
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNVEILING THE MAGIC OF CODE REASONING
THROUGH REFLECTIVE HYPOTHESIS
DECOMPOSITION AND AMENDMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The reasoning abilities are one of the most enigmatic and captivating aspects of
large language models (LLMs). Numerous studies are dedicated to exploring and
expanding the boundaries of this reasoning capability. However, tasks that em-
body both reasoning and recall characteristics are often overlooked. In this paper,
we introduce such a novel task, code reasoning, to provide a new perspective for
the reasoning abilities of LLMs. We summarize three meta-benchmarks based
on established forms of logical reasoning, and instantiate these into eight specific
benchmark tasks. Our testing on these benchmarks reveals that LLMs continue
to struggle with identifying satisfactory reasoning pathways. Additionally, we
present a new pathway exploration pipeline inspired by human intricate problem-
solving methods. This Reflective Hypothesis Decomposition and Amendment
(RHDA) pipeline consists of the following iterative steps: (1) Proposing potential
hypotheses based on observations and decomposing them; (2) Utilizing tools to
validate hypotheses and reflection outcomes; (3) Revising hypothesis in light of
observations. Our approach effectively mitigates logical chain collapses arising
from forgetting or hallucination issues in multi-step reasoning, resulting in per-
formance gains of up to 3×. Finally, we expanded this pipeline by applying it to
simulate complex household tasks in real-world scenarios, specifically in Virtual-
Home, enhancing the handling of failure cases. We release our code and all of re-
sults at https://anonymous.4open.science/r/code_reasoning.

1 INTRODUCTION

Large Language Models (LLMs), which are trained on billions of tokens, have demonstrated im-
pressive reasoning abilities in complex tasks Brown et al. (2020); Wei et al. (2022); Kojima et al.
(2022); OpenAI (2023). However, it is evident that as potential fuzzy retrieval systems or parame-
terized knowledge compression systems Xie et al. (2021), LLMs perform better on System 1 tasks
than on System 2 tasks Kahneman (2011); Yao et al. (2023a). Specifically, LLMs excel in intuitive,
memory-retrieval tasks, but continue to face significant challenges with tasks requiring rational rea-
soning Kambhampati (2024).

From the perspective of human cognitive psychology, reasoning can be viewed as a process of
memory retrieval, in which people retrieve relevant information from memory and use it to make
inferences Kyllonen & Christal (1990); Süß et al. (2002); Hayes et al. (2014); Feeney & Thompson
(2014); Hardman & Cowan (2015). For example, Haidt (2001) proposed that when individuals en-
gage in moral reasoning, they typically draw upon their prior knowledge from social and cultural
contexts. Similarly, studies involving animal lesions and human neuroimaging have confirmed that
the hippocampus, which is primarily associated with memory, also plays a crucial role in reasoning
abilities Zeithamova et al. (2012). Therefore, memory and reasoning are interdependent, with con-
siderable overlap between the two, rendering the distinction between them somewhat arbitrary Heit
et al. (2012).

We believe that, similar to humans, there is no significant distinction between memorizing and
reasoning tasks for LLMs, which often leads to the neglect of certain key intermediate tasks. Here,
we propose a novel task to explore the capability boundaries of LLMs: Code Reasoning. Code

1

https://anonymous.4open.science/r/code_reasoning

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SYSTEM 1 SYSTEM 2

FAST / AUTOMATIC SLOW / EFFORTFUL

EMOTIONAL

INTUITIVE

INSTINCTUAL

LOGICAL

REFLECTIVE

RATIONAL

UNCONSCIOUS DELIBERATE

Recall Reasoning

Translation Summarization

A

文

ArithmeticCode Reasoning

'''python
def fn():
```Two groups of blocks 
move towards the 
center…```
'''python

Input Output

Symbolic

mccl
szea
fioct
szea bin
mccl bin
fioct bin

Figure 1: Code reasoning is a category of tasks that incorporates logical reasoning into code, aiming
to solve programming problems through logical reasoning. These tasks require a balance between
background knowledge and thinking span, placing greater emphasis on the collaborative functioning
of both System 1 and System 2 thinking.

reasoning encompasses a category of tasks that demonstrates logical reasoning through code and
addresses problems in a systematic manner. As illustrated in Figure 1, we position some tasks along
an axis that reflects 1) the degree of reliance on prior knowledge (Recall) and 2) the extent to which
prior knowledge is applied to the current context (Reasoning). We position the code reasoning
task between memory and reasoning. On one hand, the highly structured nature of code requires the
model to learn syntax from pre-training data, enabling it to recall relevant information during solving
a problem. On the other hand, generating code solutions necessitates the model’s understanding
of the problem and context, involving reasoning to produce appropriate solutions. Therefore, we
describe code reasoning as “free play within a constrained environment”.

In this paper, we introduce code reasoning, a task that formalizes reasoning steps into a programming
language and offloads the computation process to the compiler. To explore different aspects of
code reasoning, we summarize three meta-benchmarks based on existing forms of logical reasoning:
inductive code reasoning, deductive code reasoning, and abductive code reasoning.

Inductive code reasoning involves deriving broad generalizations from a series of observations,
demonstrating the ability to infer rules from examples and generate programs to meet input-output
mapping. Deductive reasoning, starts from premises and derives valid conclusions systematic rea-
soning, focusing on the model’s capacity to understand a program’s intermediate states and reason
step by step. Abductive reasoning seeks the simplest and most likely explanation based on a set of
observations, highlighting the model’s ability to abstractly understand a function’s purpose.

We concretize these three meta-benchmarks into eight specific benchmarks. Based on these eight
benchmarks, we evaluate the performance of existing models in code reasoning. Due to data sparsity,
we find that current state-of-the-art LLMs still struggle to achieve satisfactory results in solving such
problems. To enhance the reasoning process, we implement a Reflective Hypothesis Decomposition
and Amendment (RHDA) pipeline. This pipeline is iterative, encompassing hypothesis decomposi-
tion, execution verification, and amendment submission. Specifically, we first guide the LLM to for-
mulate initial hypotheses based on complex observations and decompose these into sub-hypotheses.
These sub-hypotheses are then compiled into executable functions through a translator, enabling di-
rect application to the observations, followed by validation using external tools. Subsequently, based
on the execution results and observations, the LLM submits amendments to reflect on and refine the
issues within the sub-hypotheses.

Our experimental results indicate that the methods of RHDA effectively mitigate reasoning failures
caused by data sparsity. With the same or even lower overhead, this method achieved performance
improvements of up to three times compared to baseline methods. Finally, we extended this pipeline
to complex, simulated real-world household tasks VirtualHome Puig et al. (2018; 2020), guiding the
LLM to complete a series of intricate operations.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 META-BENCHMARK

We describe the general process of code reasoning as the transformation from Input I and ProgramP
to Output O, represented as I P−→ O. Inductive code reasoning is concretized as the Programming
by Example (PBE) task. In this task, a neural program synthesis modelM searches the execution
space to find a program that best satisfies all given input-output specifications. We donate this meta-
benchmark asM(I,O) → P̃ . Deductive code reasoning is exemplified in tasks that simulate the
program execution process. In this task, a neural simulation compiler modelM tracks the program’s
execution and records intermediate states, gradually deriving the final valid output. We denote this
meta-benchmark as M(I,P) → Õ. Abductive code reasoning is concretized as input prediction
tasks. This task requires the neural understanding modelM to form an abstract level understanding
of function’s behavior and perform abductive inference based on the given program and output. We
represent this meta-benchmark asM(O,P) → Ĩ. The details of the benchmarks are provided in
the Appendix C.

2.1 INDUCTIVE CODE REASONING

Inductive code reasoning can be represented asM(I,O)→ P̃ and is concretized as a PBE task Qiu
et al. (2024); Shi et al. (2024). PBE is a revolutionary program synthesis task designed to help
end-users, particularly those who are non-programmers, create scripts for automating repetitive
tasks Gulwani (2016). Based on input-output specifications, PBE systems can synthesize program
in either general-purpose language (GPL) or domain-specific language (DSL). Inductive code rea-
soning encompasses four challenging PBE tasks, two of which are GPL tasks: List Function Rule
(2020) and MiniARC Kim et al. (2022), while the other two are DSL tasks: RobustFill Devlin et al.
(2017) and DeepCoder Balog et al. (2016). GPL tasks are relatively complex, allowing the model to
solve problems in a more flexible manner. In contrast, DSL tasks require the model to quickly learn
the syntax of DSL through few-shot learning and address relatively simpler problems.

List Function. The List Function task was originally designed to investigate how humans learn
the concept of computable functions that map lists to lists. Given input and output specifications in
the form of lists, the model generates GPL rules that conform to these specifications. For example,
with an input specification of [2, 4, 8, 10] and an output specification of [3, 5, 9, 11],
we expect the resulting rule to be lambda x : x + 11.

MiniARC. MiniARC is a compressed 5x5 version of the Abstraction and Reasoning Corpus Chol-
let (2019); Moskvichev et al. (2023), designed to assess imaginative and reasoning abilities.
MiniARC balances the length of the input-output pairs with the difficulty of the problems. The
specifications are 5x5 2D grids, where the numbers represent blocks of specific colors. The model
must find valid problem-solving paths (such as color swapping, row flipping) to achieve the trans-
formation from input to output.

RobustFill. RobustFill is a string manipulation task where the model is expected to perform
a combination of atomic operations, such as extracting a substring from position k1 to k2 us-
ing SubString(k1, k1), to achieve generalization. As an example, a program ToCase(Lower,
SubStr(1,3)) converts full month names (January, April) to their abbreviations (jan, apr).

DeepCoder. The DeepCoder task involves using DSL to perform operations on integer lists. In
DeepCoder, each line represents a subroutine that performs atomic operations on previous vari-
ables and assigns the results to new variables. The result of the final line is the program’s out-
put. For example, program a ← [int] | b ← FILTER(<0) a | c ← MAP(*4) b |
d ← SORT c | e ← REVERSE b (where “|” denotes subroutine separator.) transforms the
input [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11] into the output [-12,
-20, -32, -36, -68]. We provide detailed RobustFill and Deepcoder DSLs in Appendix A.

1For conciseness while maintaining generality, we will use lambda expressions to represent a program.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DEDUCTIVE CODE REASONING

Deductive code reasoning refers to the process of deriving a sound inference O by reasoning from
the given premise I, assuming the validity of the argument P . Deductive code reasoning can
be instantiated as an output prediction task Gu et al. (2024). Based on the given premise, out-
put prediction requires the LLM to simulate a compiler Kim et al. (2024b), executing step by
step until it arrives at a valid conclusion. For example, given a program P = lambda text,
value: ’’.join(list(text) + [value]) and inputs text = ‘bcksrut’, b =
‘q’, the output prediction from LLM should be ‘bcksrutq’.

2.3 ABDUCTIVE CODE REASONING

Starting from existing facts P and O, deriving the most reasonable and optimal explanation I is
referred to as abductive code reasoning. This meta-benchmark can be framed as an input prediction
task. Given the provided facts, input prediction requires the LLM to backtrack through the program’s
execution process to recover the potential inputs. In cases where multiple possible inputs exist, the
model should apply Occam’s Razor and return the simplest input. For example, given a program P =
lambda nums: nums + [nums[i % 2] for i in range(len(nums))] and out-
puts [-1, 0, 0, 1, 1, -1, 0, -1, 0, -1], the input prediction from LLM should be
[-1, 0, 0, 1, 1].

Deductive code and abductive code reasoning can be regarded as opposite processes; therefore,
we selected two identical and representative datasets, CRUXEval Gu et al. (2024) and Live-
CodeBench Jain et al. (2024), as benchmarks to validate these two capabilities.

CRUXEval. CRUXEval is a benchmark designed to evaluate code understanding and execution.
Many models that achieve high scores on HumanEval Chen et al. (2021) do not show the same level
of improvement on the CRUXEval benchmark. This benchmark includes 800 functions along with
their corresponding inputs and outputs.

LiveCodeBench. LiveCodeBench is a dynamically updated benchmark sourced from competi-
tion platforms. Each problem is timestamped, and we selected data from October 2023 (later than
GPT-4o training) to March 2024 (the most recent), ensuring there is no data leakage and thereby
guaranteeing the model’s generalization performance.

3 CODE REASONING WITH HYPOTHESIS DECOMPOSITION AND
AMENDMENT

We aim to generate a reliable reasoning process for problem-solving by establishing a problem-
solving pathway f : X → Y . For a given task τ and the seen specifications/observations X s

τ , the
pathway f , should lead to a seen valid solution Ys

τ through a chain of reasoning. We expect this
pathway f to have sufficient generalization capabilities to handle unseen specifications/observations
X u

τ . To this aim, we employ a process involving hypothesis decomposition, execution verification,
and amendment submission to iteratively explore and refine the reasoning pathway. We first establish
an initial hypothesis h0 ∈ Σ∗ based on the observations xs

τ ∈ X s
τ , where Σ∗ is closure form

of LLM’s vocabulary. This initial hypothesis h0 serves as a preliminary solution pathway to the
problem. Given the complexity of many problems, we decompose the hypothesis h0 into simpler
sub-hypotheses h0 ⇐⇒ {h0

s0 , h
0
s1 , h

0
s2 , ...}. A translator function g : Σ∗ → Σ∗

E , which maps
the hypothesis space Σ∗ into an executable function space Σ∗

E , is then used to ‘compiled’ the sub-
hypotheses h0 into an executable function e0. This executable function is directly applicable to the
observations xs

τ , allowing for the derivation of conclusions ỹsτ , that is:

ỹsτ = g(h0)(xs
τ ). (1)

Feedback F(ysτ , ỹsτ ) is used to evaluate the conclusions drawn from the current hypothesis, guiding
the LLM to reflect on its sub-hypotheses. Through this iterative process of reflection, the model gen-
erates a new hypoth esis h1 for the next iteration. Finally, the problem-solving pathway f is applied
to unseen observations X u

τ , and the model’s generalization performance is assessed by measuring

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Example 1

[Step 1]: Identify the position 
of '5' in the input matrix.
[Step 2]: Count the number 
of '5's in each column.
[Step 3]: Adjust the column 
count values.
[Step 4]: Fill each row of the 
output grid with the adjusted 
column counts.

Hypothesis 
Decomposition

Expected 
Output

Actual 
Output

Unseen Observation

Executable function 𝒆

# Step 3: Adjust the column count 

values

adjusted_counts = []

for count in column_counts:

if count == 2:

adjusted_counts.append(4)

elif count == 3:

adjusted_counts.append(2)

else:

adjusted_counts.append(0)

(a) Hypothesis Decomposition

Seen Observation

Translator 𝑔

Task: Inductive (b) Execute & Verify

(c) Amendment Submission

Polished
Hypothesis

[Step 1]: Identify the position 
of '5' in the input matrix.
[Step 2]: Count the number 
of '5's in each column.
[Step 3]: Adjust the column 
count values, possibly by 
increasing or decreasing by 
specific amounts.
[Step 4]: Fill each row of the 
output grid with the adjusted 
column counts.

Executable function 𝒆
# Step 3: Adjust the column count values

adjusted_counts = []

for count in column_counts:

if count == 5:

adjusted_counts.append(6)

elif count == 3:

adjusted_counts.append(2)

elif count == 1:

adjusted_counts.append(1)

elif count == 2:

adjusted_counts.append(4)

else:

adjusted_counts.append(0)

Expected 
Output

Actual 
Output

(f) Validation

Example 3

𝑔

(d) Feedback * N

Example 2

Example 4

Example 1

Example 2

Example 1

Example 2

Figure 2: An overview of pipeline to solve code reasoning task. We decompose the hypothesis and
generate executable functions step by step. After comparing the results with the seen observations
and receiving feedback, we propose amendments, reflect on potential errors at each step, and gener-
ate revised hypotheses. This process is repeated until a valid problem-solving pathway is discovered.
For concise expression, we show partial code snippets.

its accuracy:

accτ =
1

|X u
τ |

∑
xu
τ∈Xu

τ

1 [f(xu
τ ) = yuτ ]. (2)

The preceding section presents a unified framework for the hypothesis decomposition and amend-
ment method. However, the implementation specifics differ across various tasks. In the following
sections, we will introduce these task-specific variations in detail.

Hypothesis Decomposition. We recognize that complex logical reasoning problems are difficult
to encapsulate in a single reasonable hypothesis, which can adversely affect the performance of
LLMs. Therefore, we require the LLM to decompose its hypotheses. Specifically, given an obser-
vation xs

τ , the LLM gradually presents corresponding hypotheses step by step. For inductive code
reasoning, h0 represents the step-by-step hypothesis of the input-to-output transformation rules. For
deductive and abductive code reasoning, h0 refers to the step-by-step hypothesis regarding the func-
tionality of the program.

Execution Verification. After obtaining the hypothesis, we need to apply it to the observations.
However, hypotheses are often not directly usable, so we need to convert the decomposed hypothesis
into an executable function e through a translator g. For inductive code reasoning, the executable
function is a program; for deductive and abductive code reasoning, the executable function is the
predicted output and input, respectively. These three types of tasks are then sent to a compiler to
obtain the actual execution results, and the feedback generated by the compiler is provided to the
LLM to help it further refine and adjust the sub hypotheses.

Amendment Submission. During the amendment submission stage, there are no significant dif-
ferences in handling the three tasks. The LLM receives validation feedback from the tools and
generates amendments based on this feedback, reflecting on possible issues in the previous hypothe-
ses. The reflection process involves revising each sub-hypothesis individually, forming an updated
hypothesis h1 ⇐⇒ {h1

s0 , h
1
s1 , h

1
s2 , ...}. This process ensures that each sub-hypothesis is adjusted

to better align with the observations and validation results, gradually improving the reasoning path-
way’s coherence and accuracy.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: RHDA method on inductive code reasoning task. T refers to the maximum number of
iterations. N refers to the number of candidates.

Method Accuracy Task Accuracy
List Func MiniARC RobustFill Deepcoder List Func MiniARC RobustFill Deepcoder

IO 64.85 28.21 61.74 23.78 38.00 13.08 21.74 10.42
PoT 44.90 10.90 37.39 30.90 33.60 8.46 21.74 19.79
CoC 42.45 10.90 31.30 26.39 34.40 4.62 13.04 13.54
SC (N=3) 52.95 12.31 46.09 37.85 41.20 9.23 26.09 26.04
SR (T=2) 51.10 10.26 41.74 36.81 41.60 8.46 21.74 25.00

w/o Sub-Hyp 42.45 7.95 40.87 18.05 33.20 4.62 21.74 9.37
w/o Amend 47.10 8.46 35.65 30.21 36.40 6.92 17.39 19.79

T=2, N=1 51.05 12.56 43.48 38.89 41.20 10.77 30.43 23.96
T=3, N=1 53.20 14.10 47.83 38.19 44.00 11.54 30.43 26.04
T=2, N=3 58.35 19.74 54.78 43.06 48.80 13.85 34.78 29.17

4 EXPERIMENTS

Experimental Setup. We utilize the latest and most advanced model, gpt-4o-2024-08-06, as the
backbone LLM for all our experiments. We report the results using Llama-3.1-70B-Instruct, Qwen-
max (qwen-max-2024-09-19) Bai et al. (2023), Claude 3.5 (claude-3-5-sonnet-20240620) in Ap-
pendix B. Following the methodology of Qiu et al. (2024), we set the temperature to 0.7. We report
results using several methods: input-output (IO) prompting, standard prompting, Chain of Thought
(CoT) Wei et al. (2023), Program of Thought (PoT) Chen et al. (2023), Chain of Code (CoC) Li
et al. (2024), Self-Consistency (SC) Wang et al. (2023c) and Self-Refine (SR) Madaan et al. (2024),
all implemented with 2-shot learning.2 For our proposed process, we employ 0-shot prompts, allow-
ing the LLM to explore problem-solving pathways in a more flexible manner. We provide detailed
prompt templates in Appendix H.

4.1 INDUCTIVE CODE REASONING

For inductive code reasoning, we establish four baseline methods. The Input-Output (IO) prompt-
ing requires the LLM to predict outputs based on all seen observations and an unseen input. The
Program of Thought (PoT) method generates and executes programs to derive outputs. The CoC
method prompts the LLM to utilize pseudocode for reasoning in output prediction. The SC method
builds upon PoT by sampling multiple programs and selecting the one that demonstrates optimal
performance on seen observations. Furthermore, since each example may contain multiple unseen
observations, we adopt the approach from Qiu et al. (2024) to define task accuracy externally. An
example is deemed passed only when all unseen observations within it pass; thus, the proportion of
passed examples reflects the task accuracy. The experimental results are presented in Table 1.

The results demonstrate that the RHDA method achieves optimal performance across four bench-
marks, with task accuracy exceeding that of the second-best methods by 18.45%, 5.89%, 33.31%,
and 12.02%, respectively. However, we observe that RHDA appears to underperform compared to
IO prompting, achieving the strongest performance on only one of the four benchmarks. This may
be a misunderstanding, as the IO prompting method requires the LLM to predict an outputs from
an unseen observation each time, making it less efficient (as each use case requires an API call) and
less generalizable (as it’s unable to produce a universal hypothesis applicable to all observations)
than RHDA.

Ablation Study. We introduce two variants to separately validate the effectiveness of hypothesis
decomposition and amendment submission. The first variant does not require the LLM to decompose
hypotheses, referred to as w/o Sub-Hyp. The second variant, termed w/o Amend, indicates that the
model no longer modifies its hypotheses through reflection. The experimental results presented in
Table 1 show that the performance of these two variants declined by 25.39% to 67.88% and 19.28%
to 57.14%, respectively. This finding suggests that the introduction of sub-hypotheses is a critical
step, as it simplifies complex problems, reducing the workload for the subsequent translator g while

2Not all methods are suitable for these three meta-benchmarks, thus we selected the most appropriate meth-
ods for each benchmark.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

also enabling individual amendments to each sub-hypothesis. Nonetheless, the reflection process
is equally important. Our results align with previous research Zhao et al. (2024); Olausson et al.
(2024); Peng et al. (2023) indicating that rational reflection can significantly enhance performance.

4.2 DEDUCTIVE CODE REASONING

Table 2: RHDA method on deductive code rea-
soning task. T refers to the maximum number
of iterations. N refers to the number of candi-
dates.

CRUXEval LiveCodeBench

Standard 68.75 41.18
CoT 89.12 83.14
SC (N=3) 71.12 36.27
SR (T=2) 80.38 63.73
CoC 85.62 81.37

w/o Amend 86.62 71.29
T=2, N=1 90.62 84.16

For deductive code reasoning, we select standard
prompting, CoT, SC, SR and CoC as benchmark
methods. The experimental results are presented
in Table 2. These results indicate that the CoT and
CoC methods significantly enhanced the accuracy
of reasoning outcomes by guiding the model to
think step-by-step about function capabilities. Our
proposed method advances this further, achiev-
ing optimal performance with a single round of
amendments, resulting in an improvement of up
to 104.37% compared with baseline method. A
horizontal comparison of the two datasets revealed
that, due to the absence of LiveCodeBench data
in internet corpora, the performance with standard
prompts showed a marked advantage, with the SC method amplifying this gap. Notably, the com-
bination of CoT, CoC, and hypothesis decomposition and amendment enabled the LLM to exhibit a
substantial degree of reasoning and generalization ability, nearly solving all presented problems.

4.3 ABDUCTIVE CODE REASONING

Standard CoT SC (N=3) SR (T=2) CoC Sub-Hyp T=2, N=1
0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

63.50

71.00

64.25

74.50
76.12 77.12

83.75

50.98

66.67

54.90

65.69

61.76 60.78

71.57

CRUXEval
LiveCodeBench

Figure 3: RHDA method on abductive code rea-
soning task. T refers to the maximum number of
iterations. N refers to the number of candidates.

For abductive code reasoning, we employ the
same baseline methods as those used for de-
ductive reasoning. The experimental results are
presented in Figure 3. Compared to deduc-
tive reasoning, abductive reasoning involves a
reverse thinking process, which presents sig-
nificant challenges. The LLM cannot derive
the program’s intermediate states through de-
duction and must first establish an abstract-
level understanding of the function’s behav-
ior before proceeding with abduction. On the
CRUXEval dataset, the performance decline
for abductive reasoning ranged from 8.20% to
25.52%. However, the hypothesis decompo-
sition and amendment approach demonstrated
robustness, as the shift in reasoning modes re-
sulted in only minimal performance degrada-
tion (8.20%) while still outperforming baseline
methods by 10.02% to 31.89% on the CRUX-
Eval dataset and 7.35% to 40.39% on the LiveCodeBench dataset. A horizontal comparison of the
two datasets revealed a trend similar to that observed in deductive reasoning, with an overall perfor-
mance decline on the LiveCodeBench dataset, suggesting a complex relationship between reasoning
and recall.

4.4 QUALITATIVE ANALYSE

We select some cases to conduct an in-depth exploration of the quality of RHDA.

Hypothesis Decomposition Reduces Task Complexity. In Table 3, we present a qualitative anal-
ysis of the MiniARC benchmark, comparing the effects of using hypothesis decomposition versus
not using it. As illustrated in the examples above, without hypothesis decomposition, the descrip-
tions require a substantial amount of language, which ultimately leads to severe hallucinations in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: We compare the results obtained using the sub-hypothesis decomposition method with those
obtained without it. The results without hypothesis decomposition are presented at the top of the
table, while those with hypothesis decomposition are shown below. Benchmark: MiniARC-ID26.

Observations Hypothesis Executable Function

No Sub Hypothesis:
For a given 5x5 matrix input,

shift the first row to the last row,
the second row to the fourth row,

the third row to the third row
(unchanged), the fourth row to the

second row, and the fifth
row to the first row. This rotates

the rows up by two positions.

def fn(matrix):
if len(matrix) != 5 or any(len(row) != 5 for row in matrix):

raise ValueError("Input must be a 5x5 matrix")
# Create a new matrix to store the result
result = [[0]*5 for _ in range(5)]
# Apply the row shifting rule
result[0] = matrix[2] # Third row to first row
result[1] = matrix[3] # Fourth row to second row
result[2] = matrix[4] # Fifth row to third row
result[3] = matrix[0] # First row to fourth row
result[4] = matrix[1] # Second row to fifth row
return result

Sub Hypothesis:
Step 1: Identify the non-zero rows.

Step 2: Move non-zero rows to the bottom.
Step 3: Shift all rows down to fill the grid.

Step 4: Repeat steps for next input.

def fn(grid):
# Step 1: Identify non-zero rows
non_zero_rows = [row for row in grid if any(row)]
# Step 2: Reverse the order of non-zero rows
non_zero_rows.reverse()
# Step 3: Calculate the number of zero rows needed
num_zero_rows = len(grid) - len(non_zero_rows)
# Step 4: Create the new grid with zero rows at the top
zero_rows = [[0] * len(grid[0]) for _ in range(num_zero_rows)]
# Step 5: Combine zero rows and reversed non-zero rows
new_grid = zero_rows + non_zero_rows
return new_grid

the program and results in failure. In contrast, the examples below, which utilize hypothesis decom-
position, present clear and executable objectives, enabling the translator to easily write executable
functions and achieve successful solutions as instructed.

Table 4: We present the additional improvements resulting from the use of amendments. The results
shown above are those obtained after the initial hypotheses, while the results displayed below reflect
the outcomes following the submission of amendments and subsequent reflections. Benchmark: List
Function-ID29.

Observations Rounds Executable Function

[0, 8, 3, 9]→ [0, 8]

[6, 1]→ []

[4, 8, 7]→ [4]

. . .

Round 1:
Step 1: Remove elements from the end

of the input list until a ’9’ is encountered.
Step 2: If ’9’ is present, remove all

elements after the last occurrence of ’9’.
Step 3: If ’9’ is not present, remove the

last two elements of the list.
Step 4: If the list has fewer than two

elements, return an empty list.

def fn(lst):
# Check if the list has fewer than two elements
if len(lst)<2:

return []
# Check if ’9’ is present in the list
if 9 in lst:

# Find the last occurrence of ’9’
last_nine_index=len(lst)-1-lst[::-1].index(9)
# Return the list up to and including the last ’9’
return lst[:last_nine_index+1]

else:
# If ’9’ is not present,
# remove the last two elements
return lst[:-2]

Round 2:
Step 1: Remove the last two elements

from the input list.
Step 2: If the resulting list has fewer than

two elements, return an empty list.

def fn(input_list):
# Remove the last two elements from the input list
modified_list = input_list[:-2]
# Check if the list has fewer than two elements
if len(modified_list) < 2:

return []
return modified_list

Amendments Guide LLM Towards Correct Pathway. We present a qualitative analysis of the
use of amendments in the List Function benchmark in Table 4. The upper section displays the ini-
tialization of the hypothesis, where the LLM generates a potential guess based on the observations
and translates it into an executable program. After offloading the execution to the tool (e.g., Python
executor) and receiving feedback, amendments are proposed to modify the initial hypothesis. Fol-
lowing this reflection, the LLM re-optimizes the rules, ultimately yielding the correct execution
results. More qualitative analyse examples please refer to Appendix E.1.

Failure Analyse. We also conduct an in-depth analysis of the reasons behind process failures in
RHDA, detailed in Appendix E.2. Our findings reveal that the primary limitation arises from the re-
stricted intrinsic reasoning capabilities of LLMs, which continue to face challenges in understanding
and addressing complex problems. These limitations are primarily reflected in two aspects:

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

[grab the pie]

[go to fridge, open fridge,  store the pie]

Initial decomposed hypothesis 𝒉𝟎: 

1. I need to take the pie. 

2. I need to store the pie in fridge.

Updated hypothesis 𝒉𝟏: 

1. I need to get to the pie, and take the pie. 

2. I need to store the pie in fridge.

[walk to the pie, grab the pie]

[go to fridge, open fridge,  store the pie]

Walk to the Pie Grab the Pie Open Fridge Store the Pie

The Generated Scripts Executor𝑔

𝑔

Task

Store

the

Pie

in 

Fridge.

Figure 4: We demonstrate how RHDA can be extended to the VirtualHome framework to success-
fully complete the task of storing the pie in fridge.

• Difficulty in Generating Accurate Sub-Hypotheses: The generation of sub-hypotheses dur-
ing the reasoning process often proves inaccurate, leading to subsequent breakdowns in
reasoning chains.

• Sensitivity to Initial Hypotheses: The model exhibits a pronounced dependency on its ini-
tial hypotheses. Even when feedback is provided through amendment submissions, the
model struggles to break free from its original thought framework, constraining its reason-
ing capabilities.

4.5 RHDA IS A FLEXIBLE AND SCALABLE PROBLEM-SOLVING PATHWAY

We consider extending the RHDA pipeline to more complex scenarios. To this end, we select Vir-
tualHome Puig et al. (2018; 2020), a sophisticated multi-agent platform for simulating household
activities, as our new exploration subject. VirtualHome comprises a set of predefined atomic ac-
tions and objects that can be combined into high-level instructions. For example, ‘〈char0〉 [walk]
〈salmon〉’ describes character 0 walking to the salmon. Given a specific scenario, the LLM is tasked
with completing concrete housework using a series of high-level instructions. As depicted in Fig-
ure 4, and guided by the RHDA process, we demonstrate how the LLM successfully accomplishes
the task of storing pie in the fridge through the methods of hypothesis decomposition, execution
verification (offloading to VirtualHome engine), and reflection. we show another example in App-
neidx D.

5 LIMITATION AND DISCUSSIONS

Benchmark Selection. This paper represents the first systematic exploration of the code reasoning
task, focusing on the analysis of three forms of logical reasoning: inductive, deductive, and abduc-
tive. Due to time and cognitive constraints, we were unable to collect all benchmarks for testing.
Our aim is to stimulate in-depth discussion on this topic and inspire meaningful follow-up research.
While several excellent studies utilize code to address logical reasoning tasks Zelikman et al. (2023);
Hu et al. (2023); Srivastava et al. (2024); Liu et al. (2024), we did not include them here due to their
differing starting points from this paper.

Hyperparameters. The goal of this paper is to explore the potential of LLMs in code reasoning,
rather than solely improving the performance of a specific code reasoning task. The RHDA frame-
work serves as a preliminary exploration process; therefore, we didn’t fully optimized the prompt
templates or specific hyperparameters (such as temperature, T , and N ) utilized. In the inductive
code reasoning task, we examined a broader range of hyperparameter settings to illustrate that ex-
ploring multiple pathways aids in more effectively solving problems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Task Assessment. We propose a novel code reasoning task, and experimental results indicate that
current state-of-the-art LLMs exhibit limitations in tackling this task. In the future, we aim to further
explore this challenging area and investigate the boundaries of human capabilities in similar tasks.

6 RELATED WORK

Reasoning with LLMs. LLMs such as GPT OpenAI (2023), LLaMA Touvron et al. (2023),
and Claude Anthropic (2024), demonstrate impressive reasoning capabilities across various NLP
tasks Zhang et al. (2024). However, due to the problems of direct reasoning with LLMs such as
hallucinations Ji et al. (2023), researchers have proposed several methods to enhance the reason-
ing power of LLMs. For example, Zhou et al. (2023) decompose complex tasks into sequential
subproblems, while Sun et al. (2024) refine reasoning through environment feedback. Moreover,
intermediate representations, such as graphs Jiang et al. (2024), planning domain definition lan-
guages (PDDL) Guan et al. (2023), and triples Wang et al. (2023a), have been employed to enhance
LLM’s reasoning. Most recently, OpenAI o1 OpenAI (2024) demonstrates strong reasoning capa-
bilities and broad world knowledge. Upon further contemplation, it is capable of reasoning through
complex tasks and addressing challenges that exceed those faced by previous scientific, coding, and
mathematical models.

Simultaneously, domain-specific reasoning with LLMs has gained attention. Kim et al. (2024a)
enhance reasoning outputs in computer tasks through recursive critique. In a case study using
Minecraft, Wang et al. (2023d) introduce a Describe, Interpret, Plan, and Select framework for
open-world multitasking. In computer vision, Gupta & Kembhavi (2023) employ Python-like mod-
ular programs to tackle complex tasks. Nonetheless, reasoning in code remains an area yet to be
thoroughly explored.

Improvement with Reflection. Reflective ability is regarded as a crucial metric for evaluating
LLMs as agents. Reflection can be categorized into internal and external based on its feedback
source Pan et al. (2024). Internal reflection relies feedback from the model’s own knowledge and
parameters Huang et al. (2022), while external feedback comes from various sources, including
humans Wang et al. (2023b), other models Paul et al. (2024), external tools Gou et al. (2024); Chen
et al. (2024), or knowledge bases Yao et al. (2023b); Asai et al. (2024). Huang et al. (2024) find that
LLMs struggle to self-correct their responses without external feedback, and in some cases, their
performance may even decline following self-correction. Our work focuses on leveraging external
tools, such as compilers, to generate feedback and enhance the performance of LLMs.

7 CONCLUSION

In this paper, we emphasized that the reasoning capabilities of LLMs still depend on recalling prior
knowledge and highlighted that code reasoning has not been sufficiently explored as a novel perspec-
tive for examining the boundaries of LLM capabilities. Based on this consideration, we designed
three meta-benchmarks—inductive code reasoning, deductive code reasoning, and abductive code
reasoning—drawing on established forms of logical reasoning, and instantiated these benchmarks
into eight specific tasks. Experimental results indicated that these benchmarks present significant
challenges for current state-of-the-art LLMs. To initially explore code reasoning tasks, we proposed
a method involving Reflective Hypothesis Decomposition and Amendment (RHDA). This method
was iterative: LLMs need to generate decomposed initial hypotheses based on observations and
employ a translator to interpret these into executable functions that can be directly applied to the
observations. After obtaining the executable functions, we performed execution verification and
submit amendments, allowing for reflection and refinement of the sub-hypotheses. Experimental
results demonstrated that this approach, which integrated the principles of divide-and-conquer and
reflection, can flexibly solve complex code reasoning problems, achieving performance improve-
ments of 2 to 3 times compared to baseline methods. Finally, we extended this process to simulate
household tasks in real-world complex scenarios to validate its scalability and transferability.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENT

Our code, datasets and experimental results are available at https://anonymous.4open.
science/r/code_reasoning. Additionally, Appendix H contains details about pipeline and
prompts used in method.

REFERENCES

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
hSyW5go0v8.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen et al. Evaluating large language models trained on code, 2021. URL https://
arxiv.org/abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIqPiq.

François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International conference
on machine learning, pp. 990–998. PMLR, 2017.

A. Feeney and V.A. Thompson. Reasoning as Memory. Current Issues in Thinking and Reasoning.
Taylor & Francis, 2014. ISBN 9781317820130. URL https://books.google.com.hk/
books?id=gEuvBAAAQBAJ.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing, 2024. URL
https://arxiv.org/abs/2305.11738.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution, 2024. URL
https://arxiv.org/abs/2401.03065.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. Advances in Neural Information Processing Systems, 36:79081–79094, 2023.

Sumit Gulwani. Programming by examples-and its applications in data wrangling. In Dependable
Software Systems Engineering, pp. 137–158. IOS Press, 2016.

11

https://anonymous.4open.science/r/code_reasoning
https://anonymous.4open.science/r/code_reasoning
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://books.google.com.hk/books?id=gEuvBAAAQBAJ
https://books.google.com.hk/books?id=gEuvBAAAQBAJ
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2401.03065


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

Jonathan Haidt. The emotional dog and its rational tail: a social intuitionist approach to moral
judgment. Psychological review, 108(4):814, 2001.

Kyle Hardman and Nelson Cowan. Reasoning and memory: People make varied use of the informa-
tion available in working memory. Journal of experimental psychology. Learning, memory, and
cognition, 42, 11 2015. doi: 10.1037/xlm0000197.

Brett K Hayes, Evan Heit, and Caren M Rotello. Memory, reasoning, and categorization: Parallels
and common mechanisms. Frontiers in psychology, 5:529, 2014.

Evan Heit, Caren M. Rotello, and Brett K. Hayes. Chapter two - relations between memory and
reasoning. In Brian H. Ross (ed.), The Psychology of Learning and Motivation, volume 57 of
Psychology of Learning and Motivation, pp. 57–101. Academic Press, 2012. doi: https://doi.
org/10.1016/B978-0-12-394293-7.00002-9. URL https://www.sciencedirect.com/
science/article/pii/B9780123942937000029.

Yi Hu, Haotong Yang, Zhouchen Lin, and Muhan Zhang. Code prompting: a neural symbolic
method for complex reasoning in large language models. arXiv preprint arXiv:2305.18507, 2023.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve, 2022. URL https://arxiv.org/abs/
2210.11610.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=IkmD3fKBPQ.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint, 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Song Jiang, Zahra Shakeri, Aaron Chan, Maziar Sanjabi, Hamed Firooz, Yinglong Xia, Bugra Aky-
ildiz, Yizhou Sun, Jinchao Li, Qifan Wang, et al. Resprompt: Residual connection prompting
advances multi-step reasoning in large language models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 5784–5809, 2024.

D. Kahneman. Thinking, Fast and Slow. Penguin Books Limited, 2011. ISBN 9780141918921.
URL https://books.google.com.hk/books?id=oV1tXT3HigoC.

Subbarao Kambhampati. Can large language models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15–18, 2024.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024a.

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, and
Amir Gholami. An llm compiler for parallel function calling, 2024b. URL https://arxiv.
org/abs/2312.04511.

Subin Kim, Prin Phunyaphibarn, Donghyun Ahn, and Sundong Kim. Playgrounds for abstraction
and reasoning. In NeurIPS 2022 Workshop on Neuro Causal and Symbolic AI (nCSI), 2022.

12

https://www.sciencedirect.com/science/article/pii/B9780123942937000029
https://www.sciencedirect.com/science/article/pii/B9780123942937000029
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2210.11610
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://books.google.com.hk/books?id=oV1tXT3HigoC
https://arxiv.org/abs/2312.04511
https://arxiv.org/abs/2312.04511


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Patrick C. Kyllonen and Raymond E. Christal. Reasoning ability is (little more than) working-
memory capacity?! Intelligence, 14(4):389–433, 1990. ISSN 0160-2896. doi: https://doi.org/10.
1016/S0160-2896(05)80012-1. URL https://www.sciencedirect.com/science/
article/pii/S0160289605800121.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
augmented code emulator, 2024. URL https://arxiv.org/abs/2312.04474.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Code-
mind: A framework to challenge large language models for code reasoning. arXiv preprint
arXiv:2402.09664, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The conceptarc benchmark:
Evaluating understanding and generalization in the arc domain, 2023. URL https://arxiv.
org/abs/2305.07141.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In International Conference on
Learning Representations (ICLR), 2024.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Introducing openai o1, 2024. URL https://openai.com/o1/.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484–506,
2024. doi: 10.1162/tacl a 00660. URL https://aclanthology.org/2024.tacl-1.
27.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. REFINER: Reasoning feedback on intermediate representations. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chap-
ter of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1100–1126,
St. Julian’s, Malta, March 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-long.67.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813,
2023.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Joshua B. Tenenbaum, Sanja Fidler, and Antonio
Torralba. Watch-and-help: A challenge for social perception and human-ai collaboration, 2020.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xiang Ren. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models with hypothesis refinement, 2024. URL
https://arxiv.org/abs/2310.08559.

13

https://www.sciencedirect.com/science/article/pii/S0160289605800121
https://www.sciencedirect.com/science/article/pii/S0160289605800121
https://arxiv.org/abs/2312.04474
https://arxiv.org/abs/2305.07141
https://arxiv.org/abs/2305.07141
https://openai.com/o1/
https://aclanthology.org/2024.tacl-1.27
https://aclanthology.org/2024.tacl-1.27
https://aclanthology.org/2024.eacl-long.67
https://aclanthology.org/2024.eacl-long.67
https://arxiv.org/abs/2310.08559


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Joshua Stewart Rule. The child as hacker: building more human-like models of learning. PhD thesis,
Massachusetts Institute of Technology, 2020.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, and Charles Sutton. ExeDec:
Execution decomposition for compositional generalization in neural program synthesis. In The
Twelfth International Conference on Learning Representations, 2024.

Saurabh Srivastava, Annarose M B, Anto P V au2, Shashank Menon, Ajay Sukumar, Ad-
waith Samod T, Alan Philipose, Stevin Prince, and Sooraj Thomas. Functional benchmarks for
robust evaluation of reasoning performance, and the reasoning gap, 2024.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances in Neural Information Processing Systems,
36, 2024.

Heinz-Martin Süß, Klaus Oberauer, Werner W Wittmann, Oliver Wilhelm, and Ralf Schulze.
Working-memory capacity explains reasoning ability—and a little bit more. Intelligence,
30(3):261–288, 2002. ISSN 0160-2896. doi: https://doi.org/10.1016/S0160-2896(01)
00100-3. URL https://www.sciencedirect.com/science/article/pii/
S0160289601001003.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jianing Wang, Qiushi Sun, Xiang Li, and Ming Gao. Boosting language models reasoning with
chain-of-knowledge prompting. arXiv preprint arXiv:2306.06427, 2023a.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-Zarandi, and Asli Celikyilmaz. Shepherd: A
critic for language model generation, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023c. URL https://arxiv.org/abs/2203.11171.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team Craft-
Jarvis. Describe, explain, plan and select: interactive planning with large language models enables
open-world multi-task agents. In Proceedings of the 37th International Conference on Neural In-
formation Processing Systems, pp. 34153–34189, 2023d.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Dagmar Zeithamova, Margaret L Schlichting, and Alison R Preston. The hippocampus and inferen-
tial reasoning: building memories to navigate future decisions. Frontiers in human neuroscience,
6:70, 2012.

14

https://www.sciencedirect.com/science/article/pii/S0160289601001003
https://www.sciencedirect.com/science/article/pii/S0160289601001003
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=qd9qcbVAwQ.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu,
Ting Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with
large language models. arXiv preprint arXiv:2404.01230, 2024.

Yuze Zhao, Zhenya Huang, Yixiao Ma, Rui Li, Kai Zhang, Hao Jiang, Qi Liu, Linbo Zhu, and
Yu Su. RePair: Automated program repair with process-based feedback. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Lin-
guistics ACL 2024, pp. 16415–16429, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.973. URL
https://aclanthology.org/2024.findings-acl.973.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning Rep-
resentations, 2023.

15

https://openreview.net/forum?id=qd9qcbVAwQ
https://openreview.net/forum?id=qd9qcbVAwQ
https://aclanthology.org/2024.findings-acl.973


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DSL GRAMMARS

RobustFill is a string manipulation task using the DSL. Figure 5 illustrates the DSL syntax for
RobustFill. Our implementation is based on the works of ExeDec Shi et al. (2024) and Robust-
Fill Devlin et al. (2017).

Deepcoder is a list transformation task using the DSL. Figure 6. This implementation is based on
the works of ExeDec Shi et al. (2024) and DeepCoder Balog et al. (2016).

Program P := Concat(e1, e2, . . .)

Expression e := s | m | o | ConstStr(c)
Compose o := m1(m2) | m(s)

Substring s := SubStr(k1, k2) | GetSpan(r1, i1, b1, r2, i2, b2) | GetToken(r, i)
| GetUpto(r) | GetFrom(r)

Modification m := ToCase(a) | Replace(δ1, δ2) | Trim() | GetFirst(r, i) | GetAll(r)
| Substitute(r, i, c) | SubstituteAll(r, c) | Remove(r, i) | RemoveAll(r)

Regex r := NUMBER | WORD | ALPHANUM | ALL CAPS | PROPER CASE | LOWER | DIGIT | CHAR | δ
Case a := ALL CAPS | PROPER CASE | LOWER

Position k := − 100 | − 99 | . . . | − 1 | 0 | 1 | 2 | . . . | 100
Index i := − 5 | − 4 | . . . | − 1 | 1 | 2 | . . . | 5

Boundary b := START | END
Character c := A | . . . | Z | a | . . . | z | 0 | . . . | 9 | δ
Delimiter δ := &,.?!@()[]%{}/:;$# "’

Figure 5: The DSL syntax for string manipulation tasks in the RobustFill domain.

Program P := i1; i2; . . . ; a1; a2; . . .

Initialization i := v ← INPUT

Assignment a := v ← f | v ← h

First-Order Operation f := Head(l) | Last(l) | Access(n, l) | Minimum(l) | Maximum(l) | Sum(l)
| Take(n, l) | Drop(n, l) | Reverse(l) | Sort(l)

Higher-Order Operation h := Map(λ, l) | Filter(β, l) | Count(β, l) | ZipWith(Σ, l, l) | Scanl1(Σ, l)
int→ int Lambda λ := (+1) | (−1) | (∗2) | (/2) | (∗(−1)) | (∗∗2) | (∗3) | (/3) | (∗4) | (/4)

int→ bool Lambda β := (> 0) | (< 0) | (%2 == 0) | (%2 == 1)

(int, int)→ int Lambda Σ := (+) | (−) | (∗) | (min) | (max)

Integer Variable n := v

List Variable l := v

Variable Name v := x1 | x2 | . . .

Figure 6: The DSL for integer and list manipulation tasks in the DeepCoder domain.

B EXPERIMENTAL RESULTS USING MORE LLMS

We report the performance of Llama3.1-70B-Instruct, Qwen-max (qwen-max-2024-09-19), Claude
3.5 (claude-3-5-sonnet-20240620) using the RHDA method and compare them with GPT-4o (gpt-
4o-2024-0806). The results for inductive code reasoning are shown in Table 5. The experimental
results indicate that GPT-4o performs better in solving DSL problems, while Claude 3.5 excels in
General Propose Language (GPL) tasks. Compared to closed-source models, the open-source model
Llama still exhibits relatively limited reasoning capabilities. However, in list manipulation tasks
(List Function and Deepcoder), Llama demonstrates stronger programming abilities. In Table 6, we

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Performance comparison of Llama3.1-70B-Instruct, Qwen-max, Claude 3.5 and GPT-4o
on the PoT and RHDA methods in inductive code reasoning task. T refers to the maximum number
of iterations. N refers to the number of candidates.

Accuracy Task Accuracy

Model Method MiniARC List Func RobustFill DeepCoder MiniARC List Func RobustFill DeepCoder

Llama3.1
PoT 3.08 35.25 14.78 22.92 1.54 26.80 8.70 11.46
Sub-Hyp 3.33 26.45 13.04 18.06 3.08 20.40 4.35 6.25
T=2, N=1 3.85 32.35 20.87 11.46 3.85 26.40 13.04 7.29

Qwen-max
PoT 6.41 41.75 36.52 25.35 3.85 30.00 21.74 14.58
Sub-Hyp 5.90 46.25 26.09 17.36 3.08 36.40 8.70 5.21
T=2, N=1 6.41 46.60 33.91 24.64 3.08 41.60 13.04 10.42

Claude-3.5
PoT 11.79 51.30 30.43 25.69 8.46 39.20 27.14 13.54
Sub-Hyp 12.56 53.55 22.61 33.33 9.23 42.40 8.70 16.67
T=2, N=1 18.21 57.95 33.91 29.86 13.85 48.40 17.39 20.83

GPT-4o
PoT 10.90 44.90 37.39 30.90 8.46 33.60 26.09 19.79
Sub-Hyp 8.46 47.10 35.65 24.65 6.92 36.40 17.39 12.50
T=2, N=1 12.56 51.05 43.48 38.89 10.77 41.20 40.43 23.96

Table 6: Performance comparison of Llama3.1-70B-Instruct, Qwen-max, Claude 3.5 and GPT-4o
on the CoT and RHDA methods in deductive and abductive code reasoning tasks. T refers to the
maximum number of iterations. N refers to the number of candidates.

Deductive Abductive

Model Method CRUXEval LiveCodeBench CRUXEval LiveCodeBench

Llama3.1
CoT 40.25 7.84 53.12 38.24
Sub-Hyp 30.75 6.86 50.88 8.82
T=2, N=1 45.62 10.78 59.62 40.20

Qwen-max
CoT 81.12 86.27 75.12 58.82
Sub-Hyp 78.25 81.37 72.25 59.80
T=2, N=1 81.62 88.24 79.38 66.67

Claude-3.5
CoT 82.75 77.45 73.62 61.76
Sub-Hyp 77.75 65.69 74.75 53.92
T=2, N=1 86.88 80.39 83.38 61.76

GPT-4o
CoT 89.12 83.14 71.00 66.67
Sub-Hyp 86.62 71.29 77.12 60.78
T=2, N=1 90.62 84.16 83.75 71.57

report the performance of the models in deductive and abductive code reasoning together. The ex-
perimental results show that GPT-4o outperforms Claude 3.5 in terms of program understanding and
execution capabilities. These results suggest that RHDA is a framework-agnostic general process
that can achieve optimal performance through a single reflection, applicable to both Llama, Qwen,
Claude and GPT series models.

C BENCHMARK DETAILS

Table 7: The number of tasks per dataset, the
numbers of seen examples per task, and unseen
examples per task.

Dataset # Tasks # Seen # Unseen

List Function 250 8 8
MiniARC 130 3 3
RobustFill 22 5 5
Deepcoder 96 3 3
CRUXEval 800 1 1
LiveCodeBench 102 1 1

List Function. We use the original dataset
(Rule, 2020), which consists of a total of 250 tasks.
Due to the limited context lengths of LMs, we only
use the first 16 examples from BIG-Bench (bench
authors, 2023): 8 for seen examples and 8 for un-
seen examples. We manually examined the exem-
plars and found 8 examples are generally sufficient
to describe the pattern.

MiniARC. We use the data from Qiu et al.
(2024). Such tasks are typically difficult to de-
scribe in natural language at an abstract level.
Therefore, we did not consider them for our evaluations. As we only evaluate textonly models,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

we use textual representations of the original visual grids by mapping each cell to a corresponding
integer.

RobustFill. RobustFill is a string manipulation task where the model is expected to perform
a combination of atomic operations, such as extracting a substring from position k1 to k2 us-
ing SubString(k1, k1), to achieve generalization. As an example, a program ToCase(Lower,
SubStr(1,3)) converts full month names (January, April) to their abbreviations (jan, apr).

DeepCoder. The DeepCoder task involves using DSL to perform operations on integer lists. In
DeepCoder, each line represents a subroutine that performs atomic operations on previous vari-
ables and assigns the results to new variables. The result of the final line is the program’s out-
put. For example, program a ← [int] | b ← FILTER(<0) a | c ← MAP(*4) b |
d ← SORT c | e ← REVERSE b (where “|” denotes subroutine separator.) transforms the
input [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11] into the output [-12,
-20, -32, -36, -68]

D RHDA ACTING AS AN AGENT IN VIRTUALHOME

Open Bathroom Cabinet Grab Towel Switch on Faucet Get Shampoo

[open the cabinet, grab towel]

[walk to facuet, open facuet]

[walk to shampoo, grab shampoo]

Initial decomposed hypothesis 𝒉𝟎: 

Updated hypothesis 𝒉𝟏: 

The Generated Scripts Executor
𝑔

𝑔

Task

Clean

the

Bathr

oom.

1. I need to get the towel. 

2. I need to open the faucet for water.

3. I need to get shampoo.

1. I need to get the towel. 

2. I need to switch on the faucet for water.

3. I need to get shampoo.

[open the cabinet, grab towel]

[walk to facuet, switch on facuet]

[walk to shampoo, grab shampoo]

Figure 7: We illustrate how the RHDA framework can be extended to the VirtualHome environment
to effectively accomplish the task of cleaning the bathroom.

We utilized the RHDA framework to drive agent actions in the VirtualHome environment powered
by LLMs. Figure 7 illustrates a task of cleaning the bathroom.

Table 8: Execution Error Rate on VirtualHome
native GPT-4o w/o Sub-Hyp w/o Amend RHDA

# Error Action ↓ 92 84 84 52
Avg. Err per Step ↓ 0.84 0.35 0.20 0.16
Avg. Err per Task ↓ 2.09 1.83 1.75 1.08

We also provided some quantitative metrics to validate the potential of RHDA as a agent in Vir-
tualHome. Specifically, we selected a total of 52 tasks across two scenarios in VirtualHome and
manually tested their execution error rates. The test results are shown in Table 8, which indicate that
native GPT-4o struggles to handle simulated real-world scenarios effectively. The primary cause of
failure lies in generating scripts that, while semantically similar to correct actions, are not executable
within the environment (e.g., ‘open the tap’ is invalid action, whereas ‘touch the tap’ is valid action).
By employing the RHDA method, which incorporates step-by-step solutions and effective feedback
mechanisms, the error rate was significantly reduced.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E EXAMPLES ANALYSES

E.1 EFFECTIVE CASE STUDY

Table 9: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark ARC-ID37.

Observations Rounds Executable Function

Round 1:
Step 1: Identify the third row
Step 2: Check for a non-zero

numbers in the third row.
Step 3: Replace the number at

the center position of the sequence.
Step 4: Change all numbers

in rows 4 and 5 to zero.

def fn(grid):
# Step 1: Identify the third row
third_row = grid[2]
# Step 2: Check for a sequence of three or more identical non-zero numbers
n = len(third_row)
i = 0
while i < n:

if third_row[i] != 0:
# Find the length of the sequence of identical numbers
start = i
while i < n and third_row[i] == third_row[start]:

i += 1
length = i - start
# If the sequence is three or more, replace it
if length >= 3:

# Step 3: Replace the sequence with the number from the second row
center_index = start + length // 2
replacement_number = grid[1][center_index]
third_row[start:i] = [0] * n # Set the entire row to zero first
third_row[center_index] = replacement_number
break # Assuming only one sequence needs to be replaced

else:
i += 1

# Step 4: Set all numbers in rows 4 and 5 to zero
grid[3] = [0] * n
grid[4] = [0] * n
return grid

Round 2:
Step 1: Identify the third row
Step 2: Check for a non-zero

numbers in the third row.
Step 3: Replace identical numbers

in the third row with the
corresponding non-zero number

from the first row.

def fn(grid):
# Step 1: Identify the third row
third_row = grid[2]
# Step 2: Check for a sequence of three or more identical non-zero numbers
n = len(third_row)
i = 0
while i < n:

if third_row[i] != 0:
# Find the length of the sequence of identical numbers
start = i
while i < n and third_row[i] == third_row[start]:

i += 1
length = i - start
# If the sequence is three or more, replace it
if length >= 3:

# Step 3: Replace the sequence
# Find the number from the first row at the same column
replacement_number = grid[0][start]
# Replace the sequence with the replacement number
third_row[start:i] = [replacement_number] + [0] * (length - 1)

else:
i += 1

# Step 4: Change all numbers in rows 4 and 5 to zero
for row in range(3, 5):

grid[row] = [0] * n
return grid

Table 10: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark List Function-
ID2.

Observations Hypothesis Executable Function

[]→ []

[6, 9]→ []

[1, 5, 0, 6, 2, 9, 3]→ [0]

[6, 3, 4, 1, 7, 2, 9, 8, 0]→ [4]

. . .

No Sub Hypothesis:
The output is the element

from the input list that
is exactly in the middle

of the list.

def fn(input_list):
# Check if the list is empty or has only one element
if len(input_list) <= 1:

return []
# Calculate the middle index
middle_index = (len(input_list) - 1) // 2
# Return the middle element as a list
return [input_list[middle_index]]

Sub Hypothesis:
Step 1: If the list has fewer

than three elements,
the output is an empty list.
Step 2:If the list has three

or more elements,
the output is a list containing
only the integer at the third

position.

def fn(input_list):
# Check if the list has fewer than three elements
if len(input_list) < 3:

return []
else:
# Return a list containing the integer
# at the third position (index 2)

return [input_list[2]]

We validated the effectiveness of the proposed method using examples from various benchmarks.
For instance, as shown in Table 9, the MiniARC task example with ID 37 highlights how the LLM,
after receiving feedback, successfully reflects on its errors and submits a revised solution.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark Livecodebench
Input-ID37.

Observations Hypothesis Executable Function

def minOperations(a, b):
def f():

ret = 0
aa, bb = a[:], b[:]
for i in range(len(a)):

if a[i] > a[-1] or b[i] > b[-1]:
a[i], b[i] = b[i], a[i]
ret += 1

if a[i] > a[-1] or b[i] > b[-1]:
return inf

a[:] = aa
b[:] = bb
return ret

ans = f()
a[-1], b[-1] = b[-1], a[-1]
ans = min(ans, f() + 1)
return -1 if ans > len(a) else ans
# assert f(??) == 1

No Sub Hypothesis:
The function ‘minOperations’ attempts

to determine the minimum number
of swaps needed to ensure

that for each index ‘i’,
neither ‘a[i]’ nor ‘b[i]’
are greater than the last

elements of their respective lists.

assert minOperations([3, 1, 2], [1, 3, 2]) == 1

Sub Hypothesis:
Step 1: Function Purpose

The goal of ‘minOperations‘ is to ...
Step 2: Inner Function

It attempts to ensure
that for each ‘i’, ...

Step 3: Main Logic
It calculates ‘ans‘ by calling ‘f’, ...

Step 4: Objective
To find an input such that...

assert minOperations([2, 3], [3, 2]) == 1

Table 12: We present the additional improvements resulting from the use of amendments. The results
shown above are those obtained after the initial hypotheses, while the results displayed below reflect
the outcomes following the submission of amendments and subsequent reflections. Benchmark
CruxEval Output-ID328.

Observations Rounds Executable Function

def f(array, L):
if L <= 0:

return array
if len(array) < L:

array.extend(f(array, L - len(array)))
return array

# assert f([1, 2, 3], 4) == ??

Round 1:
Step 1 Base Case Check:

The function checks if ‘L’ is
less than or equal to 0.

If true, it simply returns
the array as is

Step 2 Recursive Extension:
If the length of ‘array’
is less than L, it then
calls itself recursively
Step 3 Return Array:

If the array is already of
length ‘L‘ or longer, the

function simply returns the
array without any modifications.

assert f([1, 2, 3], 4) == [1, 2, 3, 1]

Round 2:
Step 1 Base Case Check: ...

Step 2 Recursive Extension: ...
Step 3 Return Array: ...
Step 4 Example Check:

The original call then extends
‘[1, 2, 3]’ by ‘[1, 2, 3]’,

resulting in ‘[1, 2, 3, 1, 2, 3]’.

assert f([1, 2, 3], 4) == [1, 2, 3, 1, 2, 3]

In Table 10, hypothesis decomposition reveals that the output number is determined not only by its
position at the middle of the input array but also by being the third character.

In Table 11, compared to models without hypothesis decomposition, those utilizing this approach
progressively analyze the function’s behavior, ultimately achieving an abstract understanding of the
program and making accurate assertions. In Table 12, for a complex recursive function, while the
LLM accurately grasped the overall functionality of the function through hypothesis decomposi-
tion, it encountered difficulties during the detailed analysis of specific instances. Following the
submission of a revised solution, the LLM reflected on its errors and successfully resolved the is-
sue, addressing the collapse of the overall logical chain caused by a failure in a single step during
multi-step reasoning.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 13: Failure case study. The observations indicate that the hypotheses proposed by the LLM
are overly simplistic, rendering it difficult to account for all possible cases. Additionally, manual
inspection and efforts to summarize these hypotheses proved challenging. This limitation is one of
the primary factors contributing to the LLM’s failure in this task. Benchmark: List Function-ID9.

Observations Rounds Executable Function

[2, 8]→ [8]

[7, 5, ..., 8, 4]→ [5, ..., 8]

[8, 2, ..., 9]→ [2, ..., 9]

[3, 2, 1, 0, 7, 8]→ [2, 1, 0]

. . .

. . .

Round 1:
Remove the first element

from the input list.

def fn(input_list):
"""
Removes the first element from the
input list of integers.
"""
# Check if the input list is empty
if not input_list:

return []

# Return the list excluding the
# first element
return input_list[1:]

Round 2:
Remove the first and the last
elements from the input list.

def fn(input_list):
"""
Remove the first and last elements
from the input list.
"""
# Check if the list has less than
# 2 elements
if len(input_list) < 2:

return []
# Return the list excluding the
# first and last elements
return input_list[1:-1]

Table 14: Failure case study. The LLM make some redundant hypotheses, which led to failure. Even
after amendments, it was unable to break free from its original thought framework, resulting in a
failure to reflect effectively. Benchmark: ARC-ID5.

Observations Rounds Executable Function

Round 1:
Step 1: Identify non-zero elements

in the input grid.
Step 2: Shift all non-zero elements

down one row.
Step 3: Repeat the process for each

input-output pair to verify
consistency.

def fn(grid):
if not grid or not grid[0]:

return grid
num_rows = len(grid)
num_cols = len(grid[0])
# Create a new grid initialized with zeros
new_grid = [[0] * num_cols for _ in range(num_rows)]
for col in range(num_cols):

# Collect non-zero elements in the current column
non_zero_elements = [grid[row][col] for row in range(num_rows) \\
if grid[row][col] != 0]
# If there are non-zero elements, shift them down by one row
if non_zero_elements:

# Shift down by one row with wrap-around
shifted_elements = [0] * num_rows
for i, elem in enumerate(non_zero_elements):

new_row = (i + 1) % num_rows
shifted_elements[new_row] = elem

# Find the maximum value among the shifted elements
max_value = max(shifted_elements)

# Fill the entire column in the new grid with the maximum value
for row in range(num_rows):

new_grid[row][col] = max_value
return new_grid

Round 2:
Step 1:Identify non-zero elements

in the input grid.
Step 2: Shift all non-zero
elements down one row.

Step 3: In the resulting grid, fill each
row with the maximum value
from its respective column,
considering only the shifted

non-zero elements.
Step 4: Repeat the process for each

input-output pair to verify consistency.

def fn(grid):
if not grid or not grid[0]:

return grid
rows, cols = len(grid), len(grid[0])
# Step 1: Identify non-zero elements and their positions
non_zero_positions = []
for r in range(rows):

for c in range(cols):
if grid[r][c] != 0:

non_zero_positions.append((r, c))

# Step 2: Shift non-zero elements down by one row
shifted_positions = [( (r + 1) % rows, c) for r, c in \\
non_zero_positions]

# Step 3: Determine the maximum value for each column
# from the shifted positions
max_values = [0] * cols
for r, c in shifted_positions:

max_values[c] = max(max_values[c], grid[r][c])

# Step 4: Construct the new grid
new_grid = [[0] * cols for _ in range(rows)]
for r, c in shifted_positions:

new_grid[r][c] = max_values[c]

return new_grid

E.2 FAILURE ANALYZE

We analyze RHDA’s performance in numerous failure cases and summarize the underlying causes
of these failures. Our findings suggest that the primary reason can be attributed to the insufficient

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

intrinsic capability of LLMs in code reasoning tasks. This limitation is specifically reflected in two
aspects:

• Sub-hypotheses fail to address the problem: For tasks that are overly complex or abstract
(e.g., cases shown in Table 13), even though hypothesis decomposition attempts to reduce
task complexity, LLMs still struggle to handle them effectively.

• Amendments fail to correct sub-hypotheses: While amendments leverage external feed-
back to help LLMs reflect on their mistakes, the models often remain confined to their
existing thought framework, even after recognizing errors (e.g., cases shown in Table 14).
This results in the correction failing to resolve the issue.

These observations indicate that for tasks exceeding the intrinsic capabilities of LLMs, relying solely
on reflective hypothesis decomposition and amendment may not be sufficient to improve the model’s
performance.

F COSTS

Table 15: Avg. API calls and Total Cost using GPT-4o.
Method Avg. API Calls Total Cost (cent)

List Func MiniARC RobustFill Deepcoder List Func MiniARC RobustFill Deepcoder

IO 8.0 4.0 5.0 3.0 10.2 4.6 2.0 3.3
PoT 1.0 1.0 1.0 1.0 5.0 3.7 0.6 1.2
CoC 1.0 1.0 1.0 1.0 11.0 9.0 1.1 1.4
SC (N=3) 3.0 24.0 15.0 9.0 5.3 3.7 0.6 1.2
SR (T=2) 1.4 1.9 1.5 1.6 4.6 3.3 0.5 1.1
T=2, N=3 5.4 5.9 5.5 5.6 8.6 4.0 3.1 4.7

Method Deductive Abductive Deductive Abductive

CRUXEval LiveCodeBench CRUXEval LiveCodeBench CRUXEval LiveCodeBench CRUXEval LiveCodeBench

Standard 1.0 1.0 1.0 1.0 2.9 0.5 3.1 1.5
CoT 1.0 1.0 1.0 1.0 19.4 3.7 19.5 3.3
SC (N=3) 3.0 3.0 3.0 3.0 2.9 0.5 3.3 1.5
SR (T=2) 1.6 1.7 1.4 1.5 3.8 0.6 3.4 1.6
CoC 1.0 1.0 1.0 1.0 18.3 4.1 19.0 3.4
T=2, N=1 1.6 1.7 1.4 1.5 19.0 4.4 18.8 4.4

In Table 15, we present the average number of API calls and the total cost for each task. We used
GPT-4o, with an input cost of $0.0025/1K tokens and an output cost of $0.01/1K tokens. The results
indicate that our approach still demonstrates high cost-effectiveness for certain tasks.

G TRADE OFF BETWEEN NUMBER OF ITERATIONS AND PERFORMANCE GAIN

1 2 3
Iteration

37.5

40.0

42.5

45.0

47.5

50.0

52.5

Ac
cu

ra
cy

(%
)

(a) List Function

Accuracy
Task Accuracy

1 2 3
Iteration

7

8

9

10

11

12

13

14

(b) MiniARC

1 2 3
Iteration

20

25

30

35

40

45

(c) RobustFill

1 2 3
Iteration

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

(d) DeepCoder

Figure 8: In the inductive code reasoning tasks, as the number of iterations increased, the perfor-
mance continued to improve.

In this section, we investigate the impact of iteration count on the performance of three types of
reasoning tasks, with experimental results illustrated in Figure 8 and Figure 9. For inductive and
abductive code reasoning tasks, performance consistently improved as the number of iterations in-
creased. However, the rate of improvement diminished, with marginal gains becoming less sig-
nificant at higher iteration counts. Conversely, for deductive code reasoning tasks, performance
followed a rise-and-fall trend, initially improving but declining with excessive iterations. These
findings suggest that while increasing the number of iterations can enhance performance for general
code reasoning tasks, it is crucial to balance iterative gains against potential performance instability.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 2 3
Iteration

78

80

82

84

86

88

90

Ac
cu

ra
cy

(%
)

(a) CRUXEval

Deductive
Abductive

1 2 3
Iteration

60

65

70

75

80

85
(b) LiveCodeBench

Figure 9: In the deductive code reasoning tasks, the performance slightly decreased as the number of
iterations increased. Conversely, in the abductive code reasoning tasks, the performance consistently
improved with an increasing number of iterations.

Table 16: Prompts used in our study. {} refers to a placeholder.
Type Prompt

Sub Hypothesis
Generation

Generate a rule that maps the following inputs to their
corresponding outputs step by steps. {Task description}

{Examples}

Please format your rule as follows:

{Rule format}

Amendment
Submission

Your rule: {Rule}

This rule does not work for the following examples.

{Feedback}

Please carefully reconsider each of your steps to ensure
that the rules are correct. Systematically

generate new rules, step by step.
{Feedback description} Please
format your rule as follows:

{Rule format}

Hypothesis
Translation

You are an expert Python programmer. Write a Python
function ‘fn‘ for the following rule. {Translation

Example description}

Rule: {Rule}

Rule
Application

Generate an output corresponding to the given input based
on the rule. {Application Example description}

Rule: {Rule}

Input: {Test input}
Output:

H PROMPTS

23


	Introduction
	Meta-Benchmark
	Inductive Code Reasoning
	Deductive Code Reasoning
	Abductive Code Reasoning

	Code Reasoning with Hypothesis Decomposition and Amendment
	Experiments
	Inductive Code Reasoning
	Deductive Code Reasoning
	Abductive Code Reasoning
	Qualitative Analyse
	RHDA is a Flexible and Scalable Problem-solving Pathway

	Limitation and Discussions
	Related Work
	Conclusion
	Reproducibility Statement
	DSL Grammars
	Experimental Results Using More LLMs
	Benchmark Details
	RHDA Acting as an Agent in VirtualHome
	Examples Analyses
	Effective Case Study
	Failure Analyze

	Costs
	Trade off between number of iterations and performance gain
	Prompts

