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ABSTRACT

Learning with noisy labels (LNL) aims to train a high-performing model using a
noisy dataset. We observe that noise for a given class often comes from a limited
set of categories, yet many LNL methods overlook this. For example, an image
mislabeled as a cheetah is more likely a leopard than a hippopotamus due to its vi-
sual similarity. In fact, we find that many datasets have meta-data information that
directly provides potential noise sources. Thus, in this paper, we explore a task we
refer to as Learning with Noisy Labels with noise source Knowledge integration
(LNL+K), which assumes we have some knowledge about likely source(s) of label
noise that we can take advantage of. We find that integrating noise source knowl-
edge boosts performance, even supporting settings where LNL methods typically
fail. For example, LNL+K methods are effective on datasets where noise repre-
sents the majority of samples, which breaks a critical premise of most methods
developed for the LNL task. We also find that LNL+K methods can boost per-
formance even when the noise sources are estimated rather than provided in the
meta-data. Our experiments provide several baseline LNL+K methods that inte-
grate noise source knowledge into state-of-the-art LNL models across five diverse
datasets and three types of noise, where we report gains of up to 15% compared
to the unadapted methods. Critically, we show that LNL methods fail to gener-
alize on some real-world datasets, even when adapted to integrate noise source
knowledge, highlighting the importance of directly exploring our LNL+K task.

1 INTRODUCTION

High-quality labeled data is valuable for training deep neural networks (DNNs), but it’s costly and
often corrupted in real-world datasets (Krishna et al., 2016; Yan et al., 2014). Learning with Noisy
Labels (LNL) addresses this challenge (Natarajan et al., 2013), aiming to learn from noisy training
data while achieving strong generalization performance (Arpit et al., 2017; Song et al., 2022). Prior
work addresses this task along two main themes: one involves aligning the noisy data classifier with
the clean data classifier through estimated noise transitions (Scott, 2015; Liu & Tao, 2015; Yao et al.,
2020b; Xia et al., 2019; Zhang et al., 2021; Kye et al., 2022; Cheng et al., 2022), while the other
discriminates between noisy and clean samples (Kim et al., 2021; Mirzasoleiman et al., 2020; Wei
et al., 2022; Liu et al., 2020; Iscen et al., 2022; Han et al., 2018b; Karim et al., 2022; Li et al., 2020a).
The core challenge in both streams of methods centers on distinguishing potential clean and noisy
samples. As shown in Fig. 1-a, most existing methods (e.g. (Kim et al., 2021; Mirzasoleiman et al.,
2020; Wei et al., 2022; Karim et al., 2022)) detect clean samples by finding similar samples within
each class. While effective for well-matching samples, it struggles with those near the decision
boundary and outliers. A high noise ratio can also lead to estimating noise distribution instead of
category distribution, as seen in the 50% noise in the red category in Fig. 1-a. Knowledge of the
noise source is a valuable resource in addressing these LNL challenges. However, in most prior
work, this knowledge is assumed to be completely unknown and is neglected.

We observe that noise source knowledge already exists or can be estimated in real-world datasets.
Labels are rarely uniformly corrupted across all classes, and some classes are more easily to be
confused than others (Tanno et al., 2019). For example, visually similar objects are often mis-
labeled: e.g. wolf and coyote (Song et al., 2019), automobiles and trucks (Krizhevsky et al.,
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Figure 1: (Best view in color.) Comparison of a prior work on LNL and our LNL+K task. a:
LNL methods select clean samples according to the similarity within the same class (Kim et al.,
2021; Mirzasoleiman et al., 2020; Han et al., 2018b; Iscen et al., 2022; 2019; Zhou et al., 2003;
Nguyen et al., 2019; Han et al., 2019; Wu et al., 2021), while b: LNL+K identify clean samples that
are least similar to the noise source. This illustrates a failure case of LNL methods when the noise
ratio is high, but where an LNL+K approach can succeed.

2009). Furthermore, in scientific settings, certain categories are intentionally designed to establish
causality and can be treated as noise sources during training. For instance, consider the “control”
group (Wikipedia contributors, 2022), which represents “do-nothing”. In weak-effect classes, the
test objects were labeled as having an effect, but visually, they closely resemble the “control” class
(i.e., their true label should be “control” ). Importantly, this type of noise ratio can be as high (over
50% (Rohban et al., 2017)). Thus, integrating noise source knowledge offers significant potential,
particularly in scientific domains with high noise ratios.

To this end, we explore Learning with Noisy Labels through noise source Knowledge integration
(LNL+K). In contrast to traditional LNL tasks, we assume that we are given some knowledge about
noisy label distribution. i.e., noisy labels tend to originate from specific categories (e.g. blue class in
Fig. 1). The integration of knowledge about noise sources is helpful in discriminating clean samples
in two ways. First, it aids in the identification of hard negative instances. In simpler terms, even if the
probability of an instance belonging to a specific category is relatively low, it may still be retained
if that probability surpasses the likelihood of it originating from a noise source. For instance, in
Fig. 1-b, observe the leftmost red circle; although it appears distant from the red class distribution,
it remains preserved as a clean sample in LNL+K because it is even further from the noise source.
Second, this integration enables the detection of noisy samples with similar features even at high
noise ratios. Specifically, instances with a relatively high probability of belonging to a particular
category may not be selected if their likelihood is lower than that of originating from a noise source.
For example, in Fig. 1-b, even though the noisy red triangles share similarities with the true circle
class, when considering the presence of the noise source yellow class, it becomes evident that these
noisy samples are closer to their true label class.

The work most similar to ours is Han et al. (2018a), which introduces a form of noise supervision by
removing invalid noise transitions through human cognition. While their paper also aims to leverage
some knowledge about the noise source, they focus their exploration on estimating noise transitions
to avoid overfitting to noisy labels. In our paper, we update and greatly expand on their initial work,
including introducing a unified framework with which we can adapt recent methods from LNL
to our LNL+K task (e.g., (Mirzasoleiman et al., 2020; Kim et al., 2021; Wei et al., 2022; Karim
et al., 2022)), evaluating on three real world noisy datasets (Chen et al., 2023; Pratapa et al., 2021;
Song et al., 2019), and investigating new noise settings designed to reflect applications to scientific
datasets. In addition, we also show our LNL+K methods can also take advantage of estimated noise
sources using methods from prior work Yao et al. (2020b), effectively bridging the gap between
methods that estimate noise transitions to those that focus on identifying clean samples.

In summary, our contributions are:
• We explore an important but overlooked task, termed LNL+K: Enhancing Learning with Noisy

Labels through noise source Knowledge integration. We also design a new noise setting: dominant
noise, where noisy samples are the majority of a labeled category distribution.
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• We define a unified framework for clean label detection in LNL+K, and explore four baseline
methods for LNL+K by adapting LNL methods with noise source knowledge. Additionally, we
introduce methods to seamlessly integrate the two distinct streams of LNL approaches: noise
estimation and differential training for noisy and clean samples.

• Our experiments show an up to 8% accuracy gain under asymmetric noise and a remarkable 15%
performance boost under dominant noise when applied to synthesized datasets using CIFAR-
10/CIFAR-100 (Krizhevsky et al., 2009). We also obtain a 2% accuracy gain on CHAMMI-
CP (Chen et al., 2023) and 1.5% accuracy gain on BBBC036 (Bray et al., 2016), two real-world
noisy datasets for image-based cell profiling (Pratapa et al., 2021), and 1% accuracy gain on Ani-
mal10N (Song et al., 2019), a real-world noisy dataset of human-labeled online images.

2 RELATED WORK

To tackle the challenge of training with noisy labels, two distinct approaches have emerged: the
development of consistent and inconsistent classifiers. Additionally, some research explores the use
of noise supervision to aid in learning with noise.

Classifier-consistent methods endeavor to align a classifier trained on noisy data with the optimal
classifier, which typically minimizes errors on clean data. The basic idea is that given the noisy
class posterior probability P (Ỹ |X = x) (which can be learned using noisy data) and the transition
matrix T (X = x) where Tij(X = x) = P (Ỹ = j|Y = i,X = x), the clean class posterior
probability P (Y |X = x) can be inferred. (X is the input, Y is the true label and Ỹ is the noisy
label). To estimate the transition matrix, some work proposed the use of “anchor points”, which
are data points that have very high probabilities of belonging to a certain class (Scott, 2015; Liu
& Tao, 2015; Menon et al., 2015; Patrini et al., 2017). To avoid using additional clean data, more
work focuses on estimating the transition matrix with noisy data (Li et al., 2021; Yao et al., 2020b;
Xia et al., 2019; Zhang et al., 2021; Kye et al., 2022; Cheng et al., 2022). Statistically consistent
methods train both noisy and clean data indiscriminately but heavily depend on the accuracy of the
noise transition matrix, which becomes particularly challenging with high noise ratios. LNL+K can
indirectly enhance datasets that require noise source estimation. This can be achieved by combining
our proposed task with a method designed to estimate the noise source.

Classifier-inconsistent methods aim to discriminate between clean and noisy labels and handle them
differently during the training process. For clean and noisy sample detection, there are mainly
loss-based methods that detect noisy samples with high losses (Jiang et al., 2018; Li et al., 2020a;
Arazo et al., 2019), and probability-distribution-based approaches that select clean samples with
high confidence (Hu et al., 2021; Torkzadehmahani et al., 2022; Nguyen et al., 2019; Tanaka et al.,
2018; Li et al., 2022). However, these assumptions may not always hold true, especially with hard
negatives and samples along distribution boundaries. Samples selected by these approaches are more
likely to be “easy” samples instead of “clean” samples. Feature-based approaches have also been
proposed that utilize the input before the softmax layer – high-dimensional features (Mirzasoleiman
et al., 2020; Kim et al., 2021), which are less affected by noisy labels (Li et al., 2020b; Yao et al.,
2020a; Bai et al., 2021). To differentiate the training of noisy and clean samples, there are methods
adjusting the loss function (Wei et al., 2022; Ma et al., 2020; Iscen et al., 2022; Xu et al., 2019;
Zhang & Sabuncu, 2018), using regularization techniques (Liu et al., 2020; Xia et al., 2021; Hu
et al., 2019), multi-round learning only with selected clean samples (Cordeiro et al., 2023; Shen &
Sanghavi, 2019; Wu et al., 2020), and training noisy samples with semi-supervised learning (SSL)
techniques (Sohn et al., 2020; Tarvainen & Valpola, 2017; Li et al., 2020a; Karim et al., 2022). To
our knowledge, most statistically inconsistent methods often overlook the valuable resource of noise
distribution knowledge in the context of LNL. LNL+K makes a unique contribution by utilizing
noise source knowledge to detect clean samples within these methods.

LNL with noise supervision methods can be considered precursors to the broader concept of
LNL+K (Hendrycks et al., 2018; Li et al., 2017; Yu et al., 2023; Veit et al., 2017; Han et al., 2018a).
The small clean dataset is a source of supervision and is employed to achieve an accurate esti-
mation of the noise distribution. However, obtaining human-verified clean datasets is costly and
often unavailable. Han et al. (2018a) propose using human cognition of invalid class transitions as
“mask” to reduce the burden of transition matrix estimation. However, this approach is constrained
to classifier-consistent methods, and the outcomes become unreliable when the noise structure is
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misidentified. It’s worth noting that previous noise supervision methods often have limitations, such
as the requirement for small clean datasets or being applicable only to specific methods. Our LNL+K
task has no strict requirement for knowledge to be complete. In essence, the more comprehensive
and accurate the knowledge, the more favorable the outcomes. Our motivation lies in the idea that
if there exists prior knowledge about a dataset, it is reasonable to utilize it for model training. Even
partial or somewhat useful information can offer benefits compared to having no knowledge at all.

3 LEARNING WITH NOISY LABELS + KNOWLEDGE (LNL+K)

Learning with Noisy Label Source Knowledge (LNL+K) aims to find the optimal parameters set θ∗
for the classifier fθ, which is trained on the noisy dataset D with noise source knowledge Dns and
achieve high accuracy performance on the clean test dataset. In this section, we first introduce the
notation we will use, then we will define a unified clean-sample-detection framework in Section 3.1.

Suppose we have a dataset D = {(xi, yi)
n
i=1 ∈ Rd × K}, where K = {1, 2, ..., k} is the cat-

egorical label for k classes. (xi, yi) denotes the i − th example in the dataset, such that xi is a
d − dimiensional input in Rd and yi is the label. {yi}ni=1 might include noisy labels and the true
labels {ỹi}ni=1 are unknown. However, we do have some prior knowledge about noisy label sources.
Knowledge can take various forms—it can be precise, such as the noise transition matrix obtained
through noise modeling methods, or it can be imprecise and incomplete, stemming from human
cognition, e.g. classes like ”cat” and ”lynx” are visually similar and are more likely mislabeled with
each other (Song et al., 2019). Additionally, knowledge can be derived from the dataset design, e.g.
”control” class serves as the noise source in scientific datasets. Accordingly, the noise source distri-
bution knowledge Dns can be represented in different ways. One representation is by a probability
matrix Pk×k, where Pij refers to the probability that a sample in class i is mislabeled as class j.
Alternatively, it can also be represented using a set of label pairs LP = {(i, j)|i, j ∈ K}, where
(i, j) refers to the fact that samples in class i are more likely to be mislabeled as class j. For the
convenience of formulating the following equations, noise source knowledge Dc−ns represents the
set of noise source labels of category c. I.e., Dc−ns = {i|i ∈ K ∧ (Pic > 0 ∨ (i, c) ∈ LP )}.

3.1 A UNIFIED FRAMEWORK FOR CLEAN SAMPLE DETECTION WITH LNL+K

To make our framework general enough to represent different LNL methods, we define a unified
logic of clean sample detection. Formally, consider sample xi with a clean categorical label c, i.e.,

ỹi = c↔ yi = c ∧ p(c|xi) > δ, (1)

where p(c|xi) is the probability of sample xi with label c and δ is the threshold for the decision.
Different methods vary in how they obtain p(c|xi). For example, as mentioned in related work, loss-
based detection uses Loss(fθ(xi), yi) to estimate p(c|xi) (Jiang et al., 2018; Li et al., 2020a; Arazo
et al., 2019), probability-distribution-based methods use the logits or classification probability score
fθ(xi) (Hu et al., 2021; Torkzadehmahani et al., 2022; Nguyen et al., 2019; Tanaka et al., 2018;
Li et al., 2022), and feature-based method use p(c|xi) = M(xi, ϕc) (Mirzasoleiman et al., 2020;
Kim et al., 2021), where M is a similarity metric and ϕc = D(g(Xc)) is the distribution of features
labeled as category c, i.e., Xc = {xi|yi = c}, g(Xc) = {g(xi, c)|xi ∈ Xc} ∼ ϕc, and g(·) is
a feature mapping function. The feature-based methods often vary in how they implement their
feature mapping g(·) function and similarity distance metric M .

LNL+K adds knowledge Dns by comparing p(c|xi) with p(cn|xi), where cn is the noise source
label. When category c has multiple noise source labels, p(c|xi) should be greater than any of these.
In other words, the probability of sample xi has label c (i.e.,p(c|xi)), not only depends on its own
value but is decided by the comparison to the noise source labels. For example, the red triangle xi in
Fig. 1 has a high probability of belonging to the red class, i.e., p(red|xi) > δ, then it is detected as a
clean sample in LNL. However, compared to the probability of belonging to the noise source yellow
class, p(yellow|xi) > p(red|xi), so the red triangle is detected as a noisy sample in LNL+K. To
summarize, the propositional logic of LNL+K is:

ỹi = c↔ yi = c ∧ p(c|xi) > Max({p(cn|xi)|cn ∈ Dc−ns}). (2)

It’s important to clarify that Eq. 2 in LNL+K differs from the conventional LNL approach where a
model selects examples with the highest probability for a given class. Two key distinctions are:
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• The selected sample’s probability may not be the highest. This is particularly beneficial for iden-
tifying hard negative samples, such as images with similar backgrounds. While the objects them-
selves may not exhibit similar features and are not categorized as noise sources, the shared back-
ground can cause model confusion during object classification.

• Introducing cross-class comparisons with feature similarity is novel. To our knowledge, existing
LNL methods utilizing feature space similarity do not incorporate cross-class comparisons, fo-
cusing solely on the likelihood of samples belonging to their designated class (Eq. 1). Although
AUM (Pleiss et al., 2020) introduced cross-class comparisons to the non-assigned label with the
highest probability, it was limited to logit values and performed relatively poor at high noise levels.

3.2 INCORPORATING NOISE SOURCE KNOWLEDGE INTO LNL METHODS

We adapt several recent methods from the LNL literature to support our LNL+K task. Our adapta-
tions enhance the detection of clean samples in inconsistent-classifier methods. Once the probabil-
ity of samples being clean is determined, the remainder of the training process follows the original
methods. We provide a summary of each adaptation below, but additional details can be found in
Appendix A. Algorithm 1 summarizes our framework’s steps offering a unified approach to integrat-
ing noise source knowledge through cross-class comparisons. Each base model primarily differs in
the function p(c|xi), which calculates the probability of a sample being clean.

CRUST+k adapts CRUST (Mirzasoleiman et al., 2020), which uses the pairwise gradient distance
within the class for clean sample detection. A clean sample subset is selected with the most similar
gradients clustered together. To estimate the likelihood of a sample label being clean in CRUST+k,
we mix this sample with all other noise source class samples and apply CRUST to the combined set.
If the sample is selected as part of the noise source class cluster, we assume its label is noisy.

FINE+k is derived from FINE (Kim et al., 2021), which uses feature eigenvectors for detection.
The alignment between a sample and its label class is determined by the cosine distance between the
sample’s features and the eigenvector of the class feature gram matrix, which serves as the feature
representation of that category. FINE then fits a Gaussian Mixture Model (GMM) on the align-
ment distribution to divide samples into clean and noisy groups - the clean group has a larger mean
value, which refers to a better alignment with the category feature representation. The adaptation
incorporates the noise source class in alignment calculation. In FINE+k, the clean probability is
the difference between label-class and noise-source-class alignment. Clean samples have higher
alignment differences, while noisy labels have lower values.

SFT+k is based on SFT (Wei et al., 2022), which identifies noisy samples by comparing their predic-
tions in the latest few epochs. A sample is detected as noisy if it is classified correctly at the previous
epoch but is misclassified in the latest epoch. SFT+k is adapted by restricting the misclassified labels
only to noise source labels.

UNICON+k is adapted from UNICON (Karim et al., 2022), which estimates the clean probability
by using Jensen-Shannon divergence (JSD), a metric for distribution dissimilarity. Disagreement
between predicted and one-hot label distributions is utilized, ranging from 0 to 1, with smaller
values indicating a higher probability of the label being clean. UNICON+k integrates the noise
source knowledge by adding the comparison of JSD with the noise source class. If the sample’s
predicted distribution aligns more with the noise source, it is considered noisy.

DualT+X+k combines noise estimation and noise discrimination methods. DualT (Yao et al.,
2020b) is a consistent-classifier method that estimates noise transitions by factorizing the transi-
tion matrix into two new matrices that are often easier to estimate compared to the original matrix.
Its estimated noise transition matrix can serve as input for any LNL+K method denoted as X+k.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIENTIAL SETTINGS

Baselines. In addition to the baseline methods described in Section 3.2, we provide three additional
points of comparison. First, standard training refers to training on the noisy datasets without any
changes (i.e., without using either an LNL or LNL+K method). Second, oracle refers to training
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Algorithm 1: Noise Source Integration Algorithm.

Input : Inputs X = {xi}ni=1, noisy labels Ỹ = {ỹi}ni=1, probability function p in
adaptation-base-method of sample x with label c, noise source knowledge Dns

Output: Probabilities of samples being clean P (X) = {p(ỹi|xi)}ni=1
P ← [0] ∗ len(n);
for i← 1 to n do

pi ← p(ỹi|xi) ; // Get the probability of given label ỹi being clean.
for c in Dns do

// Loop through noise sources.
if p(c|xi) > pi then

/* If xi is more likely to belong to the noise source label c,
then ỹi is considered as the noisy label. */

pi ← 0;
break;

end
end
P [i]← pi;

end

with clean labels. Third, we also train with a ground truth transition matrix to provide an upper
bound for methods that focus on estimating this matrix (e.g., DualT Yao et al. (2020b)). In the
results tables, this method is abbreviated as “GT-T”.

4.1.1 CIFAR DATASET WITH SYNTHESIZED NOISE

CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009) dataset contains 10/100 classes, with 5000/500
images per class for training and 1000/100 images per class for testing. We applied two synthesized
noises with different noise ratios:
• Asymmetric Noise simulates real-world scenarios where visually similar objects are more easily

to be mislabeled as each other. Noise is generated by corrupting labels specifically for visually
similar classes, e.g. trucks ↔ automobiles. Because this type of noise is bi-directional, when
the noise ratio exceeds 50%, it becomes difficult for the model to distinguish between high noise
ratios with noisy labels and low noise ratios with true labels. Therefore, our experiments focus
on two noise ratios: 20% and 40%. See B.1 for the list of confusing pairs. These confusing pairs
serve as noise sources in our experiments.

• Dominant Noise is a new setting that simulates high-noise ratios in real-world datasets, especially
in scientific datasets. We label classes as either “dominant” or “recessive”, where samples mis-
labeled as the “recessive” are likely from the “dominant”. In CIFAR-10/CIFAR-100 (Krizhevsky
et al., 2009) dataset, we set half categories as different “recessive” classes and the other half
categories are different “dominant” classes. Noisy labels are generated by labeling images in
“dominant” as “recessive”(i.e. images labeled as “dominant” is free of noise and images labeled
as “recessive” contain noise). In contrast to symmetric noise, where noisy samples are uniformly
distributed across multiple classes, assuming the existence of “dominant” noise source class(es)
is more plausible. In addition, the number of clean samples in a class with high symmetric noise
is still significantly higher than the number of noisy samples from each class. For example, in the
50% symmetric noise ratio CIFAR-10 setting, where 50% of the noise is uniformly distributed
across the other 9 classes, resulting in approximately 6% noise from each class, the number of
clean samples in a class still surpasses the number of noisy samples by a factor of 10. While in
dominant noise, 50% of the noise is only from the “dominant” class, thus, the class distribution
is more likely to be skewed by the noisy labels. Note that this breaks the informative dataset
assumption used by prior work (Cheng et al., 2020). See Appendix B.1 for noise composition
details. The “dominant” classes serve as noise sources to “recessive” classes in our experiments.

4.1.2 REAL-WORLD DATASETS WITH NATURAL NOISE

• Cell Datasets BBBC036 and CHAMMI-CP contain single U2OS cell (human bone osteosar-
coma) images from the Cell Painting (Bray et al., 2016) datasets, which represent large treatment
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Table 1: Asymmetric noise results on CIFAR-10 and CIFAR-100 dataset. (Baselines: DualT (Yao
et al., 2020b), CRUST (Mirzasoleiman et al., 2020), FINE (Kim et al., 2021), SFT (Wei et al., 2022)
and UNICON (Karim et al., 2022).)The best test accuracy is marked in bold, and the better result
between LNL and LNL+K methods is marked with underlined. Relative improvement percentages
are marked in red and green. We find knowledge-adapted methods can alter the rankings of the base
methods. (e.g. SFT and FINE at a noise ratio of 0.4 on CIFAR-100.) See Section 4.2 for discussion.

CIFAR-10 CIFAR-100

Noise ratio 0.2 +
− 000000 0.4 +

−000000 0.2 +
−000000 0.4 +

−000000

Standard Training 91.65 ± 0.09 91.56 ± 0.27 72.29 ± 0.05 70.12 ± 0.06
DualT 92.24 ± 0.10 66.23 ± 0.03 53.61 ± 1.49 52.03 ± 1.92
GT-T 92.51 ± 0.03 89.68 ± 0.13 73.88 ± 0.04 66.61 ± 0.03
CRUST 91.94 ± 0.05 89.40 ± 0.03 60.75 ± 1.87 59.79 ± 0.89
CRUST+k 89.47 ± 0.17 2.69% 84.96 ± 0.91 4.97% 62.44 ± 0.84 2.78% 61.07 ± 0.16 2.14%

FINE 89.07 ± 0.03 85.51 ± 0.18 65.42 ± 0.11 65.11 ± 0.11
FINE+k 90.87 ± 0.04 2.02% 89.15 ± 0.26 4.26% 73.59 ± 0.12 12.49% 72.87 ± 0.11 11.92%

SFT 92.67 ± 0.04 89.77 ± 0.14 74.41 ± 0.05 69.51 ± 0.06
SFT+k 93.19 ± 0.08 0.56% 90.55 ± 0.06 0.87% 74.29 ± 0.14 0.16% 70.94 ± 0.13 2.06%

UNICON 92.42 ± 0.04 91.51 ± 0.12 75.95 ± 0.04 73.08 ± 0.07
UNICON+k 92.60 ± 0.07 0.19% 91.35 ± 0.24 0.17% 76.87 ± 0.24 1.21% 73.97 ± 0.11 1.22%

Oracle 93.34 ± 0.03 92.81 ± 0.09 74.42 ± 0.02 73.73 ± 0.13

screens of chemical and genetic perturbations. Each treatment is tested with multi-well plates
and then imaged with the Cell Painting protocol (Bray et al., 2016), which is based on six flu-
orescent markers captured in five channels. BBBC0361 sampled single-cell images from 1500
bioactive compounds (treatments) and CHAMMI-CP2 sampled 7 compounds out of 1500, includ-
ing “control” group. Our goal is to classify the effects of treatments with cell morphology features
trained by the model. A significant challenge is that cells have different degrees of reaction to the
treatment, i.e., some treatments are so weak that little difference can be recognized from control
features. Thus, the noisy labels in this dataset are those cell images that look like controls (doing-
nothing group) but are labeled as treatments. In fact, around 1300 of the 1500 treatments show
high feature similarity with the control group (Bray et al., 2016). The true noise ratio is unknown
and for those weak treatments, the majority of the cell images might all be noisy. For BBBC036,
we reconstructed the cell dataset with 100 treatments, including the “control” treatment. In the
case of CHAMMI-CP, we removed three treatments that only appeared in the test set, resulting in
four classes: “weak”, “medium”, “strong” treatments, and “control”. The noise source knowledge
we applied in these two datasets is that “control” is the noise source to all other classes. Results
are reported on these reconstructed datasets and see Appendix B.2, B.3 for the full list.

• Animall10N (Song et al., 2019) is a noisy dataset of human-labeled online images. The im-
ages were obtained by crawling several online search engines using predefined labels as search
keywords. For a clean test set, these images were classified by humans. It contains 5 pairs of
confusing animals with a total of 50,000 training images and 5000 testing images. The authors of
the dataset noted 5 pairs of classes3 that can be easily confused. These confusing pairs serve as
noise sources in our experiments.

4.2 RESULTS

Asymmetric noise. Table 1 summarizes the performances in asymmetric noise settings, which
shows the advantage of LNL+K in visually similar noise cases. Our adaptation methods consis-
tently outperform the original methods in most noise settings. Importantly, FINE+k demonstrates
significant performance improvement, achieving up to an 8% increase in accuracy when compared
to the base FINE method on the CIFAR-100 dataset. Additionally, in the case of CIFAR-100 with
a 0.4 noise ratio, the base model SFT achieves 9% higher accuracy than FINE. However, with the

1Available at https://bbbc.broadinstitute.org/image_sets
2Available at https://zenodo.org/record/7988357
3Available at https://dm.kaist.ac.kr/datasets/animal-10n/
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Table 2: Dominant noise results on CIFAR-10 and CIFAR-100 dataset. (Baselines: DualT (Yao
et al., 2020b), CRUST (Mirzasoleiman et al., 2020), FINE (Kim et al., 2021), SFT (Wei et al., 2022)
and UNICON (Karim et al., 2022).) The best test accuracy is marked in bold, and the better result
between LNL and LNL+K methods is marked with underlined. Relative improvement percentages
are marked in red and green. We find incorporating source knowledge helps in almost all cases. See
Section 4.2 for discussion.

CIFAR-10 CIFAR-100

Noise ratio 0.2 +
− 0.5 +

− 0.8+− 0.2+− 0.5+− 0.8+
−

Standard Training 85.47 ±0.52 85.46 ±0.25 78.99 ±0.07 50.37 ±0.45 41.41 ±1.47 27.03 ±0.12

DualT 86.55 ±0.06 83.70 ±0.04 46.96 ±0.07 34.88 ±0.11 27.04 ±0.07 19.94 ±0.04

GT-T 88.09 ±0.04 85.24 ±0.06 76.03 ±0.04 59.32 ±0.14 48.39 ±0.21 35.96 ±0.04

CRUST 88.21 ±0.22 80.46 ±0.17 65.79 ±0.62 53.48 ±0.80 48.87 ±0.31 35.56 ±1.38

CRUST+k 89.53 ±0.05
1.50% 87.19 ±0.08

8.36% 80.54 ±0.30
22.42% 58.69 ±0.50

9.74% 51.56 ±0.31
5.50% 38.07 ±2.05

7.06%

FINE 86.23 ±0.30 84.43 ±0.38 75.45 ±0.74 53.68 ±1.54 52.87 ±0.98 39.45 ±0.25

FINE+k 88.69 ±0.06
2.85% 88.00 ±0.11

4.23% 80.52 ±0.28
6.72% 57.22 ±1.16

6.59% 54.77 ±1.68
3.59% 42.25 ±0.27

7.10%

SFT 89.48 ±0.21 85.43 ±0.13 75.43 ±0.12 51.82 ±0.67 48.21 ±1.21 41.76 ±1.34

SFT+k 89.78 ±0.03
0.34% 87.31 ±0.15

2.20% 76.78 ±0.38
1.79% 54.36 ±0.48

4.90% 51.21 ±1.14
6.22% 37.96 ±0.05

9.10%

UNICON 90.82 ±0.14 88.43 ±0.14 81.37 ±0.43 63.28 ±0.32 57.92 ±0.43 42.70 ±0.50

UNICON+k 90.83 ±0.11
0.01% 89.21 ±0.42

0.88% 82.27 ±0.29
1.11% 66.77 ±0.54

5.52% 61.55 ±0.13
6.27% 48.47 ±0.40

13.51%

Oracle 90.85 ±0.00 87.35 ±0.00 82.70 ±0.00 55.85 ±0.00 52.58 ±0.00 44.38 ±0.00

integration of knowledge, FINE+k surpasses the performance of SFT+k with 2%. These results
underscore the significance of investigating LNL+K tasks.

Dominant noise. Table 2 summarizes performance in dominant noise settings, which shows the
advantage of LNL+K moves beyond the noise ratio upper bound limit. Note that in the setting of
80% noise ratio over CIFAR-10 dataset, most methods can not even beat standard training’s per-
formance, indicating that noisy samples strongly impact the class distribution, CRUST+k, FINE+k,
and UNICON+k still demonstrate better performance, with UNICON+k coming close to the oracle
method’s performance and CRUST+k improves the performance by up to 15%.

Real-world natural noise. Table 3 reports results for the real-world noisy datasets. We find adapta-
tion methods consistently outperform their base models, underscoring the advantages of knowledge
integration without any discernible downsides. For the cell datasets, the presence of high feature
similarity between certain treatments and the “control” group can lead to significantly high noise
ratios, ultimately strongly influencing the class distribution. BBBC036 and CHAMMI-CP clas-
sification tasks are extremely challenging, where only CRUST+k outperforms standard training,
boosting top-1 accuracy by 1.5% on BBBC036. Note that our LNL+K methods achieve the best
performance across all three datasets. Specifically, CRUST+k improves by 2% on CHAMMI-CP
compared to CRUST (Mirzasoleiman et al., 2020), and FINE+k improves by 1% on Animal10N.

We also explored estimating noise source knowledge using DualT (Yao et al., 2020b) with
knowledge-adapted methods. Table 4 reports performance, where we find combining DualT with
our LNL+K methods boosts performance. Notably, when compared to the original LNL variants
from Table 3, our LNL+K models obtain similar or better performance even when estimating noise
source knowledge, further validating the importance of our work.

4.3 DISCUSSION: KNOWLEDGE ABSORPTION AND FUTURE DIRECTIONS

From the results in Section 4.2, we notice that the accuracy improvements of the adaptation methods
vary in different noise settings and methods. We define this different degree of improvement as
knowledge absorption rate. The values are shown with green/red percentages in the results tables.

Knowledge absorption rate varies for different methods at the same noise settings. Consider-
ing the unified framework of detecting clean labels in Section 3, p(c|xi) and p(cn|xi) are important
factors to Knowledge absorption rate. Our baseline methods represent four different methods of

8
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Table 3: Real-world noisy data results. The best test accuracy is marked in bold, and the better result
between LNL and LNL+K methods is marked with underlined. Relative improvement percentages
are marked in red and green. We find incorporating source knowledge achieves best average accu-
racy in all datasets. See Section 4.2 for discussion.

CHAMMI-CP +
− BBBC036 +

− Animal10N+
−

Standard Training 78.87 ± 0.45 63.49 ± 0.62 80.32 ± 0.20
DualT (Yao et al., 2020b) 79.33 ± 0.17 61.54 ± 0.61 81.14 ± 0.28
CRUST (Mirzasoleiman et al., 2020) 78.02 ± 0.31 63.06 ± 0.65 81.88 ± 0.13
CRUST+k 79.81 ± 0.56 2.29% 65.07 ± 0.71 3.19% 81.74 ± 0.08 0.17%

FINE (Kim et al., 2021) 67.27 ± 0.82 56.80 ± 0.87 81.15 ± 0.11
FINE+k 67.02 ± 0.73 0.37% 57.01 ± 0.40 0.37% 82.27 ± 0.10 1.38%

SFT (Wei et al., 2022) 76.08 ± 0.25 51.71 ± 0.82 82.24 ± 0.10
SFT+k 77.75 ± 0.42 2.20% 59.18 ± 1.33 14.45% 82.88 ± 0.18 0.78%

UNICON (Karim et al., 2022) 71.45 ± 0.03 33.98 ± 1.03 87.76 ± 0.06
UNICON+k 71.04 ± 0.14 0.57% 42.17 ± 0.31 24.10% 88.28 ± 0.29 0.59%

accuracy

DualT (Yao et al., 2020b) 81.14 ± 0.28
DualT+CRUST+k 80.82 ± 0.06
DualT+FINE+k 81.84 ± 0.10
DualT+SFT+k 81.66 ± 0.20
DualT+UNICON+k 88.42 ± 0.74

Table 4: Results of combining consistent and
inconsistent algorithms with knowledge on
Animal10N dataset. We find utilizing noise
estimation from a consistent algorithm can
boost the performance. See Section 4.2 for
discussion.

estimating p(c|xi). The results conclude that noise source knowledge might be more helpful to the
feature-based clean sample detection methods in high noise ratios. CRUST+k has better perfor-
mance than FINE+k on high noise ratios in the cell dataset. One possible explanation for this is that
p(c|xi) for FINE+k depends on the category feature distribution while CRUST+K focuses on the
feature of a single sample and aims to find the subset with minimum gradient distance sum. In other
words, when the noise ratio is high, category feature distribution in FINE+k might be skewed while
CRUST+k is less affected by finding the optimal cluster. Knowledge absorption rate indicates how
well an LNL method can transfer to the LNL+K task with noise distribution knowledge, exploring
ways to enhance the transferability of LNL methods and optimizing this value are important areas
for further investigation.

Limitations. Our exploration of LNL+K has primarily focused on the assumption of closed-set
noise. A potential future research direction could involve investigating LNL+K in the context of
open-set noise, which is more prevalent in real-world datasets, particularly those from web crawling.
Furthermore, it’s worth noting that the noise source knowledge we’ve employed has been restricted
to category-dependent information.

5 CONCLUSION

This paper introduces a new task, LNL+K, which leverages noise source distribution knowledge
when learning with noisy labels. This knowledge is not only beneficial to distinguish clean samples
that are ambiguous or out-of-distribution but also necessary when the noise ratio is so high that the
noisy samples dominate the class distribution. Instead of comparing the ”similarity” of the samples
within the same class to detect the clean ones, LNL+K utilizes the ”dissimilarity” between the
sample and the noise source for detection. We provide a unified framework of clean sample detection
for LNL+K which we use to adapt state-of-the-art LNL methods, CRUST+k, FINE+k, SFT+k,
and UNICON+k to our task. To create a more realistic simulation of high-noise-ratio settings, we
introduce a novel noise setting called ”dominant noise.” Results show LNL+K methods have up
to 8% accuracy gains over asymmetric noise and up to 15% accuracy gains in the dominant noise
setting. Finally, we discuss ”knowledge absorption”, which notes the ranking of LNL methods to our
task varies from their LNL performance, indicating that direct investigation of LNL+K is necessary.

9



Under review as a conference paper at ICLR 2024

6 CODE OF ETHICS STATEMENT

The improved results on the cell dataset imply that our work opens the door to LNL in scientific
settings. At the same time, our work will have a social impact on domain experts, who can avoid
some labor-intensive jobs such as correcting labels of medical images. However, we are also aware
that LNL can enable bad actors to train a high-performing model as well.
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A LNL+K BASELINE METHODS

A.1 CRUST+k

The key idea of CRUST (Mirzasoleiman et al., 2020) is from the neural network Jacobian matrix
containing all its first-order partial derivatives. It is proved in their work that the neural network
has a low-rank Jacobian matrix for clean samples. In other words, data points with clean labels in
the same class often have similar gradients clustered closely together. CRUST is a feature-based
method and this approach can be summarized with settings in Section 3.1. The feature used for
selection is the pairwise gradient distance within the class: g(Xc) = {dxixj

(W)|xi, xj ∈ Xc},
where dxixj

(W) = ∥∇L(W, xi) − ∇L(W, xj)∥2,W is the network parameters and L(W, xi) =
1
2

∑
xi∈D(yi−fθ(W, xi))

2. CRUST needs an additional parameter β to control the size of the clean
selection set X ′

c. Given β, the sample xi is selected as clean if ∥X ′
c∥ = β (∥X ′

c∥ is the size of set
X ′

c) and xi ∈ X ′
c, where

∑
g(X ′

c) has the minimum value. i.e., the selected clean subset X ′
c has

the most similar gradients clustered together. Thus, we can summarize the similarity metric M for
p(c|xi) as:

M(xi, ϕc, β) = 1↔ ∃X ′
c ⊂ Xc ∧ ∥X ′

c∥ = β,

s.t. xi ∈ X ′
c ∧ (∀∥X ′′

c ∥ = β ∧X ′′
c ⊂ Xc,

∑
g(X ′

c) ≤
∑

g(X ′′
c )),

(3)

otherwise M(xi, ϕc, β) = 0. Thus, we can get the propositional logic of CRUST:

ỹi = c↔ yi = c ∧ p(c|xi) = 1↔M(xi, ϕyi
, β) = 1. (4)

To adapt CRUST to CRUST+k with noise source distribution knowledge. from Eq.2, we have

yi = c ∧ ỹi ̸= c↔ p(c|xi) ≤Max({p(cn|xi)|cn ∈ Dc−ns})
↔ ∃cn ∈ Dc−ns s.t. p(cn|xi) ≥ p(c|xi)↔ ∃cn ∈ Dc−ns s.t. p(cn|xi) = 1.

(5)

To get p(cn|xi), we first mix xi with all the samples in Xcn , i.e., Xcn+ = {xi} ∪Xcn . Then apply
CRUST on this mix set, i.e., calculate the loss towards label cn and select the clean subset X ′

cn+.
if xi ∈ X ′

cn+, then p(cn|xi) = 1. Here is the formulation of CRUST+k, we modify L(W, xi) to
L(W, xi, c) = 1

2

∑
xi∈D(c − fθ(W, xi))

2, where we calculate the loss to any certain categories,
not limited to the loss towards the label. Similarly, we have dxixj

(W, c) = ∥∇L(W, xi, c) −
∇L(W, xj , c)∥2, g(Xcn+, cn) = {dxixj

(W, cn)|xi, xj ∈ Xcn+}. We use γ to represent the subset
size of Xc+cn , which is decided by β and noise source distribution. Finally, we get the similarity
metric M(xi, ϕcn+, γ) as:

M(xi, ϕcn+, γ) = 1↔ ∃X ′
cn+ ⊂ Xcn+ ∧ ∥X ′

cn+∥ = γ,

s.t. xi ∈ X ′
cn+ ∧ (∀∥X ′′

cn+∥ = γ ∧X ′′
cn+ ⊂ Xcn+,

∑
g(X ′

cn+, cn) ≤
∑

g(X ′′
cn+, cn)),

(6)

otherwise M(xi, ϕcn+, γ) = 0. Combining Eq.2, Eq.4, and Eq.6, p(c|xi) of CRUST+k method is:

ỹi = c↔ yi = c ∧ (∀cn ∈ Dc−ns, p(cn|xi) < p(c|xi))

↔ yi = c ∧ (∀cn ∈ Dc−ns, p(cn|xi) = 0)↔ yi = c ∧ (∀cn ∈ Dc−ns,M(xi, ϕcn+, γ) = 0).
(7)

A.2 FINE+k

Filtering Noisy instances via their Eigenvectors(FINE) (Kim et al., 2021) selects clean samples
with the feature-based method. Let fθ∗(xi) be the feature extractor output and Σc be the gram
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matrix of all features labeled as category c. The alignment is defined as the cosine distance be-
tween feature

−−−−→
fθ∗(xi) and −→c , which is the eigenvector of the Σc and can be treated as the fea-

ture representation of category c. FINE fits a Gaussian Mixture Model (GMM) on the align-
ment distribution to divide samples to clean and noisy groups - the clean group has a larger
mean value, which refers to a better alignment with the category feature representation. In sum-
mary, feature mapping function g(xi, c) =<

−−−−→
fθ∗(xi),

−→c >, and mixture of Gaussian distributions
ϕc = Nclean + Nnoisy = N (µg(Xc−clean), σg(Xc−clean)) + N (µg(Xc−noisy), σg(Xc−noisy)), where
µg(Xc−clean) > µg(Xc−noisy). The similarity metric

M(xi, ϕc) =

{
1 : Nclean(g(xi, c)) > Nnoisy(g(xi, c))
0 : Nclean(g(xi, c)) ≤ Nnoisy(g(xi, c)).

(8)

Thus, we have
ỹi = c↔ yi = c ∧ p(c|xi) = 1↔M(xi, ϕyi

) = 1. (9)

Next, we show our design of FINE+k with noise source distribution knowledge. The key difference
between FINE and FINE+k is that we use the alignment score of the noise source class. For a formal
description of FINE+k, We define gk(xi, c, cn) = g(xi, c) − g(xi, cn). Similar to FINE, FINE+k

fits a GMM on gk(Xc, c, cn), so we have gk(Xc, c, cn) ∼ ϕk−{c+cn} = Nclose−c + Nclose−cn ,
where µclose−c > µclose−cn . This can be interpreted in the following way: Samples aligning better
with category c should have larger g(xi, c) values and smaller g(xi, cn) values according to the
assumption, thus the greater the gk(xi, c, cn), the closer to category c, vice versa, the smaller the
gk(xi, c, cn), the closer to category cn. Then we have

M(xi, ϕk−{c+cn}) =

{
1 : Nclose−c(gk(xi, c, cn)) > Nclose−cn(gk(xi, c, cn))
0 : Nclose−c(gk(xi, c, cn)) ≤ Nclose−cn(gk(xi, c, cn)).

(10)

By combining with Eq.2, we have

ỹi = c↔ yi = c ∧ (∀cn ∈ Dc−ns, p(c|xi) > p(cn|xi))

↔ yi = c ∧ (∀cn ∈ Dc−ns,M(xi, ϕk−{c+cn}) = 1).
(11)

A.3 SFT+k

SFT (Wei et al., 2022) detects noisy samples according to predictions stored in a memory bank
M. M contains the last T epochs’ predictions of each sample. A sample xi is detected as noisy
if a fluctuation event occurs, i.e., the sample classified correctly at the previous epoch t1 is mis-
classified at t2, where t1 < t2. The occurrence of the fluctuation event can be formulated as
fluctuation(xi, yi) = 1, otherwise fluctuation(xi, yi) = 0 i.e.,

fluctuation(xi, yi) = 1↔ ∃t1, t2 ∈ {t− T, · · · , T} ∧ t1 < t2

s.t. fθ(xi)
t1 = yi ∧ fθ(xi)

t2 ̸= yi,
(12)

where fθ(xi)
t1 represents the prediction of xi at epoch t1. SFT is a probability-distribution-based

approach and can fit our probabilistic model as follows. The propositional logic of SFT is,

p(c|xi) =

{
1 : yi = c ∧ fluctuation(xi, yi) = 0
0 : otherwise.

(13)

I.e., SFT+k applies the noise source distribution knowledge to SFT by stricting the constraints of
fluctuation. The fluctuation events only occur when the previous correct prediction is misclassified
as the noise source label. Thus, we define SFT+k fluctuation as,

fluctuation(xi, yi, Dyi−ns) = 1↔ ∃cn ∈ Dyi−ns,∃t1, t2 ∈ {t− T, · · · , T} ∧ t1 < t2,

s.t. fθ(xi)
t1 = yi ∧ fθ(xi)

t2 = cn.
(14)

Combining Eq. 2, Eq. 13 and Eq. 14, SFT+k detects xi with clean label yi = ỹi = c with p(c|xi)
as:

ỹi = c↔ yi = c ∧ p(c|xi) > Max({p(cn|xi)|cn ∈ Dc−ns})
↔ yi = c ∧ p(c|xi) = 1↔ yi = c ∧ fluctuation(xi, yi, Dyi−ns) = 0.

(15)
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A.4 UNICON+k

UNICON (Karim et al., 2022) estimate the clean probability by using Jensen-Shannon divergence
(JSD) di, which is a measure of distribution disagreement. JSD is defined by KLD, which is the
Kullback-Leibler divergence function. We follow the same JSD definition as UNICON in the adap-
tation method. Given the predicted probability pi and label yi, di = JSD(yi, pi). The value of di
ranges from 0 to 1 and the smaller the di is, the higher the probability of yi being clean. A cutoff
value dcutoff is used to select clean samples. To summarize, the propositional logic of UNICON is,

p(c|xi) =

{
1− JSD(xi, yi) : yi = c ∧ JSD(xi, yi) < dcutoff

0 : otherwise.
(16)

Then noise source knowledge is integrated with our unified framework:

ỹi = c↔ yi = c ∧ p(c|xi) > Max({p(cn|xi)|cn ∈ Dc−ns})
↔ yi = c ∧ (∀cn ∈ Dc−ns, JSD(xi, yi) < JSD(xi, cn)).

(17)

B DATASETS

B.1 CIFAR DATASET WITH SYNTHESIZED NOISE

Asymmetric noise. Labels are corrupted to visually similar classes. Pair (C1, C2) represents the
samples in class C1 are possibly mislabeled as C2. Noise ratios in the experiments are only the noise
ratio in class C1, i.e. not the overall noise ratio. Here are the class pairs of CIFAR-10 and CIFAR-
100 for asymmetric noise. CIFAR-10 (trucks, automobiles), (cat, dog), (horse, deer). CIFAR-100
(beaver, otter), (aquarium fish, flatfish), (poppies, roses), (bottles, cans), (apples, pears), (chair,
couch), (bee, beetle), (lion, tiger), (crab, spider), (rabbit, squirrel), (maple, oak), (bicycle, motorcy-
cle).

Dominant noise There are ”recessive” and ”dominant” classes in dominant noise. For CIFAR-10,
category index of the last 5 are ”recessive” classes and the first five are ”dominant” classes. In other
words, category index 6-10 samples might be mislabeled as label index 1-5. Different numbers of
samples are mixed for different noise ratios so that the dataset is still balanced after mislabeling.
Table 5 shows the number of samples per category for each noise ratio.

Table 5: Sample composition for CIFAR-10/CIFAR-100 dominant noise
CIFAR-10 Dominant Noise
Noise ratio 0.2 0.5 0.8
Dominant class 2000 1250 500
Recessive class 3000 3750 4500
CIFAR-100 Dominant Noise
Noise ratio 0.2 0.5 0.8
Dominant class 200 125 50
Recessive class 300 375 450

B.2 CELL DATASET BBBC036

For our experiments we subsampled 100 treatments to evaluate natural noise. Table 6 shows the
treatment list. (”NA” refers to the control group, i.e. no treatment group.)

B.3 CELL DATASET CHAMMI-CP

Three compounds with a “control” group are selected for our experiments: BRD-A29260609 (weak
reaction), BRD-K04185004 (medium reaction) and BRD-K21680192 (strong reaction).
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Table 6: Treatments used from the BBBC036 dataset
NA BRD-K88090157 BRD-K38436528 BRD-K07691486 BRD-K97530723
BRD-A32505112 BRD-K21853356 BRD-K96809896 BRD-A82590476 BRD-A95939040
BRD-A53952395 BRD-A64125466 BRD-A99177642 BRD-K90574421 BRD-K07507905
BRD-K62221994 BRD-K62810658 BRD-K47150025 BRD-K17705806 BRD-K85015012
BRD-K37865504 BRD-A52660433 BRD-K66898851 BRD-K15025317 BRD-K37392901
BRD-K91370081 BRD-K39484304 BRD-K03842655 BRD-K76840893 BRD-K62289640
BRD-K14618467 BRD-K52313696 BRD-K43744935 BRD-K86727142 BRD-K21680192
BRD-K06426971 BRD-K24132293 BRD-K68143200 BRD-K08554278 BRD-K78122587
BRD-A47513740 BRD-K18619710 BRD-A67552019 BRD-K17140735 BRD-K30867024
BRD-K36007650 BRD-K51318897 BRD-K90382497 BRD-K00259736 BRD-K95435023
BRD-K52075040 BRD-K03642198 BRD-K47278471 BRD-K17896185 BRD-K95603879
BRD-A70649075 BRD-K02407574 BRD-A90462498 BRD-K67860401 BRD-A64485570
BRD-K88429204 BRD-A49046702 BRD-K50841342 BRD-K35960502 BRD-K77171813
BRD-K54095730 BRD-K93754473 BRD-K22134346 BRD-K72703948 BRD-K31342827
BRD-K31542390 BRD-K18250272 BRD-K00141480 BRD-K37991163 BRD-K13533483
BRD-K67439147 BRD-A91008255 BRD-K39187410 BRD-K26997899 BRD-K89732114
BRD-K50135270 BRD-K95237249 BRD-K44849676 BRD-K20742498 BRD-K31912990
BRD-K96799727 BRD-K09255212 BRD-A89947015 BRD-K78364995 BRD-K49294207
BRD-K08316444 BRD-K89930444 BRD-K50398167 BRD-K47936004 BRD-A72711497
BRD-A97104540 BRD-A50737080 BRD-K80970344 BRD-K50464341 BRD-K97399794

Table 7: Hyperparameters for each dataset.
learning rate warm-up epochs

CIFAR-10/CIFAR-100 1e-2 40
BBBC036 2e-4 10
CHAMMI-CP 2e-4 5
Animal10N 5e-3 3

C MODEL

We used a pre-trained ResNet34 on CIFAR-10/CIFAR-100 and Animal10N datasets for all ap-
proaches (He et al., 2016) (UNICON trains on two networks (Karim et al., 2022)). For experiments
on BBBC036 we used an Efficient B0 for all methods (Tan & Le, 2019) and all methods used Con-
vNet for CHAMMI-CP dataset (Liu et al., 2022). To support the 5 channel images, we replaced the
first convolutional layer in the network to support the new image dimensions.

D HYPERPARAMETERS

For a fair comparison, we use the same hyperparameter settings as in prior work (Mirzasoleiman
et al., 2020; Kim et al., 2021; Wei et al., 2022; Karim et al., 2022) for CIFAR-10/CIFAR-100
datasets. Hyperparameters of the cell dataset BBBC036 were set via grid search using the vali-
dation set. All the experiments use the same batch size of 128. ”fl-ratio” of CRUST and CRUST+k,
which controls the size of selected clean samples is set as the same as the noise ratio in synthesized
noise and set as 0.6 in cell dataset BBBC036 and CHAMMI-CP, 0.9 in Animal10N. All the other
hyperparameters for each dataset are summarized in Table 7.
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