Under review as a conference paper at ICLR 2026

GAMBIT: A GRAPH-STRUCTURED AND DECISION-
AWARE BENCHMARK FOR MOBILE GUI TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mobile GUI agents powered by LMMs can perceive screens and follow instruc-
tions, yet existing benchmarks largely target short, linear workflows and step-
level accuracy, offering limited insight into long-horizon planning and branching
tasks. We present GAMBIT, a graph-structured, decision-aware benchmark com-
prising 830 task episodes and 11,345 actions across 35 applications on Android
and i0S. Tasks are organized into Sequential, Conjunctive, Conditional, and Hi-
erarchical workflows with dual-level annotations, capturing realistic multi-step
and branching scenarios. To move beyond step metrics, we introduce weighted
longest common subsequence for length-sensitive progress and decision accuracy
for branch correctness. Evaluations on 7 diverse agents show that GAMBIT in-
duces a substantial accuracy drop compared to prior datasets, with success rates
falling below 5% on 6-8 step tasks and branch accuracy averaging 38%, under-
scoring weaknesses in conditional reasoning. By systematically exposing these
failure modes, GAMBIT provides a challenging, diagnostic testbed for advanc-
ing decision-aware mobile GUI agents. Our code and dataset are available at:
https://anonymous.4open.science/r/GAMBIT-40BB/.

1 INTRODUCTION

Recent advances in Large Multimodal Models (LMMs) have substantially improved capabilities in
visual content understanding [Yin et al.| (2024), following complex instructions [Wen et al.| (2024al);
Qin et al| (2024), and planning multi-step tasks [Li et al.| (2024a), paving the way for autonomous
agents in real-world applications. Within this broader landscape of agents, ranging from tool-use
and function calling systems [Fan et al.|(2024)); \Shen et al.[(2023), to embodied agents and domain-
specific assistants, graphical user interface (GUI) agents have emerged as a practical and versatile
paradigm. By perceiving screen content and executing structured actions, GUI agents can operate
existing software environments |Liu et al.| (2024b); Zhang et al.| (2024a); Hu et al.| (2025). Among
them, mobile GUI agents (Chai et al.| (2025); Jiang et al.| (2025)) have attracted increasing attention
due to their wide relevance across everyday applications and the ubiquity of smartphones. Ac-
cordingly, growing efforts have been devoted to developing mobile GUI agents that simulate user
interactions and automate routine tasks on devices|Ye et al.[(2025); [Tang et al.| (2025).

Systematic evaluation of mobile GUI agents is therefore critical, both to assess current capabili-
ties and to identify limitations that guide future development. Existing benchmarks, however, vary
widely in their scope and emphasis. |Li et al.| (2025) focus primarily on GUI element grounding and
visual understanding, providing the perceptual foundation for agent actions. Rawles et al.| (2023)
and [Zhang et al.| (2024b)) extend to single-step and multi-step instruction execution, with the latter
incorporating step-wise reasoning. |[Li et al.|(2024b) highlights task difficulty by varying instruction
length and step count, and [Lu et al.| (2024) pushes toward cross-app scenarios that require layout
adaptation and app switching. More recently, |[Zhang et al.| (2025c)) emphasizes Chinese application
layouts and bilingual instructions beyond English-centric focus of prior datasets.

Despite these advances, current datasets and benchmarks still exhibit three major limitations. 1)
Limited instruction diversity. Most benchmarks expand tasks by template substitution or lin-
ear concatenation of short instructions [Chen et al.| (2024); [Lu et al.| (2024). Such construction not
only produces semantically repetitive tasks, but also reflects the biases of a small set of annotators’
brainstorming habits. Moreover, action descriptions often reuse the same phrasing and constraints,


https://anonymous.4open.science/r/GAMBIT-40BB/

Under review as a conference paper at ICLR 2026

(oo}

Simple Template-based Instruction:
Save hotel ‘The Peninsula Tokyo' to favorites list.

oE

Complex Instruction with Decision Making and Multiple Constraints:

Search for non-smoking accommodation in Amsterdam, sorted by price.View the first result
(cheapest) and determine its property type. If it is a Hotel, read reviews about pet policies; if it's
an Apartment or Home, check the house rules. If the pet policy is acceptable, save the property;

Final Result : otherwise, view the next result.

— Find Hotel...

and saved!
m Decision I: Final Result I: O
!

Sequential Instruction: m e p—r Hotel or , Checlf‘!’-;’c::'s';e;:les
First, enter 'Berkeley College' as the pickup - Apartment?
location and 'Berkeley Ave' as the drop-off — =
location. Then, view the estimated fare. Next, m o - H

= . Final Result 2:

select the 'Wait & Save' ride type. -
—» Pets not allowed,

Decision 2: !

Pets Allowed ? : Low rating ...
- e =
g F—] —
i Final: g Final Result 3: 0 .
i Complete! j ~ —»  Pets Allowed! —>=E=t
Save to List! g
i - . o
® R L — ]
(a) Template-based and Sequential Tasks (b) Ours: Complex Tasks with Decision Making and Multiple Contraints

Figure 1: Illustration of conventional step-based tasks with linear chains versus our proposed graph-
structured tasks incorporating decision-making and branching conditions.

failing to capture the richness of real-world user instructions. 2) Overly sequential workflows.
Existing datasets predominantly formalize tasks as linear step-by-step chains with few constraints,
overlooking decision-aware behaviors involving conditional branching, fallback strategies, or multi-
condition constraints. In realistic scenarios, users routinely adapt their workflows (e.g., “purchasing
a high-priced item if the cheaper one is out of stock”, or “adjusting travel plans based on weather
forecasts”). 3) Inadequate evaluation protocols. Current metrics focus on step-level correctness
or holistic task success rate. These measures neither weight longer workflows appropriately nor
capture decision accuracy at branching nodes, leaving gaps in assessing agents’ robustness to task
complexity and structural variability. These limitations hinder systematic evaluation of mobile GUI
agents’ capabilities in long-horizon, decision-aware, and cross-context scenarios.

To address these limitations, we introduce GAMBIT, a complex benchmark for evaluating mobile
GUI agents on long-horizon and decision-aware tasks. We propose a human-LLM collaborative
atomic instruction and constraint pipeline, which composes diverse atomic actions into Graph-
structured Complex Tasks spanning Sequential, Conjunctive, Conditional and Hierarchical work-
flows. A mixture-of-generators task construction and dual-layer quality control process ensures
both executability and diversity. GAMBIT comprises 830 task episodes with 11,345 actions steps,
covering 35 applications across 7 mainstream categories on both Android and iOS platforms, with
dual-level annotations and an average depth of 13.3 steps. To complement the dataset, we design
decision-sensitive evaluation metrics that weight long-horizon steps and explicitly measure branch-
ing accuracy, providing a more faithful reflection of agent capability than conventional step-level
exact-match or success-rate metrics. These establish GAMBIT as a challenging and diagnostic
benchmark for analyzing current mobile GUI agents, exposing their bottlenecks and guiding future
progress in agent design. Our key contributions are as follows:

1. We release GAMBIT, the first benchmark targeting long-horizon, decision-aware mobile GUI
tasks, covering diverse application scenarios that are representative of everyday usage.

2. Principled construction pipeline: we design a collaborative pipeline that expands atomic in-
structions with constraints and composes them into graph-structured tasks, ensuring both realism
and semantic diversity.

3. Decision-sensitive Evaluation: we propose metrics that go beyond step-level exact match and
global success rate by weighting long-horizon steps and explicitly measuring branching accuracy.

4. Comprehensive evaluation: we conduct systematic experiments across 7 general-purpose,
mobile-specialized, and reasoning-oriented agents, revealing critical bottlenecks and providing di-
agnostic insights for future model development.
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2 RELATED WORK

Prior efforts in mobile GUI benchmark construction can be grouped into three following paradigms.
1) Human Handicraft Designed Instructions: AITW [Rawles et al. (2023) categorizes tasks based
on the number of action steps into multiple-step and single-step categories. Multiple-step tasks
are obtained through human annotation, technical documentation, and LLM-enhanced instructions,
while single-step tasks are derived by extracting shorter action sequences from longer action se-
quences. AITZ Zhang et al.|(2024b), built upon AITW, further filtered out incorrect or mismatched
instructions and utilized GPTs to assist in proofreading task instruction semantic descriptions. Other
mainstream datasets and benchmarks [Rawles et al.| (2024); Sun et al.| (2022); |Li et al.| (2020); |Wen
et al.| (2024b); [Lee et al.| (2024)) widely adopted such human written instructions to simulate real-
world user cases by either crowd sourcing or mimicking daily user case and routine. 2) Extracted
and generated from large-scale dataset or website |Liu et al.|(2025a)); |Chai et al.| (2024); Zhang et al.
(2025b): Android-arena Xing et al.| (2024) identify webpage and descriptions related to application
functionality through web retrieval, then store these software descriptions in a vector database, and
finally utilize an LLM to reconstruct app tasks instructions from them. 3) Expand based on exist-
ing instructions and template replacement: GUI-Odyssey [Lu et al.|(2024) through manually brain-
storming instruction task templates, through template substituting the application name or action
description, quickly expand current instruction to a large-scale dataset and finally rewrite with GPT-
4. SPA-Bench Chen et al.|(2024) first start with single-step instruction and through expanding one
action at a time to obtain long chain instruction and finally achieve difficulty rising. Despite these
efforts, existing benchmarks exhibit limitations: heavy reliance on human annotation or template
substitution, limited instruction diversity, and a bias toward chain-like workflows. Consequently,
they fall short of simulating the decision-making and judgment-based behaviors seen in real user
operations, which highlights the key design principles detailed in Section [3]

3 GAMBIT

3.1 TASK FORMULATION

The GAMBIT dataset consists of a set of k¥ mobile GUI task episodes 7 = {T1,T5, ..., T} gen-
erated from m candidate mobile applications A = {A;, As, ..., A, }. As illustrated in Fig [2} for
each application A;, we define an atomic instruction set { (i, c, )| A;}_,, where i,, represents an
available instruction for this application and c,, specifies its associated constraint (if applicable). Fol-
lowing prior work|Lu et al.| (2024); Rawles et al.|(2023)); L1 et al.|(2024b), each task T}; is represented
as a sequence of GUI interaction episodes:

T] = {(I7it7ct7gt7at)}3:1a (1)

where [ denotes the global natural language instruction for the task, i, is the atomic instruction for
step ¢, c; is the constraint, g, is the screenshot at the current step, and a; is the executed GUI ac-
tion. Notably, an atomic instruction ¢; may internally correspond to multiple low-level GUI actions
and their associated screenshots, while still being treated as a single high-level instruction in our
formulation.

3.2 ATOMIC INSTRUCTION AND CONSTRAINT COLLECTION

Previous mobile GUI benchmarks typically scale instructions through template substitution or lin-
early concatenation, which restricts semantic diversity and overlooks realistic application-specific
constraints (e.g., “share via social media” is a generic action appearing across apps regardless of
their distinctive functionalities). To address these limitations, we design a structured, multi-stage
pipeline combining human knowledge, LLMs augmentation and rigorous filtering. As illustrated in
Fig[2[(a), the pipeline consists of: 1) Human Seeding: annotators curate a seed set of core executable
atomic instructions for each application A;, reflecting its essential user interactions. 2) LLM-
Augmentation: to expand beyond the handcrafted set, multiple LLMs (e.g., GPT-4, Claude,
DeepSeek) are prompted with the application name, app-store description and seed set to itera-
tively generate additional atomic instructions aligned with the app’s functionality. 3) Constraint
Induction: for each atomic instruction, LLMs propose up to three candidate constraints grounded
in application context. Constraints are categorized into a compact taxonomy, including numeric
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Figure 2: Illustration of GAMBIT construction pipeline.
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ranges (e.g., “price within budget”), thresholds (e.g., “rating> 4.5”), boolean attributes (e.g., “free
shipping”), temporal conditions (e.g., set the event start time to 3:00 p.m.) and preference-based
filters (e.g., “find news related to Sports”). 4) Filtering and Verification: automated LLM-based
pre-filtering removes infeasible or redundant outputs, followed by human-in-the-loop verification to
ensure executability, realism and diversity. Instructions with trivial slot-filling entities or merely su-
perficial lexical variation are rejected (e.g., “search for Sports news” v.s. “find news related to Tech-
nology” are considered duplicates at the atomic instruction level.), and only semantically distinct
variations are retained. This pipeline yields a diverse library of atomic instructions enriched with
task and application-specific constraints, laying a solid foundation for constructing graph-structured
complex tasks in subsequent section.

3.3 COMPLEX TASK INSTRUCTION CONSTRUCTION

Building on these atomic instructions, we construct Graph-structured Complex Tasks that better
approximate real-world user workflows. Each task is modeled as a directed graph G = (V, &),
where nodes v € V are atomic instructions and edges e € £ are annotated with guards (constraints,
predicates, or dependencies) specifying valid transitions. Each node is linked to the corresponding
screenshot g; at execution step ¢, while guards may reference GUI state (e.g., stock availability,
rating) or contextual signals (e.g, time, weather).

Graph Topologies. As illustrated in Fig[2(b), we instantiate four canonical graph structures tailored
to atomic action-centric mobile GUI tasks, extending beyond conventional template-substitution
datasets by incorporating branching and long-horizon reasoning: 1) Conjunctive: multiple goals
that must all be satisfied, with flexible ordering unless constrained by guards. 2) Sequential: a long
linear workflow of atomic instructions. 3) Conditional: a task consisting of a binary decision node
with two guarded branches (if/else). 4) Hierarchical: a multi-level decision tree formed by stacking
conditional nodes to capture sophisticated fallback and adaptive behaviors.

Generation Process. Given an application A; with its atomic instruction set {(i,, ¢, )| A; }2_1,
we first sample a target graph topology 7 € {Conjunctive, Sequential, Conditional, Hierarchical }
with desired graph length and branching depth. A reasoning LLM [Team et al.| (2023)); |Anthropic
(2025)); IL1u et al.| (2024a)is then prompted to: select and bind nodes by choosing a coherent subset
of atomic instructions, synthesize guards to edges, and construct the task by generating a global
natural-language instruction I.

Quality Control. We observe complementary behaviors across models: GPT models|Achiam et al.
(2023) combine atomic instructions coherently but may generate overly rigid or unrealistic rules
(e.g., “follow a post if likes are odd, else comment”); Deepseek |Liu et al.| (2024a) produces de-
tailed rationales and explicit restructuring process, but often yields shallow rearrangements lacking
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Table 1: Comparison of GUI agent benchmarks

Dataset 7 Unique Inst.  Apps Avg. Steps  High-level & Low-level? GT Decision-making? Platform Cross-App?
PixelHelp|Li et al.|(2020) 187 4 4.2 high-level 4 Single

MoTIF|Burns et al.|(2021} 276 125 4.5 high-level & low-level v Single

AITW Rawles et al.|(2023) 30,378 357 6.5 high-level v Single

AITZ|Zhang et al.|(2024b) 2,504 70 75 high-level & low-level v Single
AndroidControl[Li et al.|(2024b) 15,283 833 4.8 high-level & low-level 4 Single

AMEX Chai et al.|(2024) 2946 110 12.8 high-level v Single

GUI Odyssey|Lu et al.[(2024] 8,334 212 153 high-level & low-level ¢/ Single v
AppAgentZhang et al.|(2025a} 45 10 / high-level Single
MobileAgentBench|Wang et al. (2024} 101 10 / high-level Single
Meta-GUI|Sun et al.|(2022) 1,125 11 5.3 high-level v Single
AndroidWorld [Rawles et al. |(2024) / 20 / high-level Single v
Ours 830 35 133 high-level & low-level ¢/ 4 Android & i0S 4

sequential logic; Gemini [Team et al.| (2023) generates more consistent sequential and branching
workflows with realistic decision rules. To leverage complementary model strengthens, we adopt
a mixture-of-generators strategy, sampling multiple LLMs to generate complex task instructions.
All candidate tasks then undergo LLM-based cross-checking for feasibility, coherence, and realism,
followed by double-pass human verification to prune trivial variations and ensure semantic diver-
sity. This pipeline yields a library of decision-aware tasks that reflect realistic and adaptive mobile
GUI interaction patterns under dynamic conditions, forming the core of GAMBIT and enabling a
fine-grained evaluation in Section 4]

3.4 DATA ANNOTATION AND QUALITY CONTROL

Setup. We employed 20 professional annotators to label the complex mobile GUI task instructions.
Each annotator was provided with the complete high-level instruction I, the constructed complex
task instruction, and asked to decompose it into step-by-step actions. For each execution step, anno-
tators wrote a corresponding low-level (step-level) instruction, i.e., a natural-language description
of the specific action aligned with the current screenshot. Following the protocol of prior work |Li
et al.| (2024b); Lu et al.|(2024), this schema enables us to separately evaluate agent performance at
both high-level and low-level granularity. Annotation was performed on Android and iOS devices
using real phones. A customized annotation tool recorded interaction data and exported outputs into
a unified JSON schema.

Annotation. For each step in a task episode, annotators provided the screenshot, low-
level (step-level) instruction, action type, and action parameters. Action types were restricted
to a predefined set: {Click, Scroll, Type, Navigate to Home, Navigate to
Previous Page, Long Press, Complete}. Metadata such as episode IDs, device infor-
mation, and screenshot dimensions were automatically logged, more details are in Appendix [D}

Quality Control. To ensure realism, annotators could flag a task as “IMPOSSIBLE” if it violated
application usage conventions or could not be executed as instructed. After annotation, the dataset
underwent a three-stage quality review: two independent proofreaders and co-authors cross-checked
all entries to eliminate residual errors and confirm task executability.

3.5 DATASET STATISTICS

We summarize the statistics of GAMBIT in Tab[I] The dataset contains 830 complex task episodes
spanning 11,345 actions steps, covering 35 mainstream mobile applications across 7 major cate-
gories (Productivity, Travel, Tools, Entertainment, Social Networking, News, Shopping and Pay-
ment). For instruction complexity, the average high-level instruction length is 32.54 tokens, which
is 18.39% longer than previous commonly used dataset |Chai et al.| (2024). Each task contains on
average 3.2 atomic actions and 4 constraints, while the average task depth is 13.3 steps. For graph
topology diversity, GAMBIT instantiates four graph workflow topologies: Conjunctive (24.3%), Se-
quential (33.4%), Conditional (24.0%), and Hierarchical (18.3%). In addition, 12.5% of tasks are
cross-app, further emphasizing task complexity. We also include 250 single atomic instruction tasks
as an ablation control group to assess dataset quality and difficulty relative to prior benchmarks. For
platform coverage, dataset comprises 881 tasks on Android (version 11 to 15) and 199 tasks on iOS
(version 18.5), ensuring multi-platform generalization. In total, 14.1% of tasks are available on both
systems, while the remainder are platform-specific. Data collection spans 8 phone brands and 16
device models, further enhancing the robustness of GAMBIT.
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Tab|I] provides a detailed comparison with prior datasets and benchmarks, demonstrating the signif-
icant strengths of GAMBIT in instruction length, branching decision making structures, cross-app
coverage, platform diversity, and dual-level annotation (high-level and low-level), thereby establish-
ing a more challenging and realistic benchmark for evaluating mobile GUI agents.

3.6 EVALUATION METRIC

Prior mobile GUI benchmarks typically adopt metrics such as Exact Match (EM), Type Match
(TM), Success Rate (SR) and Goal Progress (GP). EM [Li et al| (2024b) requires both agent’s
predicted action type and parameters to match the ground truth, while TM only checks the action
type. SR measures whether all steps in an episode are executed correctly, but collapses into a binary
outcome that is often very low for long instructions and fails to indicate which specific actions
caused failure. GP measures the fraction of consecutive correct steps from the beginning of the task,
but cannot capture branching structures.

As a result, existing evaluation protocols fail to capture two key aspects: task length sensitivity,
where longer and more complex workflows should contribute more heavily to overall performance,
and decision accuracy in branching structures, which is essential for realistic mobile task exe-
cution. To address these gaps, we introduce two complementary metrics: 1. Weighted Longest
Common Subsequence (W-LCS): W-LC'S = 3, o5 wi, Where w; = 7 —r. For a given

predicted task sequence 7 and gold sequence T*, we compute the longest common subsequence
with task length-dependent weights. This assigns higher weights to longer decision branches, em-
phasizing correctness in long-horizon planning. We also compute Decision Accuracy and discuss
in Section[4.3] For tasks represented as graphs, we evaluate the accuracy of branch decisions at each
conditional edge.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

We comprehensively evaluate existing GUI agents on GAMBIT. The evaluated agents span three
categories: 1) General-purpose GUI agents trained on a mixture of desktop, web and mobile en-
vironments, including AGUVIS-7B Xu et al.| (2024), UI-TARS-7B |Qin et al.|(2025), Qwen2.5-VL-
7B Bai et al.|(2025)), OS-Atlas-Pro-7B [Wu et al.|(2024)); 2) Mobile-specialized agents optimized for
mobile GUI interactions, AgentCPM-GUI-8B |Zhang et al.[(2025c)); 3) Reasoning agents incorpo-
rating explicit reasoning process, InfiGUI-R1-3B and InfiGUI-R1-3B (thinking) [Liu et al.|(2025b).
Following established evaluation protocols|Zhang et al.|(2025c¢); |Lu et al.| (2024), each agent is pro-
vided with the global high-level instruction I, low-level (step-level) instruction i, constraint c; (if
applicable) and corresponding screenshot g, at each step ¢. Experiments are conducted according
to each agent’s official implementation for fairness and reproducibility. Since the action type sets
supported by each agent vary, we performed a unified mapping to our predefined set in Section [3.4]
to ensure consistent evaluation.

4.2 MAIN RESULTS

Tab [2] reports the overall performance of evaluated agents on GAMBIT, we observed several key
findings. Our benchmark contains a difficulty gradient and shows as a clear SR and GP degrade
monotonically with topology complexity increases. On the most complex Hierarchical subset, the
average SR falls to 14.00% even under low-level instructions, and GP averages merely 13.10% under
high-level instructions. Among all agents, AGUVIS-7B achieves the highest 89.81% overall EM
with low-level setting and AgentCPM-GUI-7B with the highest 53.31% EM with high-level setting.
InfiGUI-R1-3B-thinking shows the smallest degradation (2.38%) from Conjunctive/Sequential to
Conditional/Hierarchical, suggesting strongest robustness to length and structural variation. These
agent’s top performance highlights a wider coverage of task and more robust to structural variation
in their training.

Comparison with prior benchmarks. To ensure the difficulty of GAMBIT is not inflated by data
collection (e.g., artificially extended step descriptions or redundant GUI elements), we include a
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Table 2: Main results for mobile GUI agents. “InfiGUI-R1-3B tk” indicates the thinking mode for
InfiGUI-R1-3B, and this notation remains in following tables.

Model Level Single Conjunctive Sequential Conditional Hierarchical
EM ™ SR GP | EM ™ SR GP | EM ™ SR GP | EM ™ SR GP EM ™ SR GP
AGUVIS-7B LL | 8781 9555 7240 7247 | 8875 97.56 50.00 61.39 | 90.70 97.87 41.88 59.55 | 90.51 97.07 49.25 7246 | 91.30 9832 33.55 67.18
HL | 4259 5944 32.00 2691|3333 6001 348 1175|2671 49.18 036 1186|2249 4127 050 1683 | 21.54 4238 0.66 12.42
UL-TARS-7B LL | 87.11 9720 63.60 70.03 | 79.51 97.37 2624 44.61 | 80.72 96.62 24.55 43.76 | 85.33 96.18 26.13 59.11 | 83.36 97.51 1579 49.79
. : HL | 63.34 79.56 31.60 35.68 | 5397 7825 396 1449|5503 79.31 253 1648 | 48.63 69.64 101 1871 | 4593 7187 0.66 1539

8044 91.65 19.10 51.61 | 75.68 86.08 11.18 48.32

Qwen2.5-VL-7B

LL ‘79.9() 91.21 62.80 59.99‘8].26 9298 36.14 51‘76‘76.62 87.94 2419 46.25

HL | 5855 7353 38.00 3566 |53.66 7143 545 1745 | 4480 5901 433 1870 | 41.82 57.53 101 19.54 | 3631 5099 0.66 16.02

LL | 8099 90.94 67.60 6732|7494 90.02 31.19 47.03 | 6710 8376 18.05 39.53

HL | 5431 7038 3640 33.02 | 4621 7338 644 1625 | 4734 7209 144 1295 | 4003 6504 000 1410 [ 37.57 6560 000 10.96
AcenCPM.GULSE | LL | 8385 90.14 6880 6905|8420 9326 4109 5409 | 8677 9391 2816 49.82 | 8695 9242 3317 61.06 | 87.74 9326 1908 57.58
gentCPM-GUL- HL | 6248 7582 3240 3573 47.28 7303 0.66 15.00

59.18 77.81 395 32.00
3854 6258  0.66 9.75

66.53 8853 987 4152

InfiGUI-RI-3B 3758 5063 2720 24.11 | 3803 5739 099 1019 | 4273 6338 108 891 | 37.07 5630 000 10.49

LL ‘60.97 7411 6560 49.28 | 69.78 8474 34.65 4429 | 69.77 89.80 22.74 43.14 | 63.57 8380 17.09 4420

|
68.51 8275 16.58 46.34 ‘ 60.98 79.74 461 36.78
InfiGUI-R1-3B tk ‘

0OS-Atlas-Pro-7B ‘

‘57.94 78.14 891 21.53‘55497 78.84 253 16.91)‘50.39 7123 1.01 18.15
LL ‘58.26 71.98  59.60 46.93‘6[.48 75.09 2574 38.57‘62.8] 80.26  13.00 35.58‘57)%7 7471 955 3829

HL | 4435 6329 3560 28.77 | 4499 7057 495 14.08 | 49.06 7332 181 1259 | 4028 6382 201 1621 | 41.97 68.08 000 12.22
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Figure 4: Visualization of W-LCS scores as a function of task step length.

Single Atomic Instruction subset as control group. Agent performance on this subset is comparable
to that on prior single-step benchmarks (81.19% on ours v.s. 80.81% on AndroidControl |Li et al.
(2024b)), a widely used mobile GUI benchmark), confirming that GAMBIT preserves the feasibility
of basic action execution.

To isolate dynamic differences beyond Section [3.5] we compare the agents performance between
GAMBIT and widely adopted mobile GUI datasets. Averaged across instruction topologies, GAM-
BIT induces an accuracy drop of 20.69% relative to prior datasets. Unlike AndroidControl and
related sequential-only benchmarks, our dataset penalizes structural errors more severely: under
high-level instructions, EM is 24.69% lower than AndroidControl, and even AndroidControl’s hard-
est split remains 26.29% higher than our Conditional/Hierarchical subsets. These results highlight
that GAMBIT introduces decision-aware difficulty absent from earlier datasets, while still main-
taining parity on atomic actions. It provides a finer-grained diagnostic lens for distinguishing agent
capabilities under realistic long-horizon and branching workflows.

4.3 ABLATION STUDIES

High-level v.s. Low-level Instructions. Tab [2| contrasts agents under low-level (step-specified)
and high-level (goal-only) instructions. Across all models, EM/TM are consistently higher with
low-level guidance, confirming that most agents can reliably execute explicitly grounded atomic
actions. When shifted to high-level goals, TM drops by 24.11% on average and EM falls below
32.78%. This exposes a persistent gap between current agents’ strong visual grounding/navigation
and weak global task reasoning. In real-world scenarios, users rarely issue perfectly disambiguated
step instructions and this gap becomes relevant as task complexity increases.

Impact of Task Length and Branching.

40 n | —e— UI-TARS-7B
Under low-level settings (Tab. [2)), TM/EM remains rel- = AgenCRI-GULSB
atively insensitive to task length, as each step is ex- g g (et
plicitly grounded and largely independent. In contrast, 3
high-level instructions show strong length sensitivity 5020
(Fig. [3): GP decreases sharply as sequence length in- % g |
creases, reflecting cumulative error propagation across & T 3
steps. Once sequences exceed 68 steps, GP drops be- 1 R \
low 20% for all models, indicating that current agents

2-5 6-8 9-12 13-19 20+
Step Count

Figure 3: High-level GP v.s. Step Length.

struggle to sustain long-horizon reasoning and execu-
tion beyond short workflows.
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TR

Table 3: Decision accuracy (EM 1) at different branching depths under high-level instructions.
denotes accuracy degradation on deeper nodes.

Model First Decision Deeper Decisions EM Difference
AGUVIS-7B 31.29% 29.11% -2.18%
UI-TARS-7B 45.85% 29.72% -16.13%
Qwen2.5-VL-7B 37.46% 30.56% -6.90%
OS-Atlas-Pro-7B 32.38% 29.72% -2.66%
AgentCPM-GUI-8B 37.25% 29.72% -7.53%
InfiGUI-R1-3B 40.17% 37.95% -2.22%
InfiGUI-R1-3B tk 41.31% 41.83% +0.52%

To better capture partial progress and robustness in

long-horizon tasks, we report W-LCS, which quantifies how far an agent proceeds before failure,
aligning with real user tolerance where partial completion still has value. As shown in Fig
AgentCPM-GUI-8B emerges as the strongest performer as task length increases, even though
its GP and SR are not the highest in Tab@} InfiGUI-R1-3B (thinking) exhibits only mod-
erate W-LCS under low-level settings, but its advantage becomes pronounced on tasks exceeding
13 steps with high-level instructions, ranking among the top-2 across all agents. This suggests their
superior resistance to error accumulation and greater robustness in complex reasoning. In contrast,
AGUVIS-7B shows the opposite trend: strong W-LCS under low-level tasks but severe degradation
on high-level ones, indicating strong grounding ability but limited capacity for global task planning.

Branching structures amplify difficulty. Conditional/Hierarchical tasks introduce decision nodes
where one misjudgment invalidates entire subtrees, leading to sharper declines than Sequen-
tial/Conjunctive workflows. To quantify this, we measure decision accuracy by branch depth in
Tab[3] The first decision in Conditional and Hierarchical graphs averages only 36.85%, while deeper
branches in Hierarchical tasks perform worse by an additional 7.08% dropping on average. Notably,
the InfiGUI-R1-3B series, a smaller model series with reasoning SFT and RL, outperforms other
agents by 3.89% on first decision and 10.12% on deeper nodes, maintaining stable accuracy as depth
increases. These findings indicate that reasoning-oriented training enhances decision robustness,
a property largely absent in baseline agents. These results underscore that deeper and more complex
branching makes models less reliable, exposing real-world challenges that linear workflows in prior
datasets cannot reveal.

4.4 CASE STUDIES AND ERROR ANALYSIS

Q1. Why agents fail at decision-making steps? We ana- [l ™" Taskinstruction:
. . . . . Open Clock. If world clock list is empty,
lyze decision-aware failure cases using InfiGUI-R1-3B, e e e g qunpe g
the only agent that exposes intermediate reasoning traces. 8:49:47., @
As shown in Fig E], two recurrent failure modes emerge: I need to check if the world clock listis
empty. If it is, | should add the city 'London'.

Since the current screen shows the
«  world clock list, | should add a new city.
¥

Mode 1: Ignoring branch constraints. The agent often de-
faults to the first available option instead of following the

. . i . . "
e?(pllCIt branching COHdlthI.l, thereby bypassing .the deci- Click 47 batton and add city London:
sion step. Mode 2: Plausible but false reasoning. The * CorrectAction:

2.2 Open the alarm page.

agent produces a coherent chain-of-thought that acknowl-
edges the instruction and GUI state, but then executes an
action inconsistent with its own reasoning, again defaulting
to the first option. These patterns reveal a clear gap: agents
are proficient at single-step execution (Tab [2| shows near-
saturated TM/EM on Single, short Sequential workflows
and low-level settings), yet struggle with conditional rea-
soning, where multiple candidate actions must be weighted
against global instructions and GUI context. A key reason

is that existing training corpora for mobile GUI agents R oo e,

lack decision-oriented trajectories, leaving models under-  (b) Failure Mode 2: Plausible but false reasoning
exposed to branching supervision. GAMBIT addresses this

gap by explicitly incorporating complex graph topologies Figure 5: Decision failure cases.
and systematic evaluation of decision accuracy.

(a) Failure Mode 1: Ignoring branch constraints

e Task Instruction:

Search for the podcast 'The Daily". If it has
more than 500,000 followers, follow it.
Otherwise, search for 'Up First"." ' @

| need to check the current follower count,
which is 49.5K. Since this is less than 0
500,000, 1 should search 'Up First’.
¥
Agent’s Wrong Action: Q
Click ”Follow” button.

Q2. Beyond task length and branching, what other factors limit agent performance?

We identify three additional factors that consistently affect model robustness.
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Table 4: Model performance on different action types.

Model | CLICK | TYPE | SCROLL | Complete |  Others
| ™ EM | TM EM | TM EM | TM EM | TM EM
Low-level
AGUVIS-7B 99.84 91.65 | 95.28 91.89 | 99.04 87.33 | 86.85 86.85 | 93.69 83.95
UI-TARS-7B 99.16 79.01 | 9440 89.15 | 99.00 94.19 | 99.04 99.04 | 4497 4497

Qwen2.5-VL-7B 93.12 8321 | 84.34 81.49 | 81.01 46.04 | 89.86 89.86 | 55.38 53.23
0OS-Otlas-Pro-7B 9496 74.66 | 85.67 82.16 | 48.65 28.94 | 67.31 67.31 | 68.51 62.66
AgentCPM-GUI-8B | 97.27 88.30 | 89.32 84.98 | 98.27 96.61 | 79.79 79.79 | 40.75 31.51

InfiGUI-R1-3B 87.04 79.14 | 85.16 82.67 | 81.81 5.64 | 1043 1043 | 86.17 22.95
InfiGUI-R1-3B tk 97.94 8879 | 89.78 86.84 | 96.28 7.69 | 891 891 | 90.56 24.21
High-level
AGUVIS-7B 67.48 34.68 | 28.69 23.52 | 1427 11.02 | 0.00 0.00 | 43.83 43.83
UI-TARS-7B 88.45 5474 | 6432 5335 | 52.34 47.74 | 4481 44.81 | 28.53 28.53

Qwen2.5-VL-7B 67.41 4479 | 53.25 48.00 | 15.25 11.40 | 79.66 79.66 | 18.87 18.87
0OS-Otlas-Pro-7B 86.37 48.53 | 5450 4443 | 29.85 26.71 | 3555 3555 | 41.61 41.61
AgentCPM-GUI-8B | 86.50 54.24 | 64.67 5245 | 4542 4183 | 66.19 66.19 | 29.56 29.24
InfiGUI-R1-3B 88.56 55.16 | 57.24 4933 | 41.38 2345 | 9.05 898 | 36.48 29.87
InfiGUI-R1-3B tk 75.17 46.57 | 5422 4791 | 3242 2024 | 17.47 1740 | 33.65 28.00

Action Type Effects. Tab [ highlights marked variation across action types. Long Press, a
realistic yet underrepresented action, shows the lowest accuracy across models (on average 66.31%
lower than C1ick/Type). For UI-TARS and OS-Atlas, the Complete action underperforms other
models by 52.03%, suggesting their difficulty in detecting task termination under long-horizon goals.
Their overall SR rises by 8.18% when Complete is excluded, indicating that many errors reflect
termination misrecognition rather than execution failures. Annotators also noted the near absence
of Double-Tap: although often replaceable by alternative actions, its omission from most agents’
action space and training data may limit generalization. These results indicate that action space
diversity and explicit modeling of final-state inference remain a performance improvement direction.

History Window Length. Long-horizon tasks impose higher demands on both historical con-
text and efficiency. In mainstream settings, history length varies from each agent. For instance,
AgentCPM achieves the best high-level accuracy with a 4-step window (1.38% higher than full-
history or no-history), whereas its low-level accuracy declines as history grows, indicating that
longer context is not uniformly beneficial. For AGUVIS, it performs better with longer history
under high-level instructions, but shows little differences for low-level setting. We identify this as
a trade-off among multiple factors: 1) Contextual Overload: excessively long textual/ histories
may increase confusion and accumulative error carry-over. 2) Visual Down-sampling: aggregating
many screenshots reduces effective resolution, harming precision actions such as small UI target
clicks. 3) Efficiency: longer histories increase inference latency, problematic for real-time mobile
scenarios. By contrast, the no-history setting runs faster inference but underperforms due to insuf-
ficient grounding (1.15% lower EM). Effective history utilization depends on model design rather
than merely context length, and saliency-aware or memory-pruned histories are future directions.

Instruction Language and Platform. We further separate results by instruction language and
operation systems (more results in Appendix [H and [G). Qwen2.5-VL-7B is the most robust to
English-Chinese instruction shifts due to its training corpora distribution, with 3.5% higher EM
on Chinese instruction. In addition, we observe that InfiGUI-R1-3B series benefits from its
“thinking” prompting, effectively reduces outputs formatting errors. For all tested agents, high-
level instructions produce more irregular responses than low-level ones, and Chinese prompts are
more error-prone than English. As for platform difference, since most mobile GUI training corpora
skewed toward Android, average performance drops by 5.30% on iOS, likely due to GUI styling
and action differences. These factors, spanning action coverage, history utilization, multilingual
grounding, and multi-platform robustness, are orthogonal to the challenges discussed in Section[4.3]
GAMBIT systematically exposes both decision-aware reasoning failures and broader robustness
limitations, providing a rigorous and comprehensive benchmark for future mobile GUI agents.

5 CONCLUSION

In this paper, we introduced GAMBIT, the first benchmark targeting long-horizon workflows and
decision-aware execution in mobile GUI agents. Unlike prior template-based datasets, it captures
realistic user interactions through graph-structured instructions and cross-platform annotation. Ex-
periments show that while current agents handle single-step execution well, they struggle with long
chains, branching, and generalization, making GAMBIT a comprehensive testbed for mobile agents.
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6 ETHICS STATEMENT

GAMBIT was constructed with careful consideration of privacy, safety and fairness. All task instruc-
tions and screenshots were collected by professional annotators on mobile devices using publicly
available mobile applications and no personal or sensitive user data are included. The dataset con-
tains only synthetic task instructions generated during controlled annotation as stated in Section
ensuring that no private information is exposed. No emulators are used for annotation.

All annotators, co-authors and quality checkers are clearly notified the instruction, meta data and
screenshot usage. Annotators are paid at market price according to local laws and requirements.

All applications were operated in safe environments without accessing sensitive content such as
payments, contacts, or personal communications(all mentioned user profiles, names, emails and
accounts are separately created with no relations to real-world individuals). The dataset is intended
solely for academic research on mobile GUI agents and is released under a non-commercial license
to discourage misuse.

7 REPRODUCIBILITY STATEMENT

Our paper’s main contribution is a benchmark dataset, currently it is available in anonymous code
base for review: https://anonymous.4open.science/r/GAMBIT-40BB/. We would
open-source all instructions, annotated data, screenshots, metadata and sufficient experimental code
(inference and evaluation) for reproducibility. The construction pipeline code, hyperparameters,
settings and prompt swill also be included in open-source code base, including sufficient guidelines.
Our current implementation are under each agents’ official guidance and settings, detailed in code
base.
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A APPENDIX: USE OF LLMS

Our LLM usage are stated in Section (3| and concluded as below. Instruction Augmentation: we
utilized multiple LLMs for expanding human seed atomic instructions, collecting constraints and it-
eratively refinement with human collaboration. Complex Instruction Construction: we utilized mul-
tiple LLMs for construction longer instructions from atomic actions, iterative enhancing and quality
checking (e.g., grammar, coherence, feasibility). We ensured that all LLM generated instructions are
double verified by either paper co-authors or annotators to prohibit unsage/inapproprate instructions,
with essential manual re-writing.

The experiments related to mobile GUI agents are conducted with LLMs, all models (checkpoints,
configurations and licenses) are obtained from their official open-source implementation without
additional training or modification. We did not use LLM-generated contents for paper writing, but
merely grammar checking.

B APPENDIX: LIMITATION

We acknowledge that although GAMBIT covers diverse application categories, platforms (An-
droid/iOS), and bilingual instructions (English/Chinese), it remains limited in cultural and linguistic
scope, including more device brands and models (e.g., Mobile Tablets and iPads), more applica-
tion categories and comparison of same application under different langue settings (e.g., Chinese
applications may contain advertisements compared with their English versions). Future extensions
may address these limitations to ensure broader fairness and inclusiveness. We consider actively
incorporating more downstream application categories such as Medical, Education and Games.

We also acknowledge that current workflows are human-LLM approximation of real-world user
actions, and may not fully reflect all user cases and complex decisions. Additionally, although we
allow annotators mark some tasks as “IMPOSSIBLE”, ambiguous or conflicting tasks may still exist
in real user requests and our dataset has limited coverage for such scenarios.

Despite employing 20 professional annotators and a dual-review process, a small number of ambigu-
ous or unclear low-level instructions may still exist. The linguistic diversity of high-level instructions
remains limited (ambiguous, colloquial phrasing characteristic of real users), with most maintaining
relatively standardized expressions.

We did not systematically verify potential overlap between GAMBIT and other agents’ training data
in this work (although our data are unique by paper submission), so we cannot entirely rule out the
possibility that a small number of task patterns appeared in other agents’ training.

C APPENDIX: PROMPT FOR INSTRUCTION GENERATION

We provide detailed prompt templates for utilizing LLMs for generating complex instructions.
The prompts are available in our code base https://anonymous.4open.science/r/
GAMBIT-40BB/|
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D APPENDIX: ANNOTATION DETAILS

We wrote a standardized annotation guideline for the 20 annotators, with example JSON file format,
example annotated data and other required information. Here we provide a snapshot of our proposed
dataset meta data, with more details available in code base.

Meta Data:
{episode_id: 132,
width: 1170,
height: 2532,
device: {product: Honor X60 Pro
release_version: 14,
sdk_version: 34}
instruction: “First, search YouTube for 'meditation guide 10 minutes' and play the first search result. If
the video title contains 'beginner’, then create a new note in Evernote titled 'Meditation Resources'.
Otherwise, add the video to your 'Watch Later' playlist on YouTube.”
category: selection
app: [Youtube, Evernote]
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{screenshot: ./data/screenshots/132/132_0.jpg,

step_instruction: click search buttom to search, . sand-up comesy
actions: [{action_type: click, O a2
location: [1091,160,1204,242]}]} ©  gamingigitts
0 tech reviews channel K
O live concert streams K
O 'moming yoga routine' K
O 2025 tech =~

D documentaries B -

%)
©.
Q.
@

Step Instruction :
{screenshot: ./data/screenshots/132/132_2.jpg, ajwlejrit]lylulijo]p

step_instruction: click blue search at bottom asdf gh j kI
Someting AboutPokamon Tadng Card £ P h 3
¢ o . .
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Q  medtatonguidediomntes & {SCTeenshot: ./data/screenshots/132/132_1.jpg,
Q medttnguided omnites ¢ Step_instruction: type 'meditation guide 10 Curious why listening e
sleep . o .
Q  medtatongudearommaes  MiNUtes' into the search, to this feels amazing?
moring - . ’
meditation guided 10 minutes K actions: [{actlon_type. tYPe,
anxiety . S g q
- text: meditation guide 10 minute}]}
Gam
a ::g;:::‘unguidedmmmu(es &
@ meditation guided 10 minutes K
Q mds:amnguiaed1nmmmes ~
Q  meditation guided 10 minutesin ¢ Just o fow minutes a day |
hindi Headspace: Meditation & Health
~ meditation auided 10 minutes. ~ Sponsored - 4.4% FREE
a0 to and awey | later © : e
Step Instruction : e -
ajwlefrft]ylulilolp {screenshot: ./data/screenshots/132/132_2.jpg,

a's d fogh ok I step_instruction: scroll down to watch title,

i g i g SELF-LOVE /
CARBRBRARR acnons.[{acpon_type. scroll, ELF-LOV /)
P — orientation: down}]}
we = - o, 2 b= -

Figure 6: Illustration of annotation details and meta data.
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E APPENDIX: STEP LENGTH EXPERIMENTS

Here we provide detailed experimental Results of Agent’s performance across different step length
in compensation to Section @] discussions. Here la denotes atomic action level GP, 1b denotes
atomic action level GP with branching length weighted. 2a denotes step level GP, 1b denotes step
level GP with branching length weighted. 3a denotes the longest common sequence from first step,
3b denotes the longest common sequence from first step with branching length weighted. 4a denotes
the longest common sequence taking all steps into consideration, 4b denotes the longest common
sequence taking all steps into consideration with branching length weighted. 5a denotes the longest
common sequence taking all steps into consideration with task length weighted, 5b denotes the
longest common sequence taking all steps into consideration with branching length and task length
weighted. 6a denotes the longest common sequence percentage, 6b denotes the longest common
sequence percentage with task length weighted.
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Table 5: Model performance(GP) on different step size

1b 2a 2b 3a 3b 4a 4b Sa 5b 6a 6b

la
Model Group  Level Tasks (g, (@) (@) (%) (Abs) (Abs) (Abs) (Abs) (Abs) (Abs) (%) (%)

2.5 steps HL 281 148 276 085 095 0.03 0.06 120 1.31 081 084 2454 2263
P LL 281 63.32 62.72 62.56 61.28 0.75 0.89 290 316 255 275 7253 7139

HL 225 635 882 412 417 017 024 1.58 1.58 085 0.84 1343 13.11

6-8steps |y 226 5403 58.12 5200 5212 115 151 502 509 396 4.02 6202 6191
AGUVIS o2steps HL 222 1079 1232 627 607 028 034 177 179 113 114 1385 1358
PSoL 222 5673 5954 5394 5357 142 171 667 679 549 558 6477 64.51
13s stens HL 351 1049 1099 594 516 033 038 251 257 176 180 13.16 11.80
PS L 351 5932 59.82 5516 5505 191 214 1198 1456 9.78 1179 65.16 64.89
HL 1079 734 994 430 485 021 031 182 218 119 147 1632 1323
Overall

LL 1080 58.72 59.81 56.17 5491 135 179 7.07 1088 580 882 6634 64.98

2.5 steps HL 281 2820 2740 2792 2397 033 037 199 212 125 127 3852 3499
P LL 281 53.05 5501 5257 51.07 0.65 081 277 3.02 244 2.64 69.79 68.59

HL 226 13.09 1646 1142 1142 032 046 256 258 1.27 1.27  20.16 19.83

O-8steps 1y 226 5021 5425 4810 47.65 1.08 142 466 472 373 375 5890 5839

AgentCPM HL 222 1257 1537 895 856 034 045 291 294 137 137 1678 1629

O-12steps 1" 323 5090 5691 47.13 4687 132 167 619 630 478 488 5745 57.36
e stens HL 351 1085 1149 662 592 037 042 401 440 189 203 1352 1237
PS L 351 4550 47.52 3948 3877 152 175 949 1131 722 8.64 49.05 48.28
Overan  HL 1080 1619 1506 1365 867 034 043 296 369 149 174 2209 1600
LL 1080 4956 51.60 4626 4252 116 156 605 879 475 678 5823 53.05
255t HL 281 2586 2485 2528 2095 030 034 194 207 114 114 3539 31.66
osteps 281  69.04 6948 6850 64.83 083 1.02 298 321 250 265 7295 70.05
HL 226 928 1219 728 746 023 033 243 245 108 110 1698 1692

6-8 steps

LL 226 4374 49.78 4175 41.28 097 127 437 441 351 352 5616 55.55

UL-TARS HL 222 1208 1439 777 743 033 042 273 276 132 133 1603 1573

9-12steps 1" 323 4306 4936 3891 3833 110 138 514 521 420 427 5247 5199
3estens HL 351 1199 1253 706 622 040 044 353 380 202 223 1463 1346

PS 11 351 3241 3410 2544 2137 105 120 686 7.39 486 505 3742 3344
overan L 1080 1505 1433 1200 786 032 041 272 328 145 18 2081 1588
verall {10 1080  46.50 4427 4282 30.88 099 123 498 623 383 450 53.68 42.97
5 HL 281 2221 2435 2155 2089 029 040 188 206 124 128 37.15 3475
-5 steps

LL 281 51.63 53.12 50.85 5293 0.63 080 275 3.05 230 254 63.86 64.52

6-8 stens HL 226 1510 1933 1237 1249 039 056 268 270 137 139 21.04 21.03
P LL 226 4506 50.03 43.25 4341 101 136 455 461 348 353 5340 5340

Qwen2.5-VL HL 222 1216 1387 790 748 032 038 283 285 126 126 1556 15.17

9-12steps |y 222 4556 49.67 4214 4130 115 143 564 572 439 443 5331 52.69
13s stens HL 351 1288 1368 830 732 043 049 323 331 202 210 1508 1354
S 1L 351 3581 37.94 2897 2659 119 137 733 800 559 624 3999 37.52
overan  HL 1080 1562 1594 1252 9.7 036 047 268 303 152 178 2217 1662
LL 1080 43.87 4435 4036 3383 100 132 521 670 4.04 523 5174 4478
HL 281 1349 1344 1311 1146 016 019 1.66 181 108 112 3282 30.08

2-5 steps

LL 281 5294 54.80 5235 5140 0.66 082 276 3.02 245 2.67 69.29 68.51

6-8 stens HL 226 885 1219 678 673 023 035 198 199 097 097 1551 1519
P LL 226 41.84 47.73 3858 38.03 095 129 415 418 341 342 5373 53.04

0S-Atlas-Pro o.12steps HL 222 961 1182 666 650 028 036 241 244 113 113 1330 13.03
PS 1L 222 3486 39.96 2928 2842 091 116 447 450 361 3.63 4457 4377

13+ steps HL 351 921 957 535 480 030 034 320 343 1.60 174 11.23 10.37
P LL 351 2614 27.39 18.65 1655 086 097 495 507 403 419 3016 27.17

HL 1080 1033 1096 7.94 594 025 033 238 291 1.24 1.47  18.17 13.17

Overall 1080 38.19 36.83 3377 2457 084 105 411 467 340 385 4823 3721
»5steps  HL 281 645 7.67 580 549 009 013 119 129 077 078 23.56 21.47
S L 281 946 1619 861 961 019 039 205 228 176 192 4881 49.12
6-8steps  HL 226 58 934 404 434 048 030 174 175 070 072 1082 11.01
S L 226 2417 3429 2019 2104 074 118 351 350 287 286 4380 43.30
InfiGUI 012 steps HL 222 824 1037 483 479 023 031 209 208 090 088 1111 1078
PS oL 222 2696 3552 1990 2017 0.83 119 399 401 310 312 38.16 3826
3esteps HL 351 683 760 353 309 024 029 295 325 096 099 738 6.60
PS L 351 2419 2571 1672 1498 082 097 496 511 367 376 2785 24.68
Overan  HL 1080 682 848 450 374 019 028 206 271 084 092 1308 9.03
LL 1080 2092 2824 1599 1627 0.64 099 370 450 289 339 3876 3130
»5steps  HL 281 592 852 528 598 0.0 020 145 158 096 098 28.84 2676
S L 281 925 1790 823 1039 021 047 216 244 193 216 5227 54.02
6.8 st HL 226 845 1293 635 691 025 041 215 216 104 106 1597 1627
"o steps 226 2745 3896 2288 2379 083 131 400 401 333 335 5L12 5095
IiGULtk o eps HL 222 1075 1378 659 675 030 042 237 236 LI4 114 1420 1406
PS oL 222 3104 4058 2344 2376 095 135 470 472 375 377 4567 4577
134 st HL 351 1011 1117 586 514 035 043 354 397 137 136 1065 944
steps 351 3110 3347 2252 2093 1.08 128 605 625 457 474 3403 30.75
H 1080 881 1175 596 571 025 040 247 327 114 126 1723 1243

Overall

LL 1080 24.64 34.35 19.06 21.01 0.78 122 433 541 346 420 4474 3774
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F APPENDIX: ACTION TYPE EXPERIMENTS

Here we provide detailed experimental Results of Agent’s performance across different action types
in compensation to Section [#.4] Q2 discussions.

Table 6: Model performance on different action types

Model Action Type Eval Level Count Type Acc(%) ExactAcc (%)

AGUVIS-7B CLICK LL 7542 99.84 91.65
HL 7269 67.48 34.68
TYPE LL 1122 95.28 91.89
HL 1063 28.69 23.52

SCROLL LL 1563 99.04 87.33
HL 1507 14.27 11.02

STOP LL 1460 86.85 86.85

HL 1422 0.00 0.00

LONG_PRESS LL 74 94.59 48.65

HL 70 1.43 1.43

PRESS LL 262 93.13 93.13

HL 355 53.80 53.80

Overall LL 12023 97.55 90.29

HL 11686 48.07 26.78

AgentCPM-GUI-7B CLICK LL 7545 97.27 88.30
HL 7579 86.50 54.24

TYPE LL 1105 89.32 84.98

HL 1121 64.67 52.45

SCROLL LL 1564 98.27 96.61

HL 1561 45.42 41.83

STOP LL 1460 79.79 79.79

HL 1461 66.19 66.19

LONG_PRESS LL 73 82.19 36.99

HL 74 2.70 1.35

PRESS LL 260 29.62 29.62

HL 231 39.39 39.39

Overall LL 12007 92.99 86.46

HL 12027 75.25 53.31

UI-TARS-SFT-7B CLICK LL 7517 99.16 79.01
HL 7464 88.45 54.74

TYPE LL 1124 94.40 89.15

HL 1121 64.32 53.35

SCROLL LL 1101 99.00 94.19

HL 1196 52.34 47.74

STOP LL 1460 99.04 99.04

HL 1455 44.81 44.81

LONG_PRESS LL 74 0.00 0.00

HL 74 0.00 0.00

PRESS LL 291 53.95 53.95

HL 281 35.23 35.23

Overall LL 11567 96.90 82.83

HL 11591 75.06 51.82

Qwen2.5-VL-7B CLICK LL 7562 93.12 83.21
HL 7564 67.41 4479

TYPE LL 1124 84.34 81.49

HL 1123 53.25 48.00

Continued on next page

18



Under review as a conference paper at ICLR 2026

Table 6 — Continued from previous page

Model Action Type  Eval Level Count Type Acc(%) ExactAcc (%)
SCROLL LL 1564 81.01 46.04
HL 1561 15.25 11.40
STOP LL 1460 89.86 89.86
HL 1465 79.66 79.66
LONG_PRESS LL 73 60.27 50.68
HL 74 0.00 0.00
PRESS LL 239 51.46 51.46
HL 231 25.54 25.54
Overall LL 12022 89.30 78.19
HL 12018 59.59 44.36
0OS-Atlas-Pro-7B CLICK LL 7364 94.96 74.66
HL 7587 86.37 48.53
TYPE LL 1054 85.67 82.16
HL 1123 54.50 44.43
SCROLL LL 1517 48.65 28.94
HL 1561 29.85 26.71
STOP LL 1459 67.31 67.31
HL 1457 35.55 35.55
LONG_PRESS LL 71 57.75 32.39
HL 74 0.00 0.00
PRESS LL 224 72.32 72.32
HL 223 57.85 57.85
Overall LL 11689 84.00 68.18
HL 12025 68.84 43.62
InfiGUI-R1-3B tk Click LL 7576 97.94 88.79
HL 7576 88.56 55.16
Type LL 1125 89.78 86.84
HL 1125 57.24 49.33
Scroll LL 1561 96.28 7.69
HL 1561 41.38 23.45
Complete LL 1448 8.91 8.91
HL 1448 9.05 8.98
Long Press LL 74 87.84 58.11
HL 74 1.35 1.35
Navigate Home LL 209 90.91 0.96
HL 209 48.80 42.58
Navigate Back LL 22 90.91 86.36
HL 22 54.55 18.18
Wait LL 13 100.00 100.00
HL 13 7.69 7.69
Impossible LL 1 0.00 0.00
HL 1 0.00 0.00
Overall LL 12029 86.04 66.76
HL 12029 68.55 44.27
InfiGUI-R1-3B Click LL 7576 87.04 79.14
HL 7576 75.17 46.57
Type LL 1125 85.16 82.67
HL 1125 54.22 4791
Scroll LL 1561 81.81 5.64
HL 1561 3242 20.24
Complete LL 1448 10.43 10.43
HL 1448 17.47 17.40
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Table 6 — Continued from previous page

Model Action Type  Eval Level Count Type Acc(%) ExactAcc (%)
Long Press LL 74 79.73 47.30
HL 74 1.35 1.35
Navigate Home LL 209 88.52 4.31
HL 209 45.93 39.71
Navigate Back LL 22 77.27 72.73
HL 22 4091 18.18
Wait LL 13 100.00 100.00
HL 13 7.69 7.69
Impossible LL 1 0.00 0.00
HL 1 0.00 0.00
Overall LL 12029 76.93 60.17
HL 12029 59.61 39.27
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G APPENDIX: PLATFORM EXPERIMENTS

Here we provide detailed experimental Results of Agent’s performance across different platforms in
compensation to Section 4.4 Q2 discussions.

Table 7: Model performance on iOS and Android devices

Model Level Metric iOS Devices Android Devices Overall
LL EM 75.49% 82.96% 79.32%

AgentCPM-GUI-$B ™ 89.11% 91.11% 90.13%
HL EM 42.02% 55.19% 48.77%

™ 68.87% 80.74% 74.95%

LL EM 73.54% 86.38% 79.96%

ULTARS-7B ™ 94.16% 99.22% 96.69%
HL EM 39.30% 49.02% 44.14%

™ 73.15% 78.43% 75.78%

LL EM 66.15% 71.11% 68.69%

Qwen2.5-VL-7B ™ 81.32% 85.93% 83.68%
HL EM 33.85% 37.04% 35.48%

™ 53.31% 57.78% 55.60%

LL EM 63.89% 62.31% 63.08%

0S-Atlas-Pro-7B ™ 86.51% 82.09% 84.23%
HL EM 34.63% 39.63% 37.19%

™ 64.59% 66.30% 65.46%

LL EM 82.10% 88.89% 85.58%

AGUVIS-7B ™ 95.72% 99.26% 97.53%
HL EM 19.43% 27.17% 23.44%

™ 53.44% 57.36% 55.47%

LL EM 66.15% 65.70% 65.92%

InfiGUI-R1-3B thinking ™ 81.54% 90.97% 86.41%
HL EM 32.69% 37.91% 35.38%

™ 65.77% 67.87% 66.85%

LL EM 59.23% 54.87% 56.98%

InfiGUI-R1-3B ™ 70.00% 78.70% 74.49%
HL EM 29.62% 38.99% 34.45%

™ 56.15% 64.98% 60.71%
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H APPENDIX: LANGUAGE EXPERIMENTS

Here we provide detailed experimental Results of Agent’s performance across different languages
in compensation to Section [#.4] Q2 discussions.

Table 8: Model performance on Chinese(CN) and English(EN) instructions

Model Name Language Level TM EM EN-CN Difference
33 EIL“ 22'22 38'22 TM: +0.36, EM: -0.43
OS-Atlas-Pro-7B . .
CN LL 8368 66.86 . .
EN LL 8368 6979 TM:0.00,EM:+2.93
(1:31131 Eﬁ 2;‘23 fégg TM: -5.96, EM: -2.46
Qwen2.5-VL-7B . .
CN LL 9511 86.14 _ _
EN LL 9202 160 [ M:-3:09EM:-4.54
§§ Eﬁ f{;'gg gg'gi TM: -4.36, EM: -1.61
AGUVIS-7B : .
CN LL  96.69 8893 , ‘
EN L 9756 olgg TM:+0.87 EM:+2.95
§§ Eﬁ ggg% jggg TM: -1.24, EM: +3.01
UI-TARS-7B : .
CN LL  96.76 80.44 ‘ ‘
gg gi ;%g; 2(3)8; TM: +0.14, EM: +3.02
AgentCPM-GUI-8B . .
CN LL 9324 8821 . .
EN LL 9339 8850 TM: +0.15, EM: +0.29
(Ejg EIE gggg 2(7)23 TM: +7.39, EM: +6.76
InfiGUI-R1-3B : :
CN LL 7284 55.17 _ .
Eﬁ Eﬁ 23}3; j(l)'% TM: -2.01, EM: -0.58
InfiGUI-R1-3B thinking : .
CN LL 8728 65.73 ‘ ‘
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