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ABSTRACT

Distributional reinforcement learning (DRL) models full return distributions
rather than expectations, but extending to multivariate settings can be challeng-
ing. Univariate tractability is lost, and multivariate approaches are either compu-
tationally expensive or lack contraction guarantees. We propose Sliced Distribu-
tional Reinforcement Learning (SDRL) which lifts the tractable one-dimensional
divergences to the multivariate case through random projections and aggregation.
We prove Bellman contraction under uniform slicing for shared scalar discounts
and under max slicing for general anisotropic matrix-discount updates, provid-
ing the first contraction result in this setting. SDRL accommodates a broad class
of base divergences, instantiated here with Wasserstein, Cramér and Maximum
Mean Discrepancy (MMD). In experiments, SDRL achieves competitive results
on multivariate control tasks in MO-Gymnasium. As an application of matrix
discounting, we extend multi-horizon RL with hyperbolic scalarization to the dis-
tributional regime. Taken together, these findings position slicing as a principled
and scalable foundation for multivariate distributional reinforcement learning.1

1 INTRODUCTION

Distributional reinforcement learning (DRL) models return full distributions rather than expecta-
tions, with strong empirical (Dabney et al., 2018b;a; Barth-Maron et al., 2018; Hessel et al., 2017)
and theoretical support (Lyle et al., 2019; Rowland et al., 2018; 2019a), building on the foundational
perspective of Bellemare et al. (2017a; 2023b). In practice, DRL hinges on two choices, the dis-
tributional discrepancy and the critic’s parameterization (Rowland et al., 2019a). In the univariate
case, many tractable solutions exist. Discrepancies such as Wasserstein or KL admit efficient estima-
tors, and parameterizations like quantiles or categorical grids are straightforward. This tractability is
largely lost in the multivariate setting, categorical grids explode combinatorially, quantile parameter-
izations do not scale, and Wasserstein estimation becomes costly, typically O(n3 log n) for optimal
transport solvers (Genevay et al., 2018).

A classical approach to high dimensional comparison is slicing, which represents multivariate dis-
tributions by their one dimensional projections and aggregates discrepancies across directions. This
idea underlies Sliced Probability Divergences (SPDs) (Rabin et al., 2011; Bonneel et al., 2015; Nad-
jahi et al., 2020), where distributions are projected onto random directions, one dimensional dis-
crepancies are computed, and the results are aggregated. This projection–aggregation mechanism
reduces multivariate comparison to a series of tractable univariate computations, enabling the use
of base divergences with efficient one dimensional estimators. With Wasserstein as the base metric,
this yields the Sliced Wasserstein Distance (SWD), widely adopted in generative modeling for its
simplicity, stability, andO(n log n) per slice cost (Kolouri et al., 2019b; Wu et al., 2019; Deshpande
et al., 2018; 2019; Liutkus et al., 2019), while avoiding adversarial games (Arjovsky et al., 2017).

We introduce a DRL framework built on SPDs, leveraging tractable one-dimensional projections
to compare multivariate return distributions efficiently. Our approach lifts base divergences with
efficient one-dimensional estimators, such as Wasserstein or Cramér, to the multivariate setting.
Following the sample-based critic paradigm (Nguyen-Tang et al., 2021), our critics generate sam-
ples from the value distribution and are optimized with sliced objectives. Concretely, we adopt a

1We will make the code publicly available upon acceptance of the paper.
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reparameterized generative model that maps noise to true samples (Singh et al., 2022), providing
a flexible parameterization that scales to multivariate settings while preserving the computational
advantages of sliced methods.

Beyond random slicing, we rely on the max slicing framework (Deshpande et al., 2019) to lift these
divergences in a stronger form. Max slicing replaces the aggregation over random directions with
an optimization, yielding divergences that remain contractive in settings more general than scalar-
discounted multivariate returns. This extension opens the door to a wide range of future applications
where contractivity beyond the standard RL setup is essential.

Contributions

• We introduce Sliced Distributional RL (SDRL), the first framework for multivariate re-
turns with sliced divergences, and prove contraction of the usual distributional Bellman
operator under scalar discount.

• We extend to a Max-Sliced (MSDRL) variant, establishing contraction guarantees for the
general case of matrix-discounted multivariate Bellman updates.

2 BACKGROUND AND RELATED WORKS

In the expected reinforcement learning framework, an agent interacts with an environment modeled
as a Markov decision process (MDP) (S,A, P,R, {Γt}t≥0), where rewards may be d-dimensional
(Rt ∈ Rd, d≥1). Here Γt ∈ Rd×d denotes a (possibly dense) time-varying discount–mixing matrix;
any implicit dependence on the transition is suppressed in the subscript t. Given a policy π(a|s), the
agent seeks to maximize the expected discounted return

Qπ(s, a) = E

[ ∞∑
t=0

( t∏
k=1

Γk

)
Rt

∣∣∣∣∣ S0 = s, A0 = a

]
, (1)

with the convention
∏0

k=1 Γk = Id. Classical RL methods focus on estimating Qπ(s, a), the expec-
tation of the return distribution (componentwise when d > 1).

The distributional perspective (Bellemare et al., 2017a), originally developed for scalar rewards with
scalar discounting, can be applied here as well: it models the full return random variable

Zπ(s, a) =

∞∑
t=0

( t∏
k=1

Γk

)
Rt, (2)

whose expectation recovers Qπ(s, a) = E[Zπ(s, a)] (componentwise when d > 1). This viewpoint
leads to the distributional Bellman operator with time-dependent matrix discount:

(T πZ)(s, a)
D
= R(s, a) + Γ1 Z(S′, A′), A′ ∼ π(·|S′), S′ ∼ P (·|s, a), (3)

where D
= denotes equality in distribution.

Special cases.

1. Classical distributional RL: d = 1, Γt = γ ∈ [0, 1).

2. Multivariate with shared scalar discount: d > 1, Γt = γId (Zhang et al., 2021).

3. Time-invariant general matrix: Γt ≡ Γ, e.g., multi-horizon design with Γ = diag(γ1, . . . , γd)
assigning distinct horizons to objectives (Fedus et al., 2019).

4. Time-varying dense matrix: Γt evolves over time and may couple objectives (the multivariate
analogue of Generalized Value Functions (Sutton et al., 2011)).

More details and examples of this matrix-discounted perspective are given in Appendix A.
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Related work. Several alternative divergences have been investigated in the multivariate case. We
briefly review the approaches most relevant to our setting.

Adversarial W1. Freirich et al. (2019) reinterpret the distributional Bellman equation as a GAN
problem, optimized with WGAN-style training where the discriminator approximates W1 (the
Wasserstein-1 distance) (Villani et al., 2008). While motivated by contraction properties of Wasser-
stein metrics Wp (Bellemare et al., 2017a), practical discriminators can suffer from Lipschitz viola-
tions, finite-sample bias, and optimization error (Mallasto et al., 2019), yielding objectives that may
deviate substantially from true optimal-transport distances (Mallasto et al., 2019; Stanczuk et al.,
2021), thus weakening contraction claims that presume exact W1.

MMD. Moment matching with MMD was explored in the univariate case (Nguyen-Tang et al.,
2021) and later extended to multivariate returns (Zhang et al., 2021). In the multivariate setting,
contractivity results are available only for a narrow class of kernels (Wiltzer et al., 2024a), and
identifying a kernel that is both empirically strong and contractive remains challenging (Killingberg
& Langseth, 2023a). Consequently, practitioners often resort to Gaussian mixture despite their
limited contractivity guarantees in the multivariate setting.

Synthesis. Taken together, existing approaches suffer from at least one of three limitations: perfor-
mant variants are non-contractive, theoretical guarantees do not extend to the general anisotropic
discount setting we target, or the estimation is too loose to support contraction claims (adversarial
W1). This gap motivates our sliced approach.

3 SDRL: DISTRIBUTIONAL RL VIA SLICED PROBABILITY DIVERGENCES

3.1 SLICED PROBABILITY DIVERGENCES

Slicing a base divergence. Let ∆ : P(R) × P(R) → R+ ∪ {∞} be a divergence on
one–dimensional probability laws. For a direction θ ∈ Sd−1, let Pθ : Rd → R denote the linear
projection Pθ(x) = ⟨θ, x⟩, and write (Pθ)#µ for the pushforward of µ ∈ P(Rd) by Pθ. With σ the
uniform measure on Sd−1 and p≥1, the associated sliced probability divergence (SPD) is

S∆p
p(µ, ν) =

∫
Sd−1

∆p
(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ), µ, ν ∈ P(Rd). (4)

This averages a 1D discrepancy across random linear views, lifting ∆ to multivariate laws (Nadjahi
et al., 2020).

Monte Carlo approximation. In practice, this integral is estimated via Monte Carlo sampling by
drawing N i.i.d. directions {θi}Ni=1∼σ and computing

Ŝ∆
p

p(µ, ν) =
1

N

N∑
i=1

∆p
(
(Pθi)#µ, (Pθi)#ν

)
. (5)

Each projected subproblem is independent, so the N evaluations can be carried out in parallel.

Sliced Wasserstein distance. Among sliced probability divergences, the most widely used in-
stance is the sliced Wasserstein distance (SWD) (Rabin et al., 2011; Bonneel et al., 2015), where the
base divergence is chosen as ∆ = Wp. For µ, ν ∈ P(Rd) and p ≥ 1,

SWp
p(µ, ν) =

∫
Sd−1

Wp
p

(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ), (6)

which reduces the high-dimensional Wasserstein problem to an average of one-dimensional Wasser-
stein distances between the projected pushforwards (Pθ)#µ and (Pθ)#ν. For estimators from
samples, the overall cost is O(Ln log n), as it involves L sorts of the projected samples (each
O(n log n)). This contrasts with solving a d-dimensional optimal transport problem, which typi-
cally costs O(n3 log n) (Genevay et al., 2019). Further details on properties and the estimator are
provided in Appendix B.1.
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Sliced Cramér distance. A natural family of discrepancies is the ℓp distances between cumulative
distribution functions:

ℓpp(α, β) :=

∫
R

∣∣Fα(u)− Fβ(u)
∣∣p du, (7)

where Fα and Fβ are the univariate CDFs of α, β. The special case p = 2 is the Cramér distance
(Bellemare et al., 2017b). The sliced Cramér distance lifts this metric to Rd via random projections:

SC2
2(µ, ν) =

∫
Sd−1

ℓ22
(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ). (8)

This distance is also known as the Cramér–Wold distance and has already been investigated in the
context of machine learning (Knop et al., 2020; Kolouri et al., 2020). Its estimator has the same
complexity as sliced Wasserstein, as the Cramér distance can be estimated in O(n log n). The use
of the Cramér distance in distributional RL has been explored in prior work (Rowland et al., 2018;
Lhéritier & Bondoux, 2021; Théate et al., 2023). Further properties and the estimator we use are
detailed in Appendix B.2.

Sliced MMD. Another tractable choice is the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012), which has already been explored in distributional RL (Nguyen et al., 2020b; Killingberg &
Langseth, 2023b; Wiltzer et al., 2024b). For laws P,Q ⊂ Rd′

and a kernel k, the squared MMD is

MMD2(P,Q) = Ex,x′∼P [k(x, x
′)] + Ey,y′∼Q[k(y, y

′)]− 2Ex∼P, y∼Q[k(x, y)]. (9)

Lifting this discrepancy through random projections yields the sliced MMD: for µ, ν ∈ P(Rd),

SMMD2
k(µ, ν) =

∫
Sd−1

MMD2
k

(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ). (10)

Sliced MMD was first introduced in Nadjahi et al. (2020). Its sliced estimator from samples scales
as O(Ln2), as the base MMD estimator is quadratic in n. More details on the properties of MMD
and the estimator we use are provided in Appendix B.3.

3.2 MAX SLICED PROBABILITY DIVERGENCES.

Uniform random slicing may be inefficient as many directions could be needed to get an accurate
picture of the discrepancy between two distributions. Moreover, as discussed in Section 4, uniform
sliced divergences are not sufficient to establish contraction under the most general class of Bellman
updates we target, namely those with general discount matrices. One solution proposed in Desh-
pande et al. (2019) involves learning the most discriminative projection direction, along which the
1D marginal divergence is the largest, in an adversarial way (Goodfellow et al., 2014).

MS∆(µ, ν) = sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩. (11)

This framework was originally proposed for ∆ = Wp, yielding the max–sliced Wasserstein dis-
tance MSWp (Deshpande et al., 2019). By analogy, we denote by MSC2 and MSMMDk the
max–sliced Cramér distance and max–sliced MMD, respectively.

Estimation. Since the supremum in the definition of max–sliced divergences cannot be computed
exactly, it is typically approximated by iterative optimization of the projection direction on the unit
sphere. At each step a gradient ascent update on the divergence is followed by renormalization onto
the unit sphere, and the final direction defines the empirical estimate. The full procedure is outlined
in Algorithm 2.

3.3 PROBLEM SETTING AND ALGORITHMIC APPROACH

We wish to model the joint vector of multivariate returns in order to capture their correlations and
higher-order structure, rather than only marginal statistics. Let d > 1 and X = Rd. For any policy
π(· | s) (discrete or continuous actions), let µπ(s, a) ∈ P(X ) denote the law of the multivariate
return Zπ(s, a). The distributional Bellman operator T π relates return laws across state–action
pairs via (

T πµ
)
(s, a) :=

∫
S

∫
A

∫
X

(
fΓ,r

)
#
µ(s′, a′) R(dr | s, a) π(da′ | s′) P (ds′ | s, a), (12)

4
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Algorithm 1: Distributional policy evaluation with sliced divergence
Input: Number of samples N ; base divergence ∆ and order p; discount matrix Γ
Input: Either projection count L or a projection direction θ
Input: Sample transition (s, a, r, s′); policy π; model parameters ϕ (and target ϕ−)
a′ ∼ π(·|s′)
for i = 1, . . . , N do

εi ∼ p(ε) // noise for predicted sample
ε̃i ∼ p(ε) // independent noise for target
zi ← Zϕ(s, a, εi) // predicted sample
ẑi ← r + ΓZϕ−(s′, a′, ε̃i) // target sample

Choose projection set Θ: if a direction θ is provided (max setting) then Θ← {θ}
else draw {θℓ}Lℓ=1 ∼ Unif(Sd−1) and set Θ← {θℓ}Lℓ=1

Monte Carlo estimator over projections (operate directly on samples):
S ← 1

|Θ|
∑

θ′∈Θ

[
∆
(
{⟨θ′, zi⟩}Ni=1, {⟨θ′, ẑi⟩}Ni=1

)]p
// Pθ′(x) = ⟨θ′, x⟩

Output: S∆p
p

(
{zi}Ni=1, {ẑi}Ni=1

)
← S

where fΓ,r(z) = r + Γz for z ∈ Rd and Γ ∈ Rd×d is a (possibly dense) discount–mixing matrix.
The target in policy evaluation is the fixed point µπ of T π , i.e., T πµπ = µπ .

Control via scalarization. The multivariate distributional policy evaluation above can be plugged
into any control learning method once a fixed scalarization rule is chosen, e.g. a linear functional
α⊤E[Zπ(s, a)] or a rule induced by Γ. This scalarized value recovers a standard RL control signal,
enabling the use of off-the-shelf algorithms such as DQN for discrete action spaces (Mnih et al.,
2013) or DDPG for continuous ones (Lillicrap et al., 2015), while retaining the multivariate distri-
butional critic for stability and richer statistical modeling.

Algorithmic approach We approximate µπ(s, a) with a reparameterized generator Zϕ(s, a, ε),
where the noise variable ε is typically drawn from p(ε) = N (0, I). Given a transition (s, a, r, s′)
and next action a′∼π(·|s′), we draw N samples of ε to produce predicted samples zi = Zϕ(s, a, εi)
and target samples ẑi = r + ΓZϕ(s

′, a′, ε̃i), which represent the current law and its Γ-discounted
Bellman target. Their discrepancy is measured by a sliced probability divergence with base ∆, us-
ing either L random projections or a single optimized direction (max–sliced). The loss is the Monte
Carlo average of projected divergences, and minimizing it w.r.t. ϕ yields a distributional TD update
toward the matrix-discounted target (Algorithm 1).

4 THEORETICAL RESULTS

In this section, we provide the theoretical foundations of multivariate distributional RL with sliced
divergences. We use the notion of a supremum divergence and establish sufficient conditions under
which these divergences yield contraction of the distributional Bellman operator in the multivariate
setting.
Definition 1 (Supremum divergence). Let D be a divergence on probability laws and let µ, ν :
S ×A → P(Rd). The supremum divergence is defined as

D(µ, ν) := sup
(s,a)∈S×A

D
(
µ(s, a), ν(s, a)

)
. (13)

We focus on the following questions:

1. Metric property: If the base divergence ∆ is a metric onP(R), when do S∆
p

and MS∆
p

induce metrics on P(Rd)S×A?
2. Contraction property: Under what conditions on ∆ and on the discount structure Γ does

the Bellman operator T π contract in S∆
p

or MS∆
p
?

3. Sample complexity: How does the estimation error of the sliced and max–sliced diver-
gences scale with the number of samples, and do they avoid the curse of dimensionality?

5
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4.1 METRIC PROPERTY

It is known that uniform slicing preserves the metric property of a base divergence (Nadjahi et al.,
2020). Similarly, Deshpande et al. (2019) established that the max–sliced Wasserstein distance is
a metric; we extend this in Lemma 2, showing that max–slicing preserves the metric property for
any base divergence. Finally, taking the supremum over state–action pairs also preserves metricity.
These results are summarized in Theorem 1, with full proofs provided in Appendix C.1.

Theorem 1. Assume ∆ is a metric onP(R) and fix p ∈ [1,∞). Then: (i) S∆p is a metric onP(Rd);
(ii) MS∆ is a metric on P(Rd); and (iii) for return–distribution maps ηi : S × A → P(Rd), the
sup–lifts S∆p and MS∆ are metrics on P(Rd)S×A.

4.2 CONTRACTION PROPERTY

Setup Let D be any divergence between probability laws on R, or on Rd after a lift. An operator T
on return models is a κ contraction with respect to D if there exists κ ∈ [0, 1) such that

D
(
T η1, T η2

)
≤ κD(η1, η2) for all η1, η2.

Univariate contraction A set of sufficient conditions under which the univariate distributional
Bellman operator T π is a c(γ) contraction for D is recalled (in a slightly generalized form from
Bellemare et al. (2023a)) in Theorem 2, with the proof provided in Appendix C.2.1.

Theorem 2. Let ∆ be a metric on P(R). For t ∈ R, let Tt(x) = x+ t denote translation, and for
γ ∈ (0, 1) let Sγ(x) = γx denote scaling. Suppose ∆ satisfies:

(T) Translation nonexpansion: ∆
(
(Tt)#µ, (Tt)#ν

)
≤ ∆(µ, ν) for all t ∈ R.

(S) Scale–Lipschitz: there exists a nondecreasing function c : R>0 → R>0 such that for every
s ≥ 0,

∆
(
(Ss)#µ, (Ss)#ν

)
≤ c(s)∆(µ, ν).

(Mp) Mixture p–convexity: for some p ∈ [1,∞), any probability measure ρ and measurable
families (µc), (νc) ⊂ P(R),

∆
(∫

µc dρ,

∫
νc dρ

)
≤
(∫

∆(µc, νc)
p dρ

)1/p
.

Then the Bellman operator T π is a c(γ)–contraction:

∆(T πη1, T πη2) ≤ c(γ)∆(η1, η2).

Shared scalar discount (slicing) We are now ready to introduce the main contraction results of
this paper. We begin with the canonical multivariate case with vector-valued objects in Rd and
d > 1, where the Bellman update involves the shared scalar discount introduced in Section 2. This
setting coincides with those studied in Freirich et al. (2019); Zhang et al. (2021); Sun et al. (2024).
Our result, however, also covers the more general form γO with O ∈ O(d), where O(d) is the set of
d× d orthogonal matrices. The corresponding distributional Bellman update is

(T πη)(s, a) = Law
(
R(s, a)+γId X

′), X ′ ∼ η(S′, A′), S′ ∼ P (·|s, a), A′ ∼ π(·|S′), (14)

where R(s, a) ∈ Rd, X ′ ∈ Rd, and η : S × A → P(Rd) with d > 1, and Id denotes the d × d
identity matrix.

The key observation is that the sufficient conditions (T), (S), (Mp) of Theorem 2, which guarantee
contraction of a base divergence ∆ in the univariate setting, can be lifted directly to show that
the sliced divergence S∆ is contractive in the multivariate setting of Equation 14 with the same
contraction constant c(γ) as in the univariate case (no dimension-dependent penalty). This is
summarized in Theorem 3 whose proof can be found in Appendix C.2.2.

Theorem 3. If a base divergence ∆ satisfies (T), (S) at γ ∈ (0, 1) with c(γ) < 1, and (Mp),
then the Bellman operator T π in equation 14 with scaled isometry updates on Rd for d > 1 is a
c(γ)–contraction w.r.t. the sup–sliced divergence:

S∆p

(
T πη1, T πη2

)
≤ c(γ)S∆p(η1, η2),

6
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where ηi : S ×A → P(Rd) and slicing uses the fixed σ on Sd−1.

General anisotropic discount (max–slicing) We now discuss the contraction of the maximum
sliced divergence MS∆. We do so under a much more general family of Bellman updates that covers
any type of fixed or time-varying discount matrix Γt as well as state–action dependent Γ(s, a).

(T πη)(s, a) = Law
(
R(s, a) + Γt(s, a)X

′), (15)

X ′ ∼ η(S′, A′), S′ ∼ P (·|s, a), A′ ∼ π(·|S′).

We show in Theorem 4 that the sufficient conditions on ∆ extend to the max–sliced divergence
MS∆ under the Bellman update from Equation 15. The contraction constant is c of the worst-case
operator norm of the discount matrices, and, as with uniform slicing, this introduces no explicit
dimension-dependent penalty. This result generalizes multivariate distributional RL to a much
wider class of problems for which some examples are discussed in Appendix A. The proof can be
found in Appendix C.2.3.

Theorem 4. If a base divergence ∆ satisfies (T), (S) with c nondecreasing, and (Mp), then
the Bellman operator T π in equation 15 with anisotropic linear updates on Rd for d > 1 is a
c(L̄)–contraction w.r.t. the sup–max–sliced divergence:

MS∆
(
T πη1, T πη2

)
≤ c(L̄)MS∆(η1, η2),

where ηi : S × A → P(Rd) and L̄ = sup(s,a) supC ∥As,a(C)∥op, with C accounting for the
one-step randomness.

4.3 SAMPLE COMPLEXITY

We now analyze the sample complexity of uniform and max slicing. For the uniform case, The-
orem 6, following the result of Nadjahi et al. (2020), shows that the sliced divergence inherits the
one–dimensional sample complexity of its base divergence, without any additional dependence on
the ambient dimension. For the maximum case, Theorem 7 relies on a bounded-support assumption,
which is natural in RL where returns are often assumed bounded, and shows that, depending on the
base divergence, one can obtain upper bounds that avoid the curse of dimensionality.

Theorem 6. Fix p ∈ [1,∞). Let ∆ be a divergence on P(R) and assume there exists a function
α(p, n) ≥ 0 such that for every µ ∈ P(R) with empirical µ̂n we have E

[
∆(µ̂n, µ)

p
]
≤ α(p, n).

Then for any µ ∈ P(Rd) with empirical µ̂n,

E
∣∣S∆p

p(µ̂n, µ)
∣∣ ≤ α(p, n).

Theorem 7. Assume diam(suppP ) ≤ D. Let ∆ be a divergence on P(R). Suppose that for any
one–dimensional laws µ, ν supported on an interval of length ≤ D, there exist α ∈ (0, 1], β ≥ 0,
and L > 0 such that the CDF–dominance inequality ∆(µ, ν) ≤ LDβ ∥Fµ − Fν∥α∞ holds. Then

EMS∆(Pn, P ) = O
(
Dβ
(
d logn

n

)α/2)
.

4.4 INSTANTIATIONS

Now we apply the theorems presented above to specific base divergences of interest. We ver-
ify that conditions (T), (S), (Mp) hold, and summarize the resulting contraction factors under both
the standard multivariate Bellman update and the general matrix–discounted case in Table 1. For
MMDk, we focus on the multiquadric (MQ) kernel from Killingberg & Langseth (2023a), defined
as k(x, y) = −

√
c2∥x− y∥2 + 1, which is known to perform best among contraction–inducing

kernels. The result can be naturally extended to other similar kernels, but we restrict our analysis to
MQ for clarity. We do not establish an upper bound for MSMMDk, leaving this as future work.
Full proofs are provided in Appendix C.4.

5 EXPERIMENTS

Setup. We evaluate uniform and max-sliced divergences on continuous control tasks using Mu-
JoCo (Todorov et al., 2012). All environments are drawn from the Gymnasium library (Towers

7
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Divergence 3 prop. Contr. factor γ Contr. factor L̄ Sample complexity
SWp ✓ γ / O

(
n−1/(2p)

)
MSWp ✓ γ L̄ O

(
D
(
d logn

n

)1/(2β))
SC2 ✓ γ1/2 / O

(
n−1/2

)
MSC2 ✓ γ1/2 L̄1/2 O

(√
D
√

d logn
n

)
SMMDk ✓ γ1/2 / O

(
n−1/2

)
MSMMDk ✓ γ1/2 L̄1/2 ×

Table 1: Summary of contraction factors and sample complexity results for sliced and max–sliced
divergences. Here β := max{p, 1}. For MSMMDk, the contraction factor simplifies from
max{L̄1/2, L̄} to L̄1/2 under the assumption L̄ < 1.

et al., 2024), with reward decompositions provided by MO-Gymnasium (Felten et al., 2023). Neural
network implementations are developed in JAX (Bradbury et al., 2018).

Proposals and baseline. We compare sliced and max-sliced divergences against a standard baseline
for multivariate distributional RL. Specifically, we experiment with slicing and max-slicing using the
Wasserstein distance (p=1, 2), the Cramér distance, and MMDMQ (MMD under the multiquadric
kernel). As a baseline, we include plain MMDMQ, the most widely used divergence in multivariate
distributional RL (Zhang et al., 2021; Wiltzer et al., 2024a). Further details on architectures and
hyperparameters are provided in Appendix E.3.

Shared scalar discount. We first consider the multivariate setting with a shared scalar discount,
modeling the joint distribution of discounted returns. For control, we use the same scalarization
rule as in the univariate benchmarks, following prior work (Zhang et al., 2021; Sun et al., 2024).
Details on reward decompositions and scalarization are provided in Appendix E.1. Figure 1a reports
results on five MuJoCo environments for all the variants we introduced, with MMD serving as the
baseline. Most variants converge to value distributions that are useful for control, and MMD with
the MQ kernel stands out as a strong baseline, with many variants performing on par. Importantly,
we used the same hyperparameters (e.g., number of max-slicing steps and learning rate) across all
configurations.

Anisotropic case: multi-horizon RL. To motivate our framework beyond the shared-scalar setting,
we consider a simple instance of the anisotropic case, namely multi-horizon reinforcement learning
(Fedus et al., 2019), which models a vector of returns using distinct discount factors. Unlike prior
work, we jointly model all discounted values in a single distributional Bellman update (Equation 15),
with Γ = diag(γ1, . . . , γd) a diagonal discount matrix. As summarized in Table 1, this setting
is contractive for max–sliced Wasserstein, max–sliced Cramér, and max–MMDMQ. For control,
we scalarize the vector of multi-horizon returns using the hyperbolic discount rule of Fedus et al.
(2019). Concretely, if w ∈ Rd denotes the hyperbolic mixture weights over the geometric discounts
{γi}di=1, the scalarized value is ⟨w, E[Zπ(s, a)]⟩, thereby extending hyperbolic discounting to the
distributional setting. More information on this setting is provided in Appendix E.2. Figure 1b
presents results on four MuJoCo environments. Once again, many variants prove effective on at
least three tasks. Notably, the max-sliced variants, although contractive in this setting, do not exhibit
superior performance.

6 CONCLUSION

In this work, we introduced the framework of Sliced Distributional RL (SDRL) and proposed sev-
eral divergences that are provably contractive in the most common multivariate setting. We further
extended these results with Maximum Sliced Distributional RL (MSDRL), which handles a broader
class of Bellman updates involving general matrix discounts. We evaluated our approach on canon-
ical multi-objective distributional RL tasks in several MuJoCo environments and showed that most
of the variants we introduced are effective. As a practical application of general matrix discounting,
we also experimented with multihorizon distributional RL, where the new divergences successfully
learned multivariate value distributions useful for control.
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(a) (b)

Figure 1: Evaluation of SDRL and MSDRL on multi-objective MuJoco environments and a multi-
horizon setting from (Fedus et al., 2019). Results are reported over 5 random seeds with median and
95% bootstrap confidence intervals. (a) Experiments on multi-objective distributional RL with usual
fixed scalarization rule (b) Distributional multi-horizon experiments using hyperpolic discounting
(Fedus et al., 2019) as scalarization rule. Most variants seem capable to reach or sometimes beat the
baseline which is MMD.

We believe the theoretical results can be extended to other base divergences. Moreover, although
we specialized our discussion of MMD to a single kernel, this choice could be generalized. We
are far from having explored the full potential of slicing, which has seen many improvements and
suggestions over the years (Kolouri et al., 2019a; Rowland et al., 2019b). Some of these, such as
amortization techniques for max-slicing optimization (Nguyen et al., 2020a), might further benefit
the methods we proposed while preserving contraction guarantees. Finally, true multi-objective
control has been outside the scope of this work, but a natural application would be to learn control
policies across several scalarization rules.
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Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
449–458. PMLR, 06–11 Aug 2017a. URL https://proceedings.mlr.press/v70/
bellemare17a.html.

Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
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A SPECIFIC PROBLEM EXAMPLES

A.1 MULTIHORIZON RL AND DISTRIBUTIONAL GENERALIZATION

The work of Fedus et al. (2019) instantiates the idea of multihorizon reinforcement learning: in-
stead of a single discount factor γ, the agent simultaneously learns value functions over a family
of discounts {γi}di=1. This multihead architecture provides auxiliary benefits and can approximate
non-exponential discounting schemes such as hyperbolic discounting.

Multihorizon temporal difference. We generalize this approach by introducing a vector of dis-
counted returns. Concretely, let Γ = diag(γ1, . . . , γd) be a diagonal matrix of discount factors. The
expected multihorizon value is

Qπ(s, a) = E

[ ∞∑
t=0

( t∏
k=1

Γ
)
Rt

∣∣∣∣∣ S0 = s,A0 = a

]
,

where the product of diagonal matrices
∏t

k=1 Γ = Γt simply raises each γj to the t-th power. The
corresponding Bellman operator is

(T πQ)(s, a) = R(s, a) + ΓES′,A′ [Q(S′, A′) ],

with Γ a diagonal matrix. This formulation makes explicit that each component corresponds to a
distinct effective horizon, while being learned jointly.

Distributional multihorizon returns. We further lift this idea to the distributional setting. Let
Zπ(s, a) denote the full random return vector,

Zπ(s, a)
D
= R(s, a) + ΓZπ(S′, A′), A′ ∼ π(·|S′), S′ ∼ P (·|s, a).

Here Γ remains diagonal, and the recursion models the entire vector distribution rather than only its
expectation. This connects multi-horizon temporal-difference learning with distributional RL.

Scalarization rule. We scalarize the multihorizon estimates via a hyperbolic weighting over ex-
ponentially discounted heads. For k > 0, let w(γ) = 1

k γ1/k−1 on γ ∈ (0, 1]. Define the hyperbolic
scalar value

Qπ
hyp(s, a) =

∫ 1

0

w(γ)Qπ
γ (s, a) dγ,

and its practical Riemann approximation over a grid G = {γ0 < · · · < γn}:

Q̂π
hyp(s, a) =

n−1∑
i=0

(
γi+1 − γi

)
w(γi)Q

π
γi
(s, a).

Implementation with an N -head critic. We fix a grid G of size N and train a critic with N outputs,
where head i uses the exponential Bellman discount (γi)k and estimates Qπ

(γi)k
(s, a). The scalarized

value is then the left Riemann sum over the integration variable γ:

Q̂π
hyp(s, a) =

n−1∑
i=0

(
γi+1 − γi

)
Qπ

(γi)k
(s, a),

At the distributional level, define

Zπ
hyp(s, a)

D
=

∫ 1

0

w(γ)Zπ
γ (s, a) dγ, Ẑπ

hyp(s, a)
D
=

n−1∑
i=0

(
γi+1 − γi

)
w(γi)Z

π
γi
(s, a).

By linearity of expectation, E[Zπ
hyp(s, a)] = Qπ

hyp(s, a) and E[Ẑπ
hyp(s, a)] = Q̂π

hyp(s, a). In prac-
tice, we use Q̂π

hyp as the scalar critic in the policy-gradient update; for deterministic policies:

∇θJ(θ) ≈ Es

[
∇aQ̂

π
hyp(s, a)

∣∣
a=πθ(s)

∇θπθ(s)
]
.
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A.2 GENERALIZED VALUE FUNCTIONS (GVFS)

GVFs extend value prediction beyond reward by replacing the reward with a generic cumulant and
allowing a state/action/transition–dependent continuation (discount) (Sutton et al., 2011). In our
notation, this is exactly the matrix–discounted setting.

Definition. Let c : S × A → Rd be a (vector) cumulant and let the continuation be a (possibly
dense, time–varying) matrix Γt ∈ Rd×d. The GVF action–value is

Qπ
c (s, a) = E

[ ∞∑
t=0

( t∏
k=1

Γk

)
c(St, At)

∣∣∣∣∣ S0=s,A0=a

]
,

0∏
k=1

Γk := Id.

Bellman form. The corresponding (expected) Bellman operator is
(T π

c Q)(s, a) = c(s, a) + Γ1 ES′,A′ [Q(S′, A′) ] ,

and in the distributional case

(T π
c Z)(s, a)

D
= c(s, a) + Γ1 Z(S′, A′), A′∼π(·|S′), S′∼P (·|s, a).

Cumulants. The cumulant c can represent not only the reward but any signal of interest, such as
state features, event indicators, or sensor readings.

B BASE PROBABILITY DIVERGENCES

B.1 WASSERSTEIN DISTANCE

The Wasserstein distance, arising from optimal transport theory (Villani et al., 2008), provides a
principled way of comparing probability measures by quantifying the minimal cost of transporting
mass from one distribution to another. Let (Rd, d) be a metric space and denote by Pp(Rd) the set of
Borel probability measures with finite p-th moment. For µ, ν ∈ Pp(Rd), the p-Wasserstein distance
is defined as

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

d(x, y)p dπ(x, y)

)1/p

, (16)

where Π(µ, ν) denotes the set of couplings (or transport plans) π whose marginals are µ and ν. When
the underlying measures admit densities Iµ and Iν , we may write Wp(Iµ, Iν) without ambiguity.

Computing Wp directly is challenging in high dimensions, but there are settings where closed-form
expressions exist. In the special case where µ and ν are one-dimensional distributions on a normed
linear space, the Wasserstein distance simplifies to

Wp(µ, ν) =

(∫ 1

0

∣∣F−1
µ (z)− F−1

ν (z)
∣∣p dz)1/p

, (17)

where F−1
µ and F−1

ν are the quantile functions (inverse CDFs) of µ and ν, respectively.

B.1.1 ESTIMATOR

For empirical measures µ̃ = 1
N

∑N
n=1 δxn

and ν̃ = 1
N

∑N
n=1 δyn

in one dimension, Wp can be
computed by sorting the samples and comparing corresponding order statistics (Villani et al., 2008):

Wp(µ̃, ν̃) =

(
1

N

N∑
n=1

∣∣xIx[n] − yIy [n]
∣∣p)1/p

, (18)

where Ix[n] and Iy[n] are the indices that sort {xn} and {yn} in ascending order.

B.1.2 PROPERTIES

Metric It is a classical result that the Wasserstein distances are genuine metrics. In particular,
Proposition 2 in Givens & Shortt (1984) establishes that

Wp is a metric on Pp(R) for every p ∈ [1,∞],

where Pp(R) = {µ ∈ P(R) :
∫
|x|p dµ(x) <∞} for p <∞, and P∞(R) = P(R).
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Translation invariant By definition

Scale-Lipschitz
Proposition 1 (Exact scaling under deterministic multiplication for Wp, p ∈ [1,∞). ]Let(X,∥·∥) be
a normed vector space with metric d(x, y) = ∥x− y∥, let Ss : X → X be the dilation Ss(x) = s x
with s ≥ 0, and let p ∈ [1,∞]. If p <∞, assume µ, ν ∈ Pp(X); if p =∞, assume W∞(µ, ν) <∞
(e.g. µ, ν have compact support). Then

Wp

(
(Ss)#µ, (Ss)#ν

)
= sWp(µ, ν).

Proof. If s = 0 then (S0)#µ = (S0)#ν = δ0, so both sides are 0 and the statement holds. In the
remainder assume s > 0.

Case 1 ≤ p <∞. Define Φs : Π(µ, ν)→ Π
(
(Ss)#µ, (Ss)#ν

)
by

Φs(π) := (Ss × Ss)#π.

Then Φs is a bijection with inverse Φ1/s, since (S1/s)#(Ss)#µ = µ and similarly for ν. Therefore,

Wp

(
(Ss)#µ, (Ss)#ν

)p
= inf

π′∈Π((Ss)#µ,(Ss)#ν)

∫
d(u, v)p dπ′(u, v)

= inf
π∈Π(µ,ν)

∫
d
(
Ssx, Ssy

)p
dπ(x, y)

= inf
π∈Π(µ,ν)

sp
∫

d(x, y)p dπ(x, y)

= sp Wp(µ, ν)
p.

Taking pth roots gives the claim for p <∞.

Case p =∞. By definition,

W∞(µ, ν) = inf
π∈Π(µ,ν)

sup
(x,y)∈supp(π)

d(x, y).

As above, Φs is a bijection between Π(µ, ν) and Π
(
(Ss)#µ, (Ss)#ν

)
. Hence

W∞
(
(Ss)#µ, (Ss)#ν

)
= inf

π′∈Π((Ss)#µ,(Ss)#ν)
sup

(u,v)∈supp(π′)

d(u, v)

= inf
π∈Π(µ,ν)

sup
(x,y)∈supp(π)

d
(
Ssx, Ssy

)
= inf

π∈Π(µ,ν)
sup

(x,y)∈supp(π)

s d(x, y)

= sW∞(µ, ν).

This proves the claim for p =∞.

p-convexity
Proposition 2 (Mixture p-convexity for Wp). Let (X, d) be a metric space, p ∈ [1,∞), and let
(Ω,F , ρ) be a probability space. Let (µc)c∈Ω, (νc)c∈Ω ⊂ Pp(X) be measurable families. Then

Wp

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
≤

(∫
Ω

Wp(µc, νc)
p ρ(dc)

)1/p

.

Proof. Step 1: ε-optimal couplings for each c.
Fix ε > 0. For each c ∈ Ω, pick an ε-optimal coupling πε

c ∈ Π(µc, νc) such that∫
X×X

d(x, y)p πε
c(dx, dy) ≤ Wp(µc, νc)

p + ε.
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Step 2: Measurable selection and mixed coupling.
Assume the family (πε

c)c∈Ω can be chosen measurably, so that c 7→ πε
c is a probability kernel. We

then define the mixed coupling

Πε(U) :=

∫
Ω

πε
c(U) ρ(dc), U ⊆ X ×X Borel.

For any measurable A ⊆ X ,

Πε(A×X) =

∫
Ω

πε
c(A×X) ρ(dc) =

∫
Ω

µc(A) ρ(dc) =
(∫

Ω

µc ρ(dc)
)
(A),

and similarly

Πε(X ×A) =

∫
Ω

πε
c(X ×A) ρ(dc) =

∫
Ω

νc(A) ρ(dc) =
(∫

Ω

νc ρ(dc)
)
(A).

Hence Πε has the mixed marginals
∫
Ω
µc ρ(dc) and

∫
Ω
νc ρ(dc), i.e.

Πε ∈ Π
(∫

Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
.

Step 3: Bound the transport cost of the mixed coupling.
Since (c, x, y) 7→ d(x, y)p is nonnegative and measurable and c 7→ πε

c is a probability kernel,
Tonelli’s theorem allows us to exchange the order of integration in (c, x, y):∫

X×X

d(x, y)p Πε(dx, dy) =

∫
X×X

d(x, y)p
(∫

Ω

πε
c(dx, dy) ρ(dc)

)
=

∫
Ω

(∫
X×X

d(x, y)p πε
c(dx, dy)

)
ρ(dc)

≤
∫
Ω

(
Wp(µc, νc)

p + ε
)
ρ(dc)

=

∫
Ω

Wp(µc, νc)
p ρ(dc) + ε.

Step 4: Take the infimum over couplings and pass to the limit.
By definition of Wp,

Wp

(∫
µc dρ,

∫
νc dρ

)p
≤
∫
X×X

d(x, y)p Πε(dx, dy) ≤
∫
Ω

Wp(µc, νc)
p ρ(dc) + ε.

Taking pth roots and letting ε ↓ 0 yields

Wp

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
≤

(∫
Ω

Wp(µc, νc)
p ρ(dc)

)1/p

.

B.2 THE ℓp–FAMILY OF CDF DISTANCES ON R

Let µ, ν ∈ P(R) be probability measures with cumulative distribution functions (CDFs) Fµ, Fν .
For p ∈ [1,∞), the ℓp distance between µ and ν is defined as

ℓp(µ, ν) :=

(∫ ∞

−∞

∣∣Fµ(t)− Fν(t)
∣∣p dt)1/p

= ∥Fµ − Fν∥Lp(R),

that is, the ℓp–family can be seen as the Lp norm between the two CDFs (Bellemare et al., 2017b).
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Connections to other distances

• Wasserstein distance. For p = 1, one recovers the 1–Wasserstein distance (Bellemare
et al., 2017b):

ℓ1(µ, ν) = W1(µ, ν) =

∫ 1

0

∣∣F−1
µ (u)− F−1

ν (u)
∣∣ du.

Thus, ℓ1 coincides with the classical earth mover’s distance on R.
• Cramér distance. For p = 2, the squared ℓ2 distance coincides with the Cramér distance

(Bellemare et al., 2017b):

ℓ22(µ, ν) =

∫ ∞

−∞

(
Fµ(t)− Fν(t)

)2
dt,

which also admits the energy distance form

ℓ22(µ, ν) = E|X − Y | − 1
2E|X −X ′| − 1

2E|Y − Y ′|,
for X,X ′∼µ and Y, Y ′∼ν i.i.d.

B.2.1 ESTIMATOR

For empirical measures µ̃ = 1
n

∑n
i=1 δui

and ν̃ = 1
m

∑m
j=1 δvj in one dimension, the ℓp CDF

distance (Cramér when p = 2) admits a closed form: after merging and sorting all samples, one
tracks the cumulative difference of the two empirical CDFs, which is piecewise constant between
successive breakpoints. The distance then reduces to a weighted sum of gap lengths multiplied by
the corresponding powers of this difference.

ℓpp(µ̃, ν̃) =

K−1∑
k=1

(tk+1 − tk) |∆k|p.

Algorithmically, the estimator amounts to sorting the combined samples once, tracking the cumula-
tive difference of the two empirical CDFs, and summing the piecewise contributions. This requires
O((n+m) log(n+m)) time for sorting and linear time for the scan.

B.2.2 PROPERTIES

Metric
Proposition 3 (Metric property of the ℓp CDF distance). Let µ, ν ∈ P(R) have CDFs Fµ, Fν . For
p ∈ [1,∞) define

ℓp(µ, ν) :=
∥∥Fµ − Fν

∥∥
Lp(R) =

(∫
R

∣∣Fµ(t)− Fν(t)
∣∣p dt)1/p.

Let P1(R) := {ξ ∈ P(R) :
∫
R |x| dξ(x) <∞}. Then for every p ∈ [1,∞), ℓp is a metric on P1(R).

Proof. Finiteness on P1(R).
In one dimension, ℓ1(µ, ν) =

∫
R |Fµ − Fν | dt = W1(µ, ν), hence ℓ1(µ, ν) <∞ for µ, ν ∈ P1(R).

For p > 1, since 0 ≤ |Fµ − Fν | ≤ 1,

ℓp(µ, ν)
p =

∫
|Fµ − Fν |p dt ≤

∫
|Fµ − Fν | dt = ℓ1(µ, ν) <∞.

Nonnegativity and symmetry.
By definition, ℓp(µ, ν) = ∥Fµ − Fν∥Lp ≥ 0 and ℓp(µ, ν) = ∥Fµ − Fν∥Lp = ∥Fν − Fµ∥Lp =
ℓp(ν, µ).

Identity of indiscernibles.
If ℓp(µ, ν) = 0, that means ∫

|Fµ(x)− Fν(x)|p dx = 0.
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An Lp norm is zero iff the functions are equal almost everywhere. So Fµ = Fν except maybe on
a measure zero set. Now, CDFs are monotone and right–continuous. Such functions cannot differ
only on a measure zero set, if they are different at one point, they must differ on an interval of
positive length. So “equal almost everywhere” forces them to be equal everywhere. If the CDFs are
identical, then the distributions are the same.

Triangle inequality.
We use Minkowski’s inequality in Lp(R). Writing Fµ − Fλ = (Fµ − Fν) + (Fν − Fλ), we obtain

ℓp(µ, λ) = ∥Fµ − Fλ∥Lp

= ∥(Fµ − Fν) + (Fν − Fλ)∥Lp

≤ ∥Fµ − Fν∥Lp + ∥Fν − Fλ∥Lp . (Minkowski)

Therefore ℓp(µ, λ) ≤ ℓp(µ, ν) + ℓp(ν, λ).

Translation invariant By non-trivial arguments (see Theorem 2 in Bellemare et al. (2017b) and
Proposition 3.2 in Odin & Charpentier (2020)), the ℓp distance is invariant under translations: for all
µ, ν ∈ P1(R) and every t ∈ R,

ℓp
(
(Tt)#µ, (Tt)#ν

)
= ℓp(µ, ν), Tt(x) = x+ t.

Scale-Lipschitz
Proposition 4 (Scale–Lipschitz property of the ℓp CDF distance). Let µ, ν ∈ P1(R) have CDFs
Fµ, Fν . For p ∈ [1,∞) and Ss(x) = s x with s ≥ 0, the ℓp distance satisfies

ℓp
(
(Ss)#µ, (Ss)#ν

)
≤ c(s) ℓp(µ, ν), c(s) := s1/p.

Proof. Scale–sensitivity via change of variables.
Let γ ∈ R∗. Using F(Sγ)#µ(x) = Fµ(x/γ), we compute

ℓp
(
(Sγ)#µ, (Sγ)#ν

)
=

(∫
R

∣∣Fµ(x/γ)− Fν(x/γ)
∣∣p dx)1/p

=

(∫
R

∣∣Fµ(u)− Fν(u)
∣∣p |γ| du)1/p

(C.V. u = x/γ)

= |γ|1/p
(∫

R

∣∣Fµ(u)− Fν(u)
∣∣p du)1/p

= |γ|1/p ℓp(µ, ν).

Conclusion (Scale–Lipschitz).
For s ≥ 0, the above identity gives

ℓp
(
(Ss)#µ, (Ss)#ν

)
= s1/p ℓp(µ, ν) ≤ c(s) ℓp(µ, ν) with c(s) := s1/p,

which is the desired scale–Lipschitz property.

p-convexity
Proposition 5 (Mixture p-convexity for ℓp (integral form)). Let (Ω,F , ρ) be a probability space,
p ∈ [1,∞), and let (µc)c∈Ω, (νc)c∈Ω ⊂ P1(R) be measurable families with CDFs (Fµc

), (Fνc
).

Then

ℓp

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
≤

(∫
Ω

ℓp(µc, νc)
p ρ(dc)

)1/p

.
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Proof. CDF linearity under mixtures.
For every x ∈ R,

F∫
µc dρ(x) =

∫
Ω

Fµc
(x) ρ(dc), F∫

νc dρ(x) =

∫
Ω

Fνc
(x) ρ(dc).

Hence
F∫

µc dρ(x)− F∫
νc dρ(x) =

∫
Ω

(
Fµc(x)− Fνc(x)

)
ρ(dc). (19)

Jensen inside the x–integral.
Since | · |p is convex and ρ is a probability measure,∣∣∣ ∫

Ω

(
Fµc

(x)− Fνc
(x)
)
ρ(dc)

∣∣∣p ≤ ∫
Ω

∣∣Fµc
(x)− Fνc

(x)
∣∣p ρ(dc) (Jensen on Ω).

Integrate over x and swap the order.
Therefore

ℓp

(∫
µc dρ,

∫
νc dρ

)p
=

∫
R

∣∣F∫
µc dρ(x)− F∫

νc dρ(x)
∣∣p dx (def. of ℓp)

=

∫
R

∣∣∣ ∫
Ω

(
Fµc

(x)− Fνc
(x)
)
ρ(dc)

∣∣∣p dx (by equation 19)

≤
∫
R

∫
Ω

∣∣Fµc(x)− Fνc(x)
∣∣p ρ(dc) dx (Jensen on Ω)

=

∫
Ω

∫
R

∣∣Fµc
(x)− Fνc

(x)
∣∣p dx ρ(dc) (Fubini–Tonelli)

=

∫
Ω

ℓp(µc, νc)
p ρ(dc).

Taking the p-th root yields the claim.

B.3 MMD

The Maximum Mean Discrepancy (MMD) is a kernel-based discrepancy that measures how far apart
two probability laws are in a reproducing kernel Hilbert space (RKHS)H. Given a symmetric kernel
k : X ×X → R with feature map ϕ(x) = k(x, ·), each distribution admits a mean embedding inH:

µP =

∫
X

ϕ(x) dP (x), µQ =

∫
X

ϕ(x) dQ(x).

The distance between these embeddings defines

MMDk(P,Q) = ∥µP − µQ∥H.

Its square can be expanded in terms of expectations of the kernel:

MMD2
k(P,Q) = ∥µP − µQ∥2H (20)

=

∫∫
k(x, x′) dP (x) dP (x′) +

∫∫
k(y, y′) dQ(y) dQ(y′)

− 2

∫∫
k(x, y) dP (x) dQ(y).

Definition 2 (Conditionally positive definite (CPD) kernel — integral form). Let X be a measurable
space and let k : X ×X → R be symmetric. We say that k is conditionally positive definite (CPD)
if ∫∫

X×X

k(x, x′) dµ(x) dµ(x′) ≥ 0 for all finite signed measures µ on X with µ(X) = 0.

If the inequality is strict for every nonzero such µ, then k is conditionally strictly positive definite
(CSPD).
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B.3.1 ESTIMATOR

The MMD can be approximated from samples in two standard ways, both originating from Gretton
et al. (2012). Given two sets of m samples {xi}mi=1 ∼ P and {yi}mi=1 ∼ Q, the biased estimator is

M̂MD
2

b =
1

m2

m∑
i,j=1

k(xi, xj) +
1

m2

m∑
i,j=1

k(yi, yj)−
2

m2

m∑
i,j=1

k(xi, yj). (21)

while the unbiased estimator excludes diagonal terms:

M̂MD
2

u =
1

m(m− 1)

m∑
i,j=1
i̸=j

k(xi, xj) +
1

m(m− 1)

m∑
i,j=1
i ̸=j

k(yi, yj)−
2

m2

m∑
i,j=1

k(xi, yj). (22)

Although the unbiased form eliminates a small finite-sample bias, the biased estimator is often
preferred in practice. In particular, applications of MMD to distributional RL (Nguyen et al.,
2020b; Killingberg & Langseth, 2023b) consistently rely on the biased version due to its lower
variance and greater numerical stability during training.

B.3.2 PROPERTIES

Metric
Proposition 6 (Equivalence of γk and RKHS–MMD for CPD kernels). Let k : X × X → R be
conditionally positive definite (CPD) and define

ρk(x, y) := k(x, x) + k(y, y)− 2k(x, y).

Fix z0 ∈ X and set the distance–induced (one–point centered) kernel

k◦(x, y) := 1
2

[
ρk(x, z0) + ρk(y, z0)− ρk(x, y)

]
= k(x, y)− k(x, z0)− k(z0, y) + k(z0, z0).

Then k◦ is positive definite and admits an RKHSHk◦ . For any P,Q with finite integrals,

γk(P,Q)2 :=

∫∫
k(x, y) d(P −Q)(x) d(P −Q)(y)

=

∫∫
k◦(x, y) d(P −Q)(x) d(P −Q)(y)

=
∥∥µk◦(P )− µk◦(Q)

∥∥2
Hk◦

= MMDk◦(P,Q)2.

Justification. This follows from the distance–induced kernel construction and equivalence results in
Sejdinovic et al. (2013).
Proposition 7 (MMD as a Metric on P(X)). Let k : X ×X → R be a symmetric kernel. We say
that MMDk defines a metric on P(X) iff k is conditionally strictly positive definite (CSPD), i.e.,
for every nonzero finite signed Borel measure ν with ν(X) = 0,∫∫

X×X

k(x, y) dν(x) dν(y) > 0.

Then MMDk satisfies the metric axioms on P(X):

1. Nonnegativity: MMDk(P,Q) ≥ 0.

2. Symmetry: MMDk(P,Q) = MMDk(Q,P ).

3. Identity of indiscernibles: MMDk(P,Q) = 0⇒ P = Q.

4. Triangle inequality: for any P,Q,R ∈ P(X), MMDk(P,Q) ≤ MMDk(P,R) +
MMDk(R,Q).

Justification. This is the standard correspondence between negative-type distances, distance-
induced kernels, and RKHS MMD metrics as outlined in Sejdinovic et al. (2013).
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Scale-Lipschitz
Proposition 8 (Scale–Lipschitz property of (squared) MMD with MQ kernel). Let kh(x, y) =

−
√

1 + h2∥x− y∥2 with h > 0.

For probability measures µ, ν on Rd with finite second moments, define the population MMD2 by
MMD2

kh
(µ, ν) = E kh(X,X ′) + E kh(Y, Y

′)− 2E kh(X,Y ),

for X,X ′∼ µ i.i.d. and Y, Y ′∼ ν i.i.d.

For the scaling map Ss : x 7→ sx with s ≥ 0, we have
MMD2

kh

(
(Ss)#µ, (Ss)#ν

)
≤ c2(s)MMD2

kh
(µ, ν), c2(s) := max{ s, s2 }.

Consequently, the (unsquared) MMD satisfies
MMDkh

(
(Ss)#µ, (Ss)#ν

)
≤ c1(s)MMDkh

(µ, ν), c1(s) := max{
√
s, s }.

In particular, for s < 1 the map Ss is a contraction for both MMD2
kh

and MMDkh
.

Proof. Set
ϕ(r) =

√
1 + h2r2.

With this notation,
MMD2

kh
(µ, ν) = 2Eϕ(∥X − Y ∥)− Eϕ(∥X −X ′∥)− Eϕ(∥Y − Y ′∥).

When 0 ≤ s ≤ 1, note that ϕ(0) = 1 and ϕ is convex, as we have

ϕ′(r) = h2r√
1+h2r2

, ϕ′′(r) = h2

(1+h2r2)3/2
≥ 0.

By convexity, for any a, b ∈ R and s ∈ [0, 1],
ϕ((1− s)a+ sb) ≤ (1− s)ϕ(a) + sϕ(b).

Taking a = 0, b = r, and recalling ϕ(0) = 1, this gives
ϕ(sr) ≤ (1− s) + s ϕ(r), 0 ≤ s ≤ 1.

Applying this inequality inside each expectation, the constants cancel in the linear combination since
(2− 1− 1)(1− s) = 0. Therefore

MMD2
kh

(
(Ss)#µ, (Ss)#ν

)
≤ sMMD2

kh
(µ, ν).

When s ≥ 1, consider f(u) =
√
1 + h2u for u ≥ 0; it is concave as

f ′(u) = h2

2
√
1+h2u

, f ′′(u) = − h4

4(1+h2u)3/2
≤ 0.

By definition, ϕ(r) = f(r2). For any u ≥ 0 and λ ≥ 1, concavity gives

f(u) = f
(
(1− 1

λ ) · 0 +
1
λ · (λu)

)
≥ (1− 1

λ ) f(0) +
1
λ f(λu),

hence
f(λu) ≤ λf(u)− (λ− 1)f(0).

Taking u = r2, λ = s2, and recalling that f(0) = 1, we obtain

ϕ(sr) =
√
1 + h2s2r2 ≤ s2ϕ(r)− (s2 − 1).

Again inserting this inequality into the definition of MMD2, the constants cancel as before, and we
obtain

MMD2
kh

(
(Ss)#µ, (Ss)#ν

)
≤ s2 MMD2

kh
(µ, ν).

Combining both cases, the multiplicative factor is s for 0 ≤ s ≤ 1 and s2 for s ≥ 1. Hence
c2(s) = max{s, s2}.

Taking square roots gives the corresponding bound for the unsquared MMD,
c1(s) = max{

√
s, s}.
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p-convexity
Proposition 9 (Mixture p–convexity of MMDk in an RKHS). Let k : X ×X → R be a symmetric
positive–semidefinite reproducing kernel with RKHS (H, ⟨·, ·⟩) and feature map ϕ(x) = k(x, ·). Let
(Ω,F , ρ) be a probability space, and let (µc)c∈Ω and (νc)c∈Ω be measurable families of probability
measures on X for which the mean embeddings µµc :=

∫
X
ϕdµc and µνc :=

∫
X
ϕdνc exist in

H. Define the mixtures µ̄ :=
∫
Ω
µc ρ(dc) and ν̄ :=

∫
Ω
νc ρ(dc). Assume all mean embeddings and

integrals below are well defined. Then for every p ≥ 1,

MMDk(µ̄, ν̄) ≤
(∫

Ω

MMDk(µc, νc)
p ρ(dc)

)1/p
.

Proof. By linearity of mean embeddings,

µµ̄ =

∫
Ω

µµc ρ(dc), µν̄ =

∫
Ω

µνc ρ(dc),

where µµc
=
∫
X
ϕ(x) dµc(x) and µνc

=
∫
X
ϕ(x) dνc(x) are elements ofH. Thus,

µµ̄ − µν̄ =

∫
Ω

v(c) ρ(dc), v(c) := µµc
− µνc

∈ H.

Hence

MMDk(µ̄, ν̄) = ∥µµ̄ − µν̄∥H =
∥∥∥∫

Ω

v(c) ρ(dc)
∥∥∥
H

≤
∫
Ω

∥v(c)∥H ρ(dc) (triangle inequality inH)

≤
(∫

Ω

∥v(c)∥pH ρ(dc)
)1/p

(L1 ≤ Lp on a probability space).

Finally, ∥v(c)∥H = ∥µµc − µνc∥H = MMDk(µc, νc), which gives the claim.

Proposition 10 (Mixture p–convexity for CPD kernels via the distance–induced RKHS). Let k :
X×X → R be conditionally positive definite (CPD) and let k◦ be the associated distance–induced
(one–point centered) kernel from Proposition 6, so that for all probabilities P,Q with finite integrals,

γk(P,Q) = MMDk◦(P,Q).

Let (Ω,F , ρ) be a probability space, and let (µc)c∈Ω and (νc)c∈Ω be measurable families of prob-
ability measures on X with finite embeddings for k◦. Define the mixtures µ̄ :=

∫
Ω
µc ρ(dc) and

ν̄ :=
∫
Ω
νc ρ(dc). Then for every p ≥ 1,

γk(µ̄, ν̄) ≤
(∫

Ω

γk(µc, νc)
p ρ(dc)

)1/p
.

Proof. By Proposition 6, γk = MMDk◦ . Applying Lemma 9 to the PSD kernel k◦ and the families
(µc), (νc) yields

MMDk◦(µ̄, ν̄) ≤
(∫

Ω

MMDk◦(µc, νc)
p ρ(dc)

)1/p
.

Replacing MMDk◦ by γk via Proposition 6 gives the claim.

C THEORETICAL RESULTS

C.1 METRIC PROPERTY

Lemma 1 (Basic metric properties of slicing (from Nadjahi et al. (2020))). Let ∆ : P(R)×P(R)→
[0,∞] be a divergence and let p ∈ [1,∞). For µ, ν ∈ P(Rd) define

S∆p
p(µ, ν) =

∫
Sd−1

∆p
(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ),
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where (Pθ)#µ is the pushforward of µ by x 7→ ⟨θ, x⟩ and σ is the uniform measure on Sd−1. This
reproduces Proposition 1 Nadjahi et al. (2020).

Statement. If ∆ is a metric on P(R), then S∆p is a metric on P(Rd). In particular:

• Nonnegativity and symmetry. If ∆ is nonnegative (resp. symmetric) on P(R), then S∆p is
nonnegative (resp. symmetric) on P(Rd).

• Identity of indiscernibles. If ∆(α, β) = 0 iff α = β for α, β ∈ P(R), then S∆p(µ, ν) = 0
iff µ = ν for µ, ν ∈ P(Rd).

• Triangle inequality. If ∆ is a metric on P(R), then S∆p satisfies the triangle inequality
on P(Rd).

Proof (this is a reproduction from Nadjahi et al. (2020), App. A.1). We prove that S∆p satisfies the
three defining properties required for a metric on P(Rd).

Nonnegativity and symmetry.
This is immediate from the definition since the integrand inherits these properties from ∆, and taking
a p-th root preserves them.

Identity of indiscernibles.
We need to show that S∆p(µ, ν) = 0 implies µ = ν. (The converse implication is immediate from
the definition, since if µ = ν then every slice coincides and the integral vanishes.)

(1) Assume S∆p(µ, ν) = 0. Since the integrand is nonnegative, this yields

∆
(
(Pθ)#µ, (Pθ)#ν

)
= 0 for σ-almost every θ ∈ Sd−1.

By the base property of ∆ in one dimension, we obtain

(Pθ)#µ = (Pθ)#ν for σ-almost every θ ∈ Sd−1.

Notation. For a probability measure ξ on Rd, we write ξ̂ for its characteristic function:

ξ̂(z) =

∫
Rd

e i⟨z,x⟩ dξ(x), z ∈ Rd.

(2) By Lemma 4, the one–dimensional pushforward (Pθ)#ξ satisfies

̂(Pθ)#ξ(t) =

∫
R
e itu d

(
(Pθ)#ξ

)
(u) =

∫
Rd

e it⟨θ,x⟩ dξ(x) = ξ̂(tθ), t ∈ R.

Hence (Pθ)#µ = (Pθ)#ν implies

µ̂(tθ) = ν̂(tθ) for σ-almost every θ ∈ Sd−1 and all t ∈ R.

Interpretation. Projecting onto θ in the original space corresponds to restricting µ̂ to the line {tθ :
t ∈ R} in frequency space. Thus the two characteristic functions agree along almost all such lines.

(3) Therefore µ̂ = ν̂ on Rd, and by the injectivity of characteristic functions (distinct measures
cannot share the same characteristic function; see e.g. (Billingsley, 1995, Thm. 26.2)) we conclude
µ = ν.

Triangle inequality.
(iii) Assume that ∆ is a metric on P(R). Let µ, ν, ξ ∈ P(Rd). For every θ ∈ Sd−1, the base triangle
inequality gives

∆
(
(Pθ)#µ, (Pθ)#ν

)
≤ ∆

(
(Pθ)#µ, (Pθ)#ξ

)
+∆

(
(Pθ)#ξ, (Pθ)#ν

)
.

Taking the p-th power and integrating over the sphere yields∫
Sd−1

∆p
(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ) ≤

∫
Sd−1

[
∆
(
(Pθ)#µ, (Pθ)#ξ

)
+∆

(
(Pθ)#ξ, (Pθ)#ν

)]p
dσ(θ).
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Minkowski’s inequality. For p ≥ 1 and measurable f, g on a measure space (X,µ),(∫
X

|f(x) + g(x)|p dµ(x)

)1/p

≤

(∫
X

|f(x)|p dµ(x)

)1/p

+

(∫
X

|g(x)|p dµ(x)

)1/p

.

Using this inequality with X = Sd−1, µ = σ, and

f(θ) = ∆
(
(Pθ)#µ, (Pθ)#ξ

)
, g(θ) = ∆

(
(Pθ)#ξ, (Pθ)#ν

)
,

we obtain
S∆p(µ, ν) ≤ S∆p(µ, ξ) + S∆p(ξ, ν).

Lemma 2 (Max–sliced metric properties). Let ∆ : P(R) × P(R) → [0,∞] be a metric on P(R).
For µ, ν ∈ P(Rd) define

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Then MS∆ is a metric on P(Rd): it is nonnegative and symmetric, satisfies the identity of indis-
cernibles, and obeys the triangle inequality.

Proof. We prove that MS∆ satisfies the three defining properties required for a metric on P(Rd).

Nonnegativity and symmetry. Each slice is nonnegative and symmetric because ∆ is; taking a
supremum preserves both properties.

Identity of indiscernibles. If µ = ν then every slice is equal, so MS∆(µ, ν) = 0. Conversely, if
MS∆(µ, ν) = 0, then

(Pθ)#µ = (Pθ)#ν for all θ ∈ Sd−1.

The argument given in Proposition 1 for the sliced case then applies verbatim, showing that µ = ν.

Triangle inequality. For any θ ∈ Sd−1 and any µ, ν, ξ ∈ P(Rd), the base metric property yields

∆
(
(Pθ)#µ, (Pθ)#ν

)
≤ ∆

(
(Pθ)#µ, (Pθ)#ξ

)
+∆

(
(Pθ)#ξ, (Pθ)#ν

)
.

Taking the supremum over θ on both sides gives

MS∆(µ, ν) ≤ MS∆(µ, ξ) +MS∆(ξ, ν).

All three metric axioms hold; hence MS∆ is a metric on P(Rd).

Lemma 3 (Supremum lift preserves metricity for SPDs and MaxSPDs—follows closely from
Nguyen-Tang et al. (2021), Proposition 1 (Appendix A.1)). Let D be a metric on P(Rd). (In our
use, D will be either the SPD S∆ ρ,p or the MaxSPD MS∆.) Define, for µ, ν : S ×A → P(Rd),

D(µ, ν) := sup
(s,a)∈S×A

D
(
µ(s, a), ν(s, a)

)
.

Then D is a metric on P(Rd)S×A.

Proof. Nonnegativity and symmetry. Since D is nonnegative and symmetric pointwise, the supre-
mum of such quantities preserves these properties. Hence D(µ, ν) ≥ 0 and D(µ, ν) = D(ν, µ).

Identity of indiscernibles. If µ = ν, then every term vanishes and D(µ, ν) = 0. Conversely,
if D(µ, ν) = 0, then D(µ(s, a), ν(s, a)) = 0 for each (s, a), which by metricity of D implies
µ(s, a) = ν(s, a) everywhere, hence µ = ν.
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Triangle inequality. Let µ, ν, η : S ×A → P(Rd). Then

D(µ, ν) = sup
(s,a)

D
(
µ(s, a), ν(s, a)

)
(23)

(a)

≤ sup
(s,a)

{
D
(
µ(s, a), η(s, a)

)
+D

(
η(s, a), ν(s, a)

)}
(24)

(b)

≤ sup
(s,a)

D
(
µ(s, a), η(s, a)

)
+ sup

(s,a)

D
(
η(s, a), ν(s, a)

)
(25)

= D(µ, η) +D(η, ν). (26)

Here (a) is the pointwise triangle inequality for D, and (b) uses sup(A+B) ≤ supA+ supB.

Thus D satisfies all four metric axioms. Specializing D to S∆ ρ,p or MS∆ yields that S∆
ρ,p

and
MS∆ are metrics on P(Rd)S×A.

Theorem 1 (Global metricity of (max-)sliced lifts). Let ∆ be a metric on P(R) and let p ∈ [1,∞).
Let σ denote the uniform probability measure on the unit sphere Sd−1 ⊂ Rd. Define the uniform
sliced divergence

S∆p(µ, ν) :=

(∫
Sd−1

∆p
(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ)

)1/p

,

and the max–sliced divergence

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Then:

1. S∆p is a metric on P(Rd).

2. MS∆ is a metric on P(Rd).

3. For return–distribution functions ηi : S ×A → P(Rd), the supremum lifts

S∆p(η1, η2) := sup
(s,a)

S∆p

(
η1(s, a), η2(s, a)

)
,

and
MS∆(η1, η2) := sup

(s,a)

MS∆
(
η1(s, a), η2(s, a)

)
,

are metrics on P(Rd)S×A.

Proof. (i) is Lemma 1; (ii) is Lemma 2; (iii) follows from Lemma 3 by taking D = S∆p or D =
MS∆.
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C.2 CONTRACTION PROPERTY

Lemma 4 (Push-forward law identity). Let Z be a random variable with distribution µ, and let f
be any measurable function. Then

f#µ = Law
(
f(Z)

)
.

Proof. For any Borel set A,

Pr
(
f(Z) ∈ A

)
= Pr

(
Z ∈ f−1(A)

)
= µ

(
f−1(A)

)
= f#µ(A).

Since this holds for all A, we conclude f#µ = Law(f(Z)).

Lemma 5 (Affine Bellman update = affine pushforward). Fix (s, a). Let C collect all environ-
ment/policy randomness, and let (S′, A′) = g(s, a;C). Let η map each (x, u) to a law η(x, u) on
Rd, and let X ′ ∼ η(S′, A′) (conditionally on C). Given an offset bs,a : supp(C) → Rd and a
measurable matrix map Ls,a : supp(C)→ Rd×d, define

Φs,a(x;C) = bs,a(C) + Ls,a(C)x.

Then
(Tπη)(s, a) = Law

(
Φs,a(X

′;C)
)
.

Proof. Fix a Borel set A ⊂ Rd. Using the definition of pushforward laws,

Pr
(
Φs,a(X

′;C) ∈ A
)
= EC

[
Pr
(
bs,a(C) + Ls,a(C)X ′ ∈ A

∣∣C)]
= EC

[ (
x 7→ bs,a(C) + Ls,a(C)x

)
#
η(S′, A′)(A)

]
.

By definition of the distributional Bellman operator with affine update z 7→ bs,a(C)+Ls,a(C)z and
next index (S′, A′), the right-hand side equals (Tπη)(s, a)(A). Since this holds for all Borel A, the
laws coincide.

C.2.1 UNIVARIATE CASE

Lemma 6 (Univariate affine push-forward contraction). Let ∆ be a metric on P(R). Assume for all
µ, ν ∈ P(R):

(T) Translation non-expansion: for every t ∈ R,

∆
(
(Tt)#µ, (Tt)#ν

)
≤ ∆(µ, ν), Tt(x) = x+ t.

(S) Scale–Lipschitz: there exists a nondecreasing c : [0,∞) → [0,∞) such that for every
s ≥ 0,

∆
(
(x 7→ sx)#µ, (x 7→ sx)#ν

)
≤ c(s)∆(µ, ν).

Let F (x) = t+ γx with arbitrary t ∈ R and the same γ ∈ [0, 1). Then, for all µ, ν ∈ P(R),

∆
(
F#µ, F#ν

)
≤ c(γ)∆(µ, ν)

In particular, if c(γ) < 1, the push-forward F# is a contraction on (P(R),∆).

Proof. Let U ∼ µ and V ∼ ν. By Lemma 4,

∆
(
F#µ, F#ν

)
= ∆

(
Law(t+ γU),Law(t+ γV )

)
.

By (T),
∆
(
Law(t+ γU),Law(t+ γV )

)
≤ ∆

(
Law(γU),Law(γV )

)
.

By (S) with s = γ,

∆
(
Law(γU),Law(γV )

)
≤ c(γ)∆

(
Law(U),Law(V )

)
= c(γ)∆(µ, ν).
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Lemma 7 (Mixture p-convexity ⇒ marginal bound). Let ∆ be a metric on P(Rd) and fix p ∈
[1,∞). Assume ∆ satisfies the mixture p-convexity property:

∆

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

∆(µc, νc)
p ρ(dc)

)1/p

, (27)

for all probability spaces (Ω,F , ρ) and measurable families (µc)c∈Ω, (νc)c∈Ω.

Let C be a random variable with law ρ and let Z1, Z2 be Rd-valued random variables. If

sup
c∈Ω

∆
(
Law(Z1 | C = c), Law(Z2 | C = c)

)
≤ δ,

then
∆
(
Law(Z1), Law(Z2)

)
≤ δ.

Proof. Set µc := Law(Z1 | C = c) and νc := Law(Z2 | C = c). By the law of total probability,

Law(Z1) =

∫
Ω

µc ρ(dc), Law(Z2) =

∫
Ω

νc ρ(dc).

Define f(c) := ∆(µc, νc) ≥ 0. The hypothesis gives the pointwise bound f(c) ≤ δ for all c ∈ Ω.
Applying equation 27 and then monotonicity of the integral,

∆
(
Law(Z1),Law(Z2)

)
≤
(∫

Ω

f(c)p ρ(dc)
)1/p

≤
(∫

Ω

δp ρ(dc)
)1/p

= δ.

Theorem 2 (Supremum-∆ contraction of the univariate distributional Bellman operator). This
proposition slightly generalizes Theorem 4.25 of Bellemare et al. (2023a).

Let ∆ be a metric on P(R) and define

∆̄(η1, η2) := sup
(s,a)

∆
(
η1(s, a), η2(s, a)

)
, ηi : S ×A → P(R).

Assume ∆ satisfies:

(T) Translation nonexpansion: ∆
(
(Tt)#µ, (Tt)#ν

)
≤ ∆(µ, ν) for all t ∈ R.

(S) Scale–Lipschitz: there exists a nondecreasing c : [0,∞) → [0,∞) such that for every
s ≥ 0,

∆
(
(x 7→ sx)#µ, (x 7→ sx)#ν

)
≤ c(s)∆(µ, ν).

(Mp) Mixture p-convexity: for some p ∈ [1,∞) and all probability spaces (Ω,F , ρ) and mea-
surable families (µc), (νc) ⊂ P(R),

∆
(∫

Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
≤
(∫

Ω

∆(µc, νc)
p ρ(dc)

)1/p
.

For each (s, a), let C be a random element, set (S′, A′) = g(s, a;C), and let bs,a : supp(C) → R
be measurable. Define

(Tπη)(s, a) := Law
(
bs,a(C) + γX ′), X ′ ∼ η(S′, A′) conditionally on C.

Then, for all η1, η2,

∆̄
(
Tπη1, T

πη2
)
≤ c(γ) ∆̄

(
η1, η2

)
.

In particular, if c(γ) < 1, the operator Tπ is a contraction on (S ×A → P(R), ∆̄).
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Proof. By definition,

∆̄
(
Tπη1, T

πη2
)
= sup

(s,a)

∆
(
(Tπη1)(s, a), (T

πη2)(s, a)
)
.

Fix (s, a). Let Zi := bs,a(C) + γX ′
i where, conditionally on C, X ′

i ∼ ηi(S
′, A′) and (S′, A′) =

g(s, a;C). By the push-forward law identity (Lemma 4),

(Tπηi)(s, a) = Law(Zi), Law(X ′
i | C) = ηi(S

′, A′).

Condition on C and define Φs,a(·;C) : x 7→ bs,a(C) + γx. By the univariate affine push-forward
contraction (Lemma 6, using (T) and (S)),

∆
(
Law(Z1 | C), Law(Z2 | C)

)
≤ c(γ)∆

(
Law(X ′

1 | C), Law(X ′
2 | C)

)
= c(γ)∆

(
η1(S

′, A′), η2(S
′, A′)

)
.

Apply mixture p-convexity (assumption (Mp)) to the conditional laws and then Lemma 7 (with the
pointwise bound ∆(Law(Z1 | C),Law(Z2 | C)) ≤ c(γ)∆(η1(S

′, A′), η2(S
′, A′))):

∆
(
Law(Z1), Law(Z2)

)
≤
(
E
[
∆
(
Law(Z1 | C),Law(Z2 | C)

)p])1/p
≤ c(γ)

(
E
[
∆
(
η1(S

′, A′), η2(S
′, A′)

)p])1/p
≤ c(γ) ∆̄(η1, η2).

Therefore,
∆
(
(Tπη1)(s, a), (T

πη2)(s, a)
)
≤ c(γ) ∆̄(η1, η2).

Taking the supremum over (s, a) yields the stated bound.
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C.2.2 UNIFORM SLICING

Lemma 8 (Sliced affine push-forward contraction — scaled orthogonal case). Let ∆ be a divergence
on P(R). Assume that for all α, β ∈ P(R) the following hold:

(T) Translation nonexpansion: for every t ∈ R,

∆
(
(x 7→ x+ t)#α, (x 7→ x+ t)#β

)
= ∆(α, β).

(S) Scale–Lipschitz: there exists a nondecreasing c : [0,∞) → [0,∞) such that for every
s ≥ 0,

∆
(
(x 7→ sx)#µ, (x 7→ sx)#ν

)
≤ c(s)∆(µ, ν).

For σ a rotation-invariant probability measure on Sd−1 and q ∈ [1,∞), define the sliced lift

S∆q(µ, ν) :=
(∫

Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)q
dσ(θ)

)1/q
, Pθ(x) = ⟨θ, x⟩.

Let F (x) = Ax+b with A = γO where O is orthogonal and γ ∈ [0, 1). Then, for all µ, ν ∈ P(Rd),

S∆q

(
F#µ, F#ν

)
≤ c(γ)S∆q(µ, ν).

In particular, if c(γ) < 1, the push-forward F# is a contraction on (P(Rd),S∆q).

Proof. Fix θ ∈ Sd−1 and let ϕθ := O⊤θ (note ∥ϕθ∥ = 1). For any X ∼ µ and Y ∼ ν,

⟨θ,AX + b⟩ = ⟨θ, b⟩+ γ ⟨O⊤θ,X⟩ = ⟨θ, b⟩+ γ ⟨ϕθ, X⟩,
and similarly for Y . By (T),

∆(Law(⟨θ,AX+b⟩), Law(⟨θ,AY+b⟩)) ≤ ∆(Law(γ⟨ϕθ, X⟩), Law(γ⟨ϕθ, Y ⟩)) .
By (S) with s = γ,

∆(Law(γ⟨ϕθ, X⟩), Law(γ⟨ϕθ, Y ⟩)) ≤ c(γ)∆(Law(⟨ϕθ, X⟩), Law(⟨ϕθ, Y ⟩)) . (⋆)

Raise (⋆) to the q-th power and integrate over θ ∼ σ:∫
∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)q
dσ(θ) ≤ c(γ)q

∫
∆
(
(Pϕθ

)#µ, (Pϕθ
)#ν

)q
dσ(θ).

Since σ is rotation-invariant and ϕθ = O⊤θ, the change of variables ϕ = O⊤θ preserves σ:∫
∆
(
(Pϕθ

)#µ, (Pϕθ
)#ν

)q
dσ(θ) =

∫
∆
(
(Pϕ)#µ, (Pϕ)#ν

)q
dσ(ϕ).

Taking the q-th root yields S∆q(F#µ, F#ν) ≤ c(γ)S∆q(µ, ν).

Lemma 9 (Mixture p-convexity lifts to the sliced divergence). Let ∆ be a divergence on P(R)
satisfying mixture p-convexity: for every probability space (Ω,F , ρ) and measurable families
(µc)c∈Ω, (νc)c∈Ω ⊂ P(R),

∆

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

∆(µc, νc)
p ρ(dc)

)1/p

, p ∈ [1,∞).

Fix any probability measure σ on Sd−1. Define the sliced lift for µ, ν ∈ P(Rd) by

S∆p(µ, ν) :=

(∫
Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)p
σ(dθ)

)1/p

, Pθ(x) = ⟨θ, x⟩.

Then S∆p is mixture p-convex on P(Rd), i.e., for any measurable families (µc)c∈Ω, (νc)c∈Ω ⊂
P(Rd),

S∆p

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

S∆p(µc, νc)
p ρ(dc)

)1/p

.
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Proof. Fix θ ∈ Sd−1 and set µθ
c := (Pθ)#µc, νθc := (Pθ)#νc ∈ P(R). By linearity of pushforward

w.r.t. mixtures,

(Pθ)#

(∫
Ω

µc ρ(dc)

)
=

∫
Ω

µθ
c ρ(dc), (Pθ)#

(∫
Ω

νc ρ(dc)

)
=

∫
Ω

νθc ρ(dc).

Applying mixture p-convexity of ∆ in 1-D at this fixed θ,

∆

(∫
Ω

µθ
c ρ(dc),

∫
Ω

νθc ρ(dc)

)
≤
(∫

Ω

∆(µθ
c , ν

θ
c )

p ρ(dc)
)1/p

.

Raise to the pth power and integrate over θ ∼ σ; Tonelli/Fubini yields∫
Sd−1

∆
(
(Pθ)#

∫
µc dρ, (Pθ)#

∫
νc dρ

)p
σ(dθ)

≤
∫
Ω

(∫
Sd−1

∆
(
(Pθ)#µc, (Pθ)#νc

)p
σ(dθ)

)
ρ(dc).

By the very definition of the sliced divergence,∫
Sd−1

∆
(
(Pθ)#

∫
µc dρ, (Pθ)#

∫
νc dρ

)p
σ(dθ) = S∆p

( ∫
µc dρ,

∫
νc dρ

)p
≤
∫
Ω

(∫
Sd−1

∆
(
(Pθ)#µc, (Pθ)#νc

)p
σ(dθ)

)
ρ(dc)

=

∫
Ω

S∆p(µc, νc)
p ρ(dc).

Taking the pth root gives

S∆p

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

S∆p(µc, νc)
p ρ(dc)

)1/p

.

Theorem 3 (Supremum–sliced contraction of the multivariate distributional Bellman operator
(scaled isometry)). Let ∆ be a divergence on P(R) and let σ be a rotation–invariant probability
measure on Sd−1. The sliced probability divergence S∆p is defined using this fixed slicing measure
σ (cf. Lemma 8). Define

S∆p(η1, η2) := sup
(s,a)

S∆p

(
η1(s, a), η2(s, a)

)
, ηi : S ×A → P(Rd).

Assume ∆ satisfies:

(T) Translation nonexpansion: ∆
(
(x 7→ x+t)#α, (x 7→ x+t)#β

)
≤ ∆(α, β) for all t ∈ R.

(S) Scale–Lipschitz at γ: there exists c : [0,∞)→ [0,∞) such that

∆
(
(x 7→ sx)#α, (x 7→ sx)#β

)
≤ c(s)∆(α, β) for all s ≥ 0,

with some γ ∈ (0, 1) for which c(γ) < 1.

(Mp) Mixture p-convexity: for every probability space (Ω,F , ρ) and measurable families
(αc), (βc) ⊂ P(R),

∆

(∫
µc ρ(dc),

∫
νc ρ(dc)

)
≤
(∫

∆(µc, νc)
p ρ(dc)

)1/p
.

Bellman update (scaled isometry). Fix a state–action pair (s, a). All randomness induced by the
dynamics and the policy is gathered in a single random element C. Once C is realized, it determines
the successor index through a measurable mapping g:

(S′, A′) := g(s, a;C).
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At (s, a) we allow an affine transformation composed of a translation and a rotation scaled by the
discount. The translation is simply a vector that may depend on C; we write

bs,a(C) ∈ Rd.

The rotation may also depend on C: take any Os,a(C) ∈ O(d). The linear part of the update is the
scaled isometry

As,a(C) := γ Os,a(C) (γ ∈ (0, 1)).

Conditioned on C, the “next” sample is drawn from the law at the successor index:

X ′ ∣∣C ∼ η(S′, A′).

The Bellman update at (s, a) is then defined as the push-forward of X ′ by this affine map; equiva-
lently, it is the law of the random vector obtained by translating and rotating–scaling X ′:

(Tπη)(s, a) := Law
(
bs,a(C) +As,a(C)X ′).

Then for all η1, η2,

S∆p

(
Tπη1, T

πη2
)
≤ c(γ) S∆p

(
η1, η2

)
.

In particular, if c(γ) < 1, the operator Tπ is a contraction on
(
S ×A → P(Rd), S∆p

)
.

Proof. Fix (s, a) and condition on C. Define

Φs,a(x;C) := bs,a(C) +As,a(C)x with As,a(C) = γOs,a(C).

By Lemma 5, with Ls,a = As,a(C), the update satisfies

(Tπη)(s, a) = Law
(
Φs,a(X

′;C)
)
.

For X ′
i∼ηi(S

′, A′) (conditionally on C), set

Zi := Φs,a(X
′
i;C).

Affine push-forward at fixed C. By Lemma 8, which itself relies on (T) and (S), pushing forward
any pair of multivariate laws by a map x 7→ b + γOx (translation plus scaled isometry) contracts
the sliced divergence by at most the factor c(γ). Applying this to Law(X ′

i | C) yields. Since
(S′, A′) = g(s, a;C) is fixed once C is given, we have Law(X ′

i | C) = ηi
(
g(s, a;C)

)
= ηi(S

′, A′).
Thus

S∆p

(
Law(Z1 | C), Law(Z2 | C)

)
≤ c(γ)S∆p

(
Law(X ′

1 | C), Law(X ′
2 | C)

)
(28)

= c(γ)S∆p

(
η1
(
S′, A′), η2(S′, A′)). (29)

Averaging over C. Lemma 9 asserts that (Mp) lifts from ∆ to its sliced version. Combining the
mixture p-convexity inequality with the bound valid for each fixed C in equation 28 gives

S∆p

(
Law(Z1), Law(Z2)

)
≤

(∫
S∆p

(
Law(Z1 | C),Law(Z2 | C)

)p
ρ(dC)

)1/p

(30)

≤

(∫ (
c(γ)S∆p

(
η1(S

′, A′), η2(S
′, A′)

))p
ρ(dC)

)1/p

(31)

= c(γ)

(∫
S∆p

(
η1(S

′, A′), η2(S
′, A′)

)p
ρ(dC)

)1/p

. (32)

Supremum bound. For any given realization of C and by definition of the supremum metric,

S∆p

(
η1(S

′, A′), η2(S
′, A′)

)
≤ sup

(s,a)

S∆p

(
η1(s, a), η2(s, a)

)
= S∆p(η1, η2).
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Combining this pointwise bound with the integral inequality obtained above,

S∆p

(
(Tπη1)(s, a), (T

πη2)(s, a)
)
= S∆p

(
Law(Z1), Law(Z2)

)
(33)

≤ c(γ)

(∫
S∆p

(
η1(S

′, A′), η2(S
′, A′)

)p
ρ(dC)

)1/p

(34)

≤ c(γ)

(∫
S∆p(η1, η2)

p ρ(dC)

)1/p

(35)

= c(γ)S∆p(η1, η2). (36)

Taking the supremum over (s, a) yields

S∆p(T
πη1, T

πη2) ≤ c(γ) S∆p(η1, η2).
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C.2.3 MAX SLICING

Lemma 10 (Max–sliced affine push-forward contraction — anisotropic linear case). Let ∆ be a
divergence on P(R). Assume that for all µ, ν ∈ P(R):

(T) Translation non-expansion: for every t ∈ R,

∆
(
(x 7→ x+ t)#µ, (x 7→ x+ t)#ν

)
≤ ∆(µ, ν).

(S) Scale–Lipschitz: there exists a nondecreasing c : [0,∞) → [0,∞) such that for every
s ≥ 0,

∆
(
(x 7→ sx)#µ, (x 7→ sx)#ν

)
≤ c(s)∆(µ, ν).

Define the max–sliced lift of ∆ by

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Let F (x) = Ax + b with an arbitrary matrix A ∈ Rd×d and b ∈ Rd, and denote L := ∥A∥op =
sup∥v∥=1 ∥Av∥. Then, for all µ, ν ∈ P(Rd),

MS∆
(
F#µ, F#ν

)
≤ c(L)MS∆(µ, ν).

Proof. Fix θ ∈ Sd−1 and set wθ := A⊤θ.

Case 1: wθ = 0. Then (Pθ ◦ F )(x) = ⟨θ, b⟩ is constant, hence

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
= 0 (37)

≤ c(0)∆
(
(Pϕ)#µ, (Pϕ)#ν

)
for any unit ϕ, (38)

so the desired bound holds trivially.

Case 2: ∥wθ∥ > 0. Write rθ := ∥wθ∥ and ϕθ := wθ/rθ ∈ Sd−1. For any X ∼ µ and Y ∼ ν,

(Pθ ◦ F )(X) = ⟨θ,AX + b⟩ = ⟨θ, b⟩+ rθ ⟨ϕθ, X⟩,
and similarly for Y . By (T) and (S) we obtain

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
= ∆

(
Law(rθ⟨ϕθ, X⟩), Law(rθ⟨ϕθ, Y ⟩)

)
(39)

≤ c(rθ)∆
(
(Pϕθ

)#µ, (Pϕθ
)#ν

)
. (40)

Taking the supremum. Now take the supremum over θ ∈ Sd−1:

sup
θ

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
≤ sup

θ
c(rθ) sup

ϕ
∆
(
(Pϕ)#µ, (Pϕ)#ν

)
. (41)

Since rθ = ∥A⊤θ∥ ≤ ∥A⊤∥op = ∥A∥op = L and c is nondecreasing,

sup
θ

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
≤ c(L)MS∆(µ, ν). (42)

The left-hand side is exactly MS∆(F#µ, F#ν), which proves the claim.

Lemma 11 (Max–sliced mixture p-convexity). This result is the max–sliced analogue of Lemma 9.

Let ∆ be a divergence on P(R) that is mixture p-convex for some p ∈ [1,∞): for every probability
space (Ω,F , ρ) and measurable families (µc), (νc) ⊂ P(R),

∆

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

∆(µc, νc)
p ρ(dc)

)1/p

.

Define the max–sliced lift on P(Rd) by

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.
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Then MS∆ is also mixture p-convex:

MS∆

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

MS∆(µc, νc)
p ρ(dc)

)1/p

.

Proof. Fix θ ∈ Sd−1 and set

µθ
c := (Pθ)#µc, νθc := (Pθ)#νc ∈ P(R).

Pushforward commutes with mixtures:

(Pθ)#

( ∫
µc dρ

)
=
∫
µθ
c dρ, (Pθ)#

( ∫
νc dρ

)
=
∫
νθc dρ.

By mixture p-convexity of ∆ in one dimension,

∆
(
(Pθ)#

∫
µc dρ, (Pθ)#

∫
νc dρ

)
≤
(∫

∆(µθ
c , ν

θ
c )

p dρ
)1/p

. (43)

Taking the supremum over θ on the left-hand side of equation 43 gives

sup
θ

∆
(
(Pθ)#

∫
µc dρ, (Pθ)#

∫
νc dρ

)
≤ sup

θ

(∫
∆(µθ

c , ν
θ
c )

p dρ
)1/p

. (44)

Define f(θ, c) := ∆(µθ
c , ν

θ
c ) and h(c) := supϕ f(ϕ, c) = MS∆(µc, νc). Since f(θ, c) ≤ h(c)

pointwise in c, we obtain for every θ,(∫
f(θ, c)p dρ(c)

)1/p
≤
(∫

h(c)p dρ(c)
)1/p

.

Taking supθ yields

sup
θ

(∫
∆(µθ

c , ν
θ
c )

p dρ
)1/p

≤
(∫

MS∆(µc, νc)
p dρ

)1/p
. (45)

Combining equation 44 and equation 45 shows

MS∆

(∫
µc dρ,

∫
νc dρ

)
≤

(∫
MS∆(µc, νc)

p ρ(dc)

)1/p

,

as claimed.

Theorem 4 (Supremum–max–sliced contraction of the multivariate distributional Bellman operator
(anisotropic linear map)). Let ∆ be a divergence on P(R) and define the max–sliced lift on P(Rd)
by

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Assume ∆ satisfies:

(T) Translation nonexpansion: ∆
(
(x 7→ x+ t)#µ, (x 7→ x+ t)#ν

)
≤ ∆(µ, ν) for all t ∈ R.

(S) Scale–Lipschitz: there exists a nondecreasing c : [0,∞)→ [0,∞) such that, for all s ≥ 0,

∆
(
(x 7→ sx)#µ, (x 7→ sx)#ν

)
≤ c(s)∆(µ, ν).

(Mp) Mixture p-convexity: for every probability space (Ω,F , ρ0) and measurable families
(µc), (νc) ⊂ P(R),

∆

(∫
µc ρ0(dc),

∫
νc ρ0(dc)

)
≤
(∫

∆(µc, νc)
p ρ0(dc)

)1/p
, p ∈ [1,∞).
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Bellman update (anisotropic linear map). Fix (s, a). Gather all environment/policy randomness
into a single random element C, which determines the successor index through a measurable map-
ping g:

(S′, A′) := g(s, a;C).

At (s, a), apply an affine transformation with a C-dependent translation and an arbitrary C-
dependent linear map:

bs,a(C) ∈ Rd, As,a(C) ∈ Rd×d.

Conditioned on C, the next sample is drawn from the law at the successor index,

X ′ | C ∼ η(S′, A′),

and the Bellman update is the push-forward of X ′ by this affine map:

(Tπη)(s, a) := Law
(
bs,a(C) +As,a(C)X ′).

Define, for each C,
L(C) := ∥As,a(C)∥op,

and the global envelope
L̄ := sup

(s,a)

sup
C

L(C).

Also define the supremum metric

MS∆(η1, η2) := sup
(s,a)

MS∆
(
η1(s, a), η2(s, a)

)
.

Then, for all η1, η2,

MS∆
(
Tπη1, T

πη2
)
≤ c(L̄)MS∆

(
η1, η2

)
.

Proof. Fix (s, a) and condition on C. Set

Φs,a(x;C) := bs,a(C) +As,a(C)x, Zi := Φs,a(X
′
i;C),

with X ′
i | C ∼ ηi(S

′, A′). By Lemma 5,

(Tπηi)(s, a) = Law
(
Φs,a(X

′
i;C)

)
= Law(Zi).

Affine push-forward at fixed C. Applying Lemma 10, which relies on (T) and (S), to the condi-
tional laws Law(X ′

i | C) gives

MS∆
(
Law(Z1 | C), Law(Z2 | C)

)
≤ c
(
L(C)

)
MS∆

(
Law(X ′

1 | C), Law(X ′
2 | C)

)
(46)

= c
(
L(C)

)
MS∆

(
η1(S

′, A′), η2(S
′, A′)

)
. (47)

Averaging over C. Lemma 11, which relies on (Mp), together with equation 46 yields

MS∆
(
Law(Z1), Law(Z2)

)
≤

(∫
MS∆

(
Law(Z1 | C),Law(Z2 | C)

)p
ρ(dC)

)1/p

(48)

≤

(∫ (
c
(
L(C)

)
MS∆

(
η1(S

′, A′), η2(S
′, A′)

))p
ρ(dC)

)1/p

(49)

≤ c(L̄)

(∫
MS∆

(
η1(S

′, A′), η2(S
′, A′)

)p
ρ(dC)

)1/p

, (50)

since c is nondecreasing and L(C) ≤ L̄ for all C.

Supremum bound. For any realization of C, by definition of the supremum metric,

MS∆
(
η1(S

′, A′), η2(S
′, A′)

)
≤ sup

(u,v)

MS∆
(
η1(u, v), η2(u, v)

)
= MS∆(η1, η2).
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Combining this with the previous inequality,

MS∆
(
(Tπη1)(s, a), (T

πη2)(s, a)
)
= MS∆

(
Law(Z1), Law(Z2)

)
(51)

≤ c(L̄)

(∫
MS∆(η1, η2)

p ρ(dC)

)1/p

(52)

= c(L̄)MS∆(η1, η2). (53)

Taking the supremum over (s, a) completes the proof:

MS∆(Tπη1, T
πη2) ≤ c(L̄)MS∆(η1, η2).

Lemma 12 (Fixed-point law of the distributional Bellman operator (general linear discount)). Define
the infinite–horizon return under policy π recursively by

Z(s, a)
d
= Φs,a

(
Z(S′, A′); C

)
,

where C collects the one–step randomness, (S′, A′) = g(s, a;C) is the successor pair, and

Φs,a(x; C) := r(s, a;C) + Γ(s, a;C)x, r(s, a;C) ∈ Rd, Γ(s, a;C) ∈ Rd×d.

Equivalently, along a trajectory (St, At) with one–step randomness (Ct)t≥0, set

rt := r(St, At;Ct), Γt := Γ(St, At;Ct), Π0:t−1 := Γ0Γ1 · · ·Γt−1 (Π0:−1 := Id),

and, whenever the series converges,

Z(s, a) =

∞∑
t=0

Π0:t−1 rt.

Set
ηπ(s, a) := Law

(
Z(s, a)

)
∈ P(Rd).

Tπ η
π = ηπ.

Proof. By definition,

Z(s, a)
d
= Φs,a

(
Z(S′, A′); C

)
, (S′, A′) = g(s, a;C).

Conditioning on C gives
Z(S′, A′)

∣∣C ∼ ηπ(S′, A′).

By the push–forward law (Lemma 4),

Law
(
Z(s, a)

)
= Law

(
Φs,a(X

′;C)
)
, X ′ ∣∣C ∼ ηπ(S′, A′).

By definition of the distributional Bellman operator, (Tπη
π)(s, a) = Law

(
Φs,a(X

′;C)
)
, hence

(Tπη
π)(s, a) = ηπ(s, a) for all (s, a).

Theorem 5 (Convergence of sliced / max–sliced evaluation iterates). Under the conditions of either
Theorem 3 or Theorem 4, let κ denote the corresponding contraction constant (e.g. κ = c(γ) in the
scaled–isometry sliced case, or κ = c(L̄) in the anisotropic max–sliced case), and assume κ < 1.

For any initial return–distribution function η0, define the iteration

ηn+1 = Tπ ηn,

where Tπ is the chosen evaluation operator (sliced TS
π or max–sliced TMS

π ). Then, by Banach’s
fixed-point theorem, the iterates converge to the unique fixed point ηπ (cf. Lemma 12):

S∆
ρ,p(

ηn, η
π
)
≤ κn S∆

ρ,p(
η0, η

π
)
−−−−→
n→∞

0 (sliced case),

and
MS∆

(
ηn, η

π
)
≤ κn MS∆

(
η0, η

π
)
−−−−→
n→∞

0 (max–sliced case).

In particular, ηn → ηπ in the corresponding supremum metric.
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C.3 SAMPLE COMPLEXITY

C.3.1 UNIFORM SLICING

Theorem 6 (Sample complexity of sliced divergences). This is a rewrite of Theorem 5 from Nadjahi
et al. (2020).

Fix p ∈ [1,∞). Let ∆ be a divergence on P(R) and assume there exists a function α(p, n) ≥ 0 such
that for every µ ∈ P(R) with empirical µ̂n,

E
[
∆(µ̂n, µ)

p
]
≤ α(p, n).

For µ, ν ∈ P(Rd), define

S∆p(µ, ν) :=

(∫
Sd−1

∆p
(
(Pθ)#µ, (Pθ)#ν

)
dσ(θ)

)1/p

,

where Pθ(x) = ⟨θ, x⟩ and σ is the uniform probability measure on Sd−1. Then:

(i) For any µ ∈ P(Rd) with empirical µ̂n,

E
∣∣S∆p

p(µ̂n, µ)
∣∣ ≤ α(p, n).

(ii) If ∆ verifies nonnegativity, symmetry, and the triangle inequality on P(R) (hence S∆p ver-
ifies them on P(Rd) by Proposition 1), then for any µ, ν ∈ P(Rd) with empirical measures
µ̂n, ν̂n,

E
∣∣S∆p(µ, ν)− S∆p(µ̂n, ν̂n)

∣∣ ≤ 2α(p, n)1/p.

Proof. (i) One-sample bound for S∆p
p.

E
∣∣S∆p

p(µ̂n, µ)
∣∣ = E

∣∣∣∣∣
∫
Sd−1

∆p
(
(Pθ)#µ̂n, (Pθ)#µ

)
dσ(θ)

∣∣∣∣∣
≤ E

∫
Sd−1

∣∣∆p
(
(Pθ)#µ̂n, (Pθ)#µ

)∣∣ dσ(θ) (triangle inequality for the integral)

=

∫
Sd−1

E
∣∣∆p
(
(Pθ)#µ̂n, (Pθ)#µ

)∣∣ dσ(θ) (Tonelli)

=

∫
Sd−1

E∆p
(
(Pθ)#µ̂n, (Pθ)#µ

)
dσ(θ) (non-negativity)

≤
∫
Sd−1

α(p, n) dσ(θ) = α(p, n).

(ii) Two-sample bound for S∆p. By Proposition 1 (triangle–inequality item), the triangle inequality
for ∆ on P(R) implies that S∆p satisfies the triangle inequality on P(Rd). Hence∣∣S∆p(µ, ν)− S∆p(µ̂n, ν̂n)

∣∣ ≤ ∣∣S∆p(µ̂n, µ)
∣∣+ ∣∣S∆p(ν̂n, ν)

∣∣ (triangle inequality)

= S∆p(µ̂n, µ) + S∆p(ν̂n, ν) (non-negativity).
Taking expectations with respect to the empirical draws (µ̂n, ν̂n),

E
∣∣S∆p(µ, ν)− S∆p(µ̂n, ν̂n)

∣∣ ≤ E
∣∣S∆p(µ̂n, µ)

∣∣ + E
∣∣S∆p(ν̂n, ν)

∣∣.
Since x 7→ x1/p is concave for p ≥ 1, Jensen’s inequality gives

E
∣∣S∆p(µ̂n, µ)

∣∣ ≤ {
E
∣∣S∆p(µ̂n, µ)

∣∣p}1/p =
{
ES∆p

p(µ̂n, µ)
}1/p

,

E
∣∣S∆p(ν̂n, ν)

∣∣ ≤ {
E
∣∣S∆p(ν̂n, ν)

∣∣p}1/p =
{
ES∆p

p(ν̂n, ν)
}1/p

.

Applying the bound from part (i) to both terms,

E
∣∣S∆p(µ, ν)− S∆p(µ̂n, ν̂n)

∣∣ ≤ α(p, n)1/p + α(p, n)1/p = 2α(p, n)1/p.
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C.3.2 MAX SLICING

Lemma 13 (Half–spaces and CDFs of projections). As noted in the proof of Theorem 4 of Nguyen
et al. (2020a), the CDF of a projection can be written as the probability of a half–space.

Let P ∈ P(Rd) and X1, . . . , Xn
iid∼ P , with empirical measure Pn = 1

n

∑n
i=1 δXi

. For θ ∈ Sd−1

and t ∈ R, define the half–space

Hθ,t := {x ∈ Rd : ⟨θ, x⟩ ≤ t}.

We also write Pθ(x) = ⟨θ, x⟩ for the one–dimensional projection map. Then, for all t ∈ R, the CDF
of the projection (Pθ)#P is

Fθ(t) = (Pθ)#P ((−∞, t]) = P (Hθ,t),

while the empirical CDF of the projection (Pθ)#Pn is

Fn,θ(t) = (Pθ)#Pn((−∞, t]) = Pn(Hθ,t) =
1

n

n∑
i=1

1{⟨θ,Xi⟩ ≤ t}.

Proof. By definition of the pushforward, for any Borel A ⊆ R,

(Pθ)#P (A) = P
(
{x ∈ Rd : Pθ(x) ∈ A}

)
.

Taking A = (−∞, t] yields

Fθ(t) = (Pθ)#P ((−∞, t]) = P
(
{x : ⟨θ, x⟩ ≤ t}

)
= P (Hθ,t).

The same argument with P replaced by Pn gives

Fn,θ(t) = (Pθ)#Pn((−∞, t]) = Pn(Hθ,t).

Finally, since Pn is the empirical measure,

Pn(Hθ,t) =
1

n

n∑
i=1

1{⟨θ,Xi⟩ ≤ t}.

Lemma 14 (VC inequality for half–spaces in Rd). Let P ∈ P(Rd), let X1, . . . , Xn
iid∼ P with

empirical measure Pn = 1
n

∑n
i=1 δXi , and let

H =
{
Hθ,t = {x ∈ Rd : ⟨θ, x⟩ ≤ t} : θ ∈ Sd−1, t ∈ R

}
.

Define
Z := sup

H∈H

∣∣Pn(H)− P (H)
∣∣ = sup

θ∈Sd−1, t∈R

∣∣Pn(Hθ,t)− P (Hθ,t)
∣∣.

Then, for any δ ∈ (0, 1),

Pr
(
Z ≤ cn,δ

)
≥ 1− δ, cn,δ :=

√
32

n

(
(d+1) log(n+1) + log

8

δ

)
.

This is the explicit VC bound used in the proof of Theorem 4 of Nguyen et al. (2020a).
Theorem 7 (Max–sliced bound from a 1D CDF control, in expectation). Let P ∈ P(Rd) and

X1, . . . , Xn
iid∼ P with empirical measure Pn = 1

n

∑n
i=1 δXi

. Assume diam(suppP ) ≤ D (so for
every θ, the range of x 7→ ⟨θ, x⟩ over suppP has length ≤ D). Let ∆ be a divergence on P(R)
such that for any one–dimensional laws µ, ν supported on an interval of length ≤ D there exist

α ∈ (0, 1], β ≥ 0, L > 0

with the CDF–dominance inequality

∆(µ, ν) ≤ LDβ ∥Fµ − Fν∥ α
∞. (A)
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Define
MS∆(µ, ν) := sup

θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Then

EMS∆(Pn, P ) = O
(
Dβ
(
d logn

n

)α/2)
.

More precisely, there exists a constant C∆ depending only on L and α such that

EMS∆(Pn, P ) ≤ LDβ

(√
32(d+1) log(n+1)

n + 4
√

32π
n

)α

≤ C∆ Dβ

(√
d log(n+1)

n

)α
.

Proof. Let
Z := sup

θ∈Sd−1, t∈R

∣∣Fn,θ(t)− Fθ(t)
∣∣,

where Lemma 13 identifies Fn,θ(t) = Pn(Hθ,t) and Fθ(t) = P (Hθ,t). By (A), for each θ,

∆
(
(Pθ)#Pn, (Pθ)#P

)
≤ LDβ ∥Fn,θ − Fθ∥α∞,

hence, after taking supθ,
MS∆(Pn, P ) ≤ LDβ Zα.

Taking expectations and using Jensen (concavity of x 7→ xα for α ∈ (0, 1]),

EMS∆(Pn, P ) ≤ LDβ E[Zα] ≤ LDβ (EZ)α.

By Lemma 14, for any δ ∈ (0, 1), Pr(Z ≤ cn,δ) ≥ 1 − δ with cn,δ as stated. Put bn :=√
32(d+1) log(n+1)/n and take δ = 8e−ns2/32 so that cn,δ ≤ bn + s and Pr(Z > bn + s) ≤

8e−ns2/32 for all s ≥ 0. Integrating the tail,

EZ =

∫ ∞

0

Pr(Z > t) dt ≤ bn +

∫ ∞

0

8e−ns2/32 ds = bn + 4
√

32π
n .

Insert this into the previous display and absorb numerical constants into C∆ to obtain the claim.

Corollary 7.1 (Max–sliced W1). If ∆ = W1 (one-dimensional Wasserstein–1), then

EMSW1(Pn, P ) = O
(
D
√

d logn
n

)
.

Proof. By Vallender’s identity (Vallender, 1974), for probability laws α, β on R with CDFs Fα, Fβ ,

W1(α, β) =

∫
R

∣∣Fα(x)− Fβ(x)
∣∣ dx.

If the support of α and β lies within an interval of length D, then∫
R

∣∣Fα(x)− Fβ(x)
∣∣ dx ≤ D ∥Fα − Fβ∥∞.

Hence
W1(α, β) ≤ D ∥Fα − Fβ∥∞,

which verifies condition (A) with (α, β, L) = (1, 1, 1). Applying Theorem 7 concludes the proof.

Corollary 7.2 (Max–sliced Wp for p > 1). Fix p > 1 and ∆ = Wp. Then

EMSWp(Pn, P ) = O
(
D
(
d logn

n

)1/(2p))
.
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Proof. By the 1D quantile representation,

Wp
p(α, β) =

∫ 1

0

∣∣F−1
α (u)− F−1

β (u)
∣∣p du.

If α, β are supported on an interval of length D, then every quantile difference F−1
α (u) − F−1

β (u)

lies in [−D,D]. Hence, for x = F−1
α (u)− F−1

β (u),

|x|p = |x|p−1 |x| ≤ D p−1|x|.

Applying this bound inside the integral gives

Wp
p(α, β) ≤ D p−1

∫ 1

0

∣∣F−1
α (u)− F−1

β (u)
∣∣ du.

The integral on the right is exactly the 1D Wasserstein–1 distance,∫ 1

0

∣∣F−1
α (u)− F−1

β (u)
∣∣ du = W1(α, β).

Hence
Wp

p(α, β) ≤ D p−1 W1(α, β).

By Vallender’s identity (Vallender, 1974) and the support bound of length D, we already established
in Corollary 7.1 that

W1(α, β) ≤ D ∥Fα − Fβ∥∞.

Combining the two inequalities yields

Wp
p(α, β) ≤ D p ∥Fα − Fβ∥∞.

Taking the p-th root finally gives

Wp(α, β) ≤ D ∥Fα − Fβ∥1/p∞ .

Thus condition (A) holds with (α, β, L) = (1/p, 1, 1), and Theorem 7 applies.

Corollary 7.3 (Max–sliced Cramér). Let ∆(α, β) = ∥Fα − Fβ∥L2(R). Then

EMSC2(µ̂n, µ) = O
(√

D
√

d logn
n

)
.

Proof. On an interval of length D, one has ∥ · ∥L2 ≤ D1/2∥ · ∥∞, so (A) holds with (α, β, L) =
(1, 1/2, 1). Applying Theorem 7 yields the result.

C.4 INSTANTIATIONS

C.4.1 WASSERSTEIN

Wasserstein is a metric on Pp(R) (Proposition 2 in Givens & Shortt (1984)). It satisfies (T) as it is
translation invariant, and (S) with c(s) = s due to the exact scaling law

Wp

(
(Ss)#µ, (Ss)#ν

)
= sWp(µ, ν),

as established in Proposition 1. It also satisfies (Mp) by mixture p–convexity (Proposition 2).

Contraction factors. By Theorem 3 with ∆ = Wp (so c(s) = s), the sliced Wasserstein update with
A = γO contracts with factor γ < 1:

SWp

(
Tπη1, T

πη2
)
≤ γ SWp

(
η1, η2

)
.

By Theorem 4, the max–sliced Wasserstein update with a general linear map A contracts with factor
L̄ = sup ∥A∥op, strictly so whenever L̄ < 1:

MSWp

(
Tπη1, T

πη2
)
≤ L̄MSWp

(
η1, η2

)
.
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Sample complexity (uniform slicing). Let p ∈ [1,∞) and assume µ ∈ Pq(Rd) with q > 2p (finite
q-th moment). Let µ̂n be the empirical measure from n samples. Carrying the same steps as in
Corollary 2 of Nadjahi et al. (2020) but in the one-sample setting, and plugging the 1D base bound
from Theorem 1 of Fournier & Guillin (2015), we obtain the dimension–free rate

E[SWp(µ̂n, µ)] = O
(
n−1/(2p)

)
.

Thus, uniform slicing avoids the curse of dimensionality.

Sample complexity (max–sliced). By Theorem 7 and Corollaries 7.1–7.2, for diam(suppµ) ≤ D,

EMSW1(µ̂n, µ) = O
(
D
√

d logn
n

)
, EMSWp(µ̂n, µ) = O

(
D
(
d logn

n

)1/(2p))
(p > 1).

C.4.2 CRAMÉR

Cramér (the L2 distance between CDFs) enjoys all the structural assumptions we require. By Propo-
sition 3, it is a metric. It satisfies (T) by Proposition 2 in Bellemare et al. (2017b) and Proposition 3.2
in Odin & Charpentier (2020), and (S) with c(s) = s1/2 via Proposition 4. It also satisfies (Mp)
(Proposition 5).

Contraction factors. By Theorem 3 with ∆ = C2 (so c(s) = s1/2), the sliced Cramér update with
A = γO contracts with factor γ1/2:

SC2

(
Tπη1, T

πη2
)
≤ γ1/2 SC2

(
η1, η2

)
.

By Theorem 4, the max–sliced Cramér update with a general linear map A contracts with factor
c(L̄) = L̄1/2, strictly so whenever L̄ < 1:

MSC2

(
Tπη1, T

πη2
)
≤ L̄1/2 MSC2

(
η1, η2

)
.

Sample complexity (uniform slicing). For the one–dimensional Cramér distance (the L2–CDF dis-
crepancy), it is standard that

E ∥Fn − F∥L2(F ) = O
(
n−1/2

)
.

Plugging this base rate into Theorem 6 yields the dimension–free bound

E[SC2(µ̂n, µ)] = O
(
n−1/2

)
.

Thus, uniform slicing avoids the curse of dimensionality.

Sample complexity (max–sliced). By Theorem 7 and Corollary 7.3, for diam(suppµ) ≤ D,

E[MSC2(µ̂n, µ)] = O
(√

D
√

d logn
n

)
.

C.4.3 MMD

The Maximum Mean Discrepancy (MMD) with a conditionally strictly positive definite kernel (?Se-
jdinovic et al., 2013) is a valid metric on probability laws. With the multiquadric (MQ) kernel
kh(x, y) = −

√
1 + h2∥x− y∥2, it enjoys all the structural assumptions we require. By Proposi-

tion 6 and Proposition 7, it is a metric. It satisfies (T) since MMD is translation invariant for all
shift–invariant kernels. It satisfies (S) with c(s) = max{

√
s, s} for the MQ kernel (Proposition 8),

reflecting its scale–sensitivity. Finally, it satisfies (Mp) by mixture convexity of RKHS embeddings
(Proposition 9).

Contraction factors. By Theorem 3 with ∆ = MMDkh
and the scale bound

c(s) = max{
√
s, s},

the sliced MMD update with A = γO satisfies

SMMDkh

(
Tπη1, T

πη2
)
≤ c(γ)SMMDkh

(
η1, η2

)
.
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In particular, for scalar discounts γ ∈ (0, 1) we have c(γ) =
√
γ.

By Theorem 4, the max–sliced MMD update with a general linear map A satisfies

MSMMDkh

(
Tπη1, T

πη2
)
≤ c(L̄)MSMMDkh

(
η1, η2

)
, c(L̄) = max{

√
L̄, L̄}.

In particular, under L̄ < 1 this reduces to c(L̄) =
√
L̄.

Sample complexity (uniform slicing). In one dimension, the unbiased empirical MMD (equivalently,
the energy distance) is a U–statistic (Gretton et al., 2012; Sejdinovic et al., 2013), so classical U–
statistic theory yields the standard rate

E[MMDkh
(µ̂n, µ)] = O

(
n−1/2

)
.

Plugging this into Theorem 6 yields the dimension–free bound

E[SMMDkh
(µ̂n, µ)] = O

(
n−1/2

)
.

Thus, uniform slicing avoids the curse of dimensionality.

Sample complexity (max–sliced). We were not able to establish a sharp sample complexity bound
for the max–sliced MMD. Deriving such a result remains an open problem for future work.
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D PSEUDO-CODES

Algorithm 2: Estimation of MS∆ from empirical samples

Input: Empirical samples X = {xi}Ni=1 ⊂ Rd, Y = {yi}Ni=1 ⊂ Rd

Input: Base 1D divergence ∆; gradient steps T ; step size η

Initialize a unit direction: w ∼ N (0, Id); θ ← w/∥w∥ // random unit direction

Project–optimize over directions: for t = 1, . . . , T do
ui ← ⟨θ, xi⟩, vi ← ⟨θ, yi⟩ for i = 1, . . . , N // project to 1D along θ

J(θ)← ∆
(
{ui}Ni=1, {vi}Ni=1

)
// objective to maximize over θ

g ← ∇θJ(θ) // gradient w.r.t. direction
w ← w + η g // ascent step in unconstrained space
θ ← w/∥w∥ // re-normalize onto the unit sphere

θ̄ ← stop grad(θ) // stop gradient on the final direction

Output: M̂S∆(X,Y ) ← ∆
(
{⟨θ̄, xi⟩}Ni=1, {⟨θ̄, yi⟩}Ni=1

)
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E EXPERIMENTAL SETUP

E.1 MULTI-OBJECTIVE ENVIRONMENTS

In MO-Gymnasium (Felten et al., 2023), the reward space is vector-valued. The standard Gym-
nasium (Towers et al., 2024) scalar reward is recovered through a linear scalarization with fixed
weights:

• MO-Humanoid
– Reward space: (rforward, rcontrol)

– Scalarization (Humanoid-v5):

r = 1.25× rforward + 0.1× rcontrol.

• MO-Hopper
– Reward space: (rforward, rheight, rcontrol)

– Scalarization (Hopper-v5):

r = 1.0× rforward + 0.0× rheight + 10−3 × rcontrol.

• MO-Ant
– Reward space: (rx-vel, ry-vel, rcontrol)

– Scalarization (Ant-v5, cost merged):

r = 1.0× rx-vel + 0.0× ry-vel.

• MO-HalfCheetah
– Reward space: (rforward, rcontrol)

– Scalarization (HalfCheetah-v5):

r = 1.0× rforward + 0.1× rcontrol.

• MO-Walker2D
– Reward space: (rforward, rcontrol)

– Scalarization (Walker2d-v5):

r = 1.0× rforward + 10−3 × rcontrol.

• MO-Reacher
– Reward space: (r1, r2, r3, r4) with

ri = 1− 4× ∥finger tip− targeti∥2, i ∈ {1, 2, 3, 4}.

– Scalarization (Reacher-v4):

r = r1 + r2 + r3 + r4.

E.2 MULTI-HORIZON RL

N (heads) k γmax Integral rule

32 0.01 0.997 lower Riemann

Table 2: Hyperparameters for hyperbolic discounting experiments in MuJoCo. We use N parallel
heads trained with Bellman discounts γk

i , where {γi} form a power-law grid up to γmax. The heads
are combined into a hyperbolic Q via a left Riemann sum approximation. We refer to Fedus et al.
(2019) for the meaning of these hyperparameters.

E.3 ARCHITECTURES AND HYPERPARAMETERS

Critic
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Actor

General hyperparameters

F LLM USAGE

We used an LLM-based assistant to support the preparation of this paper. In particular, it was
employed to (i) rephrase draft paragraphs for clarity and suggest alternative framings of related
work, (ii) format proofs, explore directions, and verify intermediate steps, (iii) assist in debugging
code, (iv) suggest LaTeX equation formatting, and (v) help identify relevant theoretical results in
preceding works. All core research contributions, including the development of theoretical results,
algorithms, and experiments, were carried out by the authors.
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