Fig. 4b and Fig. 4c, Fig. 4d shows that the incorporation of AGN enables the search al-
gorithm to find a set of hyper-parameters that gives rise to better and more stable performance on the
test set as the model is being trained. The magnitude of test loss in both RS(Val) and CMA-ES(Val)
can be 10 times bigger than training loss or even worse, whereas CMA-ES(AGN+Train) finds a set
of hyper-parameters that keeps test loss relatively close to training loss throughout. The test loss of
method CMA-ES(Val) can be as high as 7 in the midst of training. However, the loss curve is far
more smooth in the case of CMA-ES(AGN+Train), as shown in Fig. 4d.

13

	Introduction
	Gradient Norm and its Approximation
	AGN: Approximated Gradient Norm
	Approximation Performance

	Using AGN as a Generalization Performance Indicator
	Using AGN for Model Selection
	Use Case 1: Hyper-parameter Search for Deep Neural Networks
	Use Case 2: Cross-architectural Generalization Error Prediction

	Conclusion
	Experiments
	Experimental Setup
	Notes on Time Consumption Analysis
	Discussion on Training Behavior

