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Abstract

We consider the problem of active learning on graphs for node-level tasks, which
has crucial applications in many real-world networks where labeling node responses
is expensive. In this paper, we propose an offline active learning method that se-
lects nodes to query by explicitly incorporating information from both the network
structure and node covariates. Building on graph signal recovery theories and the
random spectral sparsification technique, the proposed method adopts a two-stage
biased sampling strategy that takes both informativeness and representativeness
into consideration for node querying. Informativeness refers to the complexity
of graph signals that are learnable from the responses of queried nodes, while
representativeness refers to the capacity of queried nodes to control generalization
errors given noisy node-level information. We establish a theoretical relationship
between generalization error and the number of nodes selected by the proposed
method. Our theoretical results demonstrate the trade-off between informativeness
and representativeness in active learning. Extensive numerical experiments show
that the proposed method is competitive with existing graph-based active learning
methods, especially when node covariates and responses contain noises. Addition-
ally, the proposed method is applicable to both regression and classification tasks
on graphs.

1 Introduction

In many graph-based semi-supervised learning tasks for node-level prediction, labeled nodes are
scarce, and the labeling process often incurs high costs in real-world applications. Randomly sampling
nodes for labeling can be inefficient, as it overlooks label dependencies across the network. Active
learning [29] addresses this issue by selecting informative nodes for labeling by human annotators,
thereby improving the performance of downstream prediction algorithms.

Active learning is closely related to the optimal experimental design principle [36] in statistics.
Traditional optimal experimental design methods select samples to maximize a specific statistical
criterion [26, 19]. However, these methods often are not designed to incorporate network structure,
therefore inefficient for graph-based learning tasks. On the other hand, selecting informative nodes
on a network is studied extensively in the graph signal sampling literature [11, 18, 10, 28]. These
strategies are typically based on the principle of network homophily, which assumes that connected
nodes tend to have similar labels. However, a node’s label often also depends on its individual
covariates. Therefore, signal-sampling strategies that focus solely on network information may miss
critical insights provided by covariates.

Recently, inspired by the great success of graph neural networks (GNNs) [16, 34] in graph-based
machine learning tasks, many GNN-based active learning strategies have been proposed. Existing
methods select nodes to query by maximizing information gain under different criteria, including
information entropy [4], the number of influenced nodes [39], prediction uncertainty [22], expected
error reduction [8], and expected model change [30]. Most of these information gain measurements

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



are defined in the spatial domain, leveraging the message-passing framework of GNNs to incorporate
both network structure and covariate information. However, their effectiveness in maximizing
learning outcomes is not guaranteed and can be difficult to evaluate. This challenge arises from the
difficulty of quantifying node labeling complexity in the spatial domain due to intractable network
topologies. While complexity measures exist for binary classification over networks [9], their
extension to more complex graph signals incorporating node covariates remains unclear. This lack
of well-defined complexity measures complicates performance analysis and creates a misalignment
between graph-based information measurements and the gradient used to search the labeling function
space, potentially leading to sub-optimal node selection.

Moreover, from a practical perspective, most of the previously discussed methods operate in an
online setting, requiring prompt labeling feedback from an external annotator. However, this online
framework is not always feasible when computational resources are limited [24] or when recurrent
interaction between the algorithm and the annotator is impractical, such as in remote sensing or online
marketing tasks [32, 35]. Additionally, both network data and annotator-provided labels may contain
measurement errors. These methods often fail to account for noise in the training data [23], which
can significantly degrade the prediction performance of models on unlabeled nodes [7, 21].

To address these challenges, we propose an offline active learning on graphs framework for node-
level prediction tasks. Inspired by the theory of graph signal recovery [11, 18, 28] and GNNs, we
first introduce a graph function space that integrates both node covariate information and network
topology. The complexity of the node labeling function within this space is well-defined in the graph
spectral domain. Accordingly, we propose a query information gain measurement aligned with the
spectral-based complexity, allowing our strategy to achieve theoretically optimal sample complexity.

Building on this, we develop a greedy node query strategy. The labels of the queried nodes help iden-
tify orthogonal components of the target labeling function, each with varying levels of smoothness
across the network. To address data noise, the query procedure considers both informativeness—the
contribution of queried nodes in recovering non-smooth components of a signal—and representative-
ness—the robustness of predictions against noise in the training data. Compared to existing methods,
the proposed approach provides a provably effective strategy under general network structures and
achieves higher query efficiency by incorporating both network and node covariate information.

The proposed method identifies the labeling function via a bottom-up strategy—first identifying the
smoother components of the labeling function and then continuing to more oscillated components.
Therefore, the proposed method is naturally robust to high-frequency noise in node covariates. We pro-
vide a theoretical guarantee for the effectiveness of the proposed method in semi-supervised learning
tasks. The generalization error bound is guaranteed even when the node labels are noisy. Our theoret-
ical results also highlight an interesting trade-off between informativeness and representativeness in
graph-based active learning.

2 Preliminaries

We consider an undirected, weighted, connected graph G = {V,A}, where V = {1, 2, · · · , n} is
the set of n nodes, and A ∈ Rn×n is the symmetric adjacency matrix, with element aij ≥ 0 denoting
the edge weight between nodes i and j. The degree matrix is defined as D = diag{d1, d2, · · · , dn},
where di =

∑
1≤i≤n aij denotes the degree of node i. Additionally, we observe the node response

vector Y ∈ Rn×1 and the node covariate matrix X = (X1, · · · , Xp) ∈ Rn×p, where the ith row,
Xi·, is the p-dimensional covariate vector for node i. The linear space of all linear combinations of
{X1, · · · , Xp} is denoted as Span{X1, · · · , Xp}. The normalized graph Laplacian matrix is defined
as L = I−D−1/2AD−1/2, where I is the n× n identity matrix. The matrix L is symmetric and
positive semi-definite, with n real eigenvalues satisfying 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2, and a
corresponding set of eigenvectors denoted by U = {U1, U2, · · · , Un}. We use b = O(a) to indicate
|b| ≤ M |a| for some M > 0. For a set of nodes S ⊂ V, |S| indicates its cardinality, and Sc = V\S
denotes the complement of S.

2.1 Graph signal representation

Consider a graph signal f ∈ Rn, where f(i) denotes the signal value at node i. For a set of nodes S,
we define the subspace LS := {f ∈ Rn | f(Sc) = 0}, where f(S) ∈ R|S| represents the values of f
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on nodes in S . In this paper, we consider both regression tasks, where f(i) is a continuous response,
and classification tasks, where f(i) is a multi-class label.

Since U serves as a set of bases for Rn, we can decompose f in the graph spectral domain as f =∑n
j=1 αf (λj)Uj , where αf (λj) = ⟨f , Uj⟩ is defined as the graph Fourier transform (GFT) coefficient

corresponding to frequency λj . From a graph signal processing perspective, a smaller eigenvalue λk

indicates lower variation in the associated eigenvector Uk, reflecting smoother transitions between
neighboring nodes. Therefore, the smoothness of f over the network can be characterized by the
magnitude of αf (λj) at each frequency λj . More formally, we measure the signal complexity of f
using the bandwidth frequency ωf = sup{λj |αf (λj) > 0}. Accordingly, we define the subspace of
graph signals with a bandwidth frequency less than or equal to ω as Lω := {f ∈ Rn | ωf ≤ ω}. It
follows directly that ∀ω1 < ω2,Lω1 ⊂ Lω2 .

2.2 Active semi-supervised learning on graphs

The key idea in graph-based semi-supervised learning is to reconstruct the graph signal f within
a function space Hω(X,A) that depends on both the network structure and node-wise covariates,
where the frequency parameter ω controls the size of the space to mitigate overftting. Assume that Yi

is the observed noisy realization of the true signal f(i) at node i, active learning operates in a scenario
where we have limited access to Yi on only a subset of nodes S, with |S| << n. The objective is to
estimate f within Hω(X,A) using {Yi}i∈S by considering the empirical estimator of f as

fS = argmin
g∈Hω(X,A)

∑
i∈S

l
(
Yi,g(i)

)
, (1)

where l(·) is a task-specific loss function. We denote f∗ as the minimizer of (1) when responses
on all nodes are available, i.e., f∗ = fV. The goal of active semi-supervised learning is to design
an appropriate function space Hω(X,A) and select an informative subset of nodes S for querying
responses, under the query budget |S| ≤ B, such that the estimation error is bounded as follows:

∥fS − f∗∥22 ≤ ρ∥f∗ − f∥22
For a fixed B, we wish to minimize the parameter ρ > 0, which converges to 0 as the query budget B
approaches n.

3 Biased Sequential Sampling

In this section, we introduce a function space for recovering the graph signal. Leveraging this function
space, we propose an offline node query strategy that integrates criteria of both node informativeness
and representativeness to infer the labels of unannotated nodes in the network.

3.1 Graph signal function space

In semi-supervised learning tasks on networks, both the network topology and node-wise covariates
are crucial for inferring the graph signal. To effectively incorporate this information, we propose a
function class for reconstructing the graph signal that lies at the intersection of the graph spectral
domain and the space of node covariates. Motivated by the graph Fourier transform, we define the
following function class:

Hω(X,A) =ProjLω
Span(X) := Span{ProjLω

X1, · · · ,ProjLω
Xp},

where ProjLω
Xi =

∑
j:λj≤ω

⟨Xi, Uj⟩Uj .

Here, the choice of ω balances the information from node covariates and network structure. When
ω = 2, Hω(X,A) spans the full column space of covariates, i.e., Span{X1, · · · , Xp}, allowing for
a full utilization of the original covariate space to estimate the graph signal, but without incorporating
any network information. On the other hand, when ω is close to zero—consider, for example, the
extreme case where |{Uj | λj ≤ ω}| = 2 and p ≫ 2—then ProjLω

Xi reduces to Span{U1, U2},
resulting in a loss of critical information provided by the original X.

By carefully choosing ω, however, this function space can offer two key advantages for estimating
the graph signal. From a signal recovery perspective, Hω(X,A) imposes graph-based regularization
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over node covariates, enhancing generalizability when the dimension of covariates p exceeds the
query budget or even the network size—conditions commonly encountered in real applications.
Additionally, covariate smoothing filters out signals in the covariates that are irrelevant to network-
based prediction, thereby increasing robustness against potential noise in the covariates. From an
active learning perspective, using Hω(X,A) enables a bottom-up query strategy that begins with a
small ω to capture the smoothest global trends in the graph signal. As the labeling budget increases,
ω is adaptively increased to capture more complex graph signals within the larger space Hω(X,A).

The graph signal f can be approximated by its projection onto the space Hω(X,A). Specif-
ically, let Ud = {U1, U2, · · · , Ud} ∈ Rn×d stack the d leading eigenvectors of L, where
d = argmax1≤j≤n(λj − ω) ≤ 0. The graph signal estimation is then given by UdU

T
d Xβ, where

β ∈ Rd is a trainable weight vector. However, the parameters β may become unidentifiable when the
covariate dimension p exceeds d. To address this issue, we reparameterize the linear regression as
follows:

UdU
T
d Xβ = X̃β̃, (2)

where β̃ = ΣV T
2 β and X̃ = UdV1. Here, V1 ∈ Rd×r, V2 ∈ Rp×r, and Σ ∈ Rr×r denote the left

and right singular vectors and the diagonal matrix of the r singular values, respectively.

In the reparameterized form (2), the columns of X̃ serve as bases for Hω(X,A), thus
dim(Hω(X,A)) = rank(X̃) = r ≤ min{d, p}. The transformed predictors X̃ capture the com-
ponents of the node covariates constrained within the low-frequency graph spectrum. A graph
signal f ∈ Hω(X,A) can be parameterized as a linear combination of the columns of X̃, with the
corresponding weights β̃ identified via

β̂ = argmin
β̃

∑
i∈S

(
f(i)− (X̃S)i· β̃

)2
(3)

where X̃S ∈ R|S|×r is the submatrix of X̃ containing rows indexed by the query set S, and
{f(i)}i∈S represents the true labels for nodes in S . To achieve the identification of f , it is necessary
that |S| ≥ r; otherwise, there will be more parameters than equations in (3). More importantly,
since rank(X̃S) ≤ rank(X̃) = r, f is only identifiable if X̃S has full column rank. Notice that r
increases monotonically with ω. If S is not carefully selected, the graph signal can only be identified
in Hω′(X,A) for some ω′ < ω, which is a subspace of Hω(X,A).

3.2 Informative node selection

We first define the identification of Hω(X,A) by the node query set S as follows:

Definition 1 A subset of nodes S ⊂ V can identify the graph signal space Hω(X,A) up to frequency
ω if, for any two functions f1, f2 ∈ Hω(X,A) such that f1(i) = f2(i) for all i ∈ S, it follows that
f1(j) = f2(j) for all j ∈ V.

Intuitively, the informativeness of a set S can be quantified by the frequency ω corresponding to the
space Hω(X,A) that can be identified. To select informative nodes, we need to bridge the query set
S in the spatial domain with ω in the spectral domain. To achieve this, we consider the counterpart of
the function space Hω(X,A) in the spatial domain. Specifically, we introduce the projection space
with respect to a subset of nodes S as follows: HS(X,A) := Span{X(S)

1 , · · · , X(S)
p }, where

X(S)
p (i) =

{
Xp(i) if i ∈ S
0 if i ∈ Sc

Here, Xp(i) denotes the p-th covariate for node i in X. Theorem 3.1 establishes a connection
between the two graph signal spaces Hω(X,A) and HS(X,A), providing a metric for evaluating
the informativeness of querying a subset of nodes on the graph.

Theorem 3.1 Any graph signal f ∈ Hω(X,A) can be identified using labels on a subset of nodes S
if and only if:

ω < ω(S) := inf
g∈HSc (X,A)

ωg, (4)

where Sc denotes the complement of S in V.
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We denote the quantity ω(S) in (4) as the bandwidth frequency with respect to the node set S. This
quantity can be explicitly calculated and measures the size of the space Hω(X,A) that can be
recovered from the subset of nodes S . The goal of the active learning strategy is to select S within a
given budget to maximize the bandwidth frequency ω(S), thus enabling the identification of graph
signals with the highest possible complexity.

To calculate the bandwidth frequency ω(S), consider any graph signal g and its components with
non-zero frequency Λg := {λi | αg(λi) > 0}. We use the fact that

lim
k→∞

 ∑
j:λj∈Λg

cjλ
k
j

1/k

= max
λj∈Λg

(λj),

where
∑

j:λj∈Λg
cj = 1 and 0 ≤ cj ≤ 1. Combined with the Rayleigh quotient representation of

eigenvalues, the bandwidth frequency ωg can be calculated as

ωg = lim
k→∞

ωg(k), where ωg(k) =

(
gTLkg

gTg

)1/k

.

As a result, we can approximate the bandwidth ωg using ωg(k) for a large k. Maximizing ω(S) over
S then transforms into the following optimization problem:

S = argmax
S:|S|≤B

ω̂(S), where ω̂(S) := inf
g∈HSc (X,A)

ωk
g(k), (5)

where B represents the budget for querying labels. Due to the combinatorial complexity of directly
solving optimization problem (5) by simultaneously selecting S, we propose a greedy selection
strategy as a continuous relaxation of (5).

The selection procedure starts with S = ∅ and sequentially adds one node to S that maximizes
the increase in ω(S) until the budget is reached. We introduce an n-dimensional vector t =
(t1, t2, · · · , tn)T with 0 ≤ ti ≤ 1, and define the corresponding diagonal matrix D(t) with diagonal
entries given by t. This allows us to encode the set of query nodes using t = 1S , where 1S(i) = 1 if
i ∈ S and 1S(i) = 0 if i ∈ Sc. We then consider the space spanned by the columns of D(t)X as
Span{D(t)X}, and the following relation holds:

HSc(X,A) = Span{D(1Sc)X}.

Intuitively, Span{D(t)X} acts as a differentiable relaxation of the subspace HS(X,A), enabling
perturbation analysis of the bandwidth frequency when a new node is added to S. The projection
operator associated with Span{D(t)X} can be explicitly expressed as

P(t) = D(t)X
(
XTD(t2)X

)−1
XTD(t).

To quantify the increase in ω̂(S) when adding a new node to S , we consider the following regularized
optimization problem:

λα(t) = min
ϕ

ϕTLkϕ

ϕTϕ
+ α

ϕT (I−P(t))ϕ

ϕTϕ
. (6)

The penalty term on the right-hand side of (6) encourages the graph signal ϕ to remain in HSc(X,A).
As the parameter α approaches infinity and t = 1Sc , the minimization λα(1Sc) in (6) converges to
ω̂(S) in (5). The information gain from labeling a node i ∈ Sc can then be quantified by the gradient
of the bandwidth frequency as ti decreases from 1 to 0:

∆i := −∂λα(t)

∂ti

∣∣∣
t=1Sc

= 2α× ϕT ∂P(t)

∂ti
ϕ
∣∣∣
t=1Sc

, (7)

where ϕ is the minimizer of (6) at t = 1Sc , which corresponds to the eigenvector associated
with the smallest non-zero eigenvalue of the matrix P(1Sc)LkP(1Sc). We then select the node
i = argmaxj∈Sc ∆j and update the query set as S = S ∪ {i}. The explicit representation of ∆i in
(7) can be found in Appendix B.5.
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3.3 Representative node selection

In real-world applications, we often have access only to a perturbed version of the true graph signals,
denoted as Y = f + ξ, where ξ represents node labeling noise that is independent of the network data.
When replacing the true label f(i) with Y (i) in (3), this noise term introduces both finite-sample
bias and variance in the estimation of the graph signal f . As a result, we aim to query nodes that are
sufficiently representative of the entire covariate space to bound the generalization error. To achieve
this, we introduce principled randomness into the deterministic selection procedure described in
Section 3.2 to ensure that S includes nodes that are both informative and representative. The modified
graph signal estimation procedure is given by:

β̂ = argmin
β̃

∑
i∈S

si
(
Y (i)− (X̃S)i· β̃

)2
, (8)

where si is the weight associated with the probability of selecting node i into S.

Specifically, the generalization error of the estimator in (8) is determined by the smallest eigenvalue
of X̃T

S X̃S , denoted as λmin(X̃
T
S X̃S). Given that λmin(X̃

T X̃) = 1, our goal is to increase the
representativeness of S such that λmin(X̃

T
S X̃S) is lower-bounded by:

λmin

(
X̃T

S X̃S

)
≥ (1− o|S|(1))λmin

(
X̃T X̃

)
. (9)

However, the informative selection method in Section 3.2 does not guarantee (9). To address this,
we propose a sequential biased sampling approach that balances informative node selection with
generalization error control.

The key idea to achieve a lower bound for λmin(X̃
T
S X̃S) is to use spectral sparsification techniques

for positive semi-definite matrices [15]. Let vi ∈ R1×r denote the i-th row of the constrained basis
X̃. By definition of X̃, it follows that Ir×r =

∑n
i=1 v

T
i vi. Inspired by the randomized sampling

approach in [17], we propose a biased sampling strategy to construct S with |S| ≪ n and weights
{si > 0, i ∈ S} such that

∑
i∈S siv

T
i vi ≈ I. In other words, the weighted covariance matrix of the

query set S satisfies λmin(X̃
T
SWSX̃S) ≈ 1, where WS is a diagonal matrix with si on its diagonal.

We outline the detailed sampling procedure as follows. After the (t−1)th selection, let the set of query
nodes be St−1 with corresponding node-wise weights Wt−1 = {sj > 0 | j ∈ St−1}. The covariance
matrix of St−1 is given by Ct−1 ∈ Rr×r, defined as Ct−1 = X̃T

St−1
X̃St−1

=
∑

j∈St−1
sjv

T
j vj . To

analyze the behavior of eigenvalues as the query set is updated, we follow [17] and introduce the
potential function:

Φt−1 = Tr[(ut−1I − Ct−1)
−1] + Tr[(Ct−1 − lt−1I)

−1], (10)

where ut−1 and lt−1 are constants such that lt−1 < λmin(Ct−1) ≤ λmax(Ct−1) < ut−1, and Tr(·)
denotes the trace of a matrix. The potential function Φt−1 quantifies the coherence among all
eigenvalues of Ct−1. To construct the candidate set Bm, we sample node i and update Ct, ut, and lt
such that all eigenvalues of Ct remain within the interval (lt, ut). To achieve this, we first calculate
the node-wise probabilities {pi}ni=1 as:

pi =
[
vi(ut−1I − Ct−1)

−1vTi + vi(Ct−1 − lt−1I)
−1vTi

]
/Φt−1, (11)

where
∑n

i=1 pi = 1. We then sample m nodes into Bm according to {pi}ni=1. For each node i ∈ Bm,
the corresponding weight is given by si =

ϵ
piΦt−1

, 0 < ϵ < 1. After obtaining the candidate set Bm,
we apply the informative node selection criterion ∆i introduced in Section 3.2, i.e., selecting the
node i = argmaxi∈Bm

∆i, and update the query set and weights as follows:

if i ∈ Sc
t−1 : St = St−1 ∪ {i}, Wt = Wt−1 ∪ {si},

if i ∈ St−1 : si = si +
ϵ

piΦt−1
.

We then update the lower and upper eigenvalue bounds as follows:

ut = ut−1 +
ϵ

Φt−1(1− ϵ)
, lt = lt−1 +

ϵ

Φt−1(1 + ϵ)
. (12)
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The update rule ensures that ut − lt increases at a slower rate than ut, leading to the convergence of
the gap between the largest and smallest eigenvalues of X̃T

SWSX̃S , thereby controlling the condition
number. Accordingly, the covariance matrix is updated with the selected node i as:

Ct = Ct−1 +
ϵ

piΦt−1
vTi vi. (13)

With the covariance matrix update rule in (13), the average increment is E(Ct) − Ct−1 =∑n
i=1 pisiv

T
i vi =

ϵ
Φt−1

I. Intuitively, the selected node allows all eigenvalues of Ct−1 to increase at

the same rate on average. This ensures that λmin(X̃
T
S X̃S) continues to approach λmin(X̃

T X̃) = 1
during the selection process, thus driving the smallest eigenvalue away from zero. Additionally, the
selected node remains locally informative within the candidate set Bm. Compared with the entire
set of nodes, selecting from a subset serves as a regularization on informativeness maximization,
achieving a balance between informativeness and representativeness for node queries.

3.4 Node query algorithm and graph signal recovery

We summarize the biased sampling selection strategy in Algorithm 1. At a high level, each step in the
biased sampling query strategy consists of two stages. First, we use randomized spectral sparsification
to sample m ≪ n nodes and collect them into a candidate set Bm. Intuitively, the covariance matrix
on the updated S maintains lower-bounded eigenvalues if a node from Bm is added to S. In the
second stage, we select one node from Bm based on the informativeness criterion in Section 3.2 to
achieve a significant frequency increase in (7).

For initialization, the dimension of the network spectrum d, the size of the candidate set m, and the
constant 0 < ϵ < 1 for spectral sparsification need to be specified. Based on the discussion at the end
of Section 3.1, the dimension of the function space Hω(X,A) is at most B, where B is the budget
for label queries. Therefore, we can set d = min{p,B}. The parameters m and ϵ jointly control the

condition number λmax(X̃
T
SWSX̃S)

λmin(X̃T
SWSX̃S)

.

Algorithm 1 Biased Sampling Query Algorithm

Require: t = 0, C0 = 0, the set of query nodes S0 = ∅, the set of node weights W0 = ∅, spectral
dimension d, size of candidate set m, constant 0 < ϵ < 1/m, query budget B.
Initialization: Compute SVD decomposition UT

d X = V1ΣV
T
2 , and set X̃ = UdV1, r = rank(X̃),

u0 = 2r/ϵ, l0 = −2r/ϵ, κ = 2r(1−m2ϵ2)/(mϵ2).
while B > 0 do

Step 1: Calculate Φt as in (10) and the node-wise probabilities {pi}ni=1 using (11).
Step 2: Sample m nodes with replacement according to probabilities {pi}ni=1 to form the

candidate set Bm.
Step 3: Select node i as i = argmaxi∈Bm

∆i and calculate its weight wi =
ϵ

piΦt
.

If i /∈ St, then update St+1 = St ∪ {i} and Wt+1 = Wt ∪ {si} with si =
wi

κ .
Else if i ∈ St, then update si = si +

wi

κ .
Step 4: Update Ct, ut, lt, B and t as:

Ct+1 = Ct + wiv
T
i vi, ut+1 = ut +

ϵ

Φt(1−mϵ)
, lt+1 = lt +

ϵ

Φt(1 +mϵ)
,

B = B − 1, t = t+ 1.

end while
Query: Label all nodes in S through an external annotator.
Output: Set of queried nodes S , annotated responses {Yi | i ∈ S}, smoothed covariates X̃S , and
weights of queried nodes W .

Based on the output from Algorithm 1, we solve the weighted least squares problem in (8):

β̂ = argmin
β̃

∑
i∈S

si
(
Y (i)− (X̃S)i·β̃

)2
, (14)

and recover the graph signal on the entire network as f̂ = X̃β̂. The proposed method is illustrated for
the regression task, with an extension to the classification task discussed in Appendix B.2.
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4 Theoretical Analysis

In this section, we present a theoretical analysis of the proposed node query strategy. The results are
divided into two parts: the first focuses on the local information gain of the selection process, while
the second examines the global performance of graph signal recovery. Given a set of query nodes S ,
the information gain from querying the label of a new node i is measured as the increase in bandwidth
frequency, defined as ∆i := ω(S ∪ {i})− ω(S). We provide a step-by-step analysis of the proposed
method by comparing the increase in bandwidth frequency with that of random selection.

Theorem 4.1 Define dmin = min
i
{di}, where di denotes the degree of node i. Let S represent the set

of queried nodes prior to the sth selection. Denote the adjacency matrix of the subgraph excluding
S as A(n−|S|)×(n−|S|). Let ∆R

s and ∆B
s denote the increase in bandwidth frequency resulting from

the sth label query on a node selected by random sampling and the proposed sampling method,
respectively. Let j∗ denote the node with the largest magnitude in the eigenvector corresponding to
the smallest non-zero eigenvalue of LSc . Then we have:

E(∆R
s) = Ω(

1

n
) (1), and E(∆B

s)−E(∆R
s) > Ω(

1

η0η31d
2
min

)− Ω(
1

n
) (2),

where f = Ω(g) if c1 ≤ | fg | ≤ c2 for constants c1, c2 when n is sufficient large. Inequality (2) holds
given m satisfying

(
n−m− dmin

n−m
)m(

n−m− dmin

n− dmin
)dmin

√
dmin = O(1).

The expectation E(·) is taken over the randomness of node selection. Both η0, η1 are network-related
quantities, where η0 ≜ #|{i : |di−dj∗

dmin
| ≤ 1}| and η1 ≜ maxi(

di

dmin
).

Theorem 4.1 provides key insights into the information gain achieved through different node label
querying strategies. While random selection yields a constant average information gain, the proposed
biased sampling method guarantees a higher information gain under mild assumptions.

In Theorem 4.2, we provide the generalization error bound for the proposed sampling method under
the weighted OLS estimator. To formally state Theorem 4.2, we first introduce the following two
assumptions:

Assumption 1 For the underlying graph signal f , there exists a bandwidth frequency ω0 such that
f ∈ Hω0

(X,A).
Assumption 2 The observed node-wise response Yi can be decomposed as Yi = f(i) + ξi, where
{ξi}ni=1 are independent random variables with E(ξi) = 0 and Var(ξi) ≤ σ2.

Theorem 4.2 Under Assumptions 1 and 2, for the graph signal estimation f̂ obtained by training
(14) on B labeled nodes selected by Algorithm 1, with probability greater than 1− 2m

t , where t > 2m,
we have

EY ∥f̂ − f∥22 ≤ O
(rdt

B
+ 2(

rdt

B
)3/2 + (

rdt

B
)2
)
× (nσ2 +

∑
i>d,i∈supp(f)

α2
i ) +

∑
i>d,i∈supp(f)

α2
i ,

(15)

where αi := ⟨f , Ui⟩, supp(f) := {i : 1 ≤ i ≤ n, |αi| > 0} and rd = rank(UT
d X). EY (·) denotes

the expected value with respect to the randomness in observed responses.

Theorem 4.2 reveals the trade-off between informativeness and representativeness in graph-based
active learning, which is controlled by the spectral dimension d. Since rd is a monotonic function of d,
a larger d reduces representativeness among queried nodes, thereby increasing variance in controlling
the condition number (i.e., the first three terms). On the other hand, a larger d reduces approximation
bias to the true graph signal (i.e., the fifth and last terms) by including more informative nodes for
capturing less smoothed signals.
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(a) Small World (b) Community (c) Scale-free

Figure 1: Prediction performance on unlabeled nodes at different levels of labeling noise (σ2). All three
simulated networks have n = 100 nodes, with the number of labeled nodes fixed at 25.

5 Numerical Studies

In this section, we conduct extensive numerical studies to evaluate the proposed active learning
strategy for node-level prediction tasks on both synthetic and real-world networks. For the synthetic
networks, we focus on regression tasks with continuous responses, while for the real-world networks,
we consider classification tasks with discrete node labels.

5.1 Synthetic networks

We consider three different network topologies generated by widely studied statistical network
models: the Watts–Strogatz model [33] for small-world properties, the Stochastic block model [13]
for community structure, and the Barabási–Albert model [3] for scale-free properties.

Node responses are generated as Y = f + ξ, where f is the true graph signal and ξ ∼ N(0, σ2In) is
Gaussian noise. The true signal is constructed as f = Udβ, where β is the linear coefficient and Ud

denotes the leading d eigenvectors of the normalized graph Laplacian of the synthetic network. Since
our theoretical analysis assumes that the observed node covariates X contain noise, we generate X as
a perturbed version of Ud by adding non-leading eigenvectors of the normalized graph Laplacian.
The detailed simulation settings can be found in Appendix C.1.

We compare our algorithm with several offline active learning methods: 1. D-optimal [26] selects
subset of nodes S to maximize determinant of observed covariate information matrix XT

SXS . 2.
RIM [38] selects nodes to maximize the number of influenced nodes. 3. GPT [22] and SPA [27]
split the graph into disjoint partitions and select informative nodes from each partition.

After the node query step, we fit the weighted linear regression from (14) on the labeled nodes, using
the smoothed covariates X̃, to estimate the linear coefficient β̂ and predict the response Ŷ for the
unlabeled nodes. In Figure 1, we plot the prediction MSE of the proposed method against baselines
on unlabeled nodes for various levels of labeling noise σ2 ∈ (0.5, 0.6, 0.7, 0.8, 0.9, 1). The results
show that the proposed method significantly outperforms all baselines across all simulation settings
and exhibits strong robustness to noise. The inferior performance of the baselines can be attributed
to several factors. D-optimal and RIM fail to account for noise in the node covariates. Meanwhile,
partition-based methods like GPT and SPA are highly sensitive to hyperparameters, such as the
optimal number of partitions, which limits their generalization to networks lacking a clear community
structure.

5.2 Real-world networks

We evaluate the proposed method for node classification tasks on real-world datasets, which include
five networks with varying homophily levels (high to low: Cora, PubMed, Citeseer, Chameleon
and Texas) and two large-scale networks (Ogbn-Arxiv and Co-Physics). In addition to the offline
methods described in Section 5.1, we also compare our approach with two GNN-based online active
learning methods AGE [4] and IGP [39]. In each GNN iteration, AGE selects nodes to maximize
a linear combination of heuristic metrics, while IGP selects nodes that maximize information gain
propagation.
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Table 1: Test accuracy (Micro-F1%) on five real-world networks with varying levels of homophily.
The edge homophily ratio h of a network is defined as the fraction of edges that connect nodes with
the same class label. A higher h indicates a network with stronger homophily.

Cora (h = 0.81) Pubmed (h = 0.80) Citeseer (h = 0.74) Chameleon (h = 0.23) Texas (h = 0.11)

#labeled nodes 35 70 140 15 30 60 30 60 120 50 75 100 15 30 45

Random 68.2 ± 1.3 74.5 ± 1.0 78.9 ± 0.9 71.2 ± 1.8 74.9 ± 1.6 78.4 ± 0.5 57.7 ± 0.8 65.3 ± 1.4 70.7 ± 0.7 22.4 ± 2.6 22.1 ± 2.5 21.8 ± 2.1 67.0 ± 3.3 69.9 ± 3.3 73.8 ± 3.2

AGE 72.1 ± 1.1 78.0 ± 0.9 82.5 ± 0.5 74.9 ± 1.1 77.5 ± 1.2 79.4 ± 0.7 65.3 ± 1.1 67.7 ± 0.5 71.4 ± 0.5 30.0 ± 4.5 28.2 ± 4.9 28.6 ± 5.0 67.9 ± 2.6 68.8 ± 3.3 72.1 ± 3.6

GPT 77.4 ± 1.6 81.6 ± 1.2 86.5 ± 1.2 77.0 ± 3.1 79.9 ± 2.8 81.5 ± 1.6 67.9 ± 1.8 71.0 ± 2.4 74.0 ± 2.0 14.1 ± 2.5 15.8 ± 2.2 16.4 ± 2.4 72.6 ± 2.0 72.5 ± 3.6 74.6 ± 1.8

RIM 77.5 ± 0.8 81.6 ± 1.1 84.1 ± 0.8 75.0 ± 1.5 77.2 ± 0.6 80.2 ± 0.4 67.5 ± 0.7 70.0 ± 0.6 73.2 ± 0.7 35.5 ± 3.7 42.8 ± 3.0 34.4 ± 3.5 68.5 ± 3.7 78.4 ± 3.0 74.6 ± 3.7

IGP 77.4 ± 1.7 81.7 ± 1.6 86.3 ± 0.7 78.5 ± 1.2 82.3 ± 1.4 83.5 ± 0.5 68.2 ± 1.1 72.1 ± 0.9 75.8 ± 0.4 32.5 ± 3.6 33.7 ± 3.1 33.4 ± 3.5 70.8 ± 3.7 69.9 ± 3.3 76.1 ± 3.6

SPA 76.5 ± 1.9 80.3 ± 1.6 85.2 ± 0.6 75.4 ± 1.6 78.3 ± 2.0 73.5 ± 1.2 66.4 ± 2.2 69.3 ± 1.7 73.5 ± 2.0 30.2 ± 3.2 28.5 ± 2.9 31.0 ± 4.4 72.0 ± 3.2 72.5 ± 3.1 74.6 ± 2.1

Proposed 78.4 ± 1.7 81.8 ± 1.8 86.5 ± 1.1 78.9 ± 1.1 79.1 ± 0.6 82.3 ± 0.6 69.1 ± 1.0 72.2 ± 1.3 75.5 ± 0.8 35.1 ± 2.8 35.7 ± 3.0 37.2 ± 3.0 75.0 ± 1.9 79.5 ± 0.8 80.4 ± 2.7

Table 2: Test accuracy (Macro-F1% and Micro-F1%) on two real-world large-
scale networks: Ogbn-Arxiv (n = 169, 343) and Co-Physics (n = 34, 493).

Ogbn-Arxiv (Macro-F1) Ogbn-Arxiv (Micro-F1) Co-Physics (Macro-F1)

#labeled nodes 160 320 640 1280 160 320 640 1280 10 20 40

Random 21.9 ± 1.4 27.6 ± 1.5 33.0 ± 1.4 37.2 ± 1.1 52.3 ± 0.8 56.4 ± 0.8 60.0 ± 0.7 63.5 ± 0.4 58.3 ± 13.8 66.9 ± 10.1 78.3 ± 7.1

AGE 20.4 ± 0.9 25.9 ± 1.1 31.7 ± 0.8 36.4 ± 0.8 48.3 ± 2.3 54.9 ± 1.6 60.0 ± 0.7 63.5 ± 0.3 63.7 ± 7.8 71.0 ± 8.8 82.4 ± 3.9

GPT 24.2 ± 0.7 29.5 ± 0.8 36.4 ± 0.5 41.0 ± 0.5 52.3 ± 0.9 56.8 ± 0.8 60.7 ± 0.6 63.6 ± 0.5 75.8 ± 2.7 85.8 ± 0.3 88.9 ± 0.3

Proposed 25.8 ± 1.3 34.3 ± 1.4 38.3 ± 1.2 41.3 ± 1.3 53.1 ± 1.3 58.0 ± 1.0 62.3 ± 1.6 64.8 ± 1.0 83.5 ± 0.8 86.8 ± 1.3 89.2 ± 1.2

Table 3: Average
query time (in sec-
onds) per node.

Dataset Size Time

Texas 183 0.19 ± 0.03

Chameleon 2,277 0.34 ± 0.18

Cora 2,708 0.30 ± 0.19

Citeseer 3,327 0.26 ± 0.07

Pubmed 19,717 0.48 ± 0.25

Co-Physics 34,493 1.08 ± 0.43

Ogbn-Arxiv 169,343 2.11 ± 0.33

Unlike regression, node classification with GNNs is a widely studied area of research. Previous
works [22, 30, 38, 39] have demonstrated that the prediction performance of various active learning
strategies on unlabeled nodes remains relatively consistent across different types of GNNs. Therefore,
we employ Simplified Graph Convolution (SGC) [34] as the GNN classifier due to its straightforward
theoretical intuition. Since SGC is essentially multi-class logistic regression on low-pass-filtered
covariates, it can be approximately viewed as a special case of the regression model defined in (14).
Thus, we conjecture that our theoretical analysis can also be extended to classification tasks and leave
its formal verification for future work.

The results in Figure 1 demonstrate that the proposed algorithm is highly competitive with baselines
across real-world networks with varying degrees of homophily. Our method achieves the best
performance on Cora (highest homophily) and Texas (lowest homophily, i.e., highest heterophily)
and is particularly effective when the labeling budget is most limited. To handle heterophily in
networks like Chameleon and Texas, we expand the graph signal subspace Ud in Algorithm 1 to
Ud = {U1, · · · , Ud, Un−d+1, · · · , Un}, combining eigenvectors corresponding to the d smallest
and d largest eigenvalues. Admittedly, relying on a priori knowledge of label construction may be
unrealistic, so developing adaptive methods for designing the signal subspace to effectively handle
both homophily and heterophily remains a promising direction for future research.

Table 2 summarizes the performance on two large-scale networks. The greatest improvement is
observed in the Macro-F1 score on Ogbn-Arxiv, with an increase of up to 4.8% at 320 labeled nodes.
Moreover, Table 3 demonstrates that our algorithm scales efficiently to large networks, with the time
cost of querying a single node being approximately 2 seconds when n = 169, 343.

6 Conclusion

We propose a graph-based offline active learning framework for node-level tasks. Our node query
strategy effectively leverages both the network structure and node covariate information, demonstrat-
ing robustness to diverse network topologies and node-level noise. We provide theoretical guarantees
for controlling generalization error, uncovering a novel trade-off between informativeness and repre-
sentativeness in active learning on graphs. Empirical results demonstrate that our method performs
strongly on both synthetic and real-world networks, achieving competitiveness with state-of-the-art
methods on benchmark datasets. Future work could explore extensions to an online active learning
setting that iteratively incorporates node response information to further enhance query efficiency.
Additionally, scalability on large graphs could be improved by utilizing the Lanczos method [1] or
Chebyshev polynomial approximation [16] during node selection.
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A Proofs

A.1 Proof of Theorem 3.1

Proof : Consider the threshold frequency ω defined as

ω < ω(S) := inf
g∈ProjLSc span(X)

ωg, (16)

and notice that 16 is true if and only if

ProjLω
span(X) ∩ ProjLSc span(X) = {0}. (17)

⇒ For ∀ϕ ∈ ProjLω
span(X) ∩ ProjLSc span(X) and ∀f ∈ ProjLω

span(X), we have g = ϕ + f ∈
ProjLω

span(X) by closure under addition and f(S) = g(S). Since ProjLω
span(X) can be identified

by S, one must have f = g, which implies ϕ = 0. Hence, 17 is true.

⇐ Given 17 is true, assume that ProjLω
span(X) cannot be identified by S. Then, by definition,

there exists f1, f2 ∈ ProjLω
span(X) such that f1(S) = f2(S) and f1 ̸= f2. Since (f1 − f2)(S) = 0,

f1 − f2 ∈ ProjLSc span(X). By clousure under addition, f1 − f2 ∈ ProjLω
span(X). However,

f1 − f2 ∈ ProjLω
span(X) ∩ ProjLSc span(X) is a contradiction with 17. Therefore, ProjLω

span(X)
can be identified by S.

A.2 Proof of Theorem 4.1

Proof : Let U = {U1, U2, · · · , Un} be the eigenvectors of L = I − D−1/2AD−1/2 and Λ =
diag(λ1, λ2, · · · , λn). Without loss of generality, we analyze the case when k = 1 and the case of
no repeated eigenvalues. The analysis for the case of repeated eigenvalues can be similar performed
with matrix perturbation analysis on degenerate case [2].

After selecting node i, we have the reduced Laplacian matrix L∗

L∗ = L+ L(−i), where L(−i) = −



0 · · · L1i · · · 0

...
. . .

...
...

...

Li1 . . . Lii . . . Lin

...
...

...
. . .

...

0 · · · Lni · · · 0


Define Λ∗ as the diagonal matrix containing eigenvalues of L∗. Using the first order perturbation
analysis [2], we have Λ∗ ≈ Λ + diag(UTL(−i)U). Let L·i and Li· be the ith column and row of L,
respectively. Since

L(−i)Uj =



−L1iUij

...

−L(−i)
i· Uj

...

−LniUij


= −L·iUij +



0

...

LiiUij − L(−i)
i· Uj

...

0


= −L·iUij +



0

...

(Lii − λj)Uij

...

0
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we have

UT
j L(−i)Uj =−Uij(Li·Uj) + (Lii − λj)U

2
ij

=−Uij(λjUij) + (Lii − λj)U
2
ij

=(1− 2λj)U
2
ij since the diagonal entry of L is 1

Therefore,

Λ∗ ≈ Λ +


(1− 2λ1)U

2
i1

. . .

(1− 2λn)U
2
in


Assume U1 corresponding to the smallest non-zero eigenvalue of Λ∗, then the increase of bandwidth
frequency for node i is U2

i1.

For random selection, where node i is queried with uniform probability,

E(∆R) =
1

n

n∑
i=1

U2
i1 ∝ 1

n

For the proposed selection method, define R = diag(r1, r2, · · · , rn), where ri =
di

dmin
, then

L =I−D−1/2AD−1/2

= I+ ϵ′D︸ ︷︷ ︸
A0

+ϵ′

(ϵ′dmin)
−1R− 1

2AR− 1
2 −D︸ ︷︷ ︸

A1


=A0 + ϵ′A1

Next we perform matrix perturbation analysis, define

U0 = I, Λ0 = A0, Λ = Λ0 + ϵ′Λ1, U = U0 + ϵ′U1

where Λ, U approximate eigenvalues and eigenvectors of Λ∗. Denote (U1)k as the kth column of U1

and assume di ̸= dj , we have

(U1)k =
∑
i̸=k

(U0)
⊤
i A1 (U0)k

(Λ0)k − (Λ0)i
(U0)i =

∑
i ̸=k

Aik

(ε′)
2
(di − dk)

√
di
√
dk

ei

(U)k = (U0)k + ε′ (U1)k

To satisfy ∥Uk∥2 = 1, we multiply τ as

(τU)k = (τU0)k + ε′ (τU1)k

⇒ recalculate U1 by τU0 as (U1)k =
∑
i̸=k

Aikτ
3

(ε′)2 (di − dk)
√
di
√
dk

ei

⇒ (τU)k = τek +
∑
i ̸=k

Aikτ
4

ε′ (di − dk)
√
di
√
dk

ei, choose ε′ = τ3 × 1
√
dkd

3
2

min

⇒ then ∥τUk∥2 = 1 if τ =
1√

1 +
∑

i ̸=k
Aik(

di−dk
dmin

)2 di
dmin
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Then we consider the normalized τU as U in the following analysis. Assume (U)k is the eigenvector
to the smallest non-zero eigenvalue, then at the t− 1 step

E(∆) = E(U2
ik)

where E is in terms of the randomness in the proposed sampling procedure.

Based on the approximation

(U)k = τek +
∑
i̸=k

Aikτ

di−dk

dmin
×
√

di

dmin

then

#
∣∣{Uik ̸= 0}ni=1

∣∣ = 1 + dk > dmin

Define S = {i ∈ {1, 2, · · · , n} : Uik ̸= 0} and P1 = P (the node being selected to query /∈ S).
Take p = mini∈S P(i), q = maxi/∈S P(i) and P(·) denotes the probability of being selected into
candidate set size m. Denote k = dmin, we first upper bound P1 as

P1 ≤
(
n−k
m

)
qm(1− q)n−k−m(1− p)k∑k

i=0

(
n−k
m−i

)
qm−k(1− q)n−k−(m−i)

(
k
i

)
pi(1− p)k−i

=

(
n−k
m

)∑k
i=0

(
n−k
m−i

)(
k
i

)
ηi

, where η =
p(1− q)

(1− p)q

We calculate the denominator as

k∑
i=0

(
n− k

m− i

)(
k

i

)
ηi = c0

√√√√ k∑
i=0

(
n− k

m− i

)2(
k

i

)2

√√√√ k∑
i=0

η2i

≥ c0√
k + 1

(
n

m

)√
1− η2k+2

1− η2
>

c0√
k + 1

(
n

m

)
.

In addition, by Stirling’s approximation, when n is large(
n

m

)
∼
√

n

2πm(n−m)
· nn

mm(n−m)n−m(
n− k

m

)
∼

√
n− k

2πm(n− k −m)
· (n− k)n−k

mm(n− k −m)n−k−m

then combining the above simplification, we have

P1 <

√
n− k

n
· n−m

n− k −m
· (n− k)n−k

nn
· (n−m)n−m

(n− k −m)n−k−m
×

√
k + 1

c0

≤
(
n− k −m

n−m

)m(
n− k −m

n− k

)k

×
√
k + 1

c0

then we can lower bound the expected value of information gain as

E(U2
ik) =

∑
i∈S

P(i)U2
i1 ≥ (1−P1)min

i∈S

(
U2

ik

)
Notice that P1 is a monotone decreasing function of m given n and k fixed, then we can select a m0

such that (
n− k −m0

n−m0

)m0
(
n− k −m0

n− k

)k √
k ≤ δ

c0
,

where δ < 1 is a constant, therefore E(U2
ik) > (1− δ)mini∈S

(
U2

ik

)
.
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Next we lower bound the quantity mini∈S

(
U2

ik

)
. Denote η1 := maxi(

di

dmin
) and η0 := #|{i :

|di−dk

dmin
| ≤ 1}|, we calculate the lower bound for mini∈S

(
U2

ik

)
as

min
i∈S

(
U2

ik

)
≥min

τ,
τ2

(di−dk)2

d2
min

× di

dmin

 ∀i ∈ S

≥ 1

(di−dk)2

d2
min

di

dmin
+ 1 + (di−dk)2

d2
min

di

dmin

∑
j ̸=1,j ̸=i

1
(dj−di)2

d2
min

dj

dmin

≥ 1

(di−dk)2

d2
min

di

dmin

1 + on(1) +
∑

j ̸=1,j ̸=i

1
(dj−di)2

d2
min

dj

dmin


≈ 1

η31

1 +
∑

j∈{i:| di−dk
dmin

|≤1}

d2min +
∑

j /∈{i:| di−dk
dmin

|<1}

1


≥ 1

η31(η0d
2
min + dmin − η0)

which implies

min
i∈S

(
U2

ik

)
≥ 1

η31(η0d
2
min + dmin − η0)

As a result, as long as m ≥ m0 we have

E(U2
ik) ≥

1− δ

η31(η0d
2
min + dmin − η0)

.

A.3 Proof of Theorem 4.2

Proof : Based on the assumption that f ∈ ProjLω0
span(X), we denote d0 = |{1 ≤ j ≤ n | λj ≤ ω0}|

and Ud0
= (U1, U2, · · · , Ud0

). Therefore, we can represent f = Ud0
UT

d0
Xβ for some parameter

β ∈ Rp×1 and ⟨f , Ui⟩ = UT
i Xβ. For the query set S and the corresponding bandwidth frequency ω ≤

ω0, we similarly denote d = |{1 ≤ j ≤ n | λj ≤ ω}| ≤ d0 and Ud = (U1, U2, · · · , Ud). We denote
Vn×rd = UdV1 as the bases of ProjLω

span(X) where V1 is obtained from SVD decomposition
UT

d X = V1ΣV
T
2 where (V1)d×rd and (V2)p×rd are left and right singular vectors, respectively. The

diagonal matrix Σrd×rd contains rd positive singular values with rd ≤ min{d, p}. The estimation
(11) at the end of section 3 is equivalent to the weighted regression problem of {(Vi·, Yi, si)}i∈S ,

f̃ = argmin
f̃∈ProjLω

span(X)

∑
i∈S

si|Yi − f̃(i)|2

⇒argmin
α∈Rrd×1

B∑
i=1

|
√
siYi − (

√
siV1(i), . . . ,

√
siVrd(i))α|2,

where |S| = B. We have the least squares solution

α(f̃) =
(
A⊤A

)−1
A⊤WYB 1

16



where

A =



√
s1V1(1) · · · √

s1Vrd(1)

...
. . .

...

√
sBV1 (B) . . .

√
srdVrd (B)


and W = diag(

√
s1, . . . , sB) (18)

We assume Y = f + ε, where E (ε) = 0 and V ar(ε) = σ2. Notice the oracle f satisfies

f = argmin
f∈ProjLω0

span(X)

n∑
i=1

EY

(
Yi − f2(i)

)
We decompose the space ProjLω0

span(X) as

ProjLω0
span(X) = ProjLω

span(X)
⊕(

ProjLω
span(X)

)c
Then we decompose f = f1 + f2, where f1 ∈ ProjLω

span(X), f2 ∈
(
ProjLω

span(X)
)c

, then

f1 = argmin
f∈ProjLω

{span(X)}

n∑
i=1

EY (Yi − f (i))
2

Then we can represent f1(i) = (V1(i), . . . ,Vrd(i))α(f1), by solving Aα(f1) = W f1, we have

α(f1) =
(
A⊤A

)−1
A⊤W f1 2

From 1 and 2 , we have
n∑

i=1

∣∣∣f̃ (i)− f (i)
∣∣∣2 =∥f̃ − f∥22 ≤ ∥f̃ − f1∥22 + ∥f1 − f∥22

≤
∥∥∥α(f̃)− α(f1)

∥∥∥2
2
+ ∥f1 − f∥22

≤
∥∥∥(A⊤A

)−1
A⊤W (YB − (f1)B)

∥∥∥2
2
+ ∥f1 − f∥22

≤λmax

(
A⊤A

)−1 ∥A⊤W
(
YB − (f1)B ∥22 + ∥f1 − f∥22

Denote gi = Yi − f1(i), we have

ES∥A⊤Wg∥2 =

rd∑
i=1

ES

 B∑
j=1

s2jV
2
i (j)|gj |2


Denote αi = si ∗ pi for j ∈ S where pj is the probability of node j being selected to query. Since

ES [sjVi(j)(Yj − f1(j))] =αjES

[
1

pj
Vi(j)(Yj − f1(j))

]
=αj

n∑
l=1

EY [Vi(l)(Yl − f1(l))]

=0 since Vi ⊥ f2
we have

ES∥A⊤Wg∥ =

B∑
j=1

ES

[
rd∑
i=1

s2jV
2
i (j)|gj |2

]
≤sup

j

(
sj

rd∑
i=1

|Vi(j)|2
)

×
B∑

j=1

ES
(
sjg

2
j

)
=sup

j

(
sj

rd∑
i=1

|Vi(j)|2
)

×
B∑

j=1

αjES

(
1

pj
g2j

)

=sup
j

(
sj

rd∑
i=1

|Vi(j)|2
)

×
B∑

j=1

αj ×
n∑

l=1

EY (Yl − f1(l))
2

17



Notice that

n∑
l=1

EY (Yl − f1(l))
2 =

n∑
l=1

EY (Yl − f(l))2 +

n∑
l=1

(f(l)− f1(l))
2 = nσ2 + ∥f − f1∥22

Notice that f = Ud0
UT

d0
Xβ and f1 = UdU

T
d f , then f − f1 = Ud′UT

d′Xβ =
∑

i>d⟨f , Ui⟩Ui where
Ud′ = (Ud+1, · · · , Ud0). Therefore, ∥f − f1∥ =

∑
i>d,i∈supp(f)⟨f , Ui⟩2. We first state and then

prove the following Lemma 1.

Lemma A.1 For the output from Algorithm 1 with B query budgets, we have

B∑
i=1

αi ≤
4

3
, sup

j∈S

(
sj

rd∑
i=1

|Vi(j)|2
)

≤ 10δ, and

λ(A⊤A) ∈
[1
2
× 1(

1 + m
√
δ

C0

)2 , 83 × 1

1−
(

m
√
δ

C0

)2 ] with probability 1− 2

C
,

where δ =
rdCC2

0

mB , and C0 is a constant such that C2
0 = (m)

2
+max(2, 16

d )m.

Using Lemma 1 we have

E∥f̃ − f∥22 ≤λmin

(
A⊤A

)
×

 B∑
j=1

αj

× sup
j∈S

(
sj

rd∑
i=1

|Vi(j)|2
)

×
n∑

j=1

EY (Yj − f1(j))
2 + ∥f − f1∥22

≤2(1 +
m
√
δ

C0
)2 × 4

3
× 10× CC2

0rd
m

× 1

B
×

n∑
j=1

EY (Yj − f1(j))
2 + ∥f − f1∥22

≤O
(
2(

rdt

B
) +

rdt

B
)3/2 + (

rdt

B
)2
)
× (nσ2 +

∑
i>d,i∈supp(f)

⟨Ui, f⟩2) +
∑

i>d,i∈supp(f)

⟨Ui, f⟩2,

with probability larger than 1− 2m
t where t > 2m.

In the following, we prove Lemma 1 which is based on Theorem 5.2 in [5] and Lemma 3.5 and 3.6 in
[17].

In the following, we denote the accumulated covariance matrix in the j selection as Aj , the potential
function as Φuj ,lj (Aj) = Tr[(ujI−Aj)

−1]+Tr[(Aj−ljI)
−1], and Ri(u, l, A) = vi(uI−A)−1vTi +

vi(A− lI)−1vTi , where vi is the ith row of V. Notice that
∑n

i=1 Ri = Φu,l(A). At each iteration of
algorithm 1, the ith node is selected as one of m candidates with p∗i = Ri

Φ . For the m candidates,
we define the following probability

qi =

1− η if i has maximum ∆i among m candidates
η

m− 1
otherwise

where 0 < η < 1. Notice that when η goes to 0, the qi approximate the step 3 in Algorithm 1.
Therefore, the probability of node k being query is

pk = P (select k) =P ( select k︸ ︷︷ ︸
Qk

|k in Bm) · P (k in Bm) = p∗k × qk

18



E

(
1

pk
vkv

⊤
k

)
=EBm

EQk|Bm

(
1

P (select k)
vkv

⊤
k

)
=EBm

( ∑
k∈Bm

P (select k|k ∈ Bm) · 1

P (select k)
vkv

⊤
k

)

=EBm

( ∑
k∈Bm

1

P (k ∈ Bm)
vkv

⊤
k

)

=
∑
Ω

P (Bm)×
∑

k∈Bm

1

P (k ∈ Bm)
vkv

⊤
k

=
∑

Bm∈Ω

∑
k∈Bm

P (Bm | k ∈ Bm) · vkv⊤k

where Ω denote all Cm
n possible candidate set with choosing m nodes from n nodes, P (Bm | k ∈ Bm)

denotes the probability of selecting m− 1 nodes into Bm conditioning on k ∈ Bm. Denote Ωk as all
possible size m candidate sets with node k always in the set. Then

E

(
1

pk
vkv

⊤
k

)
=

n∑
k=1

 ∑
Bk

m−1⊂Ωk

P (Bm | k ∈ Bm)

 · vkv⊤k =

n∑
k=1

vkv
⊤
k = I

ϵ

(
∑

Ri)pk
vkv

⊤
k =

ϵ

(
∑

Ri)p∗kqk
vkv

⊤
k =

ϵ

Rkqk
vkv

⊤
k

⪯ϵ(uI −A)
1

qk

≤mϵ

η
(uI −A)

where we use the fact vvT ⪯ (vTB−1v)B for any semi-positive definite matrix B. In addition,

E

(
ϵ

(
∑

Ri)pk
vkv

⊤
k

)
=

ϵ∑
Ri

I =
ϵ

Φu,l(A)
I

for any k = 1, · · · , n. Denote wk =
√

ϵ∑
Ripk

vk, then wkw
⊤
k ⪯ mϵ

η (uI − A), which implies for

any k ∈ [1, n]

w⊤
k (uI −A)−1wkw

⊤
k (uI −A)−1wk ≤mϵ

η
w⊤

k (uI −A)−1wk

⇒ w⊤
k (uI −A)−1wk ≤mϵ

η

Similarly, we have

w⊤
k (A− lI)−1wk ≤mϵ

η

Then from Lemma 3.3 and Lemma 3.4 in [? ] we have

Tr(uI −A− wkw
⊤
k ) ≤ Tr(uI −A) +

w⊤
k (uI −A)−2wk

1− mϵ
η

(19)

Tr(A+ wkw
⊤
k − lI) ≤ Tr(A− lI)− w⊤

k (A− lI)−2wk

1 + mϵ
η

(20)

(21)

Define ϵ′ = mϵ
η , we show in the following that E

(
Φuj ,lj (Aj)

)
≤ Φuj−1,lj−1

(Aj−1).

From (19) we have

Φuj ,lj (Aj) ≤ Φuj ,lj (Aj−1) +
w⊤

j−1(ujI −Aj−1)
−2wj−1

1− ϵ
−

w⊤
j−1(Aj−1 − ljI)

−2wj−1

1 + ϵ
3
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Define ∆u = uj − uj−1 = ϵ
(1−ϵ′)

∑
Rj

and ∆l = lj − lj−1 = ϵ
(1+ϵ′)

∑
Rj

. Notice that

∂

∂u
Tr(uI −A)−1 = −Tr(uI −A)−2 < 0

∂

∂l
Tr(A− lI)−1 = Tr(A− lI)−2 < 0

at each step based on the design of uj and lj . and Φu,l(A) is convex in terms of u and l. From 3 ,
we have

Φuj ,lj (Aj) ≤ Φuj ,lj (Aj−1)+
1

1− ϵ′
Tr
[
(ujI −Aj−1)

−2wj−1w
⊤
j−1

]
− 1

1 + ϵ′
Tr
[
(Aj−1 − ljI)

−2wj−1w
⊤
j−1

]
then with E(wkw

T
k ) =

ϵ∑
Ri

I

E
(
Φuj ,lj (Aj)

)
≤ Φuj ,lj (Aj−1) +

ϵ

(1− ϵ′)
∑

Ri
Tr
[
(ujI −Aj−1)

−2
]

− ϵ

(1 + ϵ′)
∑

Ri
Tr
[
(Aj−1 − ljI)

−2
]

≤ Φuj ,lj (Aj−1) + ∆uTr
[
(ujI −Aj−1)

−2
]

−∆lTr
[
(Aj−1 − lj)

−2
]

Define

f(t) = Tr
[
(uj−1 + t ·∆u)I −Aj−1

]−1
+ Tr

[
Aj−1 − (lj−1 +∆l · t)I

]−1

then
∂f(t)

∂t
= −∆uTr

[
(uj−1 + t ·∆u)I −Aj−1

]−2
+∆lTr

[
Aj−1 − (lj−1 +∆l · t)I

]−2

Since f(t) is convex, we have

∂f(t)

∂t

∣∣∣∣
t=1

≥ f(1)− f(0) = Φuj ,lj (Aj−1)− Φuj−1,lj−1
(Aj−1) (22)

Then plugin (22), we have

E
(
Φuj ,lj (Aj)

)
≤ Φuj−1,lj−1(Aj−1)

Notice that for selection

∆uj
−∆lj

∆uj

=

ε
t(1−ε′) −

ε
t(1+ε′)

ε
t(1−ε′)

=

1
(1−ε′) −

1
(1+ε′)

1
(1−ε′)

≤ 2ε′

where t =
∑

Ri. We consider that the selection process stops when at the iteration k that uk − lk ≥
8rd/ϵ. Notice u0 = 2rd

ε , l0 = −2rd
ε , when stop at uk − lk ⩾ 8rd

ε , we have

uk − lk
uk

=
(u0 − l0) +

∑k−1
j=0

(
∆uj

−∆lj

)
u0 +

∑k−1
j=0 ∆uj

≤
4rd/ε+

∑k−1
j=0

(
∆uj

−∆lj

)
2rd/ε+ (2ε′)

−1∑k−1
j=0

(
∆uj −∆lj

)
≤ 4rd/ε+ 4rd/ε

2rd/ε+ (2ε′)
−1

4rd/ε

=
8rd/ε

2rd
(
1 + 1

ε′

)
/ε

=
4

1 + 1
ε′

≤ 4ε′
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Then we have uk

lk
=
(
1− uk−lk

uk

)−1

≤ 1 + 4 (ε′). Notice that uk − lk ⩾ 8rd
ε =⇒∑k−1

j=0

(
∆uj

−∆lj

)
≥ 4rd

ε .

Consider at the jth selection

∆uj
−∆lj =

(
ϵ

1− ϵ′
− ϵ

1 + ϵ′

)
1∑
Ri

=
ϵ̃

Φuj ,lj (Aj)
, ϵ′ =

2ϵϵ′

(1− ϵ′)(1 + ϵ′)

Then

P (finish selection after B times selectionz vectors) ≥P

B−1∑
j=0

ϵ̃

Φuj ,lj (Aj)
≥ 4rd

ϵ


=P

B−1∑
j=0

Φ−1
uj ,lj

(Aj) ≥
4rd
ϵ̃ϵ


≥P

(
B2∑B−1

j=0 Φuj ,lj (Aj)
≥ 4rd

ϵ̃ϵ

)

=P

 B∑
j=0

Φuj ,lj (Aj) ≤
B2ϵ̃ϵ

4rd

 ,

≥1− 4n

Bϵ̃
,

≥1− 2rd
B · m

η · ϵ2

where we use the result that E
(
Φuj ,lj (Aj)

)
≤ Φu0,l0(A0) by recursively using E

(
Φuj ,lj (Aj)

)
≤

Φuj−1,lj−1
(Aj−1) and the fact that Φu0,l0(A0) = ϵ.

We consider the following reparametrization:

ϵ =

√
δ

C0
, 0 < δ, mid = 2rd(1−m2ϵ2)/(mϵ2).

For the jth selection, αj =
ϵ
Φj

1
mid . From previous result, we have uk

lk
=
(
1− uk−lk

uk

)−1

≤ 1+4 (ε′)

with probability 1 − 2/C with δ =
CC2

0ηrd
mB . Notice that uk = u0 +

∑k
j=1

ϵ
(1−ϵ′)Φj

and lk =

l0 +
∑k

j=1
ϵ

(1+ϵ′)Φj
, and

uk + lk =

k∑
j=1

ϵ

Φj

(
1

1− ϵ′
+

1

1 + ϵ′

)
Then if stop at kth selection

Φk ≥ 2rd
uk − lk

=
2rd

(uk−1 − lk−1) +
ϵ
Φk

(
1

1−ϵ′ −
1

1+ϵ′

)
≥ 2rd

8rd
ϵ + ϵ

Φk

(
1

1−ϵ′ −
1

1+ϵ′

)
Denote c = 1

1−ϵ′ −
1

1+ϵ′ , then Φk ≥ 1
4ϵ−

c
8ϵ

2. We find C0 such that cϵ = 2ϵ′ϵ
1−(ϵ′)2 < 1 then Φk ≥ ϵ

8
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Therefore,

uk − lk = uk−1 − lk−1 +
ϵ

Φk

(
1

1− ϵ′
− 1

1 + ϵ′

)
≤8rd

ϵ
+

ϵ

Φk

(
1

1− ϵ′
− 1

1 + ϵ′

)
≤8rd

ϵ
+ 8

(
1

1− ϵ′
− 1

1 + ϵ′

)
=
8rd
ϵ

+
16ϵ′

1− (ϵ′)2

Then we choose C0 large such that 16ϵ′

1−(ϵ′)2 < rd
ϵ ⇒ uk − lk ≤ 9rd

ϵ . Given that ϵ′ = m
η ϵ and ϵ =

√
δ

C0
,

we choose appropriate C0 to satisfy previous requirement on ϵ and ϵ′ as
2ϵϵ′ < 1− (ϵ′)2

16ϵ′

1− (ϵ′)2
<

rd
ϵ

ϵ′ < 1

Therefore, we choose C0 such that C2
0 >

(
m
η

)2
+max(2, 16

rd
)× m

η . Notice that

uk − lk =

k∑
j=1

ϵ

Φj

(
1

1− ϵ′
− 1

1 + ϵ′

)
≥ 4rd

ϵ

and mid is defined as mid =
4d
ϵ

1
1−ϵ′ −

1
1+ϵ′

, then
∑k

j=1
ϵ
Φj

≥ mid. Also,

k−1∑
j=1

ϵ

Φj
≤ mid ⇒ mid >

k∑
j=1

ϵ

Φj
− 8

>
ϵ

Φj
− 4ϵϵ′

rd(1− (ϵ′)2)

k∑
j=1

ϵ

Φj

=

(
1− 4ϵϵ′

rd(1− (ϵ′)2)

) k∑
j=1

ϵ

Φj

which implies

mid ∈
[
1− 4ϵϵ′

rd(1− (ϵ′)2)
, 1
]
·

m∑
j=1

ϵ

Φj
=
[
1− 4ϵϵ′

rd(1− (ϵ′)2)
, 1
]
· uk + lk

1
1−ϵ′ +

1
1+ϵ′

Notice that for the design matrix A in (18), we have 1√
mid

A = Ak where Ak is the accumulated
covariance matrix when the query process stops at the kthe selection. Therefore, the eigenvalues of

A satisfy λ(ATA) = 1
midλ(A

T
kAk) ∈

[
lk

mid ,
uk

mid

]
. Then

[
lk

mid
,
uk

mid

]
⊂

[
lk

uk+lk
1

1−ϵ′ +
1

1+ϵ′

,
uk(

1− 4ϵϵ′

rd(1−(ϵ′)2)

)
· uk+lk

1
1−ϵ′ +

1
1+ϵ′

]

Given that with high probability, 1− 4ϵ′ ≤ uk

lk
≤ 1 + 4ϵ′. Then for the lower bound,

lk
uk+lk
1

1−ϵ′ +
1

1+ϵ′

≥ 1

(1− (ϵ′)2)(1 + 2ϵ′)
>

1

(1 + ϵ′)(1 + 2ϵ′)
>

1

2
× 1

(1 + ϵ′)2
=

1

2

1

(1 +m
√
δ/(ηC0))2
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and upper bound

uk(
1− 4ϵϵ′

rd(1−(ϵ′)2)

)
· uk+lk

1
1−ϵ′ +

1
1+ϵ′

≤ 1 + 4ϵ′

(1 + 2ϵ′)(1− (ϵ′)2)− (1 + 2ϵ′) 4ϵϵ
′

rd

≤4

3
× 1 + 4ϵ′

(1 + 2ϵ)(1− (ϵ′)2)
, given

4ϵϵ′

rd
>

1

4
(1− (ϵ′)2)

<
8

3
× 1

1− (ϵ′)2

<
8

3

1

1− (m
√
δ/(ηC0))2

.

Then with probability larger than 1− 2
C , we have

λ(A⊤A) ∈
[
1

2
× 1

(1 + m
√
δ

ηC0
)2
,
8

3
× 1

1− (m
√
δ

ηC0
)2

]
Consider αj =

ϵ
Φj

· 1
mid ,

⇒
k∑

j=1

αj =

k∑
j=1

ϵ

Φj
· 1

mid
∈
[
1,

1

1− 4ϵϵ′

rd(1−(ϵ′)2)

]
≤ 1

1− 1
4
(1−ϵ′)2

(1−ϵ′)2

=
4

3

Finally, check sup
j∈S

(
sj
∑rd

i=1 |Vi(j)|2
)

at the kth selection

sup
j∈S

(
sj

rd∑
i=1

|Vi(j)|2
)

=sup
j∈S

{ ϵ

Φk
· 1

mid
× Φk

Rj
×

rd∑
i=1

|Vi(j)|2
}

=
ϵ

mid
· sup

j

{∑rd
j=1 |Vi(j)|2

Rj

}
≤ ϵ

mid
· 1

1
uk−lk

+ 1
uk−lk

=
ϵ

mid
× uk − lk

2
≤ ϵ

mid
×

9 · rd
ϵ

2
=

4.5rd
mid

≤ 4.5rd
2rd(1−(ϵ′)2)

ϵϵ′

= 2.25× ϵϵ′

1− (ϵ′)2
≤ 2.25× 4δ = 10δ

Then we finish the proof of Lemma 1.

B More on Biased Sequential Sampling

B.1 Computational complexity

In the representative sampling stage, the computational complexity of calculating the sampling
probability is O(n). We then sample m nodes to formulate a candidate set Bm, where the complexity
of sampling m variables from a discrete probability distribution is O(m) [31]. Consequently, the
complexity of the representative learning stage is O(n+m).

In the informative selection stage, we calculate the information gain ∆i for each node. This involves
obtaining the eigenvector corresponding to the smallest non-zero eigenvalue of the projected graph
Laplacian matrix, with a complexity of O(n3) due to the singular value decomposition (SVD)
operation. Subsequently, we compute ∆i for each node in the candidate set Bm based on their
loadings on the eigenvector, which incurs an additional computational cost of O(mn). Therefore, the
total complexity of our biased sampling method is O(n+m+ nm+ n3). Given a node label query
budget B, the overall computational cost becomes O(B

(
n+m+ nm+ n3)

)
.

When the dimension of node covariates p ≪ n, we can replace the SVD operation with the Lanczos
algorithm to accelerate the informative selection stage. The Lanczos algorithm is designed to

23



efficiently obtain the kth largest or smallest eigenvalues and their corresponding eigenvectors using
a generalized power iteration method, which has a time complexity of O(kn2) [14]. As a result,
the complexity of the proposed biased sampling method reduces to O(pn2). This is comparable to
GNN-based active learning methods, as GNNs and their variations generally have a complexity of
O(pn2) per training update [6, 37].

B.2 Connection to classification tasks

Although our theoretical analysis is developed for node regression tasks, the proposed query strategy
and graph signal recovery procedure are also applicable to classification tasks. Consider a K-
class classification problem, where the response on each node i is given by f(i) ∈ 1, 2, . . . ,K.
We introduce a dummy membership vector (Y1(i), . . . , YK(i)), where Yc(i) = 1 if f(i) = c and
Yc(i) = 0 otherwise. For each class c ∈ {1, 2, . . . ,K}, we first estimate β̂c based on (14) with the
training data {X̃i·, Yc(i), si}i∈S , and then compute the score for class c as f̂c = X̃β̂c. The label of
an unqueried node j is assigned as f̂(j) = argmax1≤c≤K{f̂1(j), f̂2(j), · · · , f̂K(j)}. Notice that the
above score-based classifier is equivalent to the softmax classifier:

f̂ = argmax
1≤c≤K

{ exp(f̂1)∑
c exp(f̂c)

, · · · , exp(f̂K)∑
c exp(f̂c)

}

since the softmax function is monotonically increasing with respect to each score function {f̂c}Kc=1.

B.3 Discussion on Theorem 4.1

Theorem 4.1 is derived using first-order matrix perturbation theory [2] on the Laplacian matrix L.
In Theorem 4.1, we assume that the column space of the node covariate matrix X is identical to the
space spanned by the first d eigenvectors of LSc . This assumption simplifies the analysis and the
results by focusing on the perturbation of LSc , where LSc is the reduced Laplacian matrix with zero
entries in the rows and columns indexed by S.

The analysis can be naturally extended to the general setting by replacing LSc with P(1Sc)LP(1Sc),
where P(t) is the projection operator defined in Section 3.2. Moreover, under the assumption on the
node covariates, the information gain ∆i exhibits an explicit dependence on the network statistics,
providing a clearer interpretation of how the network structure influences the benefits of selecting
informative nodes.

Theorem 4.1 indicates that the improvement of biased sampling is more significant when dmin is larger
and η0, η1 are smaller. Specifically, dmin reflects the connectedness of the network, where a better-
connected network facilitates the propagation of label information and enhances the informativeness
of a node’s label for other nodes. A smaller η1 prevents the existence of dominating nodes, ensuring
that the connectedness does not significantly decrease when some nodes are removed from the
network.

Notice that the node j∗ is the most informative node for the next selection, and η0 measures the
number of nodes similar to j∗ in the network. Recall that the proposed biased sampling method
considers both the informativeness and representativeness of the selected nodes. Therefore, the
information gain is less penalized by the representativeness requirement if η0 is small. Additionally,
the size of the candidate set m should be sufficiently large to ensure that informative nodes are
included in Bm.

B.4 Discussion on Theorem 4.2

The RHS of (15) captures both the variance and bias involved in estimating f using noisy labels
on sampled nodes. Specifically, the first three terms represent the estimation variance arising from
controlling the condition number of the design matrix on the queried nodes. The fourth and fifth
terms reflect the noise and unidentifiable components in the responses of the queried nodes, while the
last term denotes the bias resulting from the approximation error of the space using Hω(X,A).

The bias term in Theorem 4.2 can be further controlled if the true signal f exhibits decaying or zero
weights on high-frequency network components. In addition to rd, the size of the candidate set m also
influences the probability of controlling the generalization error. A small m places greater emphasis
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on the representativeness criterion in sampling, increasing the likelihood of controlling the condition
number but potentially overlooking informative nodes, thereby increasing approximation bias.

For a fixed prediction MSE, the query complexity of our method is O(d), whereas random sampling
incurs a complexity of O(d̃ log d̃), where d̃ > d. Our method outperforms random sampling in
two key aspects: (1) The information-based selection identifies f with fewer queries than random
sampling, as shown in Theorem 4.1, and (2) our method achieves an additional improvement by
actively controlling the condition number of the covariate matrix, resulting in a logarithmic factor
reduction compared to random sampling.

B.5 Calculation on node-wise information gain and hyperparameter tuning

When calculating node-wise informativeness in (7), we can enhance computational efficiency by
avoiding the inversion of D(t). When t is in the neighborhood of 1Sc , we can approximate:

P(t) ≈ D(t)XSc(XT
ScXSc)−1XT

ScD(t) = D(t)ZScZT
ScD(t),

where XSc = ((X1)Sc , · · · , (Xp)Sc) and ZSc = XSc(XT
ScXSc)−1/2. Then, the node-wise infor-

mativeness can be explicitly expressed as:

∆i ∝ tiϕ
2
i (ZSc)i·(Z

T
Sc)i· +

∑
j ̸=i,1≤j≤n

titjϕiϕj(ZSc)i·(Z
T
Sc)j·. (23)

We find that this approximation yields very similar empirical performance compared to the exact
formulation in (7). Therefore, we adopt the formulation in (23) for the subsequent numerical
experiments.

In practice, we can tune m to ensure that the covariance matrix is well-conditioned. Specifically,
we can run the biased sampling procedure multiple times with different values of m and select the
largest m such that the condition number of the covariance matrix on the query set S is less than 10
[20]. This threshold is a commonly accepted rule of thumb for considering a covariance matrix to
be well-conditioned [20]. Additionally, ϵ is typically fixed at a small value, following the protocol
outlined in [17].

C More on Numerical Studies

C.1 Experimental setups

Synthetic networks The parameters for the three network topologies are: Watts–Strogatz (WS)
model (K = 4, βWS = 0.1) for small world properties, Stochastic block model (SBM) (Ncommunity =
4, Pin = 0.35, Pout = 0.01) for community structure, and Barabási-Albert (BA) model (α = 3)
for scale-free properties. We set n = 100 for all three networks. After generating the networks,
we consider them fixed and then simulate Y and X repeatedly using 10 different random seeds.
By a slight abuse of notation, we set the node responses and covariates for SBM and WS as
Y = U1:10β + ξ and X = U1:10 +MU45:54, where Mij

iid∼ N(0.3, 0.1) and β = (5, 5, . . . , 5︸ ︷︷ ︸
length 10

)T . For

the BA model, we set Y = U1:15β + ξ and X = U1:15 +MU45:59, where Mij
iid∼ N(0.5, 0.2) and

β = (1, . . . , 1︸ ︷︷ ︸
length 5

, 5, . . . , 5︸ ︷︷ ︸
length 10

)T .

Real-world networks For the proposed method and all baselines, we train a 2-layer SGC model
for a fixed 300 epochs. In SGC, the propagation matrix performs low-pass filtering on homophilic
networks and high-pass filtering on heterophilic networks. During training, the initial learning rate is
set to 10−2 and weight decay as 10−4.

C.2 Visualization

In Figure 2, we visualize the node query process on synthetic networks generated using SBM and
BA, as described in Section 5.1. The figure clearly demonstrates that nodes queried by the proposed
algorithm adapt to the informativeness criterion specific to each network topology, effectively aligning
with the community structure in SBM and the scale-free structure in BA.
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Dataset #Nodes Type m d Dataset #Nodes Type m d

SBM 100 homophilic 50 10 Citeseer 3,327 homophilic 1000 100
WS 100 homophilic 50 10 Chameleon 2,277 heterophilic 800 30, 30
BA 100 homophilic 50 15 Texas 183 heterophilic 60 15, 15

Cora 2,708 homophilic 2000 200 Ogbn-Arxiv 169,343 homophilic 1000 120
Pubmed 19,717 homophilic 3000 60 Co-Physics 34,493 homophilic 3000 150

Table 4: A description of all datasets used in Section 5 and the hyperparameter settings for each
dataset. We set ϵ = 0.001 for all networks. For heterophilic networks, we combine the eigenvectors
corresponding to the d smallest and d largest eigenvalues.

C.3 Ablation study

To gain deeper insights into the respective roles of representative sampling and informative selection
in the proposed algorithm, we conduct additional experiments on a New Jersey public school social
network dataset, School [25], which was originally collected to study the impact of educational
workshops on reducing conflicts in schools. As School is not a benchmark dataset in the active
learning literature, we did not compare the performance of our method against other baselines in
Section 5.2 to ensure fairness. In this dataset with n = 615 nodes, each node represents an individual
student, and edges denote friendships among students. We treat the students’ grade point averages
(GPA) as the node responses and select p = 5 student features—grade level, race, and three binary
survey responses—as node covariates using a standard forward selection approach.

As shown in Section 3.4, the representative sampling in steps 1 and 2 of Algorithm 1 is essential to
control the condition number of the design matrix and, consequently, the prediction error given noisy
network data. We illustrate in Figure 3a the condition number λmax(X̃

T
S WSX̃S)

λmin(X̃T
S WSX̃S)

using the proposed
method, and compare with the one using random selection. With m = 200, the proposed algorithm
achieve a significantly lower condition number than random selection, especially when the number
of query is small. In the Citeseer dataset, we investigate the prediction performance of Algorithm
1 when removing steps 1 and 2, i.e., setting the candidate set Bm = Sc

t−1 for the tth selection.
Figure 3b shows that, with representative sampling, the Macro-F1 score is consistently higher, with a
performance gap of up to 15%. Given that node classification on Citeseer is found to be sensitive to
labeling noise [38], this result validates the effectiveness of representative sampling in improving the
robustness of our query strategy to data noise.

In addition, we examine the ability of the proposed method to integrate node covariates for improving
prediction performance. In the School dataset, we compare our method to one that removes node
covariates during the query stage by setting X as the identity matrix I. Figure 3c illustrates that the
prediction MSE for GPA is significantly lower when incorporating node covariates, thus distinguishing
our node query strategy from existing graph signal recovery methods [12] that do not account for
node covariate information.

C.4 Code

The implementation code for the proposed algorithm is available at github.com/Yuanchen-
Wu/RobustActiveLearning/.
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(a) Stochastic Block Model (SBM)

(b) Barabási–Albert model (BA)

Figure 2: For (a) SBM, nodes are grouped by the assigned community; for (b) BA, nodes are grouped by degree.
The integer i on each node represents the ith node queried by the proposed algorithm in one replication.

(a) (b) (c)

Figure 3: Ablation study: (a) The condition number (log scale) of the design matrix of query nodes selected by
proposed method and random sampling. The effectiveness of (b) representative sampling and (c) incorporating
covariate information in Algorithm 1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We support the claims with theoretical analysis in Section 4 and empirical
performance in Section 5.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.2 for the limitation in real-data studies and Section 6 for future
work direction.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See section 3 and 4 for the main theorems with assumptions. See Appendix
3.1, 3.2 and 3.3 for the detailed proofs.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include implementation details for both synthetic and real-world networks
in Appendix B.1, B.2 and B.3.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open-source datasets that can be readily downloaded online. The
implementation details in Appendix are sufficient enough to reproduce the main experimental
results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include implementation details for both synthetic and real-world networks
in Appendix C.1.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars for the numerical studies on both synthetic and real-world
networks.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper focuses mainly on theories and our algorithm is not deep learning
based.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see the introduction section where we briefly touch on the positive
societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please see Appendix C.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please see Appendix C.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: Our experiment simulates the human labeling process in active learning.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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