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ABSTRACT

The reasoning abilities are one of the most enigmatic and captivating aspects of
large language models (LLMs). Numerous studies are dedicated to exploring and
expanding the boundaries of this reasoning capability. However, tasks that em-
body both reasoning and recall characteristics are often overlooked. In this paper,
we introduce such a novel task, code reasoning, to provide a new perspective for
the reasoning abilities of LLMs. We summarize three meta-benchmarks based
on established forms of logical reasoning, and instantiate these into eight specific
benchmark tasks. Our testing on these benchmarks reveals that LLMs continue
to struggle with identifying satisfactory reasoning pathways. Additionally, we
present a new pathway exploration pipeline inspired by human intricate problem-
solving methods. This Reflective Hypothesis Decomposition and Amendment
(RHDA) pipeline consists of the following iterative steps: (1) Proposing potential
hypotheses based on observations and decomposing them; (2) Utilizing tools to
validate hypotheses and reflection outcomes; (3) Revising hypothesis in light of
observations. Our approach effectively mitigates logical chain collapses arising
from forgetting or hallucination issues in multi-step reasoning, resulting in per-
formance gains of up to 3×. Finally, we expanded this pipeline by applying it to
simulate complex household tasks in real-world scenarios, specifically in Virtual-
Home, enhancing the handling of failure cases. We release our code and all of re-
sults at https://anonymous.4open.science/r/code_reasoning.

1 INTRODUCTION

Large Language Models (LLMs), which are trained on billions of tokens, have demonstrated im-
pressive reasoning abilities in complex tasks Brown et al. (2020); Wei et al. (2022); Kojima et al.
(2022); OpenAI (2023). However, it is evident that as potential fuzzy retrieval systems or parame-
terized knowledge compression systems Xie et al. (2021), LLMs perform better on System 1 tasks
than on System 2 tasks Kahneman (2011); Yao et al. (2023a). Specifically, LLMs excel in intuitive,
memory-retrieval tasks, but continue to face significant challenges with tasks requiring rational rea-
soning Kambhampati (2024).

From the perspective of human cognitive psychology, reasoning can be viewed as a process of
memory retrieval, in which people retrieve relevant information from memory and use it to make
inferences Kyllonen & Christal (1990); Süß et al. (2002); Hayes et al. (2014); Feeney & Thompson
(2014); Hardman & Cowan (2015). For example, Haidt (2001) proposed that when individuals en-
gage in moral reasoning, they typically draw upon their prior knowledge from social and cultural
contexts. Similarly, studies involving animal lesions and human neuroimaging have confirmed that
the hippocampus, which is primarily associated with memory, also plays a crucial role in reasoning
abilities Zeithamova et al. (2012). Therefore, memory and reasoning are interdependent, with con-
siderable overlap between the two, rendering the distinction between them somewhat arbitrary Heit
et al. (2012).

We believe that, similar to humans, there is no significant distinction between memorizing and
reasoning tasks for LLMs, which often leads to the neglect of certain key intermediate tasks. Here,
we propose a novel task to explore the capability boundaries of LLMs: Code Reasoning. Code
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Figure 1: Code reasoning is a category of tasks that incorporates logical reasoning into code, aiming
to solve programming problems through logical reasoning. These tasks require a balance between
background knowledge and thinking span, placing greater emphasis on the collaborative functioning
of both System 1 and System 2 thinking.

reasoning encompasses a category of tasks that demonstrates logical reasoning through code and
addresses problems in a systematic manner. As illustrated in Figure 1, we position some tasks along
an axis that reflects 1) the degree of reliance on prior knowledge (Recall) and 2) the extent to which
prior knowledge is applied to the current context (Reasoning). We position the code reasoning
task between memory and reasoning. On one hand, the highly structured nature of code requires the
model to learn syntax from pre-training data, enabling it to recall relevant information during solving
a problem. On the other hand, generating code solutions necessitates the model’s understanding
of the problem and context, involving reasoning to produce appropriate solutions. Therefore, we
describe code reasoning as “free play within a constrained environment”.

In this paper, we introduce code reasoning, a task that formalizes reasoning steps into a programming
language and offloads the computation process to the compiler. To explore different aspects of
code reasoning, we summarize three meta-benchmarks based on existing forms of logical reasoning:
inductive code reasoning, deductive code reasoning, and abductive code reasoning.

Inductive code reasoning involves deriving broad generalizations from a series of observations,
demonstrating the ability to infer rules from examples and generate programs to meet input-output
mapping. Deductive reasoning, starts from premises and derives valid conclusions systematic rea-
soning, focusing on the model’s capacity to understand a program’s intermediate states and reason
step by step. Abductive reasoning seeks the simplest and most likely explanation based on a set of
observations, highlighting the model’s ability to abstractly understand a function’s purpose.

We concretize these three meta-benchmarks into eight specific benchmarks. Based on these eight
benchmarks, we evaluate the performance of existing models in code reasoning. Due to data sparsity,
we find that current state-of-the-art LLMs still struggle to achieve satisfactory results in solving such
problems. To enhance the reasoning process, we implement a Reflective Hypothesis Decomposition
and Amendment (RHDA) pipeline. This pipeline is iterative, encompassing hypothesis decomposi-
tion, execution verification, and amendment submission. Specifically, we first guide the LLM to for-
mulate initial hypotheses based on complex observations and decompose these into sub-hypotheses.
These sub-hypotheses are then compiled into executable functions through a translator, enabling di-
rect application to the observations, followed by validation using external tools. Subsequently, based
on the execution results and observations, the LLM submits amendments to reflect on and refine the
issues within the sub-hypotheses.

Our experimental results indicate that the methods of RHDA effectively mitigate reasoning failures
caused by data sparsity. With the same or even lower overhead, this method achieved performance
improvements of up to three times compared to baseline methods. Finally, we extended this pipeline
to complex, simulated real-world household tasks VirtualHome Puig et al. (2018; 2020), guiding the
LLM to complete a series of intricate operations.
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2 META-BENCHMARK

We describe the general process of code reasoning as the transformation from Input I and ProgramP
to Output O, represented as I P−→ O. Inductive code reasoning is concretized as the Programming
by Example (PBE) task. In this task, a neural program synthesis modelM searches the execution
space to find a program that best satisfies all given input-output specifications. We donate this meta-
benchmark asM(I,O) → P̃ . Deductive code reasoning is exemplified in tasks that simulate the
program execution process. In this task, a neural simulation compiler modelM tracks the program’s
execution and records intermediate states, gradually deriving the final valid output. We denote this
meta-benchmark as M(I,P) → Õ. Abductive code reasoning is concretized as input prediction
tasks. This task requires the neural understanding modelM to form an abstract level understanding
of function’s behavior and perform abductive inference based on the given program and output. We
represent this meta-benchmark asM(O,P) → Ĩ. The details of the benchmarks are provided in
the Appendix C.

2.1 INDUCTIVE CODE REASONING

Inductive code reasoning can be represented asM(I,O)→ P̃ and is concretized as a PBE task Qiu
et al. (2024); Shi et al. (2024). PBE is a revolutionary program synthesis task designed to help
end-users, particularly those who are non-programmers, create scripts for automating repetitive
tasks Gulwani (2016). Based on input-output specifications, PBE systems can synthesize program
in either general-purpose language (GPL) or domain-specific language (DSL). Inductive code rea-
soning encompasses four challenging PBE tasks, two of which are GPL tasks: List Function Rule
(2020) and MiniARC Kim et al. (2022), while the other two are DSL tasks: RobustFill Devlin et al.
(2017) and DeepCoder Balog et al. (2016). GPL tasks are relatively complex, allowing the model to
solve problems in a more flexible manner. In contrast, DSL tasks require the model to quickly learn
the syntax of DSL through few-shot learning and address relatively simpler problems.

List Function. The List Function task was originally designed to investigate how humans learn
the concept of computable functions that map lists to lists. Given input and output specifications in
the form of lists, the model generates GPL rules that conform to these specifications. For example,
with an input specification of [2, 4, 8, 10] and an output specification of [3, 5, 9, 11],
we expect the resulting rule to be lambda x : x + 11.

MiniARC. MiniARC is a compressed 5x5 version of the Abstraction and Reasoning Corpus Chol-
let (2019); Moskvichev et al. (2023), designed to assess imaginative and reasoning abilities.
MiniARC balances the length of the input-output pairs with the difficulty of the problems. The
specifications are 5x5 2D grids, where the numbers represent blocks of specific colors. The model
must find valid problem-solving paths (such as color swapping, row flipping) to achieve the trans-
formation from input to output.

RobustFill. RobustFill is a string manipulation task where the model is expected to perform
a combination of atomic operations, such as extracting a substring from position k1 to k2 us-
ing SubString(k1, k1), to achieve generalization. As an example, a program ToCase(Lower,
SubStr(1,3)) converts full month names (January, April) to their abbreviations (jan, apr).

DeepCoder. The DeepCoder task involves using DSL to perform operations on integer lists. In
DeepCoder, each line represents a subroutine that performs atomic operations on previous vari-
ables and assigns the results to new variables. The result of the final line is the program’s out-
put. For example, program a ← [int] | b ← FILTER(<0) a | c ← MAP(*4) b |
d ← SORT c | e ← REVERSE b (where “|” denotes subroutine separator.) transforms the
input [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11] into the output [-12,
-20, -32, -36, -68]. We provide detailed RobustFill and Deepcoder DSLs in Appendix A.

1For conciseness while maintaining generality, we will use lambda expressions to represent a program.
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2.2 DEDUCTIVE CODE REASONING

Deductive code reasoning refers to the process of deriving a sound inference O by reasoning from
the given premise I, assuming the validity of the argument P . Deductive code reasoning can
be instantiated as an output prediction task Gu et al. (2024). Based on the given premise, out-
put prediction requires the LLM to simulate a compiler Kim et al. (2024b), executing step by
step until it arrives at a valid conclusion. For example, given a program P = lambda text,
value: ’’.join(list(text) + [value]) and inputs text = ‘bcksrut’, b =
‘q’, the output prediction from LLM should be ‘bcksrutq’.

2.3 ABDUCTIVE CODE REASONING

Starting from existing facts P and O, deriving the most reasonable and optimal explanation I is
referred to as abductive code reasoning. This meta-benchmark can be framed as an input prediction
task. Given the provided facts, input prediction requires the LLM to backtrack through the program’s
execution process to recover the potential inputs. In cases where multiple possible inputs exist, the
model should apply Occam’s Razor and return the simplest input. For example, given a program P =
lambda nums: nums + [nums[i % 2] for i in range(len(nums))] and out-
puts [-1, 0, 0, 1, 1, -1, 0, -1, 0, -1], the input prediction from LLM should be
[-1, 0, 0, 1, 1].

Deductive code and abductive code reasoning can be regarded as opposite processes; therefore,
we selected two identical and representative datasets, CRUXEval Gu et al. (2024) and Live-
CodeBench Jain et al. (2024), as benchmarks to validate these two capabilities.

CRUXEval. CRUXEval is a benchmark designed to evaluate code understanding and execution.
Many models that achieve high scores on HumanEval Chen et al. (2021) do not show the same level
of improvement on the CRUXEval benchmark. This benchmark includes 800 functions along with
their corresponding inputs and outputs.

LiveCodeBench. LiveCodeBench is a dynamically updated benchmark sourced from competi-
tion platforms. Each problem is timestamped, and we selected data from October 2023 (later than
GPT-4o training) to March 2024 (the most recent), ensuring there is no data leakage and thereby
guaranteeing the model’s generalization performance.

3 CODE REASONING WITH HYPOTHESIS DECOMPOSITION AND
AMENDMENT

We aim to generate a reliable reasoning process for problem-solving by establishing a problem-
solving pathway f : X → Y . For a given task τ and the seen specifications/observations X s

τ , the
pathway f , should lead to a seen valid solution Ys

τ through a chain of reasoning. We expect this
pathway f to have sufficient generalization capabilities to handle unseen specifications/observations
X u

τ . To this aim, we employ a process involving hypothesis decomposition, execution verification,
and amendment submission to iteratively explore and refine the reasoning pathway. We first establish
an initial hypothesis h0 ∈ Σ∗ based on the observations xs

τ ∈ X s
τ , where Σ∗ is closure form

of LLM’s vocabulary. This initial hypothesis h0 serves as a preliminary solution pathway to the
problem. Given the complexity of many problems, we decompose the hypothesis h0 into simpler
sub-hypotheses h0 ⇐⇒ {h0

s0 , h
0
s1 , h

0
s2 , ...}. A translator function g : Σ∗ → Σ∗

E , which maps
the hypothesis space Σ∗ into an executable function space Σ∗

E , is then used to ‘compiled’ the sub-
hypotheses h0 into an executable function e0. This executable function is directly applicable to the
observations xs

τ , allowing for the derivation of conclusions ỹsτ , that is:

ỹsτ = g(h0)(xs
τ ). (1)

Feedback F(ysτ , ỹsτ ) is used to evaluate the conclusions drawn from the current hypothesis, guiding
the LLM to reflect on its sub-hypotheses. Through this iterative process of reflection, the model gen-
erates a new hypoth esis h1 for the next iteration. Finally, the problem-solving pathway f is applied
to unseen observations X u

τ , and the model’s generalization performance is assessed by measuring
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Example 1

[Step 1]: Identify the position 
of '5' in the input matrix.
[Step 2]: Count the number 
of '5's in each column.
[Step 3]: Adjust the column 
count values.
[Step 4]: Fill each row of the 
output grid with the adjusted 
column counts.

Hypothesis 
Decomposition

Expected 
Output

Actual 
Output

Unseen Observation

Executable function 𝒆

# Step 3: Adjust the column count 

values

adjusted_counts = []

for count in column_counts:

if count == 2:

adjusted_counts.append(4)

elif count == 3:

adjusted_counts.append(2)

else:

adjusted_counts.append(0)

(a) Hypothesis Decomposition

Seen Observation

Translator 𝑔

Task: Inductive (b) Execute & Verify

(c) Amendment Submission

Polished
Hypothesis

[Step 1]: Identify the position 
of '5' in the input matrix.
[Step 2]: Count the number 
of '5's in each column.
[Step 3]: Adjust the column 
count values, possibly by 
increasing or decreasing by 
specific amounts.
[Step 4]: Fill each row of the 
output grid with the adjusted 
column counts.

Executable function 𝒆
# Step 3: Adjust the column count values

adjusted_counts = []

for count in column_counts:

if count == 5:

adjusted_counts.append(6)

elif count == 3:

adjusted_counts.append(2)

elif count == 1:

adjusted_counts.append(1)

elif count == 2:

adjusted_counts.append(4)

else:

adjusted_counts.append(0)

Expected 
Output

Actual 
Output

(f) Validation

Example 3

𝑔

(d) Feedback * N

Example 2

Example 4

Example 1

Example 2

Example 1

Example 2

Figure 2: An overview of pipeline to solve code reasoning task. We decompose the hypothesis and
generate executable functions step by step. After comparing the results with the seen observations
and receiving feedback, we propose amendments, reflect on potential errors at each step, and gener-
ate revised hypotheses. This process is repeated until a valid problem-solving pathway is discovered.
For concise expression, we show partial code snippets.

its accuracy:

accτ =
1

|X u
τ |

∑
xu
τ∈Xu

τ

1 [f(xu
τ ) = yuτ ]. (2)

The preceding section presents a unified framework for the hypothesis decomposition and amend-
ment method. However, the implementation specifics differ across various tasks. In the following
sections, we will introduce these task-specific variations in detail.

Hypothesis Decomposition. We recognize that complex logical reasoning problems are difficult
to encapsulate in a single reasonable hypothesis, which can adversely affect the performance of
LLMs. Therefore, we require the LLM to decompose its hypotheses. Specifically, given an obser-
vation xs

τ , the LLM gradually presents corresponding hypotheses step by step. For inductive code
reasoning, h0 represents the step-by-step hypothesis of the input-to-output transformation rules. For
deductive and abductive code reasoning, h0 refers to the step-by-step hypothesis regarding the func-
tionality of the program.

Execution Verification. After obtaining the hypothesis, we need to apply it to the observations.
However, hypotheses are often not directly usable, so we need to convert the decomposed hypothesis
into an executable function e through a translator g. For inductive code reasoning, the executable
function is a program; for deductive and abductive code reasoning, the executable function is the
predicted output and input, respectively. These three types of tasks are then sent to a compiler to
obtain the actual execution results, and the feedback generated by the compiler is provided to the
LLM to help it further refine and adjust the sub hypotheses.

Amendment Submission. During the amendment submission stage, there are no significant dif-
ferences in handling the three tasks. The LLM receives validation feedback from the tools and
generates amendments based on this feedback, reflecting on possible issues in the previous hypothe-
ses. The reflection process involves revising each sub-hypothesis individually, forming an updated
hypothesis h1 ⇐⇒ {h1

s0 , h
1
s1 , h

1
s2 , ...}. This process ensures that each sub-hypothesis is adjusted

to better align with the observations and validation results, gradually improving the reasoning path-
way’s coherence and accuracy.
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Table 1: RHDA method on inductive code reasoning task. T refers to the maximum number of
iterations. N refers to the number of candidates.

Method Accuracy Task Accuracy
List Func MiniARC RobustFill Deepcoder List Func MiniARC RobustFill Deepcoder

IO 64.85 28.21 61.74 23.78 38.00 13.08 21.74 10.42
PoT 44.90 10.90 37.39 30.90 33.60 8.46 21.74 19.79
CoC 42.45 10.90 31.30 26.39 34.40 4.62 13.04 13.54
SC (N=3) 52.95 12.31 46.09 37.85 41.20 9.23 26.09 26.04
SR (T=2) 51.10 10.26 41.74 36.81 41.60 8.46 21.74 25.00

w/o Sub-Hyp 42.45 7.95 40.87 18.05 33.20 4.62 21.74 9.37
w/o Amend 47.10 8.46 35.65 30.21 36.40 6.92 17.39 19.79

T=2, N=1 51.05 12.56 43.48 38.89 41.20 10.77 30.43 23.96
T=3, N=1 53.20 14.10 47.83 38.19 44.00 11.54 30.43 26.04
T=2, N=3 58.35 19.74 54.78 43.06 48.80 13.85 34.78 29.17

4 EXPERIMENTS

Experimental Setup. We utilize the latest and most advanced model, gpt-4o-2024-08-06, as the
backbone LLM for all our experiments. We report the results using Llama-3.1-70B-Instruct, Qwen-
max (qwen-max-2024-09-19) Bai et al. (2023), Claude 3.5 (claude-3-5-sonnet-20240620) in Ap-
pendix B. Following the methodology of Qiu et al. (2024), we set the temperature to 0.7. We report
results using several methods: input-output (IO) prompting, standard prompting, Chain of Thought
(CoT) Wei et al. (2023), Program of Thought (PoT) Chen et al. (2023), Chain of Code (CoC) Li
et al. (2024), Self-Consistency (SC) Wang et al. (2023c) and Self-Refine (SR) Madaan et al. (2024),
all implemented with 2-shot learning.2 For our proposed process, we employ 0-shot prompts, allow-
ing the LLM to explore problem-solving pathways in a more flexible manner. We provide detailed
prompt templates in Appendix H.

4.1 INDUCTIVE CODE REASONING

For inductive code reasoning, we establish four baseline methods. The Input-Output (IO) prompt-
ing requires the LLM to predict outputs based on all seen observations and an unseen input. The
Program of Thought (PoT) method generates and executes programs to derive outputs. The CoC
method prompts the LLM to utilize pseudocode for reasoning in output prediction. The SC method
builds upon PoT by sampling multiple programs and selecting the one that demonstrates optimal
performance on seen observations. Furthermore, since each example may contain multiple unseen
observations, we adopt the approach from Qiu et al. (2024) to define task accuracy externally. An
example is deemed passed only when all unseen observations within it pass; thus, the proportion of
passed examples reflects the task accuracy. The experimental results are presented in Table 1.

The results demonstrate that the RHDA method achieves optimal performance across four bench-
marks, with task accuracy exceeding that of the second-best methods by 18.45%, 5.89%, 33.31%,
and 12.02%, respectively. However, we observe that RHDA appears to underperform compared to
IO prompting, achieving the strongest performance on only one of the four benchmarks. This may
be a misunderstanding, as the IO prompting method requires the LLM to predict an outputs from
an unseen observation each time, making it less efficient (as each use case requires an API call) and
less generalizable (as it’s unable to produce a universal hypothesis applicable to all observations)
than RHDA.

Ablation Study. We introduce two variants to separately validate the effectiveness of hypothesis
decomposition and amendment submission. The first variant does not require the LLM to decompose
hypotheses, referred to as w/o Sub-Hyp. The second variant, termed w/o Amend, indicates that the
model no longer modifies its hypotheses through reflection. The experimental results presented in
Table 1 show that the performance of these two variants declined by 25.39% to 67.88% and 19.28%
to 57.14%, respectively. This finding suggests that the introduction of sub-hypotheses is a critical
step, as it simplifies complex problems, reducing the workload for the subsequent translator g while

2Not all methods are suitable for these three meta-benchmarks, thus we selected the most appropriate meth-
ods for each benchmark.
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also enabling individual amendments to each sub-hypothesis. Nonetheless, the reflection process
is equally important. Our results align with previous research Zhao et al. (2024); Olausson et al.
(2024); Peng et al. (2023) indicating that rational reflection can significantly enhance performance.

4.2 DEDUCTIVE CODE REASONING

Table 2: RHDA method on deductive code rea-
soning task. T refers to the maximum number
of iterations. N refers to the number of candi-
dates.

CRUXEval LiveCodeBench

Standard 68.75 41.18
CoT 89.12 83.14
SC (N=3) 71.12 36.27
SR (T=2) 80.38 63.73
CoC 85.62 81.37

w/o Amend 86.62 71.29
T=2, N=1 90.62 84.16

For deductive code reasoning, we select standard
prompting, CoT, SC, SR and CoC as benchmark
methods. The experimental results are presented
in Table 2. These results indicate that the CoT and
CoC methods significantly enhanced the accuracy
of reasoning outcomes by guiding the model to
think step-by-step about function capabilities. Our
proposed method advances this further, achiev-
ing optimal performance with a single round of
amendments, resulting in an improvement of up
to 104.37% compared with baseline method. A
horizontal comparison of the two datasets revealed
that, due to the absence of LiveCodeBench data
in internet corpora, the performance with standard
prompts showed a marked advantage, with the SC method amplifying this gap. Notably, the com-
bination of CoT, CoC, and hypothesis decomposition and amendment enabled the LLM to exhibit a
substantial degree of reasoning and generalization ability, nearly solving all presented problems.

4.3 ABDUCTIVE CODE REASONING

Standard CoT SC (N=3) SR (T=2) CoC Sub-Hyp T=2, N=1
0
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54.90

65.69
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LiveCodeBench

Figure 3: RHDA method on abductive code rea-
soning task. T refers to the maximum number of
iterations. N refers to the number of candidates.

For abductive code reasoning, we employ the
same baseline methods as those used for de-
ductive reasoning. The experimental results are
presented in Figure 3. Compared to deduc-
tive reasoning, abductive reasoning involves a
reverse thinking process, which presents sig-
nificant challenges. The LLM cannot derive
the program’s intermediate states through de-
duction and must first establish an abstract-
level understanding of the function’s behav-
ior before proceeding with abduction. On the
CRUXEval dataset, the performance decline
for abductive reasoning ranged from 8.20% to
25.52%. However, the hypothesis decompo-
sition and amendment approach demonstrated
robustness, as the shift in reasoning modes re-
sulted in only minimal performance degrada-
tion (8.20%) while still outperforming baseline
methods by 10.02% to 31.89% on the CRUX-
Eval dataset and 7.35% to 40.39% on the LiveCodeBench dataset. A horizontal comparison of the
two datasets revealed a trend similar to that observed in deductive reasoning, with an overall perfor-
mance decline on the LiveCodeBench dataset, suggesting a complex relationship between reasoning
and recall.

4.4 QUALITATIVE ANALYSE

We select some cases to conduct an in-depth exploration of the quality of RHDA.

Hypothesis Decomposition Reduces Task Complexity. In Table 3, we present a qualitative anal-
ysis of the MiniARC benchmark, comparing the effects of using hypothesis decomposition versus
not using it. As illustrated in the examples above, without hypothesis decomposition, the descrip-
tions require a substantial amount of language, which ultimately leads to severe hallucinations in

7
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Table 3: We compare the results obtained using the sub-hypothesis decomposition method with those
obtained without it. The results without hypothesis decomposition are presented at the top of the
table, while those with hypothesis decomposition are shown below. Benchmark: MiniARC-ID26.

Observations Hypothesis Executable Function

No Sub Hypothesis:
For a given 5x5 matrix input,

shift the first row to the last row,
the second row to the fourth row,

the third row to the third row
(unchanged), the fourth row to the

second row, and the fifth
row to the first row. This rotates

the rows up by two positions.

def fn(matrix):
if len(matrix) != 5 or any(len(row) != 5 for row in matrix):

raise ValueError("Input must be a 5x5 matrix")
# Create a new matrix to store the result
result = [[0]*5 for _ in range(5)]
# Apply the row shifting rule
result[0] = matrix[2] # Third row to first row
result[1] = matrix[3] # Fourth row to second row
result[2] = matrix[4] # Fifth row to third row
result[3] = matrix[0] # First row to fourth row
result[4] = matrix[1] # Second row to fifth row
return result

Sub Hypothesis:
Step 1: Identify the non-zero rows.

Step 2: Move non-zero rows to the bottom.
Step 3: Shift all rows down to fill the grid.

Step 4: Repeat steps for next input.

def fn(grid):
# Step 1: Identify non-zero rows
non_zero_rows = [row for row in grid if any(row)]
# Step 2: Reverse the order of non-zero rows
non_zero_rows.reverse()
# Step 3: Calculate the number of zero rows needed
num_zero_rows = len(grid) - len(non_zero_rows)
# Step 4: Create the new grid with zero rows at the top
zero_rows = [[0] * len(grid[0]) for _ in range(num_zero_rows)]
# Step 5: Combine zero rows and reversed non-zero rows
new_grid = zero_rows + non_zero_rows
return new_grid

the program and results in failure. In contrast, the examples below, which utilize hypothesis decom-
position, present clear and executable objectives, enabling the translator to easily write executable
functions and achieve successful solutions as instructed.

Table 4: We present the additional improvements resulting from the use of amendments. The results
shown above are those obtained after the initial hypotheses, while the results displayed below reflect
the outcomes following the submission of amendments and subsequent reflections. Benchmark: List
Function-ID29.

Observations Rounds Executable Function

[0, 8, 3, 9]→ [0, 8]

[6, 1]→ []

[4, 8, 7]→ [4]

. . .

Round 1:
Step 1: Remove elements from the end

of the input list until a ’9’ is encountered.
Step 2: If ’9’ is present, remove all

elements after the last occurrence of ’9’.
Step 3: If ’9’ is not present, remove the

last two elements of the list.
Step 4: If the list has fewer than two

elements, return an empty list.

def fn(lst):
# Check if the list has fewer than two elements
if len(lst)<2:

return []
# Check if ’9’ is present in the list
if 9 in lst:

# Find the last occurrence of ’9’
last_nine_index=len(lst)-1-lst[::-1].index(9)
# Return the list up to and including the last ’9’
return lst[:last_nine_index+1]

else:
# If ’9’ is not present,
# remove the last two elements
return lst[:-2]

Round 2:
Step 1: Remove the last two elements

from the input list.
Step 2: If the resulting list has fewer than

two elements, return an empty list.

def fn(input_list):
# Remove the last two elements from the input list
modified_list = input_list[:-2]
# Check if the list has fewer than two elements
if len(modified_list) < 2:

return []
return modified_list

Amendments Guide LLM Towards Correct Pathway. We present a qualitative analysis of the
use of amendments in the List Function benchmark in Table 4. The upper section displays the ini-
tialization of the hypothesis, where the LLM generates a potential guess based on the observations
and translates it into an executable program. After offloading the execution to the tool (e.g., Python
executor) and receiving feedback, amendments are proposed to modify the initial hypothesis. Fol-
lowing this reflection, the LLM re-optimizes the rules, ultimately yielding the correct execution
results. More qualitative analyse examples please refer to Appendix E.1.

Failure Analyse. We also conduct an in-depth analysis of the reasons behind process failures in
RHDA, detailed in Appendix E.2. Our findings reveal that the primary limitation arises from the re-
stricted intrinsic reasoning capabilities of LLMs, which continue to face challenges in understanding
and addressing complex problems. These limitations are primarily reflected in two aspects:
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[grab the pie]

[go to fridge, open fridge,  store the pie]

Initial decomposed hypothesis 𝒉𝟎: 

1. I need to take the pie. 

2. I need to store the pie in fridge.

Updated hypothesis 𝒉𝟏: 

1. I need to get to the pie, and take the pie. 

2. I need to store the pie in fridge.

[walk to the pie, grab the pie]

[go to fridge, open fridge,  store the pie]

Walk to the Pie Grab the Pie Open Fridge Store the Pie

The Generated Scripts Executor𝑔

𝑔

Task

Store

the

Pie

in 

Fridge.

Figure 4: We demonstrate how RHDA can be extended to the VirtualHome framework to success-
fully complete the task of storing the pie in fridge.

• Difficulty in Generating Accurate Sub-Hypotheses: The generation of sub-hypotheses dur-
ing the reasoning process often proves inaccurate, leading to subsequent breakdowns in
reasoning chains.

• Sensitivity to Initial Hypotheses: The model exhibits a pronounced dependency on its ini-
tial hypotheses. Even when feedback is provided through amendment submissions, the
model struggles to break free from its original thought framework, constraining its reason-
ing capabilities.

4.5 RHDA IS A FLEXIBLE AND SCALABLE PROBLEM-SOLVING PATHWAY

We consider extending the RHDA pipeline to more complex scenarios. To this end, we select Vir-
tualHome Puig et al. (2018; 2020), a sophisticated multi-agent platform for simulating household
activities, as our new exploration subject. VirtualHome comprises a set of predefined atomic ac-
tions and objects that can be combined into high-level instructions. For example, ‘〈char0〉 [walk]
〈salmon〉’ describes character 0 walking to the salmon. Given a specific scenario, the LLM is tasked
with completing concrete housework using a series of high-level instructions. As depicted in Fig-
ure 4, and guided by the RHDA process, we demonstrate how the LLM successfully accomplishes
the task of storing pie in the fridge through the methods of hypothesis decomposition, execution
verification (offloading to VirtualHome engine), and reflection. we show another example in App-
neidx D.

5 LIMITATION AND DISCUSSIONS

Benchmark Selection. This paper represents the first systematic exploration of the code reasoning
task, focusing on the analysis of three forms of logical reasoning: inductive, deductive, and abduc-
tive. Due to time and cognitive constraints, we were unable to collect all benchmarks for testing.
Our aim is to stimulate in-depth discussion on this topic and inspire meaningful follow-up research.
While several excellent studies utilize code to address logical reasoning tasks Zelikman et al. (2023);
Hu et al. (2023); Srivastava et al. (2024); Liu et al. (2024), we did not include them here due to their
differing starting points from this paper.

Hyperparameters. The goal of this paper is to explore the potential of LLMs in code reasoning,
rather than solely improving the performance of a specific code reasoning task. The RHDA frame-
work serves as a preliminary exploration process; therefore, we didn’t fully optimized the prompt
templates or specific hyperparameters (such as temperature, T , and N ) utilized. In the inductive
code reasoning task, we examined a broader range of hyperparameter settings to illustrate that ex-
ploring multiple pathways aids in more effectively solving problems.

9
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Task Assessment. We propose a novel code reasoning task, and experimental results indicate that
current state-of-the-art LLMs exhibit limitations in tackling this task. In the future, we aim to further
explore this challenging area and investigate the boundaries of human capabilities in similar tasks.

6 RELATED WORK

Reasoning with LLMs. LLMs such as GPT OpenAI (2023), LLaMA Touvron et al. (2023),
and Claude Anthropic (2024), demonstrate impressive reasoning capabilities across various NLP
tasks Zhang et al. (2024). However, due to the problems of direct reasoning with LLMs such as
hallucinations Ji et al. (2023), researchers have proposed several methods to enhance the reason-
ing power of LLMs. For example, Zhou et al. (2023) decompose complex tasks into sequential
subproblems, while Sun et al. (2024) refine reasoning through environment feedback. Moreover,
intermediate representations, such as graphs Jiang et al. (2024), planning domain definition lan-
guages (PDDL) Guan et al. (2023), and triples Wang et al. (2023a), have been employed to enhance
LLM’s reasoning. Most recently, OpenAI o1 OpenAI (2024) demonstrates strong reasoning capa-
bilities and broad world knowledge. Upon further contemplation, it is capable of reasoning through
complex tasks and addressing challenges that exceed those faced by previous scientific, coding, and
mathematical models.

Simultaneously, domain-specific reasoning with LLMs has gained attention. Kim et al. (2024a)
enhance reasoning outputs in computer tasks through recursive critique. In a case study using
Minecraft, Wang et al. (2023d) introduce a Describe, Interpret, Plan, and Select framework for
open-world multitasking. In computer vision, Gupta & Kembhavi (2023) employ Python-like mod-
ular programs to tackle complex tasks. Nonetheless, reasoning in code remains an area yet to be
thoroughly explored.

Improvement with Reflection. Reflective ability is regarded as a crucial metric for evaluating
LLMs as agents. Reflection can be categorized into internal and external based on its feedback
source Pan et al. (2024). Internal reflection relies feedback from the model’s own knowledge and
parameters Huang et al. (2022), while external feedback comes from various sources, including
humans Wang et al. (2023b), other models Paul et al. (2024), external tools Gou et al. (2024); Chen
et al. (2024), or knowledge bases Yao et al. (2023b); Asai et al. (2024). Huang et al. (2024) find that
LLMs struggle to self-correct their responses without external feedback, and in some cases, their
performance may even decline following self-correction. Our work focuses on leveraging external
tools, such as compilers, to generate feedback and enhance the performance of LLMs.

7 CONCLUSION

In this paper, we emphasized that the reasoning capabilities of LLMs still depend on recalling prior
knowledge and highlighted that code reasoning has not been sufficiently explored as a novel perspec-
tive for examining the boundaries of LLM capabilities. Based on this consideration, we designed
three meta-benchmarks—inductive code reasoning, deductive code reasoning, and abductive code
reasoning—drawing on established forms of logical reasoning, and instantiated these benchmarks
into eight specific tasks. Experimental results indicated that these benchmarks present significant
challenges for current state-of-the-art LLMs. To initially explore code reasoning tasks, we proposed
a method involving Reflective Hypothesis Decomposition and Amendment (RHDA). This method
was iterative: LLMs need to generate decomposed initial hypotheses based on observations and
employ a translator to interpret these into executable functions that can be directly applied to the
observations. After obtaining the executable functions, we performed execution verification and
submit amendments, allowing for reflection and refinement of the sub-hypotheses. Experimental
results demonstrated that this approach, which integrated the principles of divide-and-conquer and
reflection, can flexibly solve complex code reasoning problems, achieving performance improve-
ments of 2 to 3 times compared to baseline methods. Finally, we extended this process to simulate
household tasks in real-world complex scenarios to validate its scalability and transferability.
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8 REPRODUCIBILITY STATEMENT

Our code, datasets and experimental results are available at https://anonymous.4open.
science/r/code_reasoning. Additionally, Appendix H contains details about pipeline and
prompts used in method.
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A DSL GRAMMARS

RobustFill is a string manipulation task using the DSL. Figure 5 illustrates the DSL syntax for
RobustFill. Our implementation is based on the works of ExeDec Shi et al. (2024) and Robust-
Fill Devlin et al. (2017).

Deepcoder is a list transformation task using the DSL. Figure 6. This implementation is based on
the works of ExeDec Shi et al. (2024) and DeepCoder Balog et al. (2016).

Program P := Concat(e1, e2, . . .)

Expression e := s | m | o | ConstStr(c)
Compose o := m1(m2) | m(s)

Substring s := SubStr(k1, k2) | GetSpan(r1, i1, b1, r2, i2, b2) | GetToken(r, i)
| GetUpto(r) | GetFrom(r)

Modification m := ToCase(a) | Replace(δ1, δ2) | Trim() | GetFirst(r, i) | GetAll(r)
| Substitute(r, i, c) | SubstituteAll(r, c) | Remove(r, i) | RemoveAll(r)

Regex r := NUMBER | WORD | ALPHANUM | ALL CAPS | PROPER CASE | LOWER | DIGIT | CHAR | δ
Case a := ALL CAPS | PROPER CASE | LOWER

Position k := − 100 | − 99 | . . . | − 1 | 0 | 1 | 2 | . . . | 100
Index i := − 5 | − 4 | . . . | − 1 | 1 | 2 | . . . | 5

Boundary b := START | END
Character c := A | . . . | Z | a | . . . | z | 0 | . . . | 9 | δ
Delimiter δ := &,.?!@()[]%{}/:;$# "’

Figure 5: The DSL syntax for string manipulation tasks in the RobustFill domain.

Program P := i1; i2; . . . ; a1; a2; . . .

Initialization i := v ← INPUT

Assignment a := v ← f | v ← h

First-Order Operation f := Head(l) | Last(l) | Access(n, l) | Minimum(l) | Maximum(l) | Sum(l)
| Take(n, l) | Drop(n, l) | Reverse(l) | Sort(l)

Higher-Order Operation h := Map(λ, l) | Filter(β, l) | Count(β, l) | ZipWith(Σ, l, l) | Scanl1(Σ, l)
int→ int Lambda λ := (+1) | (−1) | (∗2) | (/2) | (∗(−1)) | (∗∗2) | (∗3) | (/3) | (∗4) | (/4)

int→ bool Lambda β := (> 0) | (< 0) | (%2 == 0) | (%2 == 1)

(int, int)→ int Lambda Σ := (+) | (−) | (∗) | (min) | (max)

Integer Variable n := v

List Variable l := v

Variable Name v := x1 | x2 | . . .

Figure 6: The DSL for integer and list manipulation tasks in the DeepCoder domain.

B EXPERIMENTAL RESULTS USING MORE LLMS

We report the performance of Llama3.1-70B-Instruct, Qwen-max (qwen-max-2024-09-19), Claude
3.5 (claude-3-5-sonnet-20240620) using the RHDA method and compare them with GPT-4o (gpt-
4o-2024-0806). The results for inductive code reasoning are shown in Table 5. The experimental
results indicate that GPT-4o performs better in solving DSL problems, while Claude 3.5 excels in
General Propose Language (GPL) tasks. Compared to closed-source models, the open-source model
Llama still exhibits relatively limited reasoning capabilities. However, in list manipulation tasks
(List Function and Deepcoder), Llama demonstrates stronger programming abilities. In Table 6, we
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Table 5: Performance comparison of Llama3.1-70B-Instruct, Qwen-max, Claude 3.5 and GPT-4o
on the PoT and RHDA methods in inductive code reasoning task. T refers to the maximum number
of iterations. N refers to the number of candidates.

Accuracy Task Accuracy

Model Method MiniARC List Func RobustFill DeepCoder MiniARC List Func RobustFill DeepCoder

Llama3.1
PoT 3.08 35.25 14.78 22.92 1.54 26.80 8.70 11.46
Sub-Hyp 3.33 26.45 13.04 18.06 3.08 20.40 4.35 6.25
T=2, N=1 3.85 32.35 20.87 11.46 3.85 26.40 13.04 7.29

Qwen-max
PoT 6.41 41.75 36.52 25.35 3.85 30.00 21.74 14.58
Sub-Hyp 5.90 46.25 26.09 17.36 3.08 36.40 8.70 5.21
T=2, N=1 6.41 46.60 33.91 24.64 3.08 41.60 13.04 10.42

Claude-3.5
PoT 11.79 51.30 30.43 25.69 8.46 39.20 27.14 13.54
Sub-Hyp 12.56 53.55 22.61 33.33 9.23 42.40 8.70 16.67
T=2, N=1 18.21 57.95 33.91 29.86 13.85 48.40 17.39 20.83

GPT-4o
PoT 10.90 44.90 37.39 30.90 8.46 33.60 26.09 19.79
Sub-Hyp 8.46 47.10 35.65 24.65 6.92 36.40 17.39 12.50
T=2, N=1 12.56 51.05 43.48 38.89 10.77 41.20 40.43 23.96

Table 6: Performance comparison of Llama3.1-70B-Instruct, Qwen-max, Claude 3.5 and GPT-4o
on the CoT and RHDA methods in deductive and abductive code reasoning tasks. T refers to the
maximum number of iterations. N refers to the number of candidates.

Deductive Abductive

Model Method CRUXEval LiveCodeBench CRUXEval LiveCodeBench

Llama3.1
CoT 40.25 7.84 53.12 38.24
Sub-Hyp 30.75 6.86 50.88 8.82
T=2, N=1 45.62 10.78 59.62 40.20

Qwen-max
CoT 81.12 86.27 75.12 58.82
Sub-Hyp 78.25 81.37 72.25 59.80
T=2, N=1 81.62 88.24 79.38 66.67

Claude-3.5
CoT 82.75 77.45 73.62 61.76
Sub-Hyp 77.75 65.69 74.75 53.92
T=2, N=1 86.88 80.39 83.38 61.76

GPT-4o
CoT 89.12 83.14 71.00 66.67
Sub-Hyp 86.62 71.29 77.12 60.78
T=2, N=1 90.62 84.16 83.75 71.57

report the performance of the models in deductive and abductive code reasoning together. The ex-
perimental results show that GPT-4o outperforms Claude 3.5 in terms of program understanding and
execution capabilities. These results suggest that RHDA is a framework-agnostic general process
that can achieve optimal performance through a single reflection, applicable to both Llama, Qwen,
Claude and GPT series models.

C BENCHMARK DETAILS

Table 7: The number of tasks per dataset, the
numbers of seen examples per task, and unseen
examples per task.

Dataset # Tasks # Seen # Unseen

List Function 250 8 8
MiniARC 130 3 3
RobustFill 22 5 5
Deepcoder 96 3 3
CRUXEval 800 1 1
LiveCodeBench 102 1 1

List Function. We use the original dataset
(Rule, 2020), which consists of a total of 250 tasks.
Due to the limited context lengths of LMs, we only
use the first 16 examples from BIG-Bench (bench
authors, 2023): 8 for seen examples and 8 for un-
seen examples. We manually examined the exem-
plars and found 8 examples are generally sufficient
to describe the pattern.

MiniARC. We use the data from Qiu et al.
(2024). Such tasks are typically difficult to de-
scribe in natural language at an abstract level.
Therefore, we did not consider them for our evaluations. As we only evaluate textonly models,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

we use textual representations of the original visual grids by mapping each cell to a corresponding
integer.

RobustFill. RobustFill is a string manipulation task where the model is expected to perform
a combination of atomic operations, such as extracting a substring from position k1 to k2 us-
ing SubString(k1, k1), to achieve generalization. As an example, a program ToCase(Lower,
SubStr(1,3)) converts full month names (January, April) to their abbreviations (jan, apr).

DeepCoder. The DeepCoder task involves using DSL to perform operations on integer lists. In
DeepCoder, each line represents a subroutine that performs atomic operations on previous vari-
ables and assigns the results to new variables. The result of the final line is the program’s out-
put. For example, program a ← [int] | b ← FILTER(<0) a | c ← MAP(*4) b |
d ← SORT c | e ← REVERSE b (where “|” denotes subroutine separator.) transforms the
input [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11] into the output [-12,
-20, -32, -36, -68]

D RHDA ACTING AS AN AGENT IN VIRTUALHOME

Open Bathroom Cabinet Grab Towel Switch on Faucet Get Shampoo

[open the cabinet, grab towel]

[walk to facuet, open facuet]

[walk to shampoo, grab shampoo]

Initial decomposed hypothesis 𝒉𝟎: 

Updated hypothesis 𝒉𝟏: 

The Generated Scripts Executor
𝑔

𝑔

Task

Clean

the

Bathr

oom.

1. I need to get the towel. 

2. I need to open the faucet for water.

3. I need to get shampoo.

1. I need to get the towel. 

2. I need to switch on the faucet for water.

3. I need to get shampoo.

[open the cabinet, grab towel]

[walk to facuet, switch on facuet]

[walk to shampoo, grab shampoo]

Figure 7: We illustrate how the RHDA framework can be extended to the VirtualHome environment
to effectively accomplish the task of cleaning the bathroom.

We utilized the RHDA framework to drive agent actions in the VirtualHome environment powered
by LLMs. Figure 7 illustrates a task of cleaning the bathroom.

Table 8: Execution Error Rate on VirtualHome
native GPT-4o w/o Sub-Hyp w/o Amend RHDA

# Error Action ↓ 92 84 84 52
Avg. Err per Step ↓ 0.84 0.35 0.20 0.16
Avg. Err per Task ↓ 2.09 1.83 1.75 1.08

We also provided some quantitative metrics to validate the potential of RHDA as a agent in Vir-
tualHome. Specifically, we selected a total of 52 tasks across two scenarios in VirtualHome and
manually tested their execution error rates. The test results are shown in Table 8, which indicate that
native GPT-4o struggles to handle simulated real-world scenarios effectively. The primary cause of
failure lies in generating scripts that, while semantically similar to correct actions, are not executable
within the environment (e.g., ‘open the tap’ is invalid action, whereas ‘touch the tap’ is valid action).
By employing the RHDA method, which incorporates step-by-step solutions and effective feedback
mechanisms, the error rate was significantly reduced.
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E EXAMPLES ANALYSES

E.1 EFFECTIVE CASE STUDY

Table 9: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark ARC-ID37.

Observations Rounds Executable Function

Round 1:
Step 1: Identify the third row
Step 2: Check for a non-zero

numbers in the third row.
Step 3: Replace the number at

the center position of the sequence.
Step 4: Change all numbers

in rows 4 and 5 to zero.

def fn(grid):
# Step 1: Identify the third row
third_row = grid[2]
# Step 2: Check for a sequence of three or more identical non-zero numbers
n = len(third_row)
i = 0
while i < n:

if third_row[i] != 0:
# Find the length of the sequence of identical numbers
start = i
while i < n and third_row[i] == third_row[start]:

i += 1
length = i - start
# If the sequence is three or more, replace it
if length >= 3:

# Step 3: Replace the sequence with the number from the second row
center_index = start + length // 2
replacement_number = grid[1][center_index]
third_row[start:i] = [0] * n # Set the entire row to zero first
third_row[center_index] = replacement_number
break # Assuming only one sequence needs to be replaced

else:
i += 1

# Step 4: Set all numbers in rows 4 and 5 to zero
grid[3] = [0] * n
grid[4] = [0] * n
return grid

Round 2:
Step 1: Identify the third row
Step 2: Check for a non-zero

numbers in the third row.
Step 3: Replace identical numbers

in the third row with the
corresponding non-zero number

from the first row.

def fn(grid):
# Step 1: Identify the third row
third_row = grid[2]
# Step 2: Check for a sequence of three or more identical non-zero numbers
n = len(third_row)
i = 0
while i < n:

if third_row[i] != 0:
# Find the length of the sequence of identical numbers
start = i
while i < n and third_row[i] == third_row[start]:

i += 1
length = i - start
# If the sequence is three or more, replace it
if length >= 3:

# Step 3: Replace the sequence
# Find the number from the first row at the same column
replacement_number = grid[0][start]
# Replace the sequence with the replacement number
third_row[start:i] = [replacement_number] + [0] * (length - 1)

else:
i += 1

# Step 4: Change all numbers in rows 4 and 5 to zero
for row in range(3, 5):

grid[row] = [0] * n
return grid

Table 10: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark List Function-
ID2.

Observations Hypothesis Executable Function

[]→ []

[6, 9]→ []

[1, 5, 0, 6, 2, 9, 3]→ [0]

[6, 3, 4, 1, 7, 2, 9, 8, 0]→ [4]

. . .

No Sub Hypothesis:
The output is the element

from the input list that
is exactly in the middle

of the list.

def fn(input_list):
# Check if the list is empty or has only one element
if len(input_list) <= 1:

return []
# Calculate the middle index
middle_index = (len(input_list) - 1) // 2
# Return the middle element as a list
return [input_list[middle_index]]

Sub Hypothesis:
Step 1: If the list has fewer

than three elements,
the output is an empty list.
Step 2:If the list has three

or more elements,
the output is a list containing
only the integer at the third

position.

def fn(input_list):
# Check if the list has fewer than three elements
if len(input_list) < 3:

return []
else:
# Return a list containing the integer
# at the third position (index 2)

return [input_list[2]]

We validated the effectiveness of the proposed method using examples from various benchmarks.
For instance, as shown in Table 9, the MiniARC task example with ID 37 highlights how the LLM,
after receiving feedback, successfully reflects on its errors and submits a revised solution.
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Table 11: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark Livecodebench
Input-ID37.

Observations Hypothesis Executable Function

def minOperations(a, b):
def f():

ret = 0
aa, bb = a[:], b[:]
for i in range(len(a)):

if a[i] > a[-1] or b[i] > b[-1]:
a[i], b[i] = b[i], a[i]
ret += 1

if a[i] > a[-1] or b[i] > b[-1]:
return inf

a[:] = aa
b[:] = bb
return ret

ans = f()
a[-1], b[-1] = b[-1], a[-1]
ans = min(ans, f() + 1)
return -1 if ans > len(a) else ans
# assert f(??) == 1

No Sub Hypothesis:
The function ‘minOperations’ attempts

to determine the minimum number
of swaps needed to ensure

that for each index ‘i’,
neither ‘a[i]’ nor ‘b[i]’
are greater than the last

elements of their respective lists.

assert minOperations([3, 1, 2], [1, 3, 2]) == 1

Sub Hypothesis:
Step 1: Function Purpose

The goal of ‘minOperations‘ is to ...
Step 2: Inner Function

It attempts to ensure
that for each ‘i’, ...

Step 3: Main Logic
It calculates ‘ans‘ by calling ‘f’, ...

Step 4: Objective
To find an input such that...

assert minOperations([2, 3], [3, 2]) == 1

Table 12: We present the additional improvements resulting from the use of amendments. The results
shown above are those obtained after the initial hypotheses, while the results displayed below reflect
the outcomes following the submission of amendments and subsequent reflections. Benchmark
CruxEval Output-ID328.

Observations Rounds Executable Function

def f(array, L):
if L <= 0:

return array
if len(array) < L:

array.extend(f(array, L - len(array)))
return array

# assert f([1, 2, 3], 4) == ??

Round 1:
Step 1 Base Case Check:

The function checks if ‘L’ is
less than or equal to 0.

If true, it simply returns
the array as is

Step 2 Recursive Extension:
If the length of ‘array’
is less than L, it then
calls itself recursively
Step 3 Return Array:

If the array is already of
length ‘L‘ or longer, the

function simply returns the
array without any modifications.

assert f([1, 2, 3], 4) == [1, 2, 3, 1]

Round 2:
Step 1 Base Case Check: ...

Step 2 Recursive Extension: ...
Step 3 Return Array: ...
Step 4 Example Check:

The original call then extends
‘[1, 2, 3]’ by ‘[1, 2, 3]’,

resulting in ‘[1, 2, 3, 1, 2, 3]’.

assert f([1, 2, 3], 4) == [1, 2, 3, 1, 2, 3]

In Table 10, hypothesis decomposition reveals that the output number is determined not only by its
position at the middle of the input array but also by being the third character.

In Table 11, compared to models without hypothesis decomposition, those utilizing this approach
progressively analyze the function’s behavior, ultimately achieving an abstract understanding of the
program and making accurate assertions. In Table 12, for a complex recursive function, while the
LLM accurately grasped the overall functionality of the function through hypothesis decomposi-
tion, it encountered difficulties during the detailed analysis of specific instances. Following the
submission of a revised solution, the LLM reflected on its errors and successfully resolved the is-
sue, addressing the collapse of the overall logical chain caused by a failure in a single step during
multi-step reasoning.
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Table 13: Failure case study. The observations indicate that the hypotheses proposed by the LLM
are overly simplistic, rendering it difficult to account for all possible cases. Additionally, manual
inspection and efforts to summarize these hypotheses proved challenging. This limitation is one of
the primary factors contributing to the LLM’s failure in this task. Benchmark: List Function-ID9.

Observations Rounds Executable Function

[2, 8]→ [8]

[7, 5, ..., 8, 4]→ [5, ..., 8]

[8, 2, ..., 9]→ [2, ..., 9]

[3, 2, 1, 0, 7, 8]→ [2, 1, 0]

. . .

. . .

Round 1:
Remove the first element

from the input list.

def fn(input_list):
"""
Removes the first element from the
input list of integers.
"""
# Check if the input list is empty
if not input_list:

return []

# Return the list excluding the
# first element
return input_list[1:]

Round 2:
Remove the first and the last
elements from the input list.

def fn(input_list):
"""
Remove the first and last elements
from the input list.
"""
# Check if the list has less than
# 2 elements
if len(input_list) < 2:

return []
# Return the list excluding the
# first and last elements
return input_list[1:-1]

Table 14: Failure case study. The LLM make some redundant hypotheses, which led to failure. Even
after amendments, it was unable to break free from its original thought framework, resulting in a
failure to reflect effectively. Benchmark: ARC-ID5.

Observations Rounds Executable Function

Round 1:
Step 1: Identify non-zero elements

in the input grid.
Step 2: Shift all non-zero elements

down one row.
Step 3: Repeat the process for each

input-output pair to verify
consistency.

def fn(grid):
if not grid or not grid[0]:

return grid
num_rows = len(grid)
num_cols = len(grid[0])
# Create a new grid initialized with zeros
new_grid = [[0] * num_cols for _ in range(num_rows)]
for col in range(num_cols):

# Collect non-zero elements in the current column
non_zero_elements = [grid[row][col] for row in range(num_rows) \\
if grid[row][col] != 0]
# If there are non-zero elements, shift them down by one row
if non_zero_elements:

# Shift down by one row with wrap-around
shifted_elements = [0] * num_rows
for i, elem in enumerate(non_zero_elements):

new_row = (i + 1) % num_rows
shifted_elements[new_row] = elem

# Find the maximum value among the shifted elements
max_value = max(shifted_elements)

# Fill the entire column in the new grid with the maximum value
for row in range(num_rows):

new_grid[row][col] = max_value
return new_grid

Round 2:
Step 1:Identify non-zero elements

in the input grid.
Step 2: Shift all non-zero
elements down one row.

Step 3: In the resulting grid, fill each
row with the maximum value
from its respective column,
considering only the shifted

non-zero elements.
Step 4: Repeat the process for each

input-output pair to verify consistency.

def fn(grid):
if not grid or not grid[0]:

return grid
rows, cols = len(grid), len(grid[0])
# Step 1: Identify non-zero elements and their positions
non_zero_positions = []
for r in range(rows):

for c in range(cols):
if grid[r][c] != 0:

non_zero_positions.append((r, c))

# Step 2: Shift non-zero elements down by one row
shifted_positions = [( (r + 1) % rows, c) for r, c in \\
non_zero_positions]

# Step 3: Determine the maximum value for each column
# from the shifted positions
max_values = [0] * cols
for r, c in shifted_positions:

max_values[c] = max(max_values[c], grid[r][c])

# Step 4: Construct the new grid
new_grid = [[0] * cols for _ in range(rows)]
for r, c in shifted_positions:

new_grid[r][c] = max_values[c]

return new_grid

E.2 FAILURE ANALYZE

We analyze RHDA’s performance in numerous failure cases and summarize the underlying causes
of these failures. Our findings suggest that the primary reason can be attributed to the insufficient
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intrinsic capability of LLMs in code reasoning tasks. This limitation is specifically reflected in two
aspects:

• Sub-hypotheses fail to address the problem: For tasks that are overly complex or abstract
(e.g., cases shown in Table 13), even though hypothesis decomposition attempts to reduce
task complexity, LLMs still struggle to handle them effectively.

• Amendments fail to correct sub-hypotheses: While amendments leverage external feed-
back to help LLMs reflect on their mistakes, the models often remain confined to their
existing thought framework, even after recognizing errors (e.g., cases shown in Table 14).
This results in the correction failing to resolve the issue.

These observations indicate that for tasks exceeding the intrinsic capabilities of LLMs, relying solely
on reflective hypothesis decomposition and amendment may not be sufficient to improve the model’s
performance.

F COSTS

Table 15: Avg. API calls and Total Cost using GPT-4o.
Method Avg. API Calls Total Cost (cent)

List Func MiniARC RobustFill Deepcoder List Func MiniARC RobustFill Deepcoder

IO 8.0 4.0 5.0 3.0 10.2 4.6 2.0 3.3
PoT 1.0 1.0 1.0 1.0 5.0 3.7 0.6 1.2
CoC 1.0 1.0 1.0 1.0 11.0 9.0 1.1 1.4
SC (N=3) 3.0 24.0 15.0 9.0 5.3 3.7 0.6 1.2
SR (T=2) 1.4 1.9 1.5 1.6 4.6 3.3 0.5 1.1
T=2, N=3 5.4 5.9 5.5 5.6 8.6 4.0 3.1 4.7

Method Deductive Abductive Deductive Abductive

CRUXEval LiveCodeBench CRUXEval LiveCodeBench CRUXEval LiveCodeBench CRUXEval LiveCodeBench

Standard 1.0 1.0 1.0 1.0 2.9 0.5 3.1 1.5
CoT 1.0 1.0 1.0 1.0 19.4 3.7 19.5 3.3
SC (N=3) 3.0 3.0 3.0 3.0 2.9 0.5 3.3 1.5
SR (T=2) 1.6 1.7 1.4 1.5 3.8 0.6 3.4 1.6
CoC 1.0 1.0 1.0 1.0 18.3 4.1 19.0 3.4
T=2, N=1 1.6 1.7 1.4 1.5 19.0 4.4 18.8 4.4

In Table 15, we present the average number of API calls and the total cost for each task. We used
GPT-4o, with an input cost of $0.0025/1K tokens and an output cost of $0.01/1K tokens. The results
indicate that our approach still demonstrates high cost-effectiveness for certain tasks.
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Figure 8: In the inductive code reasoning tasks, as the number of iterations increased, the perfor-
mance continued to improve.

In this section, we investigate the impact of iteration count on the performance of three types of
reasoning tasks, with experimental results illustrated in Figure 8 and Figure 9. For inductive and
abductive code reasoning tasks, performance consistently improved as the number of iterations in-
creased. However, the rate of improvement diminished, with marginal gains becoming less sig-
nificant at higher iteration counts. Conversely, for deductive code reasoning tasks, performance
followed a rise-and-fall trend, initially improving but declining with excessive iterations. These
findings suggest that while increasing the number of iterations can enhance performance for general
code reasoning tasks, it is crucial to balance iterative gains against potential performance instability.
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Figure 9: In the deductive code reasoning tasks, the performance slightly decreased as the number of
iterations increased. Conversely, in the abductive code reasoning tasks, the performance consistently
improved with an increasing number of iterations.

Table 16: Prompts used in our study. {} refers to a placeholder.
Type Prompt

Sub Hypothesis
Generation

Generate a rule that maps the following inputs to their
corresponding outputs step by steps. {Task description}

{Examples}

Please format your rule as follows:

{Rule format}

Amendment
Submission

Your rule: {Rule}

This rule does not work for the following examples.

{Feedback}

Please carefully reconsider each of your steps to ensure
that the rules are correct. Systematically

generate new rules, step by step.
{Feedback description} Please
format your rule as follows:

{Rule format}

Hypothesis
Translation

You are an expert Python programmer. Write a Python
function ‘fn‘ for the following rule. {Translation

Example description}

Rule: {Rule}

Rule
Application

Generate an output corresponding to the given input based
on the rule. {Application Example description}

Rule: {Rule}

Input: {Test input}
Output:

H PROMPTS
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