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ABSTRACT

Video generation models have progressed tremendously through large latent dif-
fusion transformers trained with rectified flow techniques. Yet these models still
struggle with geometric inconsistencies, unstable motion, and visual artifacts that
break the illusion of realistic 3D scenes. 3D-consistent video generation could
significantly impact numerous downstream applications in generation and recon-
struction tasks. We explore how epipolar geometry constraints improve modern
video diffusion models. Despite massive training data, these models fail to capture
fundamental geometric principles underlying visual content. We align diffusion
models using pairwise epipolar geometry constraints via preference-based opti-
mization, directly addressing unstable camera trajectories and geometric artifacts
through mathematically principled geometric enforcement. Our approach effi-
ciently enforces geometric principles without requiring end-to-end differentiability.
Evaluation demonstrates that classical geometric constraints provide more stable
optimization signals than modern learned metrics, which produce noisy targets that
compromise alignment quality. Training on static scenes with dynamic cameras en-
sures high-quality measurements while the model generalizes effectively to diverse
dynamic content. By bridging data-driven deep learning with classical geometric
computer vision, we present a practical method for generating spatially consistent
videos without compromising visual quality.

1 INTRODUCTION

Video generation has witnessed remarkable progress, with recent models |OpenAl| (2024); Wiedemer
et al.| (2025); |Polyak et al.[(2025);|Wang et al.|(2025a); |[Kong et al.| (2024) producing increasingly
realistic content from text and image conditions. This advancement has spurred researchers to
repurpose these powerful video models for broader applications, including animation [Yang et al.
(2024), virtual worlds generation He et al.|(2025), and novel view synthesisZhou et al.| (2025)). Video
diffusion models are trained on vast volumes of data, developing strong understanding of object
appearance, motion patterns, and scene composition. Many recent works aim to utilize these priors
in various downstream tasks |Jiang et al.| (2025); [Voleti et al.| (2024); (Chen et al.[(2024). Despite
this progress, these models still struggle to maintain perfect 3D consistency throughout generated
sequences, often producing content with geometric inconsistencies, unstable motion, and perspective
flaws, even though almost all training data is 3D consistent. Some approaches for enhancing 3D
consistency rely on noise optimization [Liu & Vahdat|(2025), explicit guidance through point clouds
Zhang et al.| (2024); [Hou et al.| (2024)), or camera parameters |Zheng et al.| (2024)). Nevertheless,
inaccurate control signals can constrain the model’s generative capabilities, and the latent space
optimization typical in diffusion training makes it difficult to compute direct geometric losses.

With the rising popularity of reinforcement learning for model alignment Rafailov et al.[(2023)); Shao
et al. (2024);|Ouyang et al.|(2022), post-training alignment has gained attention in diffusion model
research. Methods such as VideoReward |Liu et al.| (2025)) finetune vision-language models on human
preference data, enabling direct supervision through reward models. However, human-annotated
quality scores introduce noisy signals and are expensive to collect. Human judgments are inherently
subjective and may not capture geometric principles ensuring 3D consistency. The gap between
subjective human evaluations and objective geometric requirements creates an opportunity for
alignment methods that leverage more mathematically grounded metrics for video quality assessment.
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We propose a simple approach that bridges modern video diffusion models with classical computer
vision algorithms. Rather than incorporating explicit 3D guidance during generation, we use well-
established non-differentiable geometric constraints as reward signals in a preference-based finetuning
framework. Specifically, we leverage epipolar geometry constraints to assess 3D consistency between
frames. By sampling multiple videos conditioned on the same prompt, we generate diverse camera
trajectories that vary in geometric coherence. Epipolar geometry metrics provide reliable signals for
identifying which generations better adhere to projective geometry principles, enabling us to rank
videos and create training pairs that guide the model toward improved geometric consistency.

Our method implements this through Direct Preference Optimization (DPO) Rafailov et al.[(2023)),
requiring only relative rankings rather than absolute reward values. This bypasses the difficulties
of directly using non-differentiable computer vision algorithms in the training loop. By finetuning
the model to prioritize generations that satisfy classical geometric constraints, we guide it towards
generating inherently more 3D-consistent videos without restricting creative capabilities or requiring
explicit 3D supervision. As shown in Figure[l] this results in enhanced 3D consistency, smoother
camera trajectories, and fewer artifacts compared to the baseline model.

While simple in nature, this paper shows that a basic geometric constraint, described in 1982 Sampson
(1982)), can recover what video models fail to do, even after large-scale training on billion-scale data:
3D consistency.

In summary, the key contributions are as follows:

Epipolar Geometry Optimization: We introduce a method for finetuning video diffusion models
using epipolar geometry constraints as reward signals, particularly leveraging the Sampson distance
to enhance 3D video consistency without needing differentiability. The models finetuned with simple
yet reliable signals from classical computer vision algorithms achieve superior consistency and
quality, significantly reducing artifacts and unstable motion trajectories in generated content. Our
approach demonstrates that aligning models with fundamental geometric principles leads to visually
superior results while preserving the model’s ability to generate diverse and creative content.

Comprehensive Evaluation Framework: We develop an extensive evaluation protocol measuring
perceptual quality, 3D consistency, motion stability, visual fidelity, and generalization across diverse
scenarios. We also compare multiple alignment approaches, demonstrating that classical geometric
constraints provide more stable optimization signals than modern learned metrics.

Large-Scale Preference Dataset: We create and release a large dataset of over 162,000 generated
videos annotated with 3D scene consistency metrics, enabling further research in geometry-aware
video generation. This dataset includes diverse prompts spanning natural landscapes, architectural
scenes, and dynamic environments, each with multiple video generations.

2 RELATED WORK

We structure the related work section into generative models and post-training methods to adapt them.

2.1 VIDEO GENERATION MODELS

Recent advances in video generation have been dominated by closed-source models developed by
well-resourced technology companies. These models, trained on large proprietary datasets with
computational resources beyond academic reach, have demonstrated remarkable capabilities while
revealing limited architectural details. Notable releases include OpenAl’s Sora |OpenAll (2024)),
Runway’s Gen-2 and Gen-3 Runway| (2024), Luma AI LumaLabs| (2024)), Pika Labs |PikalLabs
(2024), and Google DeepMind’s Veo series |Google DeepMind| (2024). While these systems produce
impressive results, their closed nature limits opportunities for finetuning or adaptation to other vision
tasks. Open-source large latent diffusion models have recently become available, increasing interest
in improving video generators. Stable Video Diffusion Blattmann et al.| (2023) developed efficient
training strategies, Hunyan-Video [Kong et al.|(2024)) presented systematic scaling approaches, LTX-
Video [HaCohen et al.|(2024) introduced real-time optimizations, and Wan-2.1 Wang et al.| (2025al)
introduced an efficient 3D Variational Autoencoder with expanded training pipelines. Wan-2.1
offers 1.3B and 14B parameter versions, enabling researchers to explore adaptation techniques for
various downstream tasks. These models are trained on enormous data volumes covering more
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Figure 1: First and middle frame from videos. The baseline model produces geometrically inconsistent
outputs with artifacts and unnatural motion trajectories. Aligned model generates visibly improved
results with smoother camera trajectories, reduced artifacts, and enhanced 3D consistency.

content variety than specific applications need, making domain-aware alignment valuable. V3D
Chen et al. (2024) finetunes models for 3D reconstruction, while VideoReward
introduced reinforcement learning-based alignment. However, prior methods rely on subjective
human preferences or vision language models trained to mimic them. Our approach optimizes
against mathematical rules from epipolar geometry, providing clean signals that align models with
fundamental 3D consistency principles rather than subjective judgments.

2.2 DIFFUSION MODELS ALIGNMENT

Since image and video latent diffusion models are trained on internet-scale noisy data, efficient fine-
tuning and alignment strategies have emerged as active research areas. Latent image diffusion models

Podell et al.| (2023)); finetune models on data highly ranked by aesthetics
classifiers|Schuhmann|(2022). DRAFT (2023) and AlignProp [Prabhudesai et al.| (2023))
explore this paradigm by tuning diffusion models to maximize reward functions directly. DPOK
and DDPO (2023a)) expand the paradigm to introduce distributional
constraints. Diffusion-DPO [Wallace et al.| (2024) introduces Direct Preference Optimization into
diffusion model alignment. In contrast to other approaches, DPO does not require direct access to
reward models and can be trained with only pairwise preference data. Additionally, this eliminates the
need to decode final denoised samples, enabling finetuning directly in latent space and significantly
improving training efficiency. Recently, VideoReward adapted Diffusion-DPO
for video alignment, effectively aligning video generation with human preferences. Yet all these
approaches focus on optimizing for subjective and noisy human evaluation. Lately, DSO
employs DPO to align 3D generators with physical soundness, and PISA
improves physical stability of video generators with multi-component reward functions. Our method
leverages classical computer vision algorithms to provide objective, mathematically grounded prefer-
ence signals based on epipolar geometry, resulting in more reliable and consistent alignment with 3D
physical principles than approaches relying on learned or subjective metrics.

3 METHOD

We aim to align pretrained video diffusion models to generate geometrically consistent 3D scenes
from text or image prompts. We propose an alignment strategy leveraging classical epipolar geometry
constraints within a preference-based optimization framework. Traditional reinforcement learning
approaches [Black et al.| (2023b)); [Shao et al.| (2024)) require explicit reward functions and access to
final samples, which is impractical for video models due to absent robust differentiable reward models
and prohibitive denoising computational costs. Our key observation is that while classical epipolar
geometry constraints do not produce smooth, globally comparable loss surfaces across different scene
types, the relative intra-prompt error measurements remain consistent. When generating multiple
video sequences with fixed conditioning, diffusion sampling’s stochastic nature produces outputs
with varying geometric consistency degrees. Epipolar error metrics effectively quantify relative
3D consistency, with higher values reliably indicating lower geometric consistency. This finding
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Figure 2: Epipolar Geometry Optimization pipeline. Our approach: (1) Generate diverse videos
using pretrained generators[Wang et al.| (2025a) and leverage the Sampson epipolar error to identify
3D consistent vs. inconsistent samples; (2) Train policy pg using Flow-DPO [Liu et al.| (2025)) with
the static penalty to prefer geometrically consistent outputs; (3) Apply the updated policy to enhance
3D consistency in the base video diffusion model.

aligns with the direct preference optimization (DPO) paradigm, which requires only relative metrics
to determine preference between output pairs rather than absolute reward values. DPO’s pairwise
comparison nature eliminates the need for globally normalized reward functions, instead leveraging
reliable local ranking provided by epipolar geometry measurements to guide model alignment toward
more geometrically consistent video generation.

3.1 OBIECTIVE FUNCTION

Given the pretrained video generator pys that takes a text prompt and optional first frame conditioning
I and generates video samples xg ~ pref(xo|T, I*), where I* € {I,()} we want to learn model py
optimized to generate 3D-consistent video sequences. One approach would be to optimize:

m;%XE(T,I*e{I,@})NDC,xONpe(a:O|T,I*) [7"(930)]

— Dk [p9(1'0|T, I*)||pref(xO|TvI*)]a (D

where 7(z() outputs 3D consistency scores. However, this formulation presents critical challenges:
the reward function relies on non-differentiable classical computer vision algorithms, and requires
complete video generation for evaluation, making traditional reinforcement learning impractical. This

motivates our adoption of DPO [Rafailov et al.| (2023)); Wallace et al.| (2024).

Given dataset D({c, z¥, x4 }) with condition c and sample pairs from p,.; where 2% has higher reward
than =, (x§ = z), Diffusion-DPO Wallace et al.| (2024) solves eq. (1) analytically. For rectified flow
models [Lipman et al.| (2022)); [Liu et al.| (2022); |Albergo & Vanden-Eijnden| (2022)), the Flow-DPO

loss|Liu et al.| (2025)) is:

L= E[log sigmoid( - %(wa - v@(xf’,t)H2 —|o* — vref(xf’,t)H2

= (" = voloct, ) = o' - vref<xi,t)|2>)>] : @

where 3; = B(1 — t?) and 2} = (1 — t)z} + te*.

To prevent degenerate solutions where the model reduces motion to achieve 3D consistency, we add a
temporal variation penalty:

Llemporal =-A\- E[Varl(ﬁo)] (3)

where Zo = x; + (1 — t) - vg(2¢, t) is the predicted clean sample, variance is computed across the
temporal dimension, and A = 0.001. Our final objective combines both terms: Lot = £ + Liemporal -
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Minimizing this loss encourages the model to improve denoising performance on preferred samples
x! relative to less preferred samples x!, guiding the predicted velocity field v to align with videos
exhibiting better 3D consistency while preserving motion quality.

3.2 3D CONSISTENCY METRIC

We evaluate the 3D consistency of generated videos by validating how well they satisfy epipolar
geometry constraints. Epipolar geometry represents the intrinsic projective relationship between two
views of the same scene, depending only on the camera’s internal parameters and relative positions.
In perfectly consistent 3D scenes, corresponding points across different viewpoints must adhere to
these geometric constraints.

For any two corresponding points x in one frame and X’ in another, the epipolar constraint ' Fx = 0
must be satisfied, where F is the fundamental matrix. This constraint ensures that a point in one view
must lie on its corresponding epipolar line in the other view. The fundamental matrix encapsulates
the geometric relationship between the two camera poses. It can be formulated as F = [¢/]| PP,
where P and P’ are the camera projection matrices, P is the pseudo-inverse of P, and e’ is the
epipole in the second view.

Given a pair of frames x; and x; from a generated video, we first compute a set of point correspon-
dences using SIFT |Lowe|(1999) feature matching. While we validate the method with a simple, robust
handcrafted descriptor, the pipeline can also leverage more recent learned descriptors Lindenberger
et al.| (2023)); |Sun et al.| (2021); Potje et al.| (2024). These correspondences provide a robust set of
matching points between the different viewpoints. We then estimate the fundamental matrix using
the normalized 8-point algorithm within a RANSAC |[Fischler| framework to handle outliers.

Once we have estimated the fundamental matrix, we can measure the geometric consistency using
the Sampson epipolar error Sampson| (1982):

(X/TFX)Q
(Fx)? + (Fx)3 + (FTx)? + (FTx')3

Sg = “

The Sampson error provides a first-order approximation to the geometric distance between a point
and its epipolar line. Lower Sampson error values indicate better adherence to projective geometry
constraints and, thus, more consistent 3D structure in the generated videos.

3.3 IMPLEMENTATION DETAILS

We conduct experiments with a state-of-the-art open-source video diffusion model called Wan2.1
Wang et al.|(2025a), which possesses 1.3 billion parameters. Our approach is validated in text-to-video
and image-to-video generation setups to demonstrate versatility across conditioning types.

Offline Dataset Generation: Since our method focuses on 3D-consistent scene generation, we
require videos of static scenes with dynamic camera movements. We extract text prompts from
the DL3DV |Ling et al.|(2024) and RealEstate 10K [Zhou et al.| (2018) datasets, provided by |[Zheng
et al.| (2025), containing a wide variety of indoor and outdoor scenes. We deliberately selected these
datasets because they feature dynamic cameras in static scenes, where epipolar constraints are valid.
Dynamic objects would corrupt geometric measurements by violating single-camera assumptions.
This is precisely one of our key insights: training on captions describing dynamic cameras in
static scenes ensures high metric quality. The learned LoRA adapter still generalizes to diverse
content, as demonstrated by improved motion stability across varied scene types, including dynamic
videos. To enhance training data quality, we employ Gemma-3 VLM to expand original prompts
with more challenging camera motion descriptions, increasing geometric complexity and ensuring
the model encounters more demanding scenarios. We generate three videos per caption to ensure
sufficient variation in 3D consistency quality, as preliminary experiments showed pairs from just two
samples often lacked meaningful geometric differences. We implement rigorous data filtering: in
addition to removing near-static videos, we only sample pairs where (metric(zyi,) — metric(Zose ) >
T) A (metric(zyin) > €), eliminating pairs where both videos have similar consistency and ensuring
we only learn from meaningful gaps. In total, we generate 24,000 videos for text-to-video and 30,000
videos for image-to-video training, requiring approximately 1,980 GPU hours on NVIDIA A6000s.
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Training Configuration: Given the computational demands of fine-tuning large video diffusion
models, we implement our approach using Low-Rank Adaptation (LoRA) (2022) with rank
r = 64 and a = 128. This strategy eliminates the need to store the reference model separately in
memory, since the base model with the adapter disabled naturally serves as pyr during training. We
train with a batch size of 32 for 10,000 iterations using the AdamW [Loshchilov & Hutter] (2017)
optimizer with a learning rate of 5 x 10~ and 500 warmup steps. The finetuning takes 2 days on 4
A6000 GPUs.

4 EXPERIMENTS

A store aisle shoucasing various kitchen appliances, including instant pot and microwave oven, with promotional displays. Fluid, dynanic canera with with dynamic perspective
x [

drigin al Epipolar Geometry Optimization

Figure 3: Qualitative Evaluation: Visual comparison between the videos generated by the base
and finetuned model. First two rows: Wan-2.1-T2V [Wang et al| (20254), Last two: Wan-2.1-12V.
Our finetuning significantly reduces artifacts and enhances motion smoothness, resulting in more
geometrically consistent 3D scenes. Best seen in the supplementary video.

4.1 EVALUATION SETUP

We evaluate our epipolar-aligned model across three core dimensions: 3D consistency, motion
stability, and generalization beyond training domains. Our evaluation demonstrates that classical
geometric constraints provide more reliable optimization signals than learned metrics while improving
video generation quality.

Data and Metrics: We evaluate on 400 videos from DL3DV |[Ling et al| (2024) and
RealEstate 10K [Zhou et al| (2018) test sets, using Gemma-3 VLM [Team et al. (2025) to gener-
ate challenging camera motion descriptions. For generalization, we test on VBench 2.0
(2024), MiraData Ju et al/| and VideoReward [Liu et al] benchmarks extending beyond
static scenes. We measure performance using: (1) VideoReward VLM for motion quality assessment,
(2) VBench protocol [Huang et al.| (2024) for standardized motion and visual quality metrics, (3)
classical geometric consistency via Sampson epipolar error, and (4) 3D reconstruction quality via
Gaussian Splatting to validate downstream task impact.

Human Evaluation: We conduct two-stage human evaluation to understand practical improvements.
First, annotators label videos as geometrically consistent or inconsistent based on visible artifacts and
motion stability. This reveals that our Wan-2.1 1.3B baseline produces consistent videos only 54.1%
of the time, confirming significant room for improvement despite the model’s general capabilities.
Second, annotators perform pairwise comparisons between baseline and finetuned versions. This
protocol demonstrates that our approach preserves quality for already-consistent content while
dramatically improving inconsistent cases (60.4% vs 7.5% win rate for problematic videos).
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4.2 3D CONSISTENCY

Table 1: 3D Consistency Evaluation: Epipolar aligned model improves 3D Scene Reconstruction
and is preferred by human evaluators.

| 3D Consistency Metrics | 3D Scene Reconstruction | Human Eval
Method | Sampson Error | Perspective Realism 1 | PSNR 1 SSIM 1 LPIPS | | Consistency Rate
Baseline 0.190 0.426 22.32 0.706 0.343 54.1%
Ours 0.131 0.428 23.13 0.729 0.315 71.8%

We validate that epipolar geometry alignment improves 3D consistency using three approaches that
test different aspects of geometric quality.

3D Scene Reconstruction: We test whether generated videos support accurate 3D scene recon-
struction using VGGT [Wang et al.| (2025b) to extract scene parameters and camera trajectories. We
initialize 3D Gaussian Splatting from extracted scene structure, run 7000 optimization iterations
using Splatfacto Tancik et al.| (2023) on 80% of frames, and evaluate reconstruction fidelity on the
remaining 20%. Our model demonstrates substantial improvements: PSNR increases from 22.32
to 23.13 (+3.6%), SSIM improves from 0.706 to 0.729 (+3.2%), and LPIPS decreases from 0.343
to 0.315 (-8.2%). These gains demonstrate that epipolar alignment produces videos with genuinely
enhanced 3D structure rather than superficial improvements.

Geometric Consistency Metrics: We directly measure adherence to projective geometry principles
using classical computer vision algorithms. The Sampson epipolar error shows a dramatic 31%
reduction from 0.190 to 0.131, verifying that our alignment successfully optimizes the metric used
for preference selection and confirming that classical epipolar geometry provides clean optimization
signals. Additionally, perspective realism, measured by a model trained to evaluate whether image
frames contain realistic perspective Sarkar et al.|(2024)) improves from 0.426 to 0.428, demonstrating
positive impact on adjacent geometric metrics despite this metric’s inherent noise.

Human Evaluation: While numerical metrics capture specific geometric aspects, 3D inconsistencies
often manifest as subtle artifacts, jitter, or unnatural changes that humans excel at detecting because
they make scenes appear unrealistic. Annotators evaluated videos for scene consistency, realism,
and artifact-free content. Our method generates significantly more plausible scenes, with 71.8% of
videos labeled as geometrically consistent compared to only 54.1% for baseline content. This 17.7
percentage point improvement demonstrates that geometric alignment benefits are apparent to human
observers, validating the practical significance of our technical improvements.

4.3 MOTION QUALITY

Table 2: Motion Quality Evaluation: Epipolar aligned model improves motion stability and is
preferred by human evaluators despite dynamics-consistency tradeoffs.

\ VBench Motion Metrics | VideoReward | Motion Level | Human Eval
Method | Motion Smoothness T Dynamic Degree |  Temporal Flickering 1 | Motion Quality 7 | Mean SSIM | | Motion Preference Rate
Baseline 0.981 0.751 0.958 50.0% 0.233 18.5%
Ours 0.984 0.710 0.969 69.5% 0.223 53.2%

While the geometric alignment should naturally lead to smoother, more consistent motions and
reduced jitter, it is important to verify that our alignment preserves the model’s ability to generate
diverse motions. We evaluate motion quality using different metrics focusing on various aspects:
temporal dynamics, perceptual assessment, and human preference.

Temporal Dynamics: VBench motion metrics show mixed results that reflect the dynamics-
consistency tradeoff. Motion smoothness improves from 0.981 to 0.984 and temporal stability
improves from 0.958 to 0.969, indicating more stable frame-to-frame transitions. However, dynamic
degree decreases from 0.751 to 0.710, suggesting reduced motion amplitude. Mean SSIM between
first and remaining frames decreases from 0.233 to 0.223, confirming model’s ability to generate
dynamic scenes. While we acknowledge dynamic-consistency tradeoff, single neural network metrics
can exhibit bias, motivating the multi-metric evaluation approach.
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Perceptual Quality Assessment: VideoReward motion quality evaluation shows substantial im-
provement with our method achieving 69.5% win rate compared to baseline. This human-distilled
assessment validates that geometric consistency training produces motion that aligns better with
human preferences for natural, stable video dynamics, despite some reduction in motion amplitude.

Human Preference: Direct human evaluation reveals strong preference for our method’s motion
quality, with annotators preferring our approach at 53.2% rate across all video types. Since annotators
paid particular attention to jitter and unrealistic motion artifacts, our high preference rate demonstrates
that the stability improvements outweigh motion amplitude reductions. This preference is particularly
strong in initially inconsistent videos, where our method achieves 60.4% preference compared to just
7.5% for baseline.

4.4 GENERALIZATION

Table 3: Generalization to Dynamic Scenes: Despite training on static scenes only the model
generalize well to various dynamic scenes showcasing the effectiveness of enforcing geometrical
constraints.

Benchmark \Visual Quality Motion Quality Text Alignment Overall

VBench 2.0 61.3% 55.3% 52.0% 57.9%
VideoReward 65.0% 58.5% 50.5% 58.5%
MiraData 57.0% 58.0% 52.0% 58.5%

Method | Background Consistency ~ Aesthetic Quality Temporal Flickering Motion Smoothness Dynamic Degree

Baseline 0.951 0.535 0.979 0.986 0.595
Ours 0.954 0.541 0.983 0.989 0.557

Our approach demonstrates strong generalization capabilities beyond its training domain of static
scenes with camera motion, effectively improving performance on diverse video generation tasks
including dynamic object scenarios.

Evaluation on VBench 2.0, MiraData and VideoReward benchmarks using challenging general
prompts shows consistent improvements across all metrics. Our method achieves 57.9% overall win
rate on VBench 2.0 and 58.5% on VideoReward, with particularly strong performance in visual quality
(61.3% and 65.0% respectively) and motion quality (55.3% and 58.5% respectively). Remarkably,
our model maintains similar performance (58.5% overall) on MiraData videos with dynamic objects,
demonstrating robust generalization across general benchmarks despite training only on static scenes.

This generalization occurs because aligning models with smoother, geometrically consistent camera
trajectories inherently improves video quality even when objects move independently. The primary
sources of error in dynamic scenes—unstable motion trajectories, artifacts, and flickering—become
amplified by object movement. By learning to produce stable camera motion and reducing geometric
inconsistencies, our approach addresses these fundamental issues, automatically improving dynamic
object generation quality. VBench metrics confirm that geometric consistency training benefits
transfer effectively across diverse scenarios, with improvements in background consistency, temporal
stability, and motion smoothness validating our core insight that classical geometric constraints
enhance overall 3D understanding.

4.5 ABLATION STUDY

We ablate descriptor choices, geometric metrics, alignment methods, and design components. For
efficiency the ablations are done on a subset of data.

Descriptor and Metric Analysis: While SEA-Raft achieves highest visual quality (80.3%), we
observe it hacks the reward by preferring oversaturated scenes. LightGlue finds good correspondences
in clean areas when videos contain artifacts, resulting in misleadingly low epipolar error, whereas we
want correspondences across the entire scene so artifacts anywhere produce high error. Generally,
all setups are comparable, but our main claim is that classical geometric constraints provide cleaner
optimization signals than sophisticated alternatives that can miss global inconsistencies.
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Table 4: Metric Ablation: Simple descriptors with classical metrics achieve balanced performance,
while sophisticated descriptors can be counterproductive for video alignment.

Descriptor | Metric | Visual Quality Motion Quality ~Text Alignment Overall
SIFT Sampson Error 64.3% 64.2% 41.8% 57.1%
LightGlue | Sampson Error 70.3% 52.6% 38.5% 53.8%
SEA-Raft Sampson Error 80.3% 56.0% 33.6% 56.9%
SIFT Symmetric Epipolar 76.4% 59.6% 36.4% 56.4%

Table 5: Win-rate on the VideoReward benchmark comparing different finetuning strategies with
geometric consistency metrics.

VideoReward Metrics | Consistency Metrics
Method VQ MQ TA Overall | Perspective? Sampson | Dynamics |
SFT 66.0% 63.0% 54.0% 64.5% 0.427 0.161 0.225
Flow-RWR [Liu et al.|[(2025) 63.5% 60.5% 57.0% 64.0% 0.434 0.174 0.229
DROLi et al.[(2025b) 65.0% 54.0% 50.5% 64.5% 0.410 0.068 0.195
Epipolar-DPO (Ours) 720% 71.0% 55.0% 73.0% 0.428 0.127 0.223

Comparison with Learnable Metrics: Classical geometric constraints provide cleaner signals
than learnable metrics. Models trained with VideoReward Motion Quality achieve only 61.3% on
VideoReward but 0.179 Sampson error, while Sampson-trained models achieve 64.3% VideoReward
and 0.131 Sampson error. Similarly, training with MET3R |Asim et al.| (2025) achieves 0.049 on
METS3R but 0.176 Sampson error, while Sampson-trained models achieve same MET3R scores
(0.049) with superior Sampson performance (0.131). This shows that learnable metrics produce noisy
preference signals that compromise alignment effectiveness, confirming effectiveness of classical
geometry constraints

Static Penalty Analysis: The temporal variation penalty achieves superior motion dynamics (dynamic
degree 0.710 vs 0.627) while maintaining comparable geometric consistency and motion quality. This
component effectively prevents degenerate static solutions while preserving the geometric alignment.

Table 6: Static Penalty Ablation: Adding static penalty significantly improves dynamic degree
while only slightly sacrificing the consistency.

Method \ Dynamic Degree Motion Quality Sampson Error
Ours 0.627 71.5% 0.127
Ours + Static Penalty 0.710 69.5% 0.131

Alignment Method Comparison: Our DPO approach outperforms all alternatives with highest win
rates on VideoReward, validating effectiveness of DPO for video model optimization. DRO achieves
even lower Sampson Error, since it doesn’t include KL-Divergence term the model produce clear
significant visual artifacts which is not captured by only consistency metrics.

5 CONCLUSION

We present a novel approach for enhancing 3D consistency in video diffusion models by leveraging
classical epipolar geometry constraints as preference signals. Our work shows that classical geometric
constraints provide more stable optimization signals than modern learned metrics, which produce
noisy targets that compromise alignment quality, and training on static scenes with dynamic cameras
generalizes effectively to diverse dynamic content, demonstrating the broad applicability of geometric
principles. The resulting models generate videos with fewer geometric inconsistencies and more
stable camera trajectories while preserving creative flexibility. This work highlights how classical
computer vision algorithms effectively complement deep learning approaches, addressing limitations
in purely data-driven systems and improving content quality through adherence to fundamental
physical principles.
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A VISUAL QUALITY EVALUATION

Table 7: Visual Quality and Aesthetic Fidelity Results (Text-to-Video)

| VBench Visual Metrics | VideoReward | Human Eval
Method | Background Consistency T Aesthetic Quality 1 | Visual Quality 1 | Visual Preference Rate
Baseline 0.930 0.541 - 15.0%
Ours 0.942 0.551 72.0% 52.8%

Table 8: Win-rate vs. Wan-2.1-14B [Wang et al.| (2025a) on the VideoReward (2025)

benchmark. The Baseline and Epipolar-Aligned Model contain only 1.3B parameters.
Text-to-Video

Method Visual Quality Motion Quality = Text Alignment Overall
Baseline 13.3% 14.4% 24.2% 8.6%
DPO-Epipolar 18.1% 21.8% 25.0% 13.8%

A classic teal muscle car gleams under the sunlight as the camera moves through a vintage car show parking area, passing rows of classic automobiles

Ny - 4 ¢ i ;

A bustling street scene from the past, with people dressed in historical attire, engaged in various activit. under a bright sun as the camera moves through the street
P L )Y VL 10 A 1 11 12
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Epipolar Geometry Optimization
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Figure 4: Qualitative Evaluation: Comparison of baseline and epipolar-aligned models on dynamic
scenes featuring both camera movement and object motion. Our approach maintains improved
geometric consistency and smoother trajectories, demonstrating generalization beyond static scene
training. Best seen in the supplementary video.

Generating more geometrically consistent scenes with fewer artifacts naturally leads to higher overall
visual quality of the generated content. To validate this connection, we evaluate visual fidelity across
multiple assessment frameworks.

Aesthetic Metrics: VBench Huang et al.| (2024)) visual quality assessment shows consistent improve-
ments across multiple dimensions. For example, background consistency increases from 0.930 to
0.942 and aesthetic quality improves from 0.541 to 0.551. These metrics confirm that geometric
training enhances visual stability and perceived quality.

Perceptual Assessment: VideoReward visual quality evaluation demonstrates
substantial improvement with a 72.0% win rate, indicating that human-distilled quality assessment
strongly favors our geometrically-aligned approach. This suggests that geometric consistency con-
tributes significantly to overall visual appeal.

Human Validation: Human preference evaluation shows a 52.8% preference rate for our method’s
visual quality across all video types, further validating that geometric improvements translate to
perceptually superior results that human evaluators can identify and prefer.
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Table 9: Image-to-Video Alignment: Despite image conditioning constraints, epipolar alignment
shows consistent improvements across multiple metrics.
| VideoReward | 3D Reconstruction | 3D Consistency | VBench Metrics

Method | Visual Motion | PSNR SSIM LPIPS | Motion  Sampson
Quality  Quality T T I (SSIM])  Error |

21.08 0.686 0.408 0.239 0.215 0.955 0.498 0.981 0.992 0.378
2099 0.700 0.377 0.239 0.197 0.955 0.499 0.980 0.992 0.343

Background  Aesthetic  Temporal Motion Dynamic
Consistency ~ Quality  Flickering Smoothness  Degree

Baseline
Ours

51.35% 56.08%

B IMAGE-TO-VIDEO EVALUATION

Image-to-video alignment presents unique challenges due to the strong conditioning signal from
the input image. The image conditioning is integrated into intermediate layers of the diffusion
process, creating additional constraints that naturally reduce output variance and make alignment
more challenging. Despite these limitations, our epipolar geometry optimization demonstrates
consistent positive impact across multiple evaluation dimensions.

The 3D reconstruction results validate the geometric improvements: SSIM improves from 0.686
to 0.700, and LPIPS decreases from 0.408 to 0.377. These gains, while more modest than text-
to-video results, confirm that enhanced geometric consistency translates to better downstream 3D
understanding even under image conditioning constraints. The Sampson epipolar error improvement
from 0.215 to 0.197 further validates the effectiveness of classical geometric alignment.

VideoReward metrics show meaningful improvements in motion quality (56.08% vs 43.92%) and
visual quality (51.35% vs 48.65%). VBench metrics remain stable with slight improvements in
aesthetic quality, demonstrating that geometric optimization preserves overall generation quality
while enhancing 3D consistency.

While the input image provides strong structural guidance, it also constrains the model’s ability
to adapt toward geometrically optimal solutions. Nevertheless, consistent positive trends across
reconstruction, consistency, and quality metrics validate that classical geometric constraints provide
reliable optimization signals even in constrained generation scenarios.

C PROMPT OPTIMIZATION EVALUATION

We further compare our method with VPO|Cheng et al.|(2025), a video prompt optimization technique,
which is complementary to our approach since it optimizes prompts rather than model weights. We
evaluate VPO alone and in combination with our method. Results are reported in Table

Table 10: Prompt Optimization: VPO optimizes prompts while our method improves geometry
alignment. The two approaches are complementary and can be combined to achieve both high visual
quality and geometric consistency.

Method Visual Quality T Motion Quality T Overall T Dynamic Degree T Motion (mean SSIM) |
Ours 63.1% 65.8% 59.1% 0.80 0.211
VPO 59.1% 70.6% 82.7% 0.65 0.235
VPO + Ours 67.0% 71.9% 83.6% 0.61 0.234

We observe that VPO tends to reduce camera motion and restructure prompts while optimizing for
general video quality. However, such prompt optimization methods can be efficiently combined
with geometry-aligned models like ours to simultaneously achieve high visual quality and geometric
consistency.

D SCALING ANALYSIS

To understand how our geometric alignment performs across different model scales, we compare
both the baseline and epipolar-aligned 1.3B parameter models against the much larger Wan-2.1-14B
model Wang et al.| (2025a). As shown in Table[8] while the performance gap remains substantial due
to the 14B model’s higher resolution (720p) and superior base capabilities, our epipolar alignment
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helps close this gap meaningfully. The aligned 1.3B model achieves win rates of 18.1%, 21.8%, and
25.0% for Visual Quality, Motion Quality, and Text Alignment respectively, compared to 13.3%,
14.4%, and 24.2% for the baseline 1.3B model. Notably, the 14B model requires approximately 10x
longer inference time than the 1.3B variant, making our alignment approach particularly valuable
for applications where computational efficiency is critical. This suggests that geometric consistency
improvements can partially compensate for scale limitations, offering a practical path toward better
video quality without the computational overhead of significantly larger models.

E QUALITATIVE EVALUATION

For comprehensive assessment of video quality and geometric consistency, we include an interactive
webpage in the supplementary materials where readers can view the full video sequences and directly
compare the baseline and epipolar-aligned model outputs.

F LIMITATIONS AND BROADER IMPACT

Our approach primarily focuses on static scenes with dynamic camera movements, aligning well
with applications in 3D reconstruction and novel view synthesis. Adapting this method to scenes
with dynamic objects would require modifying the training pipeline to separately model and evaluate
object motion and camera movement. Additionally, epipolar geometry constraints assume point
correspondences coming from a static scene under camera motion, limiting effectiveness for scenes
with independent object movement or non-rigid deformations where a single fundamental matrix
cannot explain all correspondences. Video generation models may be misused to produce realistic
but deceptive content, contributing to the spread of misinformation, political manipulation, and
erosion of public trust. Furthermore, the computational resources required to train such models
raise environmental concerns and may exacerbate inequalities in access to advanced Al technologies.
Geometry-aware video generation can facilitate various 3D vision tasks, including scene reconstruc-
tion, SLAM, and visual odometry. By improving geometric consistency in generated videos, our
method produces more realistic and usable synthetic data for training computer vision systems. This
advances applications in robotics and autonomous navigation, where accurate spatial understanding
is crucial. The integration of classical geometry principles with modern generative models represents
a promising direction for enhancing Al systems with stronger physical world understanding.
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