
From Similarity to Superiority: Channel Clustering
for Time Series Forecasting

Jialin Chen1, Jan Eric Lenssen2,3, Aosong Feng1, Weihua Hu2,
Matthias Fey2, Leandros Tassiulas1, Jure Leskovec2,4, Rex Ying1

1Yale University, 2Kumo.AI,
3Max Planck Institute for Informatics, 4Stanford University

Abstract

Time series forecasting has attracted significant attention in recent decades. Previ-
ous studies have demonstrated that the Channel-Independent (CI) strategy improves
forecasting performance by treating different channels individually, while it leads
to poor generalization on unseen instances and ignores potentially necessary in-
teractions between channels. Conversely, the Channel-Dependent (CD) strategy
mixes all channels with even irrelevant and indiscriminate information, which,
however, results in oversmoothing issues and limits forecasting accuracy. There is
a lack of channel strategy that effectively balances individual channel treatment
for improved forecasting performance without overlooking essential interactions
between channels. Motivated by our observation of a correlation between the
time series model’s performance boost against channel mixing and the intrinsic
similarity on a pair of channels, we developed a novel and adaptable Channel
Clustering Module (CCM). CCM dynamically groups channels characterized by
intrinsic similarities and leverages cluster information instead of individual channel
identities, combining the best of CD and CI worlds. Extensive experiments on
real-world datasets demonstrate that CCM can (1) boost the performance of CI and
CD models by an average margin of 2.4% and 7.2% on long-term and short-term
forecasting, respectively; (2) enable zero-shot forecasting with mainstream time
series forecasting models; (3) uncover intrinsic time series patterns among channels
and improve interpretability of complex time series models 1.

1 Introduction

Time series forecasting has attracted a surge of interest across diverse fields, ranging from economics,
energy [1, 2], weather [3, 4], to transportation planning [5, 6]. The complexity of the task is heightened
by factors including seasonality, trend, noise in the data, and potential cross-channel information.

Despite the numerous deep learning time series models proposed recently [7, 8, 9, 10, 11, 12, 13, 14],
an unresolved challenge persists in the effective management of channel interaction within the
forecasting framework [15, 16]. Previous works have explored two primary channel strategies:
Channel-Independent (CI) and Channel-Dependent (CD) strategies. The Channel-Independent
(CI) strategy has shown promise in better forecasting performance by having individual models
for each channel. However, a critical drawback is its limited generalizability and robustness on
unseen channels [17]. Besides, it tends to overlook potential interactions between various channels.
Conversely, the Channel-Dependent (CD) strategy models all channels as a whole and captures
intricate channel relations, while they tend to show oversmoothing and have trouble fitting to
individual channels, especially when the similarity between channels is very low. Moreover, existing

1The code is available at https://github.com/Graph-and-Geometric-Learning/TimeSeriesCCM

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Graph-and-Geometric-Learning/TimeSeriesCCM

Temporal
Modules

Normalization

Cluster
AssignerTemporal Modules

Feed Forward

Normalization

𝜽𝟏

𝜽𝒊 = σ𝑘 𝑝𝑖,𝑘 𝜽𝒌: for the 𝑖-th channel

Channel Clustering

(a) The General Framework (b) Time Series Forecasting Framework Enhanced by Channel Clustering Module

unseen time series

: prototype
: unseen time series

e.g., clustering probability
for a test time series 𝒖:
𝒑𝒖 = [0.2, 0.2, 0.6]

Normalization

Cluster-aware Feed Forward

Training Phase . Zero-shot Forecasting .

𝜽𝟐 𝜽𝒌

Prototype Learning

Cross Attention

prototypes

future forecasting

Temporal
Modules

Cluster-aware Feed Forward

𝜽𝒌 : Layer weights
of the 𝑘-th cluster

…

Weights Averaging
𝜽𝒊

Figure 1: The pipeline of applying Channel Clustering Module (CCM) to general time series models.
(a) is the general framework of most time series models. (b) illustrates two modified modules when
applying CCM: Cluster Assigner and Cluster-aware Feed Forward. Cluster Assigner learns channel
clustering based on intrinsic similarities and creates prototype embeddings for each cluster via a
cross-attention mechanism. The clustering probabilities {pi,k} are subsequently used in Cluster-aware
Feed Forward to average {θk}Kk=1, which are layer weights assigned to K clusters, obtaining weights
θi for the i-th channel. The learned prototypes retain pre-trained knowledge, enabling zero-shot
forecasting on unseen samples in both univariate and multivariate scenarios.

models typically treat univariate data in a CI manner, neglecting the interconnections between time
series samples, even though these dependencies are commonly observed and beneficial in real-world
scenarios, such as stock market or weather forecasting [18, 19, 20].

Proposed work. To address the aforementioned challenges, we propose a Channel Clustering Module
(CCM) that balances individual channel treatment and captures necessary cross-channel dependencies
simultaneously. CCM is motivated by the key observations that CI and CD models typically rely
on channel identity information. The level of reliance is anti-correlated with the similarity between
channels (see Sec. 4.1 for an analysis). This intriguing phenomenon alludes to the model’s analogous
behavior on similar channels. The proposed CCM thereby involves the strategic clustering of channels
into cohesive clusters, where intra-cluster channels exhibit a higher degree of similarity. To capture
the underlying time series patterns within these clusters, we employ cluster-aware Feed Forward to
assign independent weights to each cluster and replace individual channel treatment with individual
cluster treatment. Moreover, CCM learns expressive prototype embeddings in training, which enables
zero-shot forecasting on unseen samples by grouping them into appropriate clusters.

CCM is a plug-and-play solution that is adaptable to most mainstream time series models. We
evaluate the effectiveness of CCM on four different time series backbones (aka. base models):
TSMixer [7], DLinear [8], PatchTST [21], and TimesNet [13]. It can also be applied to other state-of-
the-art models for enhanced performance. Extensive experiments verify the superiority of CCM in
long-term and short-term forecasting benchmarks, achieving an average margin of 2.4% and 7.2%,
respectively. Additionally, we collect stock data from a diverse range of companies to construct a
new stock univariate dataset. Leveraging information from intra-cluster samples, CCM consistently
shows a stronger ability to accurately forecast stock prices in the dynamic and intricate stock market.
Moreover, CCM enhances zero-shot forecasting capacities of time series backbones in cross-domain
scenarios, which further highlights the robustness and versatility of CCM.

The contributions of this paper are: (1) We propose a novel and unified channel strategy, i.e.,
CCM, which is adaptable to most mainstream time series models. CCM explores the optimal
trade-off between channel individual treatment and cross-channel modeling, (2) CCM demonstrates
superiority in improving performance on long-term and short-term forecasting, and (3) through
learning prototypes from clusters, CCM enables zero-shot forecasting on unseen samples in both
univariate and multivariate scenarios.

2 Related Work

2.1 Time Series Forecasting Models

Traditional machine learning methods such as Prophet [22, 23], ARIMA [24] capture the trend
component and seasonality in time series [25]. As data availability continues to grow, deep learning

2

methods revolutionized this field, introducing more complex and efficient models [26, 27]. Convo-
lutional Neural Networks (CNNs) [13, 14, 28, 29, 30], have been widely adopted to capture local
temporal dependencies. Recurrent Neural Networks (RNNs) [31, 32, 33, 34, 28] excel in capturing
sequential information, yet they often struggle with longer sequences. Transformer-based mod-
els [11, 35, 12, 21, 36, 37, 9, 38, 10, 39, 40], typically equipped with self-attention mechanisms [41],
demonstrate their proficiency in handling long-range dependencies, although they require substantial
computational resources. Recently, linear models [42, 43, 44], e.g., DLinear [8], TSMixer [7], have
gained popularity for their simplicity and effectiveness in long-term time series forecasting, but
they may underperform with non-linear and complex patterns. Besides, traditional tricks, including
trend-seasonal decomposition [8, 45, 46] and multi-periodicity analysis [47, 48, 13, 49, 50, 51, 52]
continue to play a crucial role in aiding in the preprocessing stage for advanced models.

2.2 Channel Strategies in Time Series Forecasting

Most deep learning models [12, 39, 10] adopt the Channel-Dependent (CD) strategy, aiming to
harness the full spectrum of information across channels. Conversely, the Channel-Independent (CI)
approaches [21, 8] build forecasting models for each channel independently. Prior works on CI and
CD strategy [17, 15, 53, 54, 16] present that CI leads to higher capacity and lower robustness, whereas
CD is the opposite. Predicting residuals with regularization (PRReg) [17] is thereby proposed to
incorporate a regularization term in the objective to encourage smoothness in future forecasting.
However, the essential challenge from the model design perspective has not been solved and it
remains challenging to develop a balanced channel strategy. Prior research has explored effective
clustering of channels to improve the predictive capabilities in diverse applications, including image
classification [55], natural language processing (NLP) [56, 57], anomaly detection [58, 59, 60]. For
instance, in traffic prediction [61, 62], clustering techniques have been proposed to group relevant
traffic regions to capture intricate spatial patterns. Despite the considerable progress in these areas,
the potential and effect of channel clustering in time series forecasting remain under-explored.

3 Preliminaries

Time Series Forecasting. Formally, let X = [x1, . . .xT] ∈ RT×C be a time series, where T is the
length of historical data. xt ∈ RC represents the observation at time t. C denotes the number of
variates (i.e., channels). The objective is to construct a predictive model f that estimates the future
values of the series, Y = [x̂T+1, . . . , x̂T+H] ∈ RH×C , where H is the forecasting horizon. We use
X[:,i] ∈ RT (Xi for simplicity) to denote the i-th channel in the time series.

Channel Dependent (CD) and Channel Independent (CI). The CI strategy models each channel
Xi separately and ignores any potential cross-channel interactions. This approach is typically denoted
as f (i) : RT → RH for i = 1, · · · , C, where f (i) is specifically dedicated to the i-th channel. Refer
to Appendix A.2 for more details. In contrast, the CD strategy models all the channels as a whole
with a function f : RT×C → RH×C . This strategy is essential in scenarios where channels are not
just parallel data streams but are interrelated, such as in financial markets or traffic flows.

4 Proposed Method

In this work, we propose a Channel Clustering Module (CCM), a model-agnostic method that is
adaptable to most mainstream time series models. The pipeline of applying CCM is visualized
in Figure 1. General time series models, shown in Figure 1(a), typically consist of three core
components [15, 63]: an optional normalization layer (e.g., RevIN [64], SAN [65]), temporal modules
including linear layers, transformer-based, or convolutional backbones, and a feed-forward layer
that forecasts the future values. Motivated by the empirical observation discussed in Sec. 4.1, CCM
presents with a cluster assigner preceding the temporal modules, followed by a cluster-aware Feed
Forward (Sec. 4.2). The cluster assigner implements channel clustering based on intrinsic similarities
and employs a cross-attention mechanism to generate prototypes for each cluster, which stores the
knowledge from the training set and endows the model with zero-shot forecasting capacities.

3

4.1 Motivation for Channel Similarity

To motivate our similarity-based clustering method, we conduct the following toy experiment. We
select four recent and popular time series models with different backbones. TSMixer [7] and DLinear
are linear models. PatchTST [21] is a transformer-based model with a patching mechanism and
TimesNet [13] is a convolutional network that captures multi-periodicity in data. Among these,
TSMixer and TimesNet utilize a Channel-Dependent strategy while DLinear and PatchTST adopt
the Channel-Independent design. We train a time series model across all channels and evaluate
the channel-wise Mean Squared Error (MSE) loss on the test set. Then, we repeat training while
randomly shuffling channels in each batch. Note that for both CD and CI models, this means channel
identity information will be removed. We report the average performance gain in terms of MSE
loss across all channels based on the random shuffling experiments (denoted as ∆L(%)) in Table 1.

Table 1: Averaged performance gain from channel
identity information (∆L(%)) and Pearson Corre-
lation Coefficients (PCC) between {∆Lij}i,j and
{SIM(Xi, Xj)}i,j . The values are averaged across
all test samples.

Base Model TSMixer DLinear PatchTST TimesNet
Channel Strategy CD CI CI CD

ETTh1 ∆L(%) 2.67 1.10 11.30 18.90
PCC - 0.67 - 0.66 - 0.61 - 0.66

ETTm1 ∆L(%) 4.41 5.55 6.83 14.98
PCC - 0.68 - 0.67 - 0.68 - 0.67

Exchange ∆L(%) 16.43 19.34 27.98 24.57
PCC - 0.62 - 0.62 - 0.47 - 0.49

We attribute the models’ performance decrease
in the random shuffling experiments to the loss
of channel identity information. We see that all
models rely on channel identity information to
achieve better performance. Next, we define
channel similarity based on radial basis function
kernels [66] as

SIM(Xi, Xj) = exp(
−∥Xi −Xj∥2

2σ2
), (1)

where σ is a scaling factor. Note that the similar-
ity is computed on the standardized time series
to avoid scaling differences. More details are
discussed in Appendix A.1. The performance
difference in MSE from the random shuffling experiment for channel i is denoted as ∆Li. We define
∆Lij := |∆Li −∆Lj | and calculate the Pearson Correlation Coefficients (PCC) between {∆Lij}i,j
and {SIM(Xi, Xj)}i,j , as shown in Table 1. The toy example verifies the following two assumptions:
(1) Existing forecasting methods heavily rely on channel identity information. (2) This reliance
clearly anti-correlates with channel similarity: for channels with high similarity, channel identity
information is less important. Together, these two assumptions motivate us to design an approach
that provides cluster identity instead of channel identity, combining the best of both worlds: high
capacity and generalizability.

4.2 CCM: Channel Clustering Module

Channel Clustering. Motivated by the above observations, we first initialize a set of K cluster
embeddings {c1, · · · , cK}, where ck ∈ Rd, d is the hidden dimension and K is a hyperparameter.
Given a multivariate time series X ∈ RT×C , each channel in the input Xi is transformed into a
d-dimensional channel embedding hi through an MLP. The probability that a given channel Xi is
associated with the k-th cluster is the normalized inner-product of the cluster embedding ck and the
channel embedding hi, which is computed as

pi,k = Normalize(
c⊤k hi

∥ck∥∥hi∥
) ∈ [0, 1]. (2)

The normalization operator ensures that
∑

k pi,k = 1 and validates the clustering probability distribu-
tion across k clusters. We utilize reparameterization trick [67] to obtain the clustering membership
matrix M ∈ RC×K where Mik ≈ Bernoulli(pi,k). Higher probability pi,k results in Mik close to 1,
leading to the deterministic existence of certain channels in the corresponding cluster.

Prototype Learning. The cluster assigner also creates a d-dimensional prototype embedding for
each cluster in the training phase. Let C = [c1, · · · , cK] ∈ RK×d denote the cluster embedding,
and H = [h1, · · · , hC] ∈ RC×d denote the hidden embedding of the channels. To emphasize the
intra-cluster channels and remove interference from out-of-cluster channel information, we design a
modified cross-attention as follows,

Ĉ = Normalize
(

exp(
(WQC)(WKH)⊤√

d
)⊙M⊤

)
WV H, (3)

4

where the clustering membership matrix M is an approximately binary matrix to enable sparse
attention on intra-cluster channels specifically. WQ, WK and WV are learnable parameters. The
prototype embedding Ĉ ∈ RK×d serves as the updated cluster embedding for subsequent clustering
probability computing in Eq. 2.

Cluster Loss. We further introduce a specifically designed loss function for the clustering quality,
termed ClusterLoss, which incorporates both the alignment of channels with respective clusters and
the distinctness between different clusters in a self-supervised context. Let S ∈ RC×C denote the
channel similarity matrix Sij = SIM(Xi, Xj) defined in Eq. 1. The ClusterLoss is formulated as:

LC = −Tr
(
M⊤SM

)
+Tr

((
I−MM⊤)S) , (4)

where Tr indicates a trace operator. Tr
(
M⊤SM

)
maximizes the channel similarities within clusters,

which is a fundamental requirement for effective clustering. Tr
((
I−MM⊤)S) instead encourages

separation between clusters, which further prevents overlap and ambiguity in clustering assignments.
LC captures meaningful time series prototypes without relying on external labels or annotations. The
overall loss function thereby becomes L = LF + βLC , where LF is the general forecasting loss
such as MSE loss; and β is a regularization parameter for a balance between forecasting accuracy
and cluster quality.

Cluster-aware Feed Forward. Instead of using individual Feed Forward per channel in a CI manner
or sharing one Feed Forward across all channels in a CD manner, we assign a separate Feed Forward
to each cluster to capture the underlying shared time series patterns within the clusters. In this way,
we use cluster identity to replace channel identity. Each Feed Forward is parameterized with a single
linear layer due to its efficacy in time series forecasting [8, 15, 7]. Let hθk(·) represent the linear layer
for the k-th cluster with weights θk. Zi represents the hidden embedding of the i-th channel before
the last layer. The final forecast is thereby averaged across the outputs of all cluster-aware Feed
Forward with {pi,k} as weights, e.g., Yi =

∑
k pi,khθk(Zi) for the i-th channel. For computational

efficiency, it is equivalent to Yi = hθi(Zi) with averaged weights θi =
∑

k pi,kθk.

Univariate Adaptation. In the context of univariate time series forecasting, we extend the proposed
method to clustering on samples. We leverage the similarity between two univariate time series
as defined in Eq. 1, and classify univariate time series with comparable patterns into the same
cluster. This univariate adaptation allows it to capture interrelation within samples and extract
valuable insights from analogous time series. This becomes particularly valuable in situations where
meaningful dependencies exist among various univariate samples, such as the stock market.

Zero-shot Forecasting. Zero-shot forecasting is useful in time series applications where data privacy
concerns restrict the feasibility of training models from scratch for unseen samples. The prototype
embeddings acquired during the training phase serve as a compact representation of the pre-trained
knowledge and can be harnessed for seamless knowledge transfer to unseen samples or new channels
in a zero-shot setting. The pre-trained knowledge is applied to unseen instances by computing the
clustering probability distribution on the pre-trained clusters, following Eq. 2, which is subsequently
used for averaging cluster-aware Feed Forward. The cross-attention is disabled to fix the prototype
embeddings in zero-shot forecasting. It is worth noting that zero-shot forecasting is applicable to
both univariate and multivariate scenarios. We refer to Appendix B for detailed discussion.

4.3 Complexity Analysis

CCM effectively strikes a balance between the CI and CD strategies. On originally CI models, CCM
introduces strategic clustering on channels, which not only reduces the model complexity but also
enhances their generalizability. Simultaneously, CCM increases the model complexity on originally
CD models with negligible overhead for higher capacities. We refer to Figure 5 for empirical
analysis. Theoretically, the computational complexity of clustering probability computation (Eq. 2)
and the cross-attention (Eq. 3) are O(KCd), where K,C are the number of clusters and channels,
respectively, and d is the hidden dimension. One may also use other attention mechanisms [68, 69, 70]
for efficiency. The complexity of cluster-aware Feed Forward scales linearly in C,K, and the
forecasting horizon H .

5

5 Experiments

CCM consistently improves performance based on CI or CD models by significant margins across
multiple benchmarks and settings, including long-term forecasting on 9 public multivariate datasets
(Sec. 5.2); short-term forecasting on 2 univariate datasets (Sec. 5.3); and zero-shot forecasting in
cross-domain and cross-granularity scenarios (Sec. 5.4).

5.1 Experimental Setup

Datasets. For long-term forecasting, we experiment on 9 popular benchmarking datasets across
diverse domains [11, 12, 71], including weather, traffic and electricity. M4 dataset [72] is used in
short-term forecasting, which is a univariate dataset that covers time series across diverse domains
and various sampling frequencies from hourly to yearly. We further provide a new stock time series
dataset with 1390 univariate time series. Each time series records the price history of an individual
stock spanning 10 years. Due to the potential significant fluctuations in stock performance across
different companies, this dataset poses challenges for capturing diverse and evolving stock patterns in
financial markets. The statistics of long- and short-term datasets are shown in Table 2 and Table 3.

Table 2: The statistics of datasets in long-term
forecasting. Horizon is {96, 192, 336, 720}.

Dataset Channels Length Frequency

ETTh1&ETTh2 7 17420 1 hour
ETTm1&ETTm2 7 69680 15 min
ILI 7 966 1 week
Exchange 8 7588 1 day
Weather 21 52696 10 min
Electricity 321 26304 1 hour
Traffic 862 17544 1 hour

Table 3: Dataset details of M4 and Stock in short-
term forecasting.

Dataset Length Horizon

M4 Yearly 23000 6
M4 Quarterly 24000 8
M4 Monthly 48000 18
M4 Weekly 359 13
M4 Daily 4227 14
M4 Hourly 414 48
Stock (New) 10000 7/24

We follow standard protocols [11, 12, 13] for data splitting on public benchmarking datasets. As
for the stock dataset, we divide the set of stocks into train/validation/test sets with a ratio of 7:2:1.
Therefore, validation/test sets present unseen samples (i.e., stocks) for model evaluation. This
evaluation setting emphasizes the data efficiency aspect of time series models for scenarios where
historical data is limited or insufficient for retraining from scratch given unseen instances. More
details on datasets are provided in Appendix C.1.

Base Models and Experimental Details. CCM is a model-agnostic channel strategy that can be
applied to arbitrary time series forecasting models for improved performance. We meticulously
select four recent state-of-the-art time series models as base models: TSMixer [7], DLinear [8],
PatchTST [21] and TimesNet [13], which mainly cover three mainstream paradigms, including linear
models, transformer-based and convolutional models. For fair evaluation, we use the optimal experi-
ment configuration as provided in the official code to implement both base models and the enhanced
version with CCM. All the experiments are implemented with PyTorch on a single NVIDIA RTX
A6000 48GB GPU. Experiment configurations and implementations are detailed in Appendix C.3.
Experimental results in the following sections are averaged on five runs with different random seeds.
Refer to Appendix C.6 for standard deviation results.

5.2 Long-term Forecasting Results

We report the mean squared error (MSE) and mean absolute error (MAE) on nine real-world datasets
for long-term forecasting evaluation in Table 2. The forecasting horizon is {96, 192, 336, 720}. From
the table, we observe that the model enhanced with CCM outperforms the base model in general.
Specifically, CCM improves long-term forecasting performance in 90.27% cases in MSE and 84.03%
cases in MAE across 144 different experiment settings. Remarkably, CCM achieves a substantial
boost on DLinear, with a significant reduction on MSE by 5.12% and MAE by 3.04%. The last
column of the table quantifies the average percentage improvement in terms of MSE/MAE, which
underscores the consistent enhancement brought by CCM across all forecasting horizons and datasets.
Intuitively, the CCM method is more useful in scenarios where channel interactions are complex and
significant, which is usually the case in real-world data. See more analysis in Appendix C.5.

6

Table 4: Long-term forecasting results on 9 real-world datasets in terms of MSE and MAE, the lower
the better. The forecasting horizons are {96, 192, 336, 720}. The better performance in each setting
is shown in bold. The best results for each row are underlined. The last column shows the average
percentage of MSE/MAE improvement of CCM over four base models.

Model TSMixer + CCM DLinear + CCM PatchTST + CCM TimesNet + CCM IMP(%)Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.361 0.392 0.365 0.393 0.375 0.399 0.371 0.393 0.375 0.398 0.371 0.396 0.384 0.402 0.380 0.400 0.539
192 0.404 0.418 0.402 0.418 0.405 0.416 0.404 0.415 0.415 0.425 0.414 0.424 0.436 0.429 0.431 0.425 0.442
336 0.422 0.430 0.423 0.430 0.445 0.440 0.438 0.443 0.422 0.440 0.417 0.429 0.491 0.469 0.485 0.461 0.908
720 0.463 0.472 0.462 0.470 0.489 0.488 0.479 0.497 0.449 0.468 0.447 0.469 0.521 0.500 0.520 0.493 0.333

E
T

T
m

1 96 0.285 0.339 0.283 0.337 0.299 0.343 0.298 0.343 0.294 0.351 0.289 0.338 0.338 0.375 0.335 0.371 1.123
192 0.339 0.365 0.336 0.368 0.335 0.365 0.334 0.365 0.334 0.370 0.333 0.363 0.374 0.387 0.373 0.383 0.482
336 0.361 0.406 0.359 0.393 0.370 0.386 0.365 0.385 0.373 0.397 0.370 0.392 0.410 0.411 0.412 0.416 0.716
720 0.445 0.470 0.424 0.421 0.427 0.423 0.424 0.417 0.416 0.420 0.419 0.430 0.478 0.450 0.477 0.448 1.852

E
T

T
h2

96 0.284 0.343 0.278 0.338 0.289 0.353 0.285 0.348 0.278 0.340 0.274 0.336 0.340 0.374 0.336 0.371 1.371
192 0.339 0.385 0.325 0.393 0.384 0.418 0.376 0.413 0.341 0.382 0.339 0.355 0.402 0.414 0.400 0.410 1.806
336 0.361 0.406 0.361 0.399 0.442 0.459 0.438 0.455 0.329 0.384 0.327 0.383 0.452 0.452 0.449 0.445 0.823
720 0.445 0.470 0.438 0.464 0.601 0.549 0.499 0.496 0.381 0.424 0.378 0.415 0.462 0.468 0.457 0.461 4.370

E
T

T
m

2 96 0.171 0.260 0.167 0.260 0.167 0.260 0.166 0.258 0.174 0.261 0.168 0.256 0.187 0.267 0.189 0.270 0.860
192 0.221 0.296 0.220 0.296 0.284 0.352 0.243 0.323 0.238 0.307 0.231 0.300 0.249 0.309 0.250 0.310 3.453
336 0.276 0.329 0.277 0.330 0.369 0.427 0.295 0.358 0.293 0.346 0.275 0.331 0.321 0.351 0.318 0.347 6.012
720 0.420 0.422 0.369 0.391 0.554 0.522 0.451 0.456 0.373 0.401 0.374 0.400 0.408 0.403 0.394 0.391 7.139

E
xc

ha
ng

e 96 0.089 0.209 0.085 0.206 0.088 0.215 0.085 0.214 0.094 0.216 0.088 0.208 0.107 0.234 0.105 0.231 2.880
192 0.195 0.315 0.177 0.300 0.178 0.317 0.171 0.306 0.191 0.311 0.185 0.309 0.226 0.344 0.224 0.340 3.403
336 0.343 0.421 0.312 0.405 0.371 0.462 0.300 0.412 0.343 0.427 0.342 0.423 0.367 0.448 0.361 0.442 5.875
720 0.898 0.710 0.847 0.697 0.966 0.754 0.811 0.683 0.888 0.706 0.813 0.673 0.964 0.746 0.957 0.739 5.970

IL
I

24 1.914 0.879 1.938 0.874 2.215 1.081 1.935 0.935 1.593 0.757 1.561 0.750 2.317 0.934 2.139 0.936 4.483
36 1.808 0.858 1.800 0.851 2.142 0.977 1.938 0.942 1.768 0.794 1.706 0.780 1.972 0.920 1.968 0.914 2.561
48 1.797 0.873 1.796 0.867 2.335 1.056 2.221 1.030 1.799 0.916 1.774 0.892 2.238 0.940 2.229 0.937 1.602
60 1.859 0.895 1.810 0.876 2.479 1.088 2.382 1.096 1.850 0.943 1.735 0.880 2.027 0.928 2.041 0.930 2.491

W
ea

th
er 96 0.149 0.198 0.147 0.194 0.192 0.250 0.187 0.245 0.149 0.198 0.147 0.197 0.172 0.220 0.169 0.215 1.729

192 0.201 0.248 0.192 0.242 0.248 0.297 0.240 0.285 0.194 0.241 0.191 0.238 0.219 0.261 0.215 0.257 2.539
336 0.264 0.291 0.244 0.281 0.284 0.335 0.274 0.324 0.244 0.282 0.245 0.285 0.280 0.306 0.274 0.291 2.924
720 0.320 0.336 0.318 0.334 0.339 0.374 0.320 0.357 0.320 0.334 0.316 0.333 0.365 0.359 0.366 0.362 1.476

E
le

ct
ri

ci
ty 96 0.142 0.237 0.139 0.235 0.153 0.239 0.142 0.247 0.138 0.233 0.136 0.231 0.168 0.272 0.158 0.259 2.480

192 0.154 0.248 0.147 0.246 0.158 0.251 0.152 0.248 0.153 0.247 0.153 0.248 0.184 0.289 0.172 0.262 3.226
336 0.163 0.264 0.161 0.262 0.170 0.269 0.168 0.267 0.170 0.263 0.168 0.262 0.198 0.300 0.181 0.284 2.423
720 0.208 0.300 0.204 0.299 0.233 0.342 0.230 0.338 0.206 0.296 0.210 0.301 0.220 0.320 0.205 0.309 1.417

Tr
af

fic

96 0.376 0.264 0.375 0.262 0.411 0.284 0.411 0.282 0.360 0.249 0.357 0.246 0.593 0.321 0.554 0.316 1.488
192 0.397 0.277 0.340 0.279 0.423 0.287 0.422 0.286 0.379 0.256 0.379 0.254 0.617 0.336 0.562 0.331 3.175
336 0.413 0.290 0.411 0.289 0.438 0.299 0.436 0.297 0.401 0.270 0.389 0.255 0.629 0.336 0.579 0.341 2.120
720 0.444 0.306 0.441 0.302 0.467 0.316 0.471 0.318 0.443 0.294 0.430 0.281 0.640 0.350 0.587 0.366 1.445

Comparison with Regularization Solution. PRReg [17] recently displays to improve the perfor-
mance of CD models, by predicting residuals with a regularization term in the training objective. We
evaluate the effectiveness of PRReg and our proposed CCM on long-term forecasting performance
enhancement based on CI and CD models. Following the previous training setting [17], we develop
CI and CD versions for Linear [8] and Transformer [41] and report MSE loss. Table 5 shows that
CCM surpasses PRReg in most cases, highlighting its efficacy compared with regularization solutions.
See full results in Appendix C.4.

5.3 Short-term Forecasting Results

Table 5: Comparison between CCM and existing
regularization method for improved performance
on CI/CD strategies. The best results are high-
lighted in bold. The forecasting horizon is 24 for
ILI dataset and 48 for other datasets. ⋆ denotes our
implementation. Other results collect from [17]

CD CI +PRReg +CCM⋆

ETTh1 Linear 0.402 0.345 0.342 0.342
Transformer 0.861 0.655 0.539 0.518

ETTm1 Linear 0.404 0.354 0.311 0.310
Transformer 0.458 0.379 0.349 0.300

Weather Linear 0.142 0.169 0.131 0.130
Transformer 0.251 0.168 0.180 0.164

ILI Linear 2.343 2.847 2.299 2.279
Transformer 5.309 4.307 3.254 3.206

Electricity Linear 0.195 0.196 0.196 0.195
Transformer 0.250 0.185 0.185 0.183

In both M4 and stock datasets, we follow the
univariate forecasting setting. For M4 bench-
marks, we adopt the evaluation setting in prior
works [42] and report the symmetric mean ab-
solute percentage error (SMAPE), mean abso-
lute scaled error (MASE), and overall weighted
average (OWA). As for the stock dataset, we
implement MAE and MSE as metrics in Table 6.
See more details on metrics in Appendix C.2.
Remarkably, the efficacy of CCM is consistent
across all M4 sub-datasets with different sam-
pling frequencies. Specifically, CCM outper-
forms the state-of-the-art linear model (DLinear)
by a significant margin of 11.62%, and outper-
forms the best convolutional method TimesNet
by 8.88%. In Table 6, we also observe a sig-
nificant performance improvement on the stock
dataset, achieved by applying CCM. In the stock
dataset, we test on new samples (i.e., univariate stock time series) that the model has not seen during

7

Table 6: Short-term forecasting results on M4 dataset in terms of SMAPE, MASE, and OWA, and
stock dataset in terms of MSE and MAE. The lower the better. The forecasting horizon is {7, 24} for
the stock dataset. The better performance in each setting is shown in bold.

Model TSMixer + CCM DLinear + CCM PatchTST + CCM TimesNet + CCM IMP(%)

M4 (Yearly)
SMAPE 14.702 14.676 16.965 14.337 13.477 13.304 15.378 14.426 7.286
MASE 3.343 3.370 4.283 3.144 3.019 2.997 3.554 3.448 9.589
OWA 0.875 0.873 1.058 0.834 0.792 0.781 0.918 0.802 11.346

M4 (Quarterly)
SMAPE 11.187 10.989 12.145 10.513 10.380 10.359 10.465 10.121 6.165
MASE 1.346 1.332 1.520 1.243 1.233 1.224 1.227 1.183 7.617
OWA 0.998 0.984 1.106 0.931 0.921 0.915 0.923 0.897 6.681

M4 (Monthly)
SMAPE 13.433 13.407 13.514 13.370 12.959 12.672 13.513 12.790 2.203
MASE 1.022 1.019 1.037 1.005 0.970 0.941 1.039 0.942 4.238
OWA 0.946 0.944 0.956 0.936 0.905 0.895 0.957 0.891 3.067

M4 (Others)
SMAPE 7.067 7.178 6.709 6.160 4.952 4.643 6.913 5.218 10.377
MASE 5.587 5.302 4.953 4.713 3.347 3.128 4.507 3.892 7.864
OWA 1.642 1.536 1.487 1.389 1.049 0.997 1.438 1.217 9.472

M4 (Avg.)
SMAPE 12.867 12.807 13.639 12.546 12.059 11.851 12.880 11.914 5.327
MASE 1.887 1.864 2.095 1.740 1.623 1.587 1.836 1.603 10.285
OWA 0.957 0.948 1.051 0.917 0.869 0.840 0.955 0.894 6.693

Stock (Horizon 7) MSE 0.939 0.938 0.992 0.883 0.896 0.892 0.930 0.915 3.288
MAE 0.807 0.806 0.831 0.774 0.771 0.771 0.802 0.793 2.026

Stock (Horizon 24) MSE 1.007 0.991 0.996 0.917 0.930 0.880 0.998 0.937 5.252
MAE 0.829 0.817 0.832 0.781 0.789 0.765 0.830 0.789 3.889

training to evaluate the model’s generalization and robustness. By memorizing cluster-specific knowl-
edge from analogous samples, the model potentially captures various market trends and behaviors
and thereby makes more accurate and informed forecasting.

Table 7: Zero-shot forecasting results on ETT datasets. The forecasting horizon is {96, 720}. The
best value in each row is underlined.

Model TSMixer + CCM DLinear + CCM PatchTST + CCM TimesNet + CCM IMP(%)Generalization Task MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1 ETTh1→ETTh2 96 0.288 0.357 0.283 0.353 0.308 0.371 0.283 0.349 0.313 0.362 0.292 0.346 0.391 0.412 0.388 0.410 3.661
720 0.374 0.414 0.370 0.413 0.569 0.549 0.520 0.517 0.414 0.442 0.386 0.423 0.540 0.508 0.516 0.491 4.326

2 ETTh1→ETTm1 96 0.763 0.677 0.710 0.652 0.726 0.658 0.681 0.634 0.729 0.667 0.698 0.647 0.887 0.718 0.827 0.700 4.626
720 1.252 0.815 1.215 0.803 1.881 0.948 1.138 0.809 1.459 0.845 1.249 0.795 1.623 0.981 1.601 0.964 10.249

3 ETTh1→ETTm2 96 0.959 0.694 0.937 0.689 0.990 0.704 0.896 0.677 0.918 0.694 0.895 0.677 1.199 0.794 1.122 0.731 4.457
720 1.765 0.982 1.758 0.980 2.091 1.061 1.681 0.954 1.925 1.014 1.718 0.966 2.204 1.031 1.874 1.012 7.824

4 ETTh2→ETTh1 96 0.466 0.462 0.455 0.456 0.462 0.450 0.427 0.432 0.620 0.563 0.509 0.495 0.869 0.624 0.752 0.590 8.016
720 0.695 0.584 0.540 0.519 0.511 0.518 0.484 0.502 1.010 0.968 0.936 0.686 1.274 0.783 0.845 0.642 16.243

5 ETTh2→ETTm2 96 0.943 0.726 0.876 0.697 0.736 0.656 0.700 0.642 0.840 0.708 0.771 0.688 1.250 0.850 1.064 0.793 6.344
720 1.472 0.872 1.464 0.866 1.813 0.938 1.253 0.844 1.832 1.052 1.532 0.863 1.861 1.016 1.671 0.967 11.439

6 ETTh2→ETTm1 96 1.254 0.771 1.073 0.714 1.147 0.746 0.894 0.669 0.997 0.721 0.789 0.629 1.049 0.791 0.804 0.657 16.016
720 2.275 1.137 1.754 1.065 1.992 1.001 1.740 0.970 2.651 1.149 1.695 0.971 2.183 1.103 1.742 0.983 15.952

5.4 Zero-shot Forecasting Results

Existing time series models tend to be rigidly tailored to a specific dataset, leading to poor gener-
alization on unseen data. In contrast, CCM leverages learned prototypes to capture cluster-specific
knowledge. This enables meaningful comparisons between unseen time series and pre-trained
knowledge, facilitating accurate zero-shot forecasting. Following prior work [73], we adopt ETT
collections [11], where ETTh1 and ETTh2 are hourly recorded, while ETTm1 and ETTm2 are
minutely recorded. "1" and "2" indicate two different regions where the datasets originated. Table 7
shows MSE and MAE results on test datasets. CCM consistently improves the zero-shot forecasting
capacity of base time series models in 48 scenarios, including generalization to different regions and
different granularities. Specifically, based on the results, we make the following observations. (1)
CCM exhibits more significant performance improvement with longer forecasting horizons, high-
lighting the efficacy of memorizing and leveraging pre-trained knowledge in zero-shot forecasting
scenarios. (2) CCM demonstrates a better effect on originally CI base models. For instance, the
averaged improvement rates on two CI models, i.e., DLinear and PatchTST, are 10.48% and 11.13%
respectively, while the improvement rates on TSMixer and TimesNet are 5.14% and 9.63%. Overall,
the experimental results verify the superiority and efficacy of CCM in enhancing zero-shot forecasting
and the practical value of generalization within closely related domains under varying conditions.

5.5 Qualitative Visualization

Channel Clustering Visualization. Figure 2 presents the t-SNE visualization of channel and
prototype embeddings within ETTh1 and ETTh2 datasets with DLinear as the base model. Each
point represents a channel within a sample, with varying colors indicating different channels. In
ETTh1 dataset, we discern a pronounced clustering of channels 0, 2, and 4, suggesting that they may

8

be capturing related or redundant information within the dataset. Concurrently, channels 1, 3, 5, and
6 coalesce into another cluster.

(a) ETTh1 (b) ETTh2

15 10 5 0 5 10 15
t-SNE Feature 1

10

5

0

5

10

15

t-
SN

E
Fe

at
ur

e
2

2D t-SNE Projection of Channels and Clusters

channel 0
channel 1
channel 2
channel 3
channel 4
channel 5
channel 6
Prototype

15 10 5 0 5 10
t-SNE Feature 1

20

15

10

5

0

5

10

15

20

t-
SN

E
Fe

at
ur

e
2

2D t-SNE Projection of Channels and Clusters

channel 0
channel 1
channel 2
channel 3
channel 4
channel 5
channel 6
Prototype

channel 0
channel 1
channel 2
channel 3
channel 4
channel 5
channel 6
Prototype

channel 0
channel 1
channel 2
channel 3
channel 4
channel 5
channel 6
Prototype

t-SNE Feature 1 t-SNE Feature 1

t-S
NE

Fe
at
ur
e
2

t-S
NE

Fe
at
ur
e
2

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Figure 2: t-SNE visualization of channel and prototype embedding
by DLinear with CCM on (a) ETTh1 and (b) ETTh2 dataset. The
lower left corner shows the similarity matrix between channels.

The similarity matrix in the
lower left further corroborates
these findings. Clustering is also
observable in ETTh2 dataset, par-
ticularly among channels 0, 4,
and 5, as well as channels 2, 3,
and 6. Comparatively, channel 1
shows a dispersion among clus-
ters, partly due to its capturing
of unique or diverse aspects of
the data that do not closely align
with the features represented by
any clusters. The clustering re-
sults demonstrate that CCM not
only elucidates the intricate rela-
tionships and potential redundan-
cies among the channels but also
offers critical insights for feature analysis and enhancing the interpretability of time series models.

Weight Visualization of Cluster-aware Projection. Figure 3 depicts the weights visualization for
the cluster-aware Feed Forward on ETTh1 and ETTm1 datasets, revealing distinct patterns that are
indicative of the model’s learned features [15, 8, 51].

Cluster 0

Cluster 1

O
ut

pu
t N

eu
ro

ns
O

ut
pu

t N
eu

ro
ns

Input Neurons

(a) ETTh1 Dataset

Cluster 0

Cluster 1

O
ut

pu
t N

eu
ro

ns
O

ut
pu

t N
eu

ro
ns

Input Neurons

(b) ETTm1 Dataset

Figure 3: Weights visualization of cluster-wise lin-
ear layers on (a) ETTh1 and (b) ETTm1 datasets.
The input and output lengths are 336 and 96, re-
spectively. We observe the different periodicities
captured by different clusters.

For instance, in the ETTm1 dataset, Cluster 0
shows bright diagonal striping patterns, which
may suggest that it is primarily responsible for
capturing the most dominant periodic signals
in the corresponding cluster. In contrast, Clus-
ter 1 exhibits denser stripes, indicating its role
in refining the representation by capturing more
subtle or complex periodicities that the first layer
does not. The visualization implies the model’s
ability to identify and represent periodicity in
diverse patterns, which is crucial for time-series
forecasting tasks that are characterized by intri-
cate cyclic behaviors.

5.6 Ablation Studies

(a) MSE loss w.r.t. cluster ratios on ETTh1 dataset (b) MSE loss w.r.t. cluster ratios on ETTm1 dataset

Figure 4: Ablation Study on Cluster Ratios in terms of MSE
loss with four base models. The forecasting horizon is 96.
(left: ETTh1 dataset; right: ETTm1 dataset)

Figure 4 shows an ablation study on
cluster ratios, which is defined as the
ratio of the number of clusters to the
number of channels. 0.0 means all
channels are in a single cluster. We
observe that the MSE loss slightly
decreases and then increases as the
cluster ratio increases, especially for
DLinear, PatchTST, and TimesNet.
Time series models with CCM achieve
the best performance when the clus-
ter ratio is in the range of [0.2, 0.6].
It is worth noticing that DLinear and
PatchTST, two CI models among four
base models, benefit consistently from channel clustering with any number of clusters. Additional
ablation studies on the look-back window length and clustering step are provided in Appendix D.

9

5.7 Efficiency Analysis

We evaluate the model size and runtime efficiency of the proposed CCM with various numbers of
clusters on ETTh1 dataset, as shown in Figure 5. The batch size is 32, and the hidden dimension is 64.
We keep all other hyperparameters consistent to ensure fair evaluation. It is worth noting that CCM
reduces the model complexity based on Channel-Independent models (e.g., PatchTST, DLinear),
since CCM essentially uses cluster identity to replace channel identity. The generalizability of CI
models is thereby enhanced as well. When it comes to Channel-Dependent models, CCM increases
the model complexity with negligible overhead, considering the improved forecasting performance.

1 2 3 4 5 6 7
Number of Clusters

105

106

107

Nu
m

be
r o

f P
ar

am
et

er
s

Model Size Analysis

TSMixer (CCM)
DLinear (CCM)
TimesNet (CCM)
PatchTST (CCM)
TSMixer (base)
DLinear (base)
TimesNet (base)
PatchTST (base)

(a) Model Size Analysis on ETTh1 dataset

1 2 3 4 5 6 7
Number of Clusters

0.01

0.10

Ru
nn

in
g

tim
e

(s
/it

er
)

Running Time Efficiency Analysis
TSMixer (CCM)
DLinear (CCM)
TimesNet (CCM)
PatchTST (CCM)
TSMixer (base)
DLinear (base)
TimesNet (base)
PatchTST (base)

(b) Runtime Efficiency Analysis on ETTh1 dataset

Figure 5: Efficiency analysis in model size and running time on ETTh1 dataset.

6 Conclusion

This work introduces a novel Channel Clustering Module (CCM) to address the challenge of effective
channel management in time series forecasting. CCM strikes a balance between individual channel
treatment and capturing cross-channel dependencies by clustering channels based on their intrinsic
similarity. Extensive experiments demonstrate the efficacy of CCM in multiple benchmarks, including
long-term, short-term, and zero-shot forecasting scenarios. Refinement of the CCM clustering and
domain-specific similarity measurement could potentially improve the model performance further.
Moreover, it would be valuable to investigate the applicability of CCM in other domains beyond time
series forecasting in future works.

Acknowledgments and Disclosure of Funding

This research was supported in part by the National Science Foundation (NSF) CNS Division Of
Computer and Network Systems (2431504) and AWS Research Awards. We would like to thank the
anonymous reviewers for their constructive feedback. Their contributions have been invaluable in
facilitating our work.

10

References
[1] Francisco Martinez Alvarez, Alicia Troncoso, Jose C Riquelme, and Jesus S Aguilar Ruiz.

Energy time series forecasting based on pattern sequence similarity. IEEE Transactions on
Knowledge and Data Engineering, 23(8):1230–1243, 2010.

[2] Irena Koprinska, Dengsong Wu, and Zheng Wang. Convolutional neural networks for energy
time series forecasting. In 2018 international joint conference on neural networks (IJCNN),
pages 1–8. IEEE, 2018.

[3] Rafal A Angryk, Petrus C Martens, Berkay Aydin, Dustin Kempton, Sushant S Mahajan, Sunitha
Basodi, Azim Ahmadzadeh, Xumin Cai, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi,
et al. Multivariate time series dataset for space weather data analytics. Scientific data, 7(1):1–13,
2020.

[4] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning
skillful medium-range global weather forecasting. Science, 382(6677):1416–1421, 2023.

[5] Li Li, Xiaonan Su, Yi Zhang, Yuetong Lin, and Zhiheng Li. Trend modeling for traffic time
series analysis: An integrated study. IEEE Transactions on Intelligent Transportation Systems,
16(6):3430–3439, 2015.

[6] Yi Yin and Pengjian Shang. Forecasting traffic time series with multivariate predicting method.
Applied Mathematics and Computation, 291:266–278, 2016.

[7] Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An
all-mlp architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

[8] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

[9] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

[10] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. arXiv preprint
arXiv:2201.12740, 2022.

[11] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 11106–11115,
2021.

[12] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

[13] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
net: Temporal 2d-variation modeling for general time series analysis. arXiv preprint
arXiv:2210.02186, 2022.

[14] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu.
Scinet: Time series modeling and forecasting with sample convolution and interaction. Advances
in Neural Information Processing Systems, 35:5816–5828, 2022.

[15] Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

[16] Yuan Peiwen and Zhu Changsheng. Is channel independent strategy optimal for time series
forecasting? arXiv preprint arXiv:2310.17658, 2023.

[17] Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting
the channel independent strategy for multivariate time series forecasting. arXiv preprint
arXiv:2304.05206, 2023.

11

[18] Jian Ni and Yue Xu. Forecasting the dynamic correlation of stock indices based on deep learning
method. Computational Economics, 61(1):35–55, 2023.

[19] Xingkun Yin, Da Yan, Abdullateef Almudaifer, Sibo Yan, and Yang Zhou. Forecasting stock
prices using stock correlation graph: A graph convolutional network approach. In 2021
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[20] Phillip A Jang and David S Matteson. Spatial correlation in weather forecast accuracy: a
functional time series approach. Computational Statistics, pages 1–15, 2023.

[21] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730,
2022.

[22] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–
45, 2018.

[23] Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir,
and Ram Rajagopal. Neuralprophet: Explainable forecasting at scale, 2021.

[24] G Peter Zhang. Time series forecasting using a hybrid arima and neural network model.
Neurocomputing, 50:159–175, 2003.

[25] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny. An empirical
comparison of machine learning models for time series forecasting. Econometric reviews,
29(5-6):594–621, 2010.

[26] José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martínez-Álvarez, and Alicia
Troncoso. Deep learning for time series forecasting: a survey. Big Data, 9(1):3–21, 2021.

[27] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosoph-
ical Transactions of the Royal Society A, 379(2194):20200209, 2021.

[28] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[29] Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. Multivariate temporal
convolutional network: A deep neural networks approach for multivariate time series forecasting.
Electronics, 8(8):876, 2019.

[30] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural
network approach to high-dimensional time series forecasting. Advances in neural information
processing systems, 32, 2019.

[31] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks
for time series forecasting: Current status and future directions. International Journal of
Forecasting, 37(1):388–427, 2021.

[32] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang,
and Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

[33] Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for
time series forecasting. International Journal of Forecasting, 36(1):75–85, 2020.

[34] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting,
36(3):1181–1191, 2020.

[35] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers:
Rethinking the stationarity in time series forecasting. arXiv preprint arXiv:2205.14415, 2022.

[36] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2022.

12

[37] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

[38] Binh Tang and David S Matteson. Probabilistic transformer for time series analysis. Advances
in Neural Information Processing Systems, 34:23592–23608, 2021.

[39] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2021.

[40] Aosong Feng, Jialin Chen, Juan Garza, Brooklyn Berry, Francisco Salazar, Yifeng Gao, Rex
Ying, and Leandros Tassiulas. Efficient high-resolution time series classification via attention
kronecker decomposition. arXiv preprint arXiv:2403.04882, 2024.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[42] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

[43] Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian
Li. Less is more: Fast multivariate time series forecasting with light sampling-oriented mlp
structures. arXiv preprint arXiv:2207.01186, 2022.

[44] Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting
with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

[45] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A
seasonal-trend decomposition. J. Off. Stat, 6(1):3–73, 1990.

[46] Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. Fast robuststl: Efficient and robust seasonal-
trend decomposition for time series with complex patterns. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2203–2213,
2020.

[47] Djamel Benaouda, Fionn Murtagh, J-L Starck, and Olivier Renaud. Wavelet-based nonlinear
multiscale decomposition model for electricity load forecasting. Neurocomputing, 70(1-3):139–
154, 2006.

[48] Donald B Percival and Andrew T Walden. Wavelet methods for time series analysis, volume 4.
Cambridge university press, 2000.

[49] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn:
Multi-scale local and global context modeling for long-term series forecasting. In The Eleventh
International Conference on Learning Representations, 2022.

[50] Yifan Zhang, Rui Wu, Sergiu M Dascalu, and Frederick C Harris. Multi-scale transformer
pyramid networks for multivariate time series forecasting. IEEE Access, 2024.

[51] Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Defu Lian, Ning An,
Longbing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time
series forecasting. arXiv preprint arXiv:2311.06184, 2023.

[52] Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
Frequency improved legendre memory model for long-term time series forecasting. Advances
in Neural Information Processing Systems, 35:12677–12690, 2022.

[53] Pablo Montero-Manso and Rob J Hyndman. Principles and algorithms for forecasting groups
of time series: Locality and globality. International Journal of Forecasting, 37(4):1632–1653,
2021.

13

[54] Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel
aligned robust blend transformer for time series forecasting. In The Twelfth International
Conference on Learning Representations, 2023.

[55] Jung-Yi Jiang, Ren-Jia Liou, and Shie-Jue Lee. A fuzzy self-constructing feature clustering
algorithm for text classification. IEEE transactions on knowledge and data engineering,
23(3):335–349, 2010.

[56] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
Oncel Tuzel. Token pooling in vision transformers for image classification. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 12–21, 2023.

[57] Lijimol George and P Sumathy. An integrated clustering and bert framework for improved topic
modeling. International Journal of Information Technology, pages 1–9, 2023.

[58] Hao Li, Alin Achim, and D Bull. Unsupervised video anomaly detection using feature clustering.
IET signal processing, 6(5):521–533, 2012.

[59] Iwan Syarif, Adam Prugel-Bennett, and Gary Wills. Unsupervised clustering approach for
network anomaly detection. In Networked Digital Technologies: 4th International Conference,
NDT 2012, Dubai, UAE, April 24-26, 2012. Proceedings, Part I 4, pages 135–145. Springer,
2012.

[60] Rajesh Kumar Gunupudi, Mangathayaru Nimmala, Narsimha Gugulothu, and Suresh Reddy
Gali. Clapp: A self constructing feature clustering approach for anomaly detection. Future
Generation Computer Systems, 74:417–429, 2017.

[61] Jiahao Ji, Jingyuan Wang, Chao Huang, Junjie Wu, Boren Xu, Zhenhe Wu, Junbo Zhang, and
Yu Zheng. Spatio-temporal self-supervised learning for traffic flow prediction. In Proceedings
of the AAAI conference on artificial intelligence, volume 37, pages 4356–4364, 2023.

[62] Gang Liu, Silu He, Xing Han, Qinyao Luo, Ronghua Du, Xinsha Fu, and Ling Zhao. Self-
supervised spatiotemporal masking strategy-based models for traffic flow forecasting. Symmetry,
15(11):2002, 2023.

[63] Zhe Li, Zhongwen Rao, Lujia Pan, and Zenglin Xu. Mts-mixers: Multivariate time series
forecasting via factorized temporal and channel mixing. arXiv preprint arXiv:2302.04501,
2023.

[64] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution shift.
In International Conference on Learning Representations, 2021.

[65] Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen.
Adaptive normalization for non-stationary time series forecasting: A temporal slice perspective.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[66] Hao Helen Zhang, Mark G Genton, and Peng Liu. Compactly supported radial basis function
kernels. Technical report, North Carolina State University. Dept. of Statistics, 2004.

[67] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[68] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[69] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[70] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pages 3531–3539, 2021.

14

[71] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pages 95–104, 2018.

[72] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition:
Results, findings, conclusion and way forward. International Journal of Forecasting, 34(4):802–
808, 2018.

[73] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by
reprogramming large language models. arXiv preprint arXiv:2310.01728, 2023.

[74] Lei Chen and Raymond Ng. On the marriage of lp-norms and edit distance. In Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30, pages 792–803,
2004.

[75] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Querying
and mining of time series data: experimental comparison of representations and distance
measures. Proceedings of the VLDB Endowment, 1(2):1542–1552, 2008.

[76] Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. ACM Transactions on Algorithms (TALG), 14(4):1–17, 2018.

[77] Maša Kljun and M Tersˇek. A review and comparison of time series similarity measures. In
29th International Electrotechnical and Computer Science Conference (ERK 2020). Portorozˇ,
pages 21–22, 2020.

[78] Wei Li, Xiangxu Meng, Chuhao Chen, and Jianing Chen. Mlinear: Rethink the linear model for
time-series forecasting. arXiv preprint arXiv:2305.04800, 2023.

[79] Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015.
DOI: https://doi.org/10.24432/C58C86.

[80] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. corr abs/1703.07015 (2017). arXiv preprint
arXiv:1703.07015, 2017.

[81] M4 Team et al. M4 competitor’s guide: prizes and rules. See https://www. m4. unic. ac.
cy/wpcontent/uploads/2018/03/M4-CompetitorsGuide. pdf, 2018.

[82] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[83] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

15

A Definitions

A.1 Channel Similarity

Essentially, the similarity between two time series Xi and Xj is defined as SIM(Xi, Xj) =

exp(−d(Xi,Xj)
2σ2), where d(·, ·) can be any distance metric [74, 75], such as Euclidean Distance

(Lp), Editing Distance (ED) and Dynamic Time Warping (DTW) [76]. One may also use other
similarity definitions, such as Longest Common Subsequence (LCSS) and Cross-correlation (CCor).

Firstly, the choice of Euclidean distance in this work is motivated by its efficiency and low computa-
tional complexity, especially in the case of large datasets or real-time applications. Let H denote the
length of the time series. The complexity of the above similarity computation is shown in Table 8.

Table 8: Complexity of similarity computa-
tion

Euclidean Edit Distance DTW LCSS CCor

O(H) O(H2) O(H2) O(H2) O(H2)

Secondly, it’s worth noting that while there are vari-
ous similarity computation approaches, studies have
demonstrated a strong correlation between Euclidean
distance and other distance metrics [77]. This high cor-
relation suggests that, despite different mathematical
formulations, these metrics often yield similar results
when assessing the similarity between time series. This empirical evidence supports the choice
of Euclidean distance as a reasonable approximation of similarity for practical purposes. In our
implementation, we select σ = 5 in Eq. 1 to compute the similarities based on Euclidean distance.

A.2 Channel Dependent and Channel Independent Strategy

The definitions of Channel Dependent (CD) and Channel Independent (CI) settings are pivotal to this
work. The fundamental difference lies in whether a model captures cross-channel information. There
are slightly varied interpretations of Channel Independent (CI) in previous works and we summarize
as follows.

1. In some works [15, 54], CI is broadly defined as forecasting each channel independently, where
cross-channel dependencies are completely ignored. For linear models [78, 16], CI is specifically
defined as n individual linear layers for n channels in previous works. Each linear layer is
dedicated to modeling a univariate sequence, with the possibility of differing linear weights across
channels.

2. In previous work [17], CI also means all channels being modeled independently yet under a
unified model.

All the above works acknowledge that CI strategies often outperform CD approaches, though this
comparison is not the focal point of our work. It’s also recognized that the specific CI strategy
employed in DLinear and PatchTST contributes significantly to their performance. The CI setting in
[17] represents a specific instance within the broader CI setting in other works [15, 54]. To avoid
ambiguity, we use f (i) to represent the model for the i-th channel specifically, aligning with previous
definitions without conflict.

B Multivariate and Univariate Adaptation

We provide pseudocodes for training time series models enhanced with CCM in Algorithm 1.
Algorithm 2 displays pseudocodes for the inference phase, where both the training and test sets have
the same number of channels. The components in the pretrained model F , highlighted in blue, remain
fixed during the inference phase. It’s important to note that zero-shot forecasting in Algorithm 2 is
adaptable to various scenarios. Let’s discuss these scenarios:

• Training on a univariate dataset and inferring on either univariate or multivariate samples:
In this case, the model learns prototypes from a vast collection of univariate time series in the
training set. As a result, the model can effortlessly adapt to forecasting unseen univariate time series
in a zero-shot manner. To forecast unseen multivariate time series, we decompose each multivariate
sample into multiple univariate samples, where each univariate sample can be processed by the
pretrained model. The future multivariate time series can be obtained by stacking multiple future
univariate time series.

16

• Training on a multivariate dataset and inferring on either univariate or multivariate samples:
For Channel-Dependent models, test samples should have the same number of channels as the
training samples, as seen in sub-datasets within ETT collections [11]. In contrast, for Channel-
Independent models, zero-shot forecasting can be performed on either univariate or multivariate
samples, even when they have different numbers of channels.

Algorithm 1 Forward function of time series models with channel clustering module. C is the
number of channels in the dataset. K is the number of clusters. T is the length of historical data. H
is the forecasting horizon.

Input: Historical time series X ∈ RT×C

Output: Future time series Y ∈ RH×C ; Prototype embedding C ∈ RK×d

Initialize the weights of K linear layer θk for k = 1, · · · ,K
Initialize K cluster embedding ck ∈ Rd for k = 1, · · · ,K. ▷ Cluster Embedding C
X ← Normalize(X)

Si,j ← exp(−∥Xi−Xj∥2

2σ2). ▷ Compute Similarity Matrix S
hi ← MLP(Xi) for each channel i. ▷ Channel Embedding H via MLP Encoder in the Cluster
Assigner
pi,k ← Normalize(c⊤k hi

∥ck∥∥hi∥) ∈ [0, 1]. ▷ Compute Clustering Probability Matrix P

M← Bernoulli(P). ▷ Sample Clustering Membership Matrix M

C← Normalize
(

exp((WQC)(WKH)⊤√
d

)⊙M⊤
)
WV H. ▷ Update Cluster Embedding C via

Cross Attention
Ĥ = Temporal Module(H). ▷ Update via Temporal Modules
for channel i in {1, 2, · · · , C} do

Yi ← hθi(Ĥi) where θi =
∑

k pi,kθk. ▷ Weight Averaging and Projection
end for

Algorithm 2 Zero-shot forecasting of time series models with channel clustering module. C is the
number of channels in both the training and test datasets. K is the number of clusters. T is the length
of historical data. H is the forecasting horizon.

Input: Historical time series X ∈ RT×C ; Pretrained Models F
Output: Future time series Y ∈ RH×C ;
Load the weights of K linear layer θk for k = 1, · · · ,K from F
Load K cluster embedding ck∈ Rd for k = 1, · · · ,K from F . ▷ Cluster Embedding C
X ← Normalize(X)

Si,j ← exp(−∥Xi−Xj∥2

2σ2). ▷ Compute Similarity Matrix S
hi ← MLP(Xi) for each channel i. ▷ Channel Embedding H via MLP Encoder in the Cluster
Assigner
pi,k ← Normalize(c⊤k hi

∥ck∥∥hi∥) ∈ [0, 1]. ▷ Compute Clustering Probability Matrix P

M← Bernoulli(P). ▷ Sample Clustering Membership Matrix M

Ĥ = Temporal Module(H). ▷ Update via Temporal Modules
for channel i in {1, 2, · · · , C} do

Yi ← hθi(Ĥi) where θi =
∑

k pi,kθk. ▷ Weight Averaging and Projection
end for

C Experiments

C.1 Datasets

Public Datasets. We utilize nine commonly used datasets for long-term forecasting evaluation.
Firstly, ETT collection [11], which documents the oil temperature and load features of electricity
transformers over the period spanning July 2016 to July 2018. This dataset is further subdivided into
four sub-datasets, ETThs and ETTms, with hourly and 15-minute sampling frequencies, respectively.

17

s can be 1 or 2, indicating two different regions. Electricity dataset [79] encompasses electricity
consumption data from 321 clients from July 2016 to July 2019. Exchange [80] compiles daily
exchange rate information from 1990 to 2016. Traffic dataset contains hourly traffic load data from
862 sensors in San Francisco areas from 2015 to 2016. Weather dataset offers a valuable resource with
21 distinct weather indicators, including air temperature and humidity, collected every 10 minutes
throughout the year 2021. ILI documents the weekly ratio of influenza-like illness patients relative to
the total number of patients, spanning from 2002 to 2021. Dataset statistics can be found in Table 9.

We adopt M4 dataset for short-term forecasting evaluation, which involves 100,000 univariate time
series collected from different domains, including finance, industry, etc.The M4 dataset is further
divided into 6 sub-datasets, according to the sampling frequency.

Table 9: The statistics of dataset in long-term and short-term forecasting tasks

Tasks Dataset Channels Forecast Horizon Length Frequency Domain

Long-term

ETTh1 7 {96, 192, 336, 720} 17420 1 hour Temperature
ETTh2 7 {96, 192, 336, 720} 17420 1 hour Temperature
ETTm1 7 {96, 192, 336, 720} 69680 15 min Temperature
ETTm2 7 {96, 192, 336, 720} 69680 15 min Temperature
Illness 7 {96, 192, 336, 720} 966 1 week Illness Ratio

Exchange 8 {96, 192, 336, 720} 7588 1 day Exchange Rates
Weather 21 {96, 192, 336, 720} 52696 10 min Weather

Electricity 321 {96, 192, 336, 720} 26304 1 hour Electricity
Traffic 862 {96, 192, 336, 720} 17544 1 hour Traffic Load

Short-term

M4-Yearly 1 6 23000 yearly Demographic
M4 Quarterly 1 8 24000 quarterly Finance
M4 Monthly 1 18 48000 monthly Industry
M4 Weekly 1 13 359 weekly Macro
M4 Daily 1 14 4227 daily Micro

M4 Hourly 1 48 414 hourly Other
Stock 1 {7, 24} 10000 5 min Stock

Stock Dataset. We design a new time series benchmark dataset constructed from publicly available
stock-market data. We deploy commercial stock market API to probe the market statistics for 1390
stocks spanning 10 years from Nov.25, 2013 to Sep.1, 2023. We collect stock price data from 9:30
a.m. to 4:00 p.m. every stock open day except early closure days. The sampling granularity is set to
be 5 minutes. Missing record is recovered by interpolation from nearby timestamps and all stock time
series are processed to have aligned timestep sequences. We implement short-term forecasting on the
stock dataset, which is more focused on market sentiment, and short-term events that can cause stock
prices to fluctuate over days, weeks, or months. Thereby, we set the forecasting horizon as 7 and 24.

C.2 Metrics

Following standard evaluation protocols [13], we utilize the Mean Absolute Error (MAE) and Mean
Square Error(MSE) for long-term and stock price forecasting. The Symmetric Mean Absolute
Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and Overall Weighted Average
(OWA) are used as metrics for M4 dataset [72, 42]. The formulations are shown in Eq. 5. Let yt and
ŷt denote the ground-truth and the forecast at the t-th timestep, respectively. H is the forecasting
horizon. In M4 dataset, MASE is a standard scale-free metric, where s is the periodicity of the data
(e.g., 12 for monthly recorded sub-dataset) [72]. MASE measures the scaled error w.r.t. the naïve
predictor that simply copies the historical records of s periods in the past. Instead, SMAPE scales
the error by the average between the forecast and ground truth. Particularly, OWA is an M4-specific
metric [81] that assigns different weights to each metric.

MAE =
1

H

H∑
t=1

|yt − ŷt| , MSE =
1

H

H∑
i=1

(yt − ŷt)
2,

SMAPE =
200

H

H∑
i=1

|yt − ŷt|
|yt|+ |ŷt|

, MASE =
1

H

H∑
i=1

|yt − ŷt|
1

H−s

∑H
j=s+1 |yj − yj−s|

,

OWA =
1

2

[
SMAPE

SMAPE Naïve2
+

MASE
MASENaïve2

]
(5)

18

C.3 Experiment Details

To verify the superiority of CCM in enhancing the performance of mainstream time series models,
we select four popular and state-of-the-art models, including linear models such as TSMixer [7],
DLinear [8], transformer-based model PatchTST [21] and convolution-based model TimesNet [13].
We build time series models using their official codes and optimal model configuration1234.

In the data preprocessing stage, we apply reversible instance normalization [64] to ensure zero mean
and unit standard deviation, avoiding the time series distribution shift. Forecasting loss is MSE for
long-term forecasting datasets and the stock dataset. Instead, we use SMAPE loss for M4 dataset.
We select Adam [82] with the default hyperparameter configuration for (β1, β2) as (0.9, 0.999). An
early-stopping strategy is used to mitigate overfitting. The experiments are conducted on a single
NVIDIA RTX A6000 48GB GPU, with PyTorch [83] framework. We use the official codes and
follow the best model configuration to implement the base models. Then we apply CCM to the base
models, keeping the hyperparameters unchanged for model backbones. Experiment configurations,
including the number of MLP layers in the cluster assigner, the layer number in the temporal module,
hidden dimension, the best cluster number, and regularization parameter β on nine real-world datasets
are shown in Table 10.

Table 10: Experiment configuration.

clusters β # linear layers in MLP hidden dimension # layers (TSMixer) # layers (PatchTST) # layers (TimesNet)

ETTh1 2 0.3 1 128 2 2 3
ETTm1 2 0.3 1 64 2 4 2
ETTh2 2 0.3 1 64 2 4 3
ETTm2 2 0.9 1 24 2 4 4

Exchange 2 0.9 1 32 2 4 3
ILI 2 0.9 1 36 2 6 3

Weather [2,5] 0.5 2 64 4 3 3
Electricity [3,10] 0.5 2 128 4 3 3

Traffic [3,10] 0.5 2 128 4 3 3

C.4 Comparison between CCM and Other Approach

Table 11: Full Results on Comparison between CCM and existing regularization method for enhanced
performance on CI/CD strategies in terms of MSE metric. The best results are highlighted in bold.

CD CI +PRReg +CCM

ETTh1(48) Linear 0.402 0.345 0.342 0.342
Transformer 0.861 0.655 0.539 0.518

ETTh2(48) Linear 0.711 0.226 0.239 0.237
Transformer 1.031 0.274 0.273 0.284

ETTm1(48) Linear 0.404 0.354 0.311 0.310
Transformer 0.458 0.379 0.349 0.300

ETTm2(48) Linear 0.161 0.147 0.136 0.146
Transformer 0.281 0.148 0.144 0.143

Exchange(48) Linear 0.119 0.051 0.042 0.042
Transformer 0.511 0.101 0.044 0.048

Weather(48) Linear 0.142 0.169 0.131 0.130
Transformer 0.251 0.168 0.180 0.164

ILI(24) Linear 2.343 2.847 2.299 2.279
Transformer 5.309 4.307 3.254 3.206

Electricity(48) Linear 0.195 0.196 0.196 0.195
Transformer 0.250 0.185 0.185 0.183

Predict Residuals with Regularization. Prior work [17] demonstrates that the main drawback of
CD models is their inclination to generate sharp and non-robust forecasts, deviating from the actual
trend. Thereby, Predict Residuals with Regularization (PRReg for simplicity), a specifically designed

1https://github.com/yuqinie98/PatchTST
2https://github.com/cure-lab/LTSF-Linear
3https://github.com/google-research/google-research/tree/master/tsmixer
4https://github.com/thuml/TimesNet

19

https://github.com/yuqinie98/PatchTST
https://github.com/cure-lab/LTSF-Linear
https://github.com/google-research/google-research/tree/master/tsmixer
https://github.com/thuml/TimesNet

regularization objective, is proposed to improve the robustness of CD methods as follows.

L =
1

N

N∑
j=1

LF

(
f
(
X(j) −A(j)

)
+A(j), Y (j)

)
+ λΩ(f), (6)

where the superscript j indicates the sample index. LF is MSE loss. A(j) = Xj
L,: represents the

last values of each channel in X(j). Therefore, the objective encourages the model to generate
predictions that are close to the nearby historical data and keep the forecasts smooth and robust. The
regularization term Ω (L2 norm in practice) further restricts the complexity of the model and ensures
smoothness in the predictions. It was demonstrated that PRReg can achieve better performance than
original CD and CI strategies [17]. We conduct extensive experiments on long-term forecasting
benchmarks to compare PRReg and CCM. The full results are shown in Table 11. The numbers in
parentheses next to the method represent the forecasting horizon. We set the length of the look-back
window to 36 for ILI and 96 for other datasets for consistency with previous works [17]. The base
models are linear model [8] and basic transformer [41]. The values in the PRReg column are the best
results with any λ, collected from [17]. We observe from Table 11 that CCM successfully improves
forecasting performance on original CI/CD strategies (or reached comparable results) in 13 out of 16
settings, compared with PRReg method.

C.5 Results Analysis

We report the degree of multivariate correlation across multiple channels (measured by the average
Pearson correlation coefficient) in Table 12 and Table 13. r denotes the degree of multivariate
correlation. Then the Pearson correlation coefficient between r and the performance improvement
rate is 0.258 in long-term forecasting, indicating a weak correlation. It demonstrates that CCM tends
to achieve a greater boost on datasets that are intrinsically correlated within channels. Compared with
datasets used in long-term benchmarks, M4 demonstrates more significant correlations between time
series. Therefore, capturing the correlation within the dataset in short-term cases potentially leads to
greater improvement in the forecasting performance than in long-term cases.

Table 12: Multivariate intrinsic similarity for long-term forecasting datasets
Dataset ETTh1 ETTm1 ETTh2 ETTm2 Exchange ILI Weather Electricity Traffic
Correlation r 0.1876 0.1717 0.3224 0.328 0.3198 0.508 0.1169 0.5311 0.6325

Table 13: Intrinsic similarity for short-term forecasting datasets
Dataset M4 Monthly M4 Daily M4 Yearly M4 Hourly M4 Quarterly M4 Weekly
Correlation r 0.62 0.646 0.712 0.55 0.671 0.653

C.6 Error Bar

Experimental results in this paper are averaged from five runs with different random seeds. We report
the standard deviation for base models and CCM-enhanced versions on long-term forecasting datasets
in Table 14, M4 dataset in Table 15 and stock dataset in Table 16.

D Ablation Study

D.1 Influence of Cluster Ratio

The number of clusters is an important hyperparameter in the CCM method. To verify the effectiveness
of our design, we conduct an ablation study for all base models on four long-term forecasting datasets.
The full results are shown in Table 17. We tune different cluster ratios, defined as the ratio of the
number of clusters to the number of channels. Original means the original base model without any
channel clustering mechanism. 0.0 indicates grouping all channels into the same cluster. We make the
following observations. (1) For most cases, the channel clustering module (CCM) with any number of
clusters greater than 1 consistently improves the forecasting performance upon base models. (2) For

20

Table 14: Standard deviation of Table 2 on long-term forecasting benchmarks. The forecasting
horizon is 96.

ETTh1 ETTm1 ETTh2 ETTm2 Exchange ILI Weather Electricity Traffic

MSE 0.361±0.001 0.285±0.001 0.284±0.001 0.171±0.001 0.089±0.004 1.914±0.031 0.149±0.008 0.142±0.002 0.376±0.006TSMixer MAE 0.392±0.001 0.339±0.001 0.343±0.002 0.260±0.001 0.209±0.009 0.879±0.009 0.198±0.009 0.237±0.004 0.264±0.005

+CCM MSE 0.365±0.001 0.283±0.002 0.278±0.001 0.167±0.001 0.085±0.006 1.938±0.015 0.147±0.007 0.139±0.005 0.375±0.006
MAE 0.393±0.001 0.337±0.002 0.338±0.002 0.260±0.001 0.206±0.011 0.874±0.012 0.194±0.009 0.235±0.008 0.262±0.005

MSE 0.375±0.002 0.299±0.001 0.289±0.001 0.167±0.001 0.088±0.006 2.215±0.031 0.192±0.011 0.153±0.004 0.411±0.006DLinear MAE 0.399±0.001 0.343±0.001 0.353±0.001 0.260±0.001 0.215±0.010 1.081±0.009 0.250±0.008 0.239±0.005 0.284±0.005

+CCM MSE 0.371±0.001 0.298±0.001 0.285±0.001 0.166±0.002 0.085±0.006 1.935±0.034 0.187±0.015 0.142±0.003 0.411±0.005
MAE 0.393±0.001 0.343±0.002 0.348±0.02 0.258±0.002 0.214±0.013 0.935±0.012 0.245±0.020 0.247±0.006 0.282±0.004

MSE 0.375±0.003 0.294±0.003 0.278±0.003 0.174±0.003 0.094±0.008 1.593±0.016 0.149±0.008 0.138±0.004 0.360±0.005PatchTST MAE 0.398±0.004 0.351±0.004 0.340±0.004 0.261±0.003 0.216±0.012 0.757±0.015 0.198±0.012 0.233±0.005 0.249±0.005

+CCM MSE 0.371±0.002 0.289±0.005 0.274±0.006 0.168±0.003 0.088±0.006 1.561±0.021 0.147±0.008 0.136±0.002 0.357±0.007
MAE 0.396±0.003 0.338±0.005 0.336±0.006 0.256±0.003 0.208±0.009 0.750±0.009 0.197±0.013 0.231±0.006 0.246±0.006

MSE 0.384±0.005 0.338±0.006 0.340±0.005 0.187±0.005 0.107±0.009 2.317±0.024 0.172±0.011 0.168±0.002 0.593±0.010TimesNet MAE 0.402±0.005 0.375±0.006 0.374±0.005 0.267±0.003 0.234±0.013 0.934±0.010 0.220±0.013 0.272±0.005 0.321±0.008

+CCM MSE 0.380±0.004 0.335±0.005 0.336±0.003 0.189±0.003 0.105±0.006 2.139±0.038 0.169±0.015 0.158±0.003 0.554±0.009
MAE 0.400±0.004 0.371±0.006 0.371±0.005 0.270±0.005 0.231±0.010 0.936±0.018 0.215±0.024 0.259±0.006 0.316±0.008

Table 15: Standard deviation of Table 6 on M4 dataset

Model TSMixer + CCM DLinear + CCM PatchTST + CCM TimesNet + CCM

Yearly
SMAPE 0.122 0.130 0.087 0.089 0.135 0.134 0.168 0.162
MASE 0.022 0.022 0.019 0.017 0.018 0.021 0.0017 0.017
OWA 0.002 0.002 0.002 0.002 0.007 0.009 0.010 0.011

Quaterly
SMAPE 0.101 0.103 0.100 0.100 0.079 0.073 0.106 0.105
MASE 0.016 0.016 0.015 0.015 0.008 0.009 0.013 0.011
OWA 0.008 0.007 0.006 0.008 0.013 0.016 0.009 0.009

Monthly
SMAPE 0.113 0.113 0.110 0.111 0.122 0.120 0.120 0.134
MASE 0.013 0.015 0.009 0.013 0.017 0.019 0.011 0.012
OWA 0.001 0.001 0.002 0.001 0.003 0.002 0.004 0.004

Others
SMAPE 0.113 0.110 0.126 0.128 0.137 0.130 0.129 0.125
MASE 0.024 0.026 0.036 0.031 0.023 0.025 0.028 0.025
OWA 0.011 0.013 0.009 0.008 0.023 0.019 0.024 0.020

Avg.
SMAPE 0.113 0.115 0.111 0.103 0.136 0.134 0.148 0.153
MASE 0.027 0.025 0.021 0.017 0.026 0.021 0.027 0.042
OWA 0.006 0.004 0.004 0.004 0.013 0.016 0.021 0.036

Channel-Independent base models, such as DLinear and PatchTST, grouping all channels into one
cluster results in a channel fusion at the last layer, leading to a degradation in forecasting performance
compared to the original CI models. (3) For most cases, the cluster ratio in the range of [0.2, 0.6]
typically results in the best performance.

D.2 Influence of Look-back Window Length

In this section, we conduct additional ablation experiments to investigate the effect of different look-
back window lengths in the newly collected stock dataset, which determines how much historical
information the time series model uses to make short-term forecasts. Specifically, the ablation study
helps identify the risk of overfitting or underfitting based on the chosen look-back window length. An
overly long window may lead to overfitting, while a short window may cause underfitting. Table 18
display the forecasting performance on forecasting horizon 7 and 24. The length of the look-back
window ranges from two to four times the forecasting horizon. From Table 18, we make the following
observations. (1) CCM effectively improves the base models’ forecasting performance in 24 cases
across different base models, forecasting horizons, and look-back window lengths consistently. (2)
Especially, CCM achieves better enhancement when the look-back window is shorter.

D.3 Influence of Different Clustering Steps

We conducted an ablation study on different clustering steps to investigate its effect on downstream
performance, reported in Table 19. The ablation study follows the setting in Table 5. Random
means we randomly assign each channel to a cluster, leading to worse clustering quality. K-Means
means using the k-means algorithm to replace our clustering step, leading to suboptimal prototype
embedding. The proposed CCM is essentially an advanced variant of K-Means with learnable
prototype embedding and cross-attention mechanism. Results show that both clustering quality and

21

Table 16: Standard deviation of Table 6 on stock dataset

Horizon Metric TSMixer + CCM DLinear + CCM PatchTST + CCM TimesNet + CCM

7 MSE 0.001 0.001 0.001 0.001 0.003 0.003 0.004 0.004
MAE 0.001 0.001 0.001 0.001 0.003 0.002 0.003 0.003

24 MSE 0.002 0.002 0.001 0.002 0.005 0.004 0.005 0.005
MAE 0.001 0.001 0.001 0.001 0.003 0.002 0.003 0.004

Table 17: Sensitivity of cluster ratio in terms of MSE metric. The forecasting horizon is 96. 0.0
means grouping all channels into the same cluster. original means the base model without the CCM
mechanism.

Cluster Ratio Original 0.0 0.2 0.4 0.6 0.8 1.0
E

T
T

h1

TSMixer 0.361 0.361 0.362 0.365 0.363 0.364 0.366
DLinear 0.375 0.378 0.371 0.371 0.372 0.372 0.371
PatchTST 0.375 0.380 0.372 0.371 0.373 0.376 0.375
TimesNet 0.384 0.384 0.380 0.383 0.385 0.385 0.388

E
T

T
m

1 TSMixer 0.285 0.285 0.283 0.283 0.284 0.285 0.286
DLinear 0.299 0.303 0.298 0.298 0.299 0.300 0.300
PatchTST 0.294 0.298 0.292 0.289 0.289 0.293 0.293
TimesNet 0.338 0.338 0.337 0.335 0.336 0.335 0.337

E
xc

ha
ng

e TSMixer 0.089 0.089 0.086 0.087 0.088 0.090 0.092
DLinear 0.088 0.093 0.088 0.087 0.085 0.089 0.089
PatchTST 0.094 0.095 0.089 0.088 0.088 0.091 0.093
TimesNet 0.107 0.107 0.105 0.105 0.107 0.107 0.107

E
le

ct
ri

ci
ty TSMixer 0.142 0.142 0.139 0.139 0.140 0.143 0.143

DLinear 0.153 0.160 0.143 0.142 0.143 0.147 0.150
PatchTST 0.138 0.142 0.136 0.136 0.138 0.140 0.140
TimesNet 0.168 0.168 0.160 0.159 0.167 0.168 0.169

prototype embedding will affect the downstream performance. Instead, CCM generates high-quality
channel clustering results, compared with random assignment and K-Means clustering.

E Visualization Results

(a) Channel-wise MSE Loss Comparison
on ETTh1 dataset with DLinear

(b) Channel similarity visualization
of ETTh1 dataset

Figure 6: (a) Channel-wise forecasting performance and (b) Channel similarity on ETTh1 dataset
illustrate the correlation between model performance and intrinsic similarity

E.1 Channel-wise Performance and Channel Similarity

Figure 6 illustrates the channel-wise forecasting performance in terms of MSE metric and channel
similarity on ETTh1 dataset with DLinear. We use the model’s performance difference on the original
dataset and the randomly shuffled dataset as the model’s fitting ability on a specific channel. Note
that MSE loss is computed on channels that have been standardized, which means that any scaling
differences between them have been accounted for. Figure 6 highlights a noteworthy pattern: when
two channels exhibit a higher degree of similarity, there tends to be a corresponding similarity in the
performance on these channels. This observation suggests that channels with similar characteristics
tend to benefit similarly from the optimization. It implies a certain level of consistency in the
improvement of MSE loss when dealing with similar channels.

22

Table 18: Short-term forecasting on stock dataset with different look-back window length in
{14, 21, 28}. The forecasting length is 7. The best results with the same base model are under-
lined. Bold means CCM successfully enhances forecasting performance over the base model.

Forecast 7 24

Input 14 21 28 48 72 96
Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TSMixer 0.947 0.806 0.974 0.816 0.939 0.807 1.007 0.829 1.016 0.834 1.100 0.856
+ CCM 0.896 0.778 0.954 0.808 0.938 0.806 0.991 0.817 1.006 0.824 1.078 0.851
DLinear 1.003 0.834 0.995 0.833 0.992 0.831 0.998 0.832 0.996 0.832 0.998 0.832
+ CCM 0.897 0.778 0.904 0.782 0.883 0.774 0.921 0.786 0.917 0.781 0.969 0.798
PatchTST 0.933 0.804 0.896 0.771 0.926 0.794 0.976 0.793 0.951 0.790 0.930 0.789
+ CCM 0.931 0.758 0.892 0.771 0.924 0.790 0.873 0.767 0.860 0.759 0.880 0.765
TimesNet 0.943 0.816 0.934 0.803 0.930 0.802 0.998 0.830 1.003 0.818 1.013 0.821
+ CCM 0.926 0.796 0.911 0.789 0.915 0.793 0.937 0.789 0.974 0.803 0.979 0.804
Imp. (%) 4.492 4.590 3.527 2.211 3.230 2.152 6.492 3.798 5.344 3.271 3.409 2.445

Table 19: Ablation on different clustering steps on ETTh1 and ETTm1 based on Linear and Trans-
former architecture.

CD CI Random K-Means CCM

ETTh1 Linear 0.402 0.345 0.389 0.357 0.342
Transformer 0.861 0.655 0.746 0.542 0.518

ETTm1 Linear 0.404 0.354 0.371 0.326 0.310
Transformer 0.458 0.379 0.428 0.311 0.300

F Discussion

This paper presents the Channel Clustering Module (CCM) for enhanced performance of time series
forecasting models, aiming to balance the treatment of individual channels while capturing essential
cross-channel interactions. Despite its promising contributions, there still exist limitations and
directions for future work that warrant consideration.

Limitation. While CCM shows improvements in forecasting, its scalability to extremely large
datasets remains to be tested. Moreover, the clustering and embedding processes in CCM introduce
additional computational overhead. The efficiency of CCM in real-time forecasting scenarios, where
computational resources are limited, requires further optimization.

Future Works. Future research can focus on adapting CCM to specific domains, such as biomedical
signal processing or geospatial data analysis, where external domain-specific knowledge can be
involved in the similarity computation. Furthermore, exploring alternative approaches to develop a
dynamical clustering mechanism within CCM could potentially enhance forecasting efficacy. It is
also worth examining the effectiveness of CCM in contexts beyond time series forecasting.

Social Impact. The Channel Clustering Module (CCM) presented in this paper holds significant
potential for positive social impact. By improving the accuracy and efficiency of forecasting, CCM
can benefit a wide range of applications critical to society. For instance, in healthcare, CCM
could enhance the prediction of patient outcomes, leading to better treatment planning and resource
allocation. Additionally, in financial markets, CCM could aid in predicting market trends, supporting
informed decision-making and potentially reducing economic risks for individuals and organizations.
Overall, the development and refinement of CCM could potentially enhance the quality of life and
promote societal well-being.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Clearly state the contribution in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Discussed the limitations in conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

24

Justification: the paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Provided implementation and hyperparameters in Appendix C.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for
how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for repro-
ducibility. In the case of closed-source models, it may be that access to the
model is limited in some way (e.g., to registered users), but it should be possible
for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

25

Answer: [Yes]

Justification: The code is available at https://github.com/
Graph-and-Geometric-Learning/TimeSeriesCCM.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Provide training and test details in Appendix C.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Provided error bars in Appendix C.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

26

https://github.com/Graph-and-Geometric-Learning/TimeSeriesCCM
https://github.com/Graph-and-Geometric-Learning/TimeSeriesCCM
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Provided details in Appendix C.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: well conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Discussed the social impacts in Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: Cited the original paper that produced the dataset used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

28

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Will document the newly released dataset and well specify the license after paper
acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Time Series Forecasting Models
	Channel Strategies in Time Series Forecasting

	Preliminaries
	Proposed Method
	Motivation for Channel Similarity
	CCM: Channel Clustering Module
	Complexity Analysis

	Experiments
	Experimental Setup
	Long-term Forecasting Results
	Short-term Forecasting Results
	Zero-shot Forecasting Results
	Qualitative Visualization
	Ablation Studies
	Efficiency Analysis

	Conclusion
	Definitions
	Channel Similarity
	Channel Dependent and Channel Independent Strategy

	Multivariate and Univariate Adaptation
	Experiments
	Datasets
	Metrics
	Experiment Details
	Comparison between CCM and Other Approach
	Results Analysis
	Error Bar

	Ablation Study
	Influence of Cluster Ratio
	Influence of Look-back Window Length
	Influence of Different Clustering Steps

	Visualization Results
	Channel-wise Performance and Channel Similarity

	Discussion

