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ANALYZING DIFFUSION MODELS ON SYNTHESIZING
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ABSTRACT

Synthetic samples from diffusion models are promising for training discrimina-
tive models as replications or augmentations of real training datasets. However,
we found that the synthetic datasets degrade classification performance over real
datasets when comparing them on the same dataset size. This means that the
synthetic samples from modern diffusion models are less informative for train-
ing discriminative tasks. This paper investigates the gap between synthetic and
real samples by analyzing the synthetic samples reconstructed from real samples
through the noising (diffusion) and denoising (reverse) process of diffusion mod-
els. By varying the time steps starting the reverse process in the reconstruction, we
can control the trade-off between the information in the original real data and the
information produced by diffusion models. Through assessing the reconstructed
samples and trained models, we found that the synthetic samples are concentrated
in modes of the training data distribution as the reverse step increases, and thus,
they have difficulty covering the outer edges of the distribution. In contrast, we
found that these synthetic samples yield significant improvements in the data aug-
mentation setting where both real and synthetic samples are used, indicating that
the samples around modes are useful as interpolation for learning classification
boundaries. These findings suggest that modern diffusion models are currently
not sufficient to replicate the real training dataset in the same dataset size but are
suitable for interpolating the real training samples as the augment datasets.
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Figure 1: Our motivation and finding. (a): Training with synthetic datasets produced by a modern
diffusion model (EDM, Karras et al. (2022)) does not replicate the classification performance of
the real dataset in the same dataset size. (b) We input synthetic samples to a classifier trained on
a real dataset and found that the features of synthetic samples concentrate on the modes of real
feature distribution and do not cover the outer edge of the distribution. This means that the synthetic
samples from diffusion models are less informative for training classifiers than real samples.
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1 INTRODUCTION

In the past decade, deep generative models have witnessed remarkable advancements in generating
high-quality synthetic samples that are human-indistinguishable from real data. Among these gener-
ative models, diffusion models (Ho et al., 2020) have attracted much attention because they can out-
perform the existing generative models such as GANs (Goodfellow et al., 2014) and VAEs (Kingma
& Welling, 2014) by learning denoising (reverse) processes through score-based likelihood maxi-
mization (Dhariwal & Nichol, 2021; Rombach et al., 2022).

The high-quality samples from diffusion models naturally raise research interest in their applica-
bility for training target discriminative models (e.g., classifiers), and recent studies intensively de-
velop training techniques utilizing synthetic samples from diffusion models. For instance, He et al.
(2022) demonstrated that synthetic samples from pre-trained text-image diffusion models (e.g., Sta-
ble Diffusion (Rombach et al., 2022)) can achieve impressive zero-/few-shot learning performance
by querying the synthetic training samples with crafted prompts representing target dataset cate-
gories. Moreover, Burg et al. (2023), Azizi et al. (2023), and Dunlap et al. (2023) highlighted the
potential of diffusion models for data augmentation application. They investigated diffusion-based
data augmentation methods by modifying diffusion models with nearest neighbor exploration in
sampling (Brown et al., 2020), scaling up models (Azizi et al., 2023), and customizing text prompts
for querying samples (Dunlap et al., 2023). However, in contrast to these remarkable successes, we
observed that models trained on synthetic samples are inferior to models trained on real data when
the diffusion models trained only on target datasets (Figure 1a)1. This indicates that the synthetic
samples from modern diffusion models are less informative than real samples, and there is a gap
between real and synthetic datasets in terms of training classifiers. In this paper, by analyzing dif-
fusion models, we aim to answer the following important and open research question: What is the
cause of the gap between real and synthetic datasets?

This paper mainly analyzes the gap between synthetic and real datasets on dataset replication, i.e.,
generating the same amount of synthetic samples as the real dataset and then leveraging only the
synthetic samples to train the classifier. We focus on two perspectives: (i) the quality of synthetic
samples and (ii) the impact of synthetic samples on training classification models. To assess the
gap, we introduce the concept of real sample reconstruction utilizing the diffusion and reverse
process. Real sample reconstruction consists of corrupting real samples by the diffusion process up
to pre-defined steps and then restoring the corrupted samples by the reverse process. We refer to the
pre-defined step as reverse step. By varying the reverse steps, we can continuously control the trade-
off between the remaining information from the input real samples and the synthetic information
injected by the reverse process (Figure 2). We empirically investigate how the synthetic information
affects the sample quality and the classification performance.

Our experimental findings in dataset replication are summarized as follows:

• Diffusion models generate synthetic samples that are nearly indistinguishable as real or
fake compared to competitive models such as GANs.

• Increasing the reverse steps (i.e., making sample properties closer to synthetic samples)
leads to gradual degradation in the sample quality and classifier performance.

• Leveraging synthetic samples for training classifiers does not adversely affect the tendency
of classifier outputs (e.g., attention map).

• Synthetic samples are easily distinguished as fake by a classifier with deep neural networks.

• Synthetic samples concentrate near the modes of the data distribution in the feature space
of classifiers (Fig. 1b), and a longer reverse process brings the sample closer to the mode.

• Increasing a large number of synthetic samples can achieve a classification performance
comparable to that of the real dataset, but it requires more than three times the number of
samples of the real dataset.

These findings suggest that modern diffusion models have limitations in generating samples away
from the modes. This can be because diffusion models learn to denoise samples in the direction that

1Note that, here, we do not use pre-trained diffusion models like Stable Diffusion but train diffusion models
from scratch in order to assess the limitations of the diffusion model itself.
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maximizes the likelihood at each step in the reverse process (Song et al., 2021). That is, the reverse
process may bring a sample closer to a typical mode and make the sample less informative for
training classifiers. Therefore, with the same number of samples, the synthetic dataset can degrade
accuracy over real datasets due to the less information far from the modes.

Furthermore, we analyze the synthetic samples in the data augmentation applications. Based on the
analysis of dataset replication, we can expect that the synthetic samples around the modes with high
likelihood are useful for learning the interpolations between real samples when we combine them
with real samples as a data augmentation in training classifiers. Indeed, we experimentally confirm
that the data augmentation with the synthetic samples significantly improves baselines. In particular,
we found that the synthetic samples generated by real sample reconstruction yield further improve-
ments. This indicates that diffusion models are good at generating synthetic samples that interpolate
between real samples and that they can propagate more detailed pattern differences to classifiers
through real sample reconstruction. We believe these observations and implications will help drive
future developments in synthesizing training datasets by diffusion and other generative models.

2 RELATED WORK

Diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020) is a class of generative models
inspired by thermodynamics. They learn iteratively denoising process called reverse process
corresponding to the corruption process adding noises called diffusion process. Song et al. (2021)
revealed the relationship between diffusion models and denoising score matching with stochastic
gradient Langevin dynamics and explained the optimization of the reverse process as score-based
likelihood maximization. By introducing conditional guidance in the reverse process, diffusion
models successfully control output by class labels (Dhariwal & Nichol, 2021; Ho & Salimans,
2022) and text embedding (Ramesh et al., 2022; Rombach et al., 2022), and a number of subsequent
studies are still being published.

Since diffusion models can achieve high-quality synthetic samples in comparison to other generative
models (e.g., GANs and VAEs) (Dhariwal & Nichol, 2021), recent studies investigated the capability
of diffusion models as a source of training datasets (He et al., 2022; Burg et al., 2023; Azizi et al.,
2023; Dunlap et al., 2023). These studies utilized text-image pre-trained diffusion models such as
Stable Diffusion (Rombach et al., 2022) for generating synthetic training samples and succeeded
in improving classification performance by adding the synthetic samples into training datasets. In
contrast, this paper focuses on class conditional diffusion models trained only on target datasets
from scratch and does NOT consider large pre-trained diffusion models (e.g., Stable Diffusion) to
discard the effects of knowledge transfer from external pre-trained datasets.

3 PRELIMINARY

Here, we briefly introduce the principles of diffusion models and real sample reconstruction used
for our main analysis.

3.1 DIFFUSION MODELS

A diffusion model learns a data distribution p(x) by optimizing the parameterized reverse (denois-
ing) process assuming Markov chain with length T (Sohl-Dickstein et al., 2015; Ho et al., 2020),
which corresponds to the forward diffusion process. Specifically, most modern diffusion models are
optimized by minimizing the family of the following loss function with respect to the neural network
parameter θ (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022).

L(θ) = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (1)

where ϵθ is the denoising autoencoder parameterized by θ, t is the time step randomly sampled from
{1, · · · , T}, x is the input, and xt is a noisy variant of x. In inference time, a synthetic sample x̂ is
generated by sequentially applying the denoising function for each t from T to 1 as

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t) + σtz

)
, (2)
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Algorithm 1 Real Sample Reconstruction
Require: Real sample x, reverse step tre > 1
Ensure: Reconstructed sample x̂

1: // Corrupting x with diffusion process for tre
2: x0 ← x
3: for t = 1, · · · , tre do
4: xt ←

√
αtxt−1 +

√
1− αtϵt−1

5: end for
6: // Restoring xtre with reverse process
7: for t = tre, · · · , 1 do
8: x̂t−1 ← 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t) + σtz

)
9: end for

10: x̂← x̂0

𝑡 = 0 𝑡 = 𝑡!"

𝑡 = 𝑡!"𝑡 = 0

Corrupting by Diffusion Process

Reconstructing by Reverse Process

Figure 2: Real Sample Reconstruction

where αt = 1− βt, βt is a scheduled variance in {β1, · · · , βT }, ᾱt =
∏t

s=1 αs, σt =
√

1−ᾱt−1

1−ᾱt
βt

and z ∼ N (0, 1). Song et al. (2021) showed that this denoising process corresponds to stochas-
tic gradient Langevin dynamics, which produces samples by iterative updating xt with the score
∇x log p(x):

xt = xt−1 +
δ

2
∇x log p(xt−1) +

√
δz, (3)

where δ is a step size. In this paper, we implement diffusion models with conditional EDM (Karras
et al., 2022) to generate a synthetic labeled dataset for training classifiers.

3.2 REAL SAMPLE RECONSTRUCTION

We introduce real sample reconstruction, which produces intermediate samples between real and
synthetic by exploiting the diffusion and reverse process. Real sample reconstruction first corrupts
a real sample by the diffusion process from 0 to a specified time step tre, and then recovers the
corrupted sample by the reverse process from tre to 0. Given a real data point x, we produce a
reconstructed sample x̂ with a reverse time step tre by following Algorithm 1. This reconstruction
algorithm is similar to SDEdit (Meng et al., 2022), which is an image-editing method based on the
reconstruction of guide images by diffusion models. Intuitively, x̂ is fully real when tre = 0, a fully
synthetic when tre = T , and half of real and synthetic when tre = T/2 as depicted in Figure 2.
Unlike the purpose of SDEdit, we aim to produce intermediate samples of real and synthetic by
simply inputting real images into the diffusion and reverse process.

4 ANALYSIS ON DATASET REPLICATION

In this section, we report the experimental results of the dataset replication scenario where we pro-
duce the same number of synthetic samples as the real dataset and train classifiers by using only
the synthetic dataset. We assess (i) the quality of reconstructed samples from diffusion models and
(ii) the effects on classifiers trained on the reconstructed samples. We mainly used the CIFAR-10
dataset (Krizhevsky & Hinton, 2009) as the target dataset, the CIFAR-10 pre-trained conditional
EDM (Karras et al., 2022) (T = 100) as the diffusion model, and ResNet-18 (He et al., 2016) as the
classifier architecture.

4.1 ANALYSIS ON SYNTHETIC SAMPLE

Evaluation Protocol. To analyze reconstructed synthetic samples, we measured Frechèt inception
distance (FID) (Heusel et al., 2017), precision/recall (Kynkäänniemi et al., 2019), and fake detec-
tion accuracy (Frank et al., 2020). Among them, FID and precision/recall are measured on the Ima-
geNet pre-trained feature extractor. FID evaluates the gap between real and synthetic datasets, and
precision/recall evaluate the probabilities that synthetic/real samples fall within the real/synthetic
distributions. Fake detection accuracy is calculated on a classifier trained to distinguish real and
synthetic samples on both the pixel and frequency domains. This is useful to find out how different
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Figure 3: Quality Assessments of Synthetic Sample

Table 2: Top-1 Test Accuracy (%) on
CIFAR-10 and CIFAR-100

Reverse Step tre CIFAR-10 CIFAR-100

0 (Fully Real) 95.58±.16 86.70±.08

30 94.85±.15 86.16±.61

50 93.33±.38 81.07±.90

70 91.57±.55 77.88±.31

100 (Fully Synthetic) 89.85±.41 77.68±.73

0 10050
Reverse Step 𝑡!"
30 70

Figure 4: GradCAM Visualization

synthetic and real samples are in terms of input to the classifier. We used 50,000 synthetic samples
and 50,000 real samples to calculate the metrics.

Sample Quality. We first show the visualization of the reconstructed samples in Figure 3a. We
reconstructed the samples on every 10 steps of tre ∈ [20, 80] from EDM. As the reverse step tre in-
creases, the reconstructed samples gradually lose information on the input real sample, and represent
information on the synthetic sample. Nevertheless, in visual quality, it is hard to distinguish between
a synthetic sample and a real sample for every tre. Next, we show the FID and precision/recall scores
calculated on the reconstructed samples in Figure 3b. We see that increasing reverse steps progres-
sively degrades all the quantitative metrics. This indicates that the reverse process may be harmful
to maintain the information on the real samples. In particular, the reverse process significantly de-
grades recall scores, indicating that the synthetic sample does not sufficiently cover the training data
distribution.

Table 1: Fake Detection Ac-
curacy (CIFAR-10)

Generative Model Accuracy (%)
Pixel DCT

StyleGAN3 (Karras et al., 2021) 89.56 53.62
EDM (Karras et al., 2022) 56.15 58.91

Fake Detection Accuracy. We demonstrate the fake detection ac-
curacy on the synthetic samples. To evaluate the worst quality case,
we used tre = 100 in this experiment. Table 1 shows the fake de-
tection accuracy in the pixel domain and frequency domain (DCT).
For comparison, we also print the result of StyleGAN3 (Karras
et al., 2021). The higher scores mean easier samples to be detected
as fake. While the StyleGAN3 samples were easily distinguished,
fewer EDM samples were detected as fake. These results suggest
that although the synthetic datasets from diffusion models differ in quantitative measures such as
FID, their properties as input to the classifier are almost the same as those of the real samples.

4.2 ANALYSIS ON TRAINING CLASSIFIERS

Evaluation Protocol. We analyze trained classifiers on reconstructed synthetic samples by vary-
ing the reverse step tre. We evaluate test classification accuracy, attention map visualization by
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GradCAM (Selvaraju et al., 2017), output entropy, and feature visualization by principle component
analysis (PCA). We trained ResNet-18 classifiers for 100 epochs on the synthetic CIFAR-10 datasets
yielded by real sample reconstruction with tre = 30, 50, 70, and tested them on the real CIFAR-10
test set. We used the SGD optimizer with a learning rate of 0.01 dropping by multiplying 0.1 for
every 30 epochs. We also show the results when using the real dataset (i.e., tre = 0) and the fully
synthetic dataset by the reverse process with random noise (i.e., tre = 100). For GradCAM and fea-
ture visualization, we used the output of block4 on ResNet-18. We calculate the marginal output
entropy by

Hθ(y) = − 1

N

N∑
i

C∑
j

pθ(y = j|xi) log(pθ(y = j|xi)), (4)

where N is a dataset size, C is a class number, pθ(y = j|xi) =
exp(fθ(xi)[j])∑C
k exp(fθ(xi)[k])

, fθ is a classifier.

Classification Performance. Table 2 shows the top-1 test accuracy on the real CIFAR-10 test set
for each reverse time step tre. Similar to the sample quality shown in the previous section, we see
that the performance of the classifier degrades as the reverse step increases. This implies that the
reverse process of diffusion models eliminates information important for solving classification tasks
from the original real sample.

Attention Map. Figure 4 shows the visualizations of GradCAM. We input real test samples of
CIFAR-10 for each trained model. Interestingly, while the test accuracy is degraded by real sample
reconstruction, the synthetic samples used for training do not change the attention of the trained
models. This means that the synthetic sample itself has no noticeable negative impact on learning
classification tasks.

Output Entropy. Next, we assess the quantitative effects on the classifier’s prediction. To this end,
we used the classifier trained on the real CIFAR-10 because we can consider it an ideal classifier for
the purpose of training dataset replication. Figure 5 plots the output entropy Hθ(y). We calculated
Hθ(y) by inputting the synthetic samples into the classifier. In Figure 5, Train Samples and
Test Samples mean the calculated entropy scores on the reconstructed samples from real sam-
ples of the train/test set. Note that again, in this experiment, we used only the classifier trained on the
real CIFAR-10 to assess the characteristics of synthetic samples. We see that increasing the reverse
step makes the synthetic samples low entropy, indicating easy samples to be classified. Thus, the
diffusion model tends to produce a typical sample that is representative of the class by the reverse
process.

Feature Visualization. Finally, we visualize the features of synthetic samples to examine how
synthetic samples behave on the classifier. Similar to the previous paragraph, we used the classifier
trained on the real CIFAR-10 for feature visualization. We applied PCA to the extracted features
of input synthetic samples and reduced the dimension to two. Figure 1b and 6 are the visualization
results of all class samples and truck class samples, respectively. In Figure 1b, the synthetic
sample is concentrated inside the distribution formed by the real samples, while its outer edges are
not well covered. Meanwhile, in Figure 6, the reconstructed at tre = 50 appears to cover the region
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where the sample at tre = 100 is scarce. These results suggest that the synthetic samples from
diffusion models tend to concentrate the center (mode) of training data distribution, and the reverse
process gradually pulls the synthetic samples toward the modes of training distribution.

4.3 DISCUSSION

Through the empirical analysis in the previous subsections, we observed that the modern diffu-
sion models can produce quite realistic synthetic samples, but they still have insufficient generative
performance for replicating training datasets for classifiers. In particular, the reverse process of dif-
fusion models seems to gradually concentrate the synthetic samples toward the modes of the training
data distribution. We can explain this phenomenon by the interpretation of the diffusion model as
a score-based generative model. As we discussed in Sec. 3.1, a reverse process corresponds to a
step of stochastic gradient Langevin dynamics as shown in Eq. (3). That is, a reverse step contains
the gradient of log-likelihood (score) ∇x log p(x). Therefore, the iterative denoising of samples by
multiple reverse steps means that the samples are moving closer to the region of high likelihood,
i.e., the mode of the distribution. Eq. (3) has a disturbance term by z to prevent the concentration
of sampling near the modes, but our experimental results suggest that this cannot be completely
prevented for the purpose of replicating training datasets.

5 ANALYSIS ON DATA AUGMENTATION

The analysis in Section 4 shows that the synthetic samples from diffusion models are less informative
than real samples due to the reverse process, which guides the samples to the higher likelihood
regions. Conversely, in the higher likelihood regions, we can expect that the synthetic sample quality
is sufficient for training classifiers as shown in Figure 4, and they perform as the interpolation of
real samples if we can access the real dataset (Figure 6). Therefore, this section investigates the
performance effects when adding the synthetic samples to the real datasets, i.e., data augmentation.
Further, this section also introduces an application of real sample reconstruction (Algorithm 1) to
data augmentation, which can produce interpolating samples as shown in Figure 6.

Evaluation Protocol. To assess the practical performance on data augmentation, we used real-
world target datasets: Aircraft (Maji et al., 2013), Bird (Welinder et al., 2010), and Car (Krause
et al., 2013). As the diffusion model and classifier, we used EDM and ResNet-18, as well as the
previous sections. We varied the size of synthetic datasets by the size ratio to the real dataset. For
example, ×5 means the use of a synthetic dataset that is five times the size of the real dataset. We
report the test accuracy of classifiers trained by the same setting as Section 4. For the synthetic data
augmentation, we trained models by simultaneously using individual batches of real and synthetic
samples, i.e., we used a real batch of 64 samples and a synthetic batch of 64 samples for each
iteration.

Improvements by Synthetic Data Augmentation. We first examine the effects of data augmenta-
tion with synthetic datasets and the impact of synthetic dataset size. Table 3 shows the test accuracy
on Aircraft, where Baseline is trained only on the real dataset, Synthetic Only is trained only
on synthetic samples (i.e., dataset replication), Naı̈ve is trained on the real and synthetic samples
naı̈vely generated by the diffusion model. We see that the Naı̈ve models stably outperformed the
baseline and the dataset replication, indicating that the synthetic samples indeed supplementarily
help the classification performance in the data augmentation setting. This is consistent with our ex-
pectations, i.e., the synthetic samples in the high likelihood region are helpful for training classifiers.
Interestingly, the accuracy can be further improved by increasing the number of synthetic samples.
This is because an increase in synthetic samples enlarges the diversity of the sample, and thus, they
are useful for classification. In fact, when increasing the synthetic dataset size in the dataset replica-
tion setting (×3 and ×5 of the Synthetic Only row in Table 3), the accuracy is equal to or exceeds
the baseline. These observations suggest that although synthetic samples provide less information
per sample than real samples, using more synthetic samples can provide useful information to the
classifier.

Informativeness of Reconstructed Samples. Table 3 also shows the results of Reconstructed,
which is trained on the real and reconstructed synthetic samples by real sample reconstruction (Al-
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Table 3: Top-1 Test Accuracy on Aircraft
(ResNet-18)

Method Top-1 Accuracy (%)

Baseline (Real Only) 64.71±.91

Dataset Replication ×1 ×3 ×5

Synthetic Only 54.02±.47 64.68±.34 69.03±.44

Synthetic Data Augmentation ×1 ×3 ×5

Naı̈ve (tre = 100) 69.23±.25 72.99±.14 75.10±.37

Reconstructed (tre = 25) 63.17±.42 63.27±.25 64.05±.97

Reconstructed (tre = 50) 64.41±.44 66.20±.12 67.85±.36

Reconstructed (tre = 75) 67.80±.59 71.60±.38 73.06±.14

Reconstructed (tre = rand(0, 50)) 65.41±.35 65.15±.78 66.62±.63

Reconstructed (tre = rand(0, 100)) 69.08±.20 72.36±.26 73.87±.30

Reconstructed (tre = rand(50, 100)) 69.85±.29 73.22±.32 75.52±.21

Reconstructed (tre = rand(75, 100)) 67.69±.22 72.11±.08 73.05±.60

Table 4: Top-1 Test Accuracy on Multiple
Target Datasets (ResNet-18)

Aircraft Bird Car

Baseline (Real Only) 64.71±.91 61.73±.30 74.58±.29

Dataset Replication
Synthetic Only (×1) 54.02±.47 43.10±.44 49.91±.32

Synthetic Only (×3) 64.78±.20 54.48±.51 70.26±.51

Synthetic Only (×5) 69.03±.44 57.85±.39 75.72±.55

Traditional Data Augmentation
RandAugment (Cubuk et al., 2020) 66.13±.65 64.09±.11 77.21±.25

TrivialAugment (Müller & Hutter, 2021) 67.65±.24 65.42±.32 78.61±.50

Synthetic Data Augmentation (×5)
Naı̈ve (tre = 100) 75.10±.37 63.51±.19 81.33±.17

Reconstructed (tre = rand(50, 100)) 75.52±.21 64.23±.56 83.17±.01

gorithm 1). We tried the fixed reverse step tre ∈ {25, 50, 75}. Unfortunately, contrary to our
expectations, the reconstructed samples generated from a fixed tre did not achieve better accuracy
than Naı̈ve. In particular, the reconstructed sample with tre = 25, i.e., closer to the original real
sample like Figure 3a, underperformed the baseline. This may be because small reverse steps pro-
duce almost the same samples as the input real samples, which promotes overfitting of the classifier.
On the other hand, since the larger reverse steps tend to achieve higher accuracy, synthetic samples
that are different from the original real samples yield greater improvement. For further analysis, we
tried the randomized reverse step for each sample by a function rand(Xlower, Xupper) generating
random numbers from Xlower to Xupper (Xlower < Xupper). Table 3 shows that, as with fixed steps,
the reconstructed samples from smaller steps of [0, 50] consistently have smaller gains in accuracy.
Importantly, the case of tre = rand(50, 100) outperformed Naı̈ve with statistical significance. This
indicates that the synthetic samples interpolating real samples by real sample reconstruction have
the potential to improve the classifiers more effectively than the naı̈ve random sampling.

Comparison to Traditional Data Augmentation on Multiple Target Datasets. Finally, we ex-
amine the practicality of the synthetic data augmentation using nal̈ively generated and reconstructed
samples. Here, we compare the performances of the synthetic data augmentation with state-of-the-
art traditional data augmentation techniques: RandAugment (Cubuk et al., 2020) and TrivialAug-
ment (Müller & Hutter, 2021). Table 4 shows the comparison on multiple target datasets. First, the
synthetic data augmentation methods significantly outperformed the traditional data augmentation
methods on the Aircraft and Car datasets. This is a very surprising result because previous studies
using GANs have reported that synthetic data augmentation provides an improvement equal to or
less than traditional data augmentation (Shmelkov et al., 2018; Yamaguchi et al., 2020; 2022; 2023).
On the contrary, the results on the Bird dataset were not so significant. This can be because the
synthetic samples originally lacked information for classifier training in the case of Bird. Indeed,
the results of dataset replication in Table 4 show that, even if the number of synthetic samples is
increased, it did not achieve an accuracy higher than Baseline (Real Only) for Bird. Moreover, the
FID score of EDM for Bird was 14.4, while those for Aircraft and Car were 4.1 and 8.5, respectively.
Therefore, if the generative model cannot produce high-quality samples, obtaining the benefits of
synthetic data augmentation is difficult because of the lack of information in the synthetic samples.

6 CONCLUSION AND TAKEAWAY

This paper empirically showed the limitations of diffusion models for synthesizing datasets for train-
ing classifiers. Modern diffusion models are not sufficient to replicate entire training datasets due to
the sampling concentration near the data distribution modes. This can be caused by the reverse de-
noising process, which naturally moves the samples toward the modes. From these observations, one
of the important takeaways is that we should improve diffusion models to cover the outside edges
of training data distributions. Another one is that, currently, the data augmentation applications of
diffusion models, which utilize both real and synthetic samples, can be more suitable to train high-
performance classifiers than replicating entire training datasets and utilizing only synthetic samples.
We believe that these observations and implications will be helpful for future research.

8



Data-centric Machine Learning Workshop at ICLR 2024

Reproducibility Statements. We build our experimental environment with PyTorch and existing
open-source repositories as follows.

• EDM (Karras et al., 2022) (Official PyTorch Implementation): https://github.
com/NVlabs/edm

• ResNet (He et al., 2016) (torchvision): https://pytorch.org/vision/stable/
models/resnet.html

• GradCAM (Selvaraju et al., 2017) (Unofficial Pytorch Implementation): https://
github.com/jacobgil/pytorch-grad-cam

• CIFAR-10 (Krizhevsky & Hinton, 2009): https://www.cs.toronto.edu/
˜kriz/cifar.html

• Aircraft (Maji et al., 2013): https://www.robots.ox.ac.uk/˜vgg/data/
fgvc-aircraft/

• Bird (Welinder et al., 2010): https://www.vision.caltech.edu/visipedia/
CUB-200-2011.html

• Car (Krause et al., 2013): https://www.kaggle.com/datasets/
jessicali9530/stanford-cars-dataset

Further, to reproduce our results precisely, we will publish our code to an open-source repository on
GitHub after acceptance.
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