

000 001 002 003 004 005 GAMBIT: A GRAPH-STRUCTURED AND DECISION- 006 AWARE BENCHMARK FOR MOBILE GUI TASKS 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Mobile GUI agents powered by LMMs can perceive screens and follow instructions, yet existing benchmarks largely target short, linear workflows and step-level accuracy, offering limited insight into long-horizon planning and branching tasks. We present GAMBIT, a graph-structured, decision-aware benchmark comprising 830 task episodes and 11,345 actions across 35 applications on Android and iOS. Tasks are organized into Sequential, Conjunctive, Conditional, and Hierarchical workflows with dual-level annotations, capturing realistic multi-step and branching scenarios. To move beyond step metrics, we introduce weighted longest common subsequence for length-sensitive progress and decision accuracy for branch correctness. Evaluations on 7 diverse agents show that GAMBIT induces a substantial accuracy drop compared to prior datasets, with success rates falling below 5% on 6–8 step tasks and branch accuracy averaging 38%, underscoring weaknesses in conditional reasoning. By systematically exposing these failure modes, GAMBIT provides a challenging, diagnostic testbed for advancing decision-aware mobile GUI agents. Our code and dataset are available at: <https://anonymous.4open.science/r/GAMBIT-40BB/>.

1 INTRODUCTION

029 Recent advances in Large Multimodal Models (LMMs) have substantially improved capabilities in
030 visual content understanding Yin et al. (2024), following complex instructions Wen et al. (2024a);
031 Qin et al. (2024), and planning multi-step tasks Li et al. (2024a), paving the way for autonomous
032 agents in real-world applications. Within this broader landscape of agents, ranging from tool-use
033 and function calling systems Fan et al. (2024); Shen et al. (2023), to embodied agents and domain-
034 specific assistants, graphical user interface (GUI) agents have emerged as a practical and versatile
035 paradigm. By perceiving screen content and executing structured actions, GUI agents can operate
036 existing software environments Liu et al. (2024b); Zhang et al. (2024a); Hu et al. (2025). Among
037 them, mobile GUI agents Chai et al. (2025); Jiang et al. (2025) have attracted increasing attention
038 due to their wide relevance across everyday applications and the ubiquity of smartphones. Accord-
039 ingly, growing efforts have been devoted to developing mobile GUI agents that simulate user
040 interactions and automate routine tasks on devices Ye et al. (2025); Tang et al. (2025).

041 Systematic evaluation of mobile GUI agents is therefore critical, both to assess current capabili-
042 ties and to identify limitations that guide future development. Existing benchmarks, however, vary
043 widely in their scope and emphasis. Li et al. (2025) focus primarily on GUI element grounding and
044 visual understanding, providing the perceptual foundation for agent actions. Rawles et al. (2023)
045 and Zhang et al. (2024b) extend to single-step and multi-step instruction execution, with the latter
046 incorporating step-wise reasoning. Li et al. (2024b) highlights task difficulty by varying instruction
047 length and step count, and Lu et al. (2024) pushes toward cross-app scenarios that require layout
048 adaptation and app switching. More recently, Zhang et al. (2025c) emphasizes Chinese application
049 layouts and bilingual instructions beyond English-centric focus of prior datasets.

050 Despite these advances, current datasets and benchmarks still exhibit three major limitations. 1)
051 **Limited instruction diversity.** Most benchmarks expand tasks by template substitution or lin-
052 ear concatenation of short instructions Chen et al. (2024); Lu et al. (2024). Such construction not
053 only produces semantically repetitive tasks, but also reflects the biases of a small set of annotators'
brainstorming habits. Moreover, action descriptions often reuse the same phrasing and constraints,

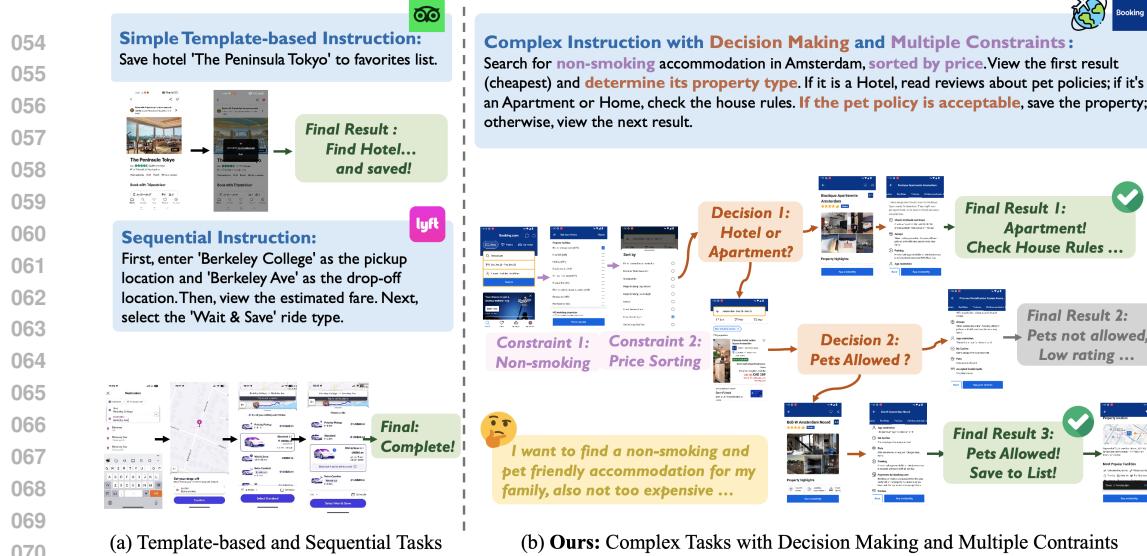


Figure 1: Illustration of conventional step-based tasks with linear chains versus our proposed graph-structured tasks incorporating decision-making and branching conditions.

failing to capture the richness of real-world user instructions. 2) **Overly sequential workflows.** Existing datasets predominantly formalize tasks as linear step-by-step chains with few constraints, overlooking decision-aware behaviors involving conditional branching, fallback strategies, or multi-condition constraints. In realistic scenarios, users routinely adapt their workflows (e.g., “*purchasing a high-priced item if the cheaper one is out of stock*”, or “*adjusting travel plans based on weather forecasts*”). 3) **Inadequate evaluation protocols.** Current metrics focus on step-level correctness or holistic task success rate. These measures neither weight longer workflows appropriately nor capture decision accuracy at branching nodes, leaving gaps in assessing agents’ robustness to task complexity and structural variability. These limitations hinder systematic evaluation of mobile GUI agents’ capabilities in long-horizon, decision-aware, and cross-context scenarios.

To address these limitations, we introduce **GAMBIT**, a complex benchmark for evaluating mobile GUI agents on long-horizon and decision-aware tasks. We propose a human-LLM collaborative **atomic instruction and constraint pipeline**, which composes diverse atomic actions into **Graph-structured Complex Tasks** spanning Sequential, Conjunctive, Conditional and Hierarchical workflows. A mixture-of-generators task construction and dual-layer quality control process ensures both executability and diversity. GAMBIT comprises 830 task episodes with 11,345 actions steps, covering 35 applications across 7 mainstream categories on both Android and iOS platforms, with dual-level annotations and an average depth of 13.3 steps. To complement the dataset, we design decision-sensitive evaluation metrics that weight long-horizon steps and explicitly measure branching accuracy, providing a more faithful reflection of agent capability than conventional step-level exact-match or success-rate metrics. These establish GAMBIT as a challenging and diagnostic benchmark for analyzing current mobile GUI agents, exposing their bottlenecks and guiding future progress in agent design. Our key contributions are as follows:

1. We release **GAMBIT**, the first benchmark targeting long-horizon, decision-aware mobile GUI tasks, covering diverse application scenarios that are representative of everyday usage.
2. **Principled construction pipeline:** we design a collaborative pipeline that expands atomic instructions with constraints and composes them into graph-structured tasks, ensuring both realism and semantic diversity.
3. **Decision-sensitive Evaluation:** we propose metrics that go beyond step-level exact match and global success rate by weighting long-horizon steps and explicitly measuring branching accuracy.
4. **Comprehensive evaluation:** we conduct systematic experiments across 7 general-purpose, mobile-specialized, and reasoning-oriented agents, revealing critical bottlenecks and providing diagnostic insights for future model development.

108 **2 RELATED WORK**

110 Prior efforts in mobile GUI benchmark construction can be grouped into three following paradigms.
 111 1) Human Handicraft Designed Instructions: AITW Rawles et al. (2023) categorizes tasks based
 112 on the number of action steps into multiple-step and single-step categories. Multiple-step tasks
 113 are obtained through human annotation, technical documentation, and LLM-enhanced instructions,
 114 while single-step tasks are derived by extracting shorter action sequences from longer action se-
 115 quences. AITZ Zhang et al. (2024b), built upon AITW, further filtered out incorrect or mismatched
 116 instructions and utilized GPTs to assist in proofreading task instruction semantic descriptions. Other
 117 mainstream datasets and benchmarks Rawles et al. (2024); Sun et al. (2022); Li et al. (2020); Wen
 118 et al. (2024b); Lee et al. (2024) widely adopted such human written instructions to simulate real-
 119 world user cases by either crowd sourcing or mimicking daily user case and routine. 2) Extracted
 120 and generated from large-scale dataset or website Liu et al. (2025a); Chai et al. (2024); Zhang et al.
 121 (2025b); Android-arena Xing et al. (2024) identify webpage and descriptions related to application
 122 functionality through web retrieval, then store these software descriptions in a vector database, and
 123 finally utilize an LLM to reconstruct app tasks instructions from them. 3) Expand based on exist-
 124 ing instructions and template replacement: GUI-Odyssey Lu et al. (2024) through manually brain-
 125 storming instruction task templates, through template substituting the application name or action
 126 description, quickly expand current instruction to a large-scale dataset and finally rewrite with GPT-
 127 4. SPA-Bench Chen et al. (2024) first start with single-step instruction and through expanding one
 128 action at a time to obtain long chain instruction and finally achieve difficulty rising. Despite these
 129 efforts, existing benchmarks exhibit limitations: heavy reliance on human annotation or template
 130 substitution, limited instruction diversity, and a bias toward chain-like workflows. Consequently,
 131 they fall short of simulating the decision-making and judgment-based behaviors seen in real user
 132 operations, which highlights the key design principles detailed in Section 3.

132 **3 GAMBIT**

134 **3.1 TASK FORMULATION**

136 The **GAMBIT** dataset consists of a set of k mobile GUI task episodes $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ gen-
 137 erated from m candidate mobile applications $\mathcal{A} = \{A_1, A_2, \dots, A_m\}$. As illustrated in Fig 2, for
 138 each application A_i , we define an *atomic instruction* set $\{(i_n, c_n) | A_i\}_{n=1}^N$, where i_n represents an
 139 available instruction for this application and c_n specifies its associated constraint (if applicable). Fol-
 140 lowing prior work Lu et al. (2024); Rawles et al. (2023); Li et al. (2024b), each task T_j is represented
 141 as a sequence of GUI interaction episodes:

$$T_j = \{(I, i_t, c_t, g_t, a_t)\}_{t=1}^T, \quad (1)$$

144 where I denotes the global natural language instruction for the task, i_t is the atomic instruction for
 145 step t , c_t is the constraint, g_t is the screenshot at the current step, and a_t is the executed GUI ac-
 146 tion. Notably, an atomic instruction i_t may internally correspond to multiple low-level GUI actions
 147 and their associated screenshots, while still being treated as a single high-level instruction in our
 148 formulation.

149 **3.2 ATOMIC INSTRUCTION AND CONSTRAINT COLLECTION**

151 Previous mobile GUI benchmarks typically scale instructions through template substitution or lin-
 152 early concatenation, which restricts semantic diversity and overlooks realistic application-specific
 153 constraints (e.g., “share via social media” is a generic action appearing across apps regardless of
 154 their distinctive functionalities). To address these limitations, we design a structured, multi-stage
 155 pipeline combining human knowledge, LLMs augmentation and rigorous filtering. As illustrated in
 156 Fig 2(a), the pipeline consists of: 1) **Human Seeding**: annotators curate a seed set of core executable
 157 atomic instructions for each application A_i , reflecting its essential user interactions. 2) **LLM-
 158 Augmentation**: to expand beyond the handcrafted set, multiple LLMs (e.g., GPT-4, Claude,
 159 DeepSeek) are prompted with the application name, app-store description and seed set to iter-
 160 atively generate additional atomic instructions aligned with the app’s functionality. 3) **Constraint
 161 Induction**: for each atomic instruction, LLMs propose up to three candidate constraints grounded
 162 in application context. Constraints are categorized into a compact taxonomy, including numeric

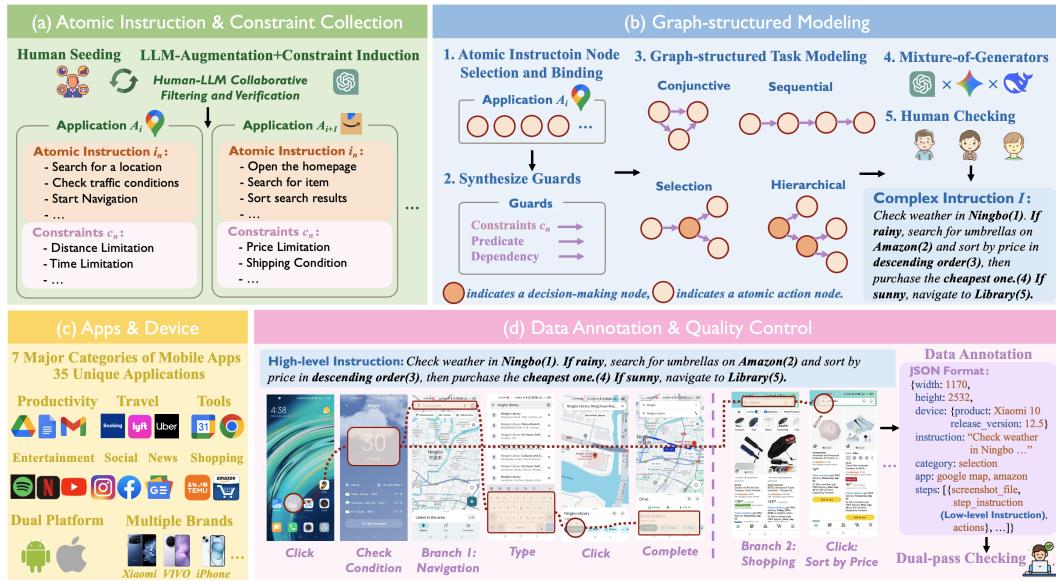


Figure 2: Illustration of GAMBIT construction pipeline.

ranges (e.g., “*price within budget*”), thresholds (e.g., “*rating* ≥ 4.5 ”), boolean attributes (e.g., “*free shipping*”), temporal conditions (e.g., *set the event start time to 3:00 p.m.*) and preference-based filters (e.g., “*find news related to Sports*”). 4) **Filtering and Verification**: automated LLM-based pre-filtering removes infeasible or redundant outputs, followed by human-in-the-loop verification to ensure executability, realism and diversity. Instructions with trivial slot-filling entities or merely superficial lexical variation are rejected (e.g., “*search for Sports news*” v.s. “*find news related to Technology*” are considered duplicates at the atomic instruction level.), and only semantically distinct variations are retained. This pipeline yields a diverse library of atomic instructions enriched with task and application-specific constraints, laying a solid foundation for constructing graph-structured complex tasks in subsequent section.

3.3 COMPLEX TASK INSTRUCTION CONSTRUCTION

Building on these atomic instructions, we construct **Graph-structured Complex Tasks** that better approximate real-world user workflows. Each task is modeled as a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where nodes $v \in \mathcal{V}$ are *atomic instructions* and edges $e \in \mathcal{E}$ are annotated with *guards* (constraints, predicates, or dependencies) specifying valid transitions. Each node is linked to the corresponding screenshot g_t at execution step t , while guards may reference GUI state (e.g., stock availability, rating) or contextual signals (e.g, time, weather).

Graph Topologies. As illustrated in Fig 2(b), we instantiate four canonical graph structures tailored to **atomic action-centric** mobile GUI tasks, extending beyond conventional template-substitution datasets by incorporating **branching and long-horizon reasoning**: 1) **Conjunctive**: multiple goals that must all be satisfied, with flexible ordering unless constrained by guards. 2) **Sequential**: a long linear workflow of atomic instructions. 3) **Conditional**: a task consisting of a binary decision node with two guarded branches (if/else). 4) **Hierarchical**: a multi-level decision tree formed by stacking conditional nodes to capture sophisticated fallback and adaptive behaviors.

Generation Process. Given an application \mathcal{A}_i with its atomic instruction set $\{(i_n, c_n) | \mathcal{A}_i\}_{n=1}^N$, we first sample a target graph topology $\tau \in \{\text{Conjunctive, Sequential, Conditional, Hierarchical}\}$ with desired graph length and branching depth. A reasoning LLM Team et al. (2023); Anthropic (2025); Liu et al. (2024a) is then prompted to: **select and bind nodes** by choosing a coherent subset of atomic instructions, **synthesize guards** to edges, and **construct the task** by generating a global natural-language instruction I .

Quality Control. We observe complementary behaviors across models: GPT models Achiam et al. (2023) combine atomic instructions coherently but may generate overly rigid or unrealistic rules (e.g., “*follow a post if likes are odd, else comment*”); Deepseek Liu et al. (2024a) produces detailed rationales and explicit restructuring process, but often yields shallow rearrangements lacking

Table 1: Comparison of GUI agent benchmarks

Dataset	Unique Inst.	Apps	Avg. Steps	High-level & Low-level?	GT	Decision-making?	Platform	Cross-App?
PixelHelp Li et al. (2020)	187	4	4.2	high-level	✓		Single	
MoTIF Burns et al. (2021)	276	125	4.5	high-level & low-level	✓		Single	
AITW Rawles et al. (2023)	30,378	357	6.5	high-level	✓		Single	
AITZ Zhang et al. (2024b)	2,504	70	7.5	high-level & low-level	✓		Single	
AndroidControl Li et al. (2024b)	15,283	833	4.8	high-level & low-level	✓		Single	
AMEX Chai et al. (2024)	2946	110	12.8	high-level	✓		Single	
GUI Odyssey Lu et al. (2024)	8,334	212	15.3	high-level & low-level	✓		Single	✓
AppAgent Zhang et al. (2025a)	45	10	/	high-level			Single	
MobileAgentBench Wang et al. (2024)	101	10	/	high-level			Single	
Meta-GUI Sun et al. (2022)	1,125	11	5.3	high-level	✓		Single	
AndroidWorld Rawles et al. (2024)	/	20	/	high-level			Single	✓
Ours	830	35	13.3	high-level & low-level	✓	✓	Android & iOS	✓

sequential logic; Gemini Team et al. (2023) generates more consistent sequential and branching workflows with realistic decision rules. To leverage complementary model strengthens, we adopt a **mixture-of-generators strategy**, sampling multiple LLMs to generate complex task instructions. All candidate tasks then undergo LLM-based cross-checking for feasibility, coherence, and realism, followed by double-pass human verification to prune trivial variations and ensure semantic diversity. This pipeline yields a library of decision-aware tasks that reflect realistic and adaptive mobile GUI interaction patterns under dynamic conditions, forming the core of GAMBIT and enabling a fine-grained evaluation in Section 4.

3.4 DATA ANNOTATION AND QUALITY CONTROL

Setup. We employed 20 professional annotators to label the complex mobile GUI task instructions. Each annotator was provided with the complete **high-level** instruction I , the constructed complex task instruction, and asked to decompose it into step-by-step actions. For each execution step, annotators wrote a corresponding **low-level** (step-level) instruction, i.e., a natural-language description of the specific action aligned with the current screenshot. Following the protocol of prior work Li et al. (2024b); Lu et al. (2024), this schema enables us to separately evaluate agent performance at both high-level and low-level granularity. Annotation was performed on Android and iOS devices using real phones. A customized annotation tool recorded interaction data and exported outputs into a unified JSON schema.

Annotation. For each step in a task episode, annotators provided the screenshot, low-level (step-level) instruction, action type, and action parameters. Action types were restricted to a predefined set: {Click, Scroll, Type, Navigate to Home, Navigate to Previous Page, Long Press, Complete}. Metadata such as episode IDs, device information, and screenshot dimensions were automatically logged, more details are in Appendix D.

Quality Control. To ensure realism, annotators could flag a task as “IMPOSSIBLE” if it violated application usage conventions or could not be executed as instructed. After annotation, the dataset underwent a three-stage quality review: two independent proofreaders and co-authors cross-checked all entries to eliminate residual errors and confirm task executability.

3.5 DATASET STATISTICS

We summarize the statistics of GAMBIT in Tab 1. The dataset contains 830 complex task episodes spanning 11,345 actions steps, covering 35 mainstream mobile applications across 7 major categories (Productivity, Travel, Tools, Entertainment, Social Networking, News, Shopping and Payment). For instruction complexity, the average high-level instruction length is 32.54 tokens, which is 18.39% longer than previous commonly used dataset Chai et al. (2024). Each task contains on average 3.2 atomic actions and 4 constraints, while the average task depth is 13.3 steps. For graph topology diversity, GAMBIT instantiates four graph workflow topologies: Conjunctive (24.3%), Sequential (33.4%), Conditional (24.0%), and Hierarchical (18.3%). In addition, 12.5% of tasks are cross-app, further emphasizing task complexity. We also include 250 single atomic instruction tasks as an ablation control group to assess dataset quality and difficulty relative to prior benchmarks. For platform coverage, dataset comprises 881 tasks on Android (version 11 to 15) and 199 tasks on iOS (version 18.5), ensuring multi-platform generalization. In total, 14.1% of tasks are available on both systems, while the remainder are platform-specific. Data collection spans 8 phone brands and 16 device models, further enhancing the robustness of GAMBIT.

270 Tab 1 provides a detailed comparison with prior datasets and benchmarks, demonstrating the significant
 271 strengths of GAMBIT in instruction length, branching decision making structures, cross-app
 272 coverage, platform diversity, and dual-level annotation (high-level and low-level), thereby establish-
 273 ing a more challenging and realistic benchmark for evaluating mobile GUI agents.
 274

275 **3.6 EVALUATION METRIC**
 276

277 Prior mobile GUI benchmarks typically adopt metrics such as **Exact Match** (EM), **Type Match**
 278 (**TM**), **Success Rate** (SR) and **Goal Progress** (GP). EM Li et al. (2024b) requires both agent’s
 279 predicted action type and parameters to match the ground truth, while TM only checks the action
 280 type. SR measures whether all steps in an episode are executed correctly, but collapses into a binary
 281 outcome that is often very low for long instructions and fails to indicate which specific actions
 282 caused failure. GP measures the fraction of consecutive correct steps from the beginning of the task,
 283 but cannot capture branching structures.

284 As a result, existing evaluation protocols fail to capture two key aspects: **task length sensitivity**,
 285 where longer and more complex workflows should contribute more heavily to overall performance,
 286 and **decision accuracy in branching structures**, which is essential for realistic mobile task exe-
 287 cution. To address these gaps, we introduce two complementary metrics: 1. **Weighted Longest**
 288 **Common Subsequence (W-LCS)**: $W-LCS = \sum_{i \in LCS} w_i$, where $w_i = \frac{i}{Length(\mathcal{T}^*)}$. For a given
 289 predicted task sequence $\hat{\mathcal{T}}$ and gold sequence \mathcal{T}^* , we compute the longest common subsequence
 290 with task length-dependent weights. This assigns higher weights to longer decision branches, em-
 291 phasizing correctness in long-horizon planning. We also compute **Decision Accuracy** and discuss
 292 in Section 4.3. For tasks represented as graphs, we evaluate the accuracy of branch decisions at each
 293 conditional edge.

294 **4 EXPERIMENTS**
 295

296 **4.1 EXPERIMENT SETTING**
 297

298 We comprehensively evaluate existing GUI agents on GAMBIT. The evaluated agents span three
 299 categories: 1) **General-purpose GUI agents** trained on a mixture of desktop, web and mobile en-
 300 vironments, including AGUVIS-7B Xu et al. (2024), UI-TARS-7B Qin et al. (2025), Qwen2.5-VL-
 301 7B Bai et al. (2025), OS-Atlas-Pro-7B Wu et al. (2024); 2) **Mobile-specialized agents** optimized for
 302 mobile GUI interactions, AgentCPM-GUI-8B Zhang et al. (2025c); 3) **Reasoning agents** incor-
 303 porating explicit reasoning process, InfiGUI-R1-3B and Infigui-R1-3B (thinking) Liu et al. (2025b).
 304 Following established evaluation protocols Zhang et al. (2025c); Lu et al. (2024), each agent is pro-
 305 vided with the global high-level instruction I , low-level (step-level) instruction i_t , constraint c_t (if
 306 applicable) and corresponding screenshot g_t at each step t . Experiments are conducted according
 307 to each agent’s official implementation for fairness and reproducibility. Since the action type sets
 308 supported by each agent vary, we performed a unified mapping to our predefined set in Section 3.4
 309 to ensure consistent evaluation.
 310

311 **4.2 MAIN RESULTS**
 312

313 Tab 2 reports the overall performance of evaluated agents on GAMBIT, we observed several key
 314 findings. Our benchmark contains a difficulty gradient and shows as a clear SR and GP degrade
 315 monotonically with topology complexity increases. On the most complex Hierarchical subset, the
 316 average SR falls to 14.00% even under low-level instructions, and GP averages merely 13.10% under
 317 high-level instructions. Among all agents, AGUVIS-7B achieves the highest 89.81% overall EM
 318 with low-level setting and AgentCPM-GUI-7B with the highest 53.31% EM with high-level setting.
 319 InfiGUI-R1-3B-thinking shows the smallest degradation (2.38%) from Conjunctive/Sequential to
 320 Conditional/Hierarchical, suggesting strongest robustness to length and structural variation. These
 321 agent’s top performance highlights a wider coverage of task and more robust to structural variation
 322 in their training.
 323

Comparison with prior benchmarks. To ensure the difficulty of GAMBIT is not inflated by data
 324 collection (e.g., artificially extended step descriptions or redundant GUI elements), we include a

324 Table 2: Main results for mobile GUI agents. “InfiGUI-R1-3B tk” indicates the thinking mode for
325 InfiGUI-R1-3B, and this notation remains in following tables.

Model	Level	Single				Conjunctive				Sequential				Conditional				Hierarchical			
		EM	TM	SR	GP																
AGUVIS-7B	LL	87.81	95.55	72.40	72.47	88.75	97.56	50.00	61.39	90.70	97.87	41.88	59.55	90.51	97.07	49.25	72.46	91.30	98.32	33.55	67.18
	HL	42.59	59.44	32.00	26.91	33.33	60.01	3.48	11.75	26.71	49.18	0.36	11.86	22.49	41.27	16.83	21.54	42.38	0.66	12.42	
UI-TARS-7B	LL	87.11	97.20	63.60	70.03	79.51	97.37	26.24	44.61	80.72	96.62	24.55	43.76	85.33	96.18	26.13	59.11	83.36	97.51	15.79	49.79
	HL	63.34	79.56	31.60	35.68	53.97	78.25	3.96	14.49	55.03	79.31	2.53	16.48	48.63	69.64	1.01	18.71	45.93	71.87	0.66	15.39
Qwen2.5V-7B	LL	79.90	91.21	62.80	59.99	81.26	92.98	36.14	51.76	76.62	87.94	24.19	46.25	80.44	91.65	19.10	51.61	75.68	86.08	11.18	48.32
	HL	58.55	73.53	38.00	35.66	53.66	71.43	5.45	17.45	44.80	59.01	4.33	18.70	41.82	57.53	1.01	19.54	36.31	50.99	0.66	16.02
OS-Atlas-Pro-7B	LL	80.99	90.94	67.60	67.32	74.94	90.02	31.19	47.03	67.10	83.76	18.05	39.53	68.51	82.75	16.58	46.34	60.98	79.74	4.61	36.78
	HL	54.31	70.38	36.40	33.12	46.21	73.38	6.44	16.25	47.34	72.09	1.44	12.95	40.03	65.04	0.00	14.10	37.57	65.60	0.00	10.96
AgentCPM-GUI-8B	LL	83.85	90.14	68.80	69.05	84.20	93.26	41.09	54.09	86.77	93.91	28.16	49.82	86.95	92.42	33.17	61.06	87.74	93.26	19.08	57.58
	HL	62.48	75.82	32.40	35.73	57.94	78.14	8.91	21.53	55.97	78.84	2.53	16.90	50.39	71.23	1.01	18.15	47.28	73.03	0.66	15.00
InfiGUI-R1-3B	LL	58.26	71.98	59.60	46.93	61.48	75.09	25.74	38.57	62.81	80.26	13.00	35.58	57.87	74.71	9.55	38.29	59.18	77.81	3.95	32.00
	HL	37.58	50.63	27.20	24.11	38.03	57.39	0.99	10.19	42.73	63.38	1.08	8.91	37.07	56.30	0.00	10.49	38.54	62.58	0.66	9.75
InfiGUI-R1-3B tk	LL	60.97	74.11	65.60	49.28	69.78	84.74	34.65	44.29	69.77	89.80	22.74	43.14	63.57	83.80	17.09	44.20	66.53	88.53	9.87	41.52
	HL	44.35	63.29	35.60	28.77	44.99	70.57	4.95	14.08	49.06	73.32	1.81	12.59	40.28	63.82	2.01	16.21	41.97	68.08	0.00	12.22

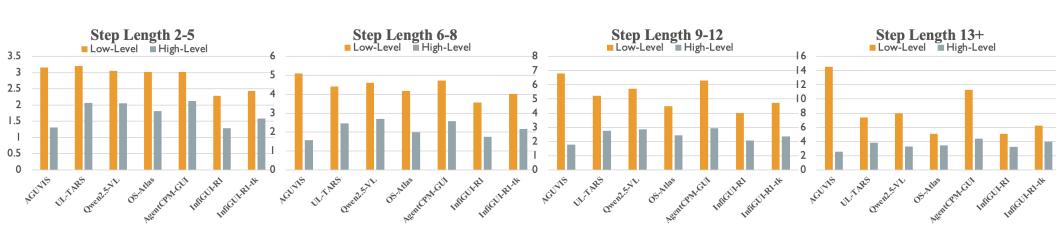


Figure 4: Visualization of W-LCS scores as a function of task step length.

Single Atomic Instruction subset as control group. Agent performance on this subset is comparable to that on prior single-step benchmarks (81.19% on ours v.s. 80.81% on AndroidControl Li et al. (2024b), a widely used mobile GUI benchmark), confirming that GAMBIT preserves the feasibility of basic action execution.

To isolate dynamic differences beyond Section 3.5, we compare the agents performance between GAMBIT and widely adopted mobile GUI datasets. Averaged across instruction topologies, GAMBIT induces an accuracy drop of 20.69% relative to prior datasets. Unlike AndroidControl and related sequential-only benchmarks, our dataset penalizes structural errors more severely: under high-level instructions, EM is 24.69% lower than AndroidControl, and even AndroidControl’s hardest split remains 26.29% higher than our Conditional/Hierarchical subsets. These results highlight that GAMBIT introduces **decision-aware difficulty** absent from earlier datasets, while still maintaining parity on atomic actions. It provides a finer-grained diagnostic lens for distinguishing agent capabilities under realistic long-horizon and branching workflows.

4.3 ABLATION STUDIES

High-level v.s. Low-level Instructions. Tab 2 contrasts agents under low-level (step-specified) and high-level (goal-only) instructions. Across all models, EM/TM are consistently higher with low-level guidance, confirming that most agents can reliably execute explicitly grounded atomic actions. When shifted to high-level goals, TM drops by 24.11% on average and EM falls below 32.78%. This exposes a persistent gap between current agents’ strong visual grounding/navigation and weak global task reasoning. In real-world scenarios, users rarely issue perfectly disambiguated step instructions and this gap becomes relevant as task complexity increases.

Impact of Task Length and Branching.

Under low-level settings (Tab. 2), TM/EM remains relatively insensitive to task length, as each step is explicitly grounded and largely independent. In contrast, high-level instructions show strong length sensitivity (Fig. 3): GP decreases sharply as sequence length increases, reflecting cumulative error propagation across steps. Once sequences exceed 6–8 steps, GP drops below 20% for all models, indicating that current agents struggle to sustain long-horizon reasoning and execution beyond short workflows.

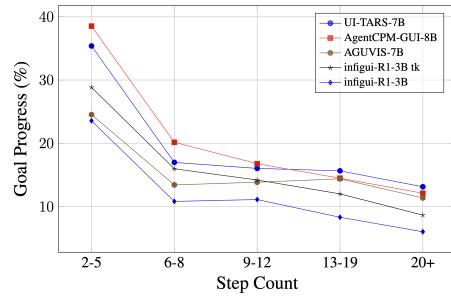


Figure 3: High-level GP v.s. Step Length.

Table 3: Decision accuracy (EM \uparrow) at different branching depths under high-level instructions. “–” denotes accuracy degradation on deeper nodes.

Model	First Decision	Deeper Decisions	EM Difference
AGUVIS-7B	31.29%	29.11%	-2.18%
UI-TARS-7B	45.85%	29.72%	-16.13%
Owen2.5-VL-7B	37.46%	30.56%	-6.90%
OS-Atlas-Pro-7B	32.38%	29.72%	-2.66%
AgentCPM-GUI-8B	37.25%	29.72%	-7.53%
InfiGUI-R1-3B	40.17%	37.95%	-2.22%
InfiGUI-R1-3B tk	41.31%	41.83%	+0.52%

To better capture partial progress and robustness in long-horizon tasks, we report W-LCS, which quantifies how far an agent proceeds before failure, aligning with real user tolerance where partial completion still has value. As shown in Fig 4, AgentCPM-GUI-8B emerges as the strongest performer as task length increases, even though its GP and SR are not the highest in Tab 2. InfiGUI-R1-3B (thinking) exhibits only moderate W-LCS under low-level settings, but its advantage becomes pronounced on tasks exceeding 13 steps with high-level instructions, ranking among the top-2 across all agents. This suggests their superior resistance to error accumulation and greater robustness in complex reasoning. In contrast, AGUVIS-7B shows the opposite trend: strong W-LCS under low-level tasks but severe degradation on high-level ones, indicating strong grounding ability but limited capacity for global task planning.

Branching structures amplify difficulty. Conditional/Hierarchical tasks introduce decision nodes where one misjudgment invalidates entire subtrees, leading to sharper declines than Sequential/Conjunctive workflows. To quantify this, we measure decision accuracy by branch depth in Tab 3. The first decision in Conditional and Hierarchical graphs averages only 36.85%, while deeper branches in Hierarchical tasks perform worse by an additional 7.08% dropping on average. Notably, the InfiGUI-R1-3B series, a smaller model series with reasoning SFT and RL, outperforms other agents by 3.89% on first decision and 10.12% on deeper nodes, maintaining stable accuracy as depth increases. These findings indicate that **reasoning-oriented training enhances decision robustness**, a property largely absent in baseline agents. These results underscore that deeper and more complex branching makes models less reliable, exposing real-world challenges that linear workflows in prior datasets cannot reveal.

4.4 CASE STUDIES AND ERROR ANALYSIS

Q1. Why agents fail at decision-making steps? We analyze decision-aware failure cases using InfiGUI-R1-3B, the only agent that exposes intermediate reasoning traces. As shown in Fig 5, two recurrent failure modes emerge: **Mode 1: Ignoring branch constraints**. The agent often defaults to the first available option instead of following the explicit branching condition, thereby bypassing the decision step. **Mode 2: Plausible but false reasoning**. The agent produces a coherent chain-of-thought that acknowledges the instruction and GUI state, but then executes an action inconsistent with its own reasoning, again defaulting to the first option. These patterns reveal a clear gap: agents are proficient at single-step execution (Tab 2 shows near-saturated TM/EM on Single, short Sequential workflows and low-level settings), yet struggle with conditional reasoning, where multiple candidate actions must be weighted against global instructions and GUI context. A key reason is that **existing training corpora for mobile GUI agents lack decision-oriented trajectories**, leaving models under-exposed to branching supervision. GAMBIT addresses this gap by explicitly incorporating complex graph topologies and systematic evaluation of decision accuracy.

Q2. Beyond task length and branching, what other factors limit agent performance?

We identify three additional factors that consistently affect model robustness.

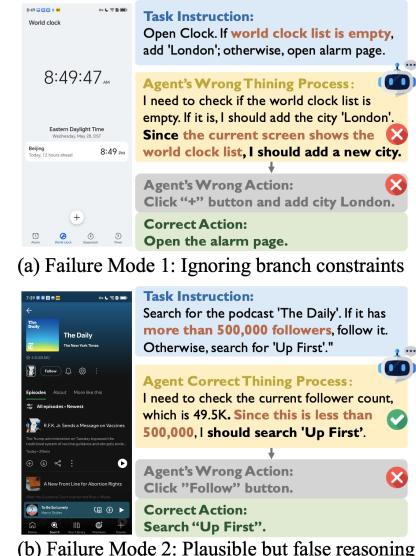


Figure 5: Decision failure cases.

Table 4: Model performance on different action types.

Model	CLICK		TYPE		SCROLL		Complete		Others	
	TM	EM	TM	EM	TM	EM	TM	EM	TM	EM
Low-level										
AGUVIS-7B	99.84	91.65	95.28	91.89	99.04	87.33	86.85	86.85	93.69	83.95
UI-TARS-7B	99.16	79.01	94.40	89.15	99.00	94.19	99.04	99.04	44.97	44.97
Qwen2.5-VL-7B	93.12	83.21	84.34	81.49	81.01	46.04	89.86	89.86	55.38	53.23
OS-OtlaS-Pro-7B	94.96	74.66	85.67	82.16	48.65	28.94	67.31	67.31	68.51	62.66
AgentCPM-GUI-8B	97.27	88.30	89.32	84.98	98.27	96.61	79.79	79.79	40.75	31.51
InfiGUI-R1-3B	87.04	79.14	85.16	82.67	81.81	5.64	10.43	10.43	86.17	22.95
InfiGUI-R1-3B tk	97.94	88.79	89.78	86.84	96.28	7.69	8.91	8.91	90.56	24.21
High-level										
AGUVIS-7B	67.48	34.68	28.69	23.52	14.27	11.02	0.00	0.00	43.83	43.83
UI-TARS-7B	88.45	54.74	64.32	53.35	52.34	47.74	44.81	44.81	28.53	28.53
Qwen2.5-VL-7B	67.41	44.79	53.25	48.00	15.25	11.40	79.66	79.66	18.87	18.87
OS-OtlaS-Pro-7B	86.37	48.53	54.50	44.43	29.85	26.71	35.55	35.55	41.61	41.61
AgentCPM-GUI-8B	86.50	54.24	64.67	52.45	45.42	41.83	66.19	66.19	29.56	29.24
InfiGUI-R1-3B	88.56	55.16	57.24	49.33	41.38	23.45	9.05	8.98	36.48	29.87
InfiGUI-R1-3B tk	75.17	46.57	54.22	47.91	32.42	20.24	17.47	17.40	33.65	28.00

Action Type Effects. Tab 4 highlights marked variation across action types. Long Press, a realistic yet underrepresented action, shows the lowest accuracy across models (on average 66.31% lower than Click/Type). For UI-TARS and OS-Atlas, the Complete action underperforms other models by 52.03%, suggesting their difficulty in detecting task termination under long-horizon goals. Their overall SR rises by 8.18% when Complete is excluded, indicating that many errors reflect termination misrecognition rather than execution failures. Annotators also noted the near absence of Double-Tap: although often replaceable by alternative actions, its omission from most agents’ action space and training data may limit generalization. These results indicate that action space diversity and explicit modeling of final-state inference remain a performance improvement direction.

History Window Length. Long-horizon tasks impose higher demands on both historical context and efficiency. In mainstream settings, history length varies from each agent. For instance, AgentCPM achieves the best high-level accuracy with a 4-step window (1.38% higher than full-history or no-history), whereas its low-level accuracy declines as history grows, indicating that longer context is not uniformly beneficial. For AGUVIS, it performs better with longer history under high-level instructions, but shows little differences for low-level setting. We identify this as a trade-off among multiple factors: 1) **Contextual Overload**: excessively long textual/ histories may increase confusion and accumulative error carry-over. 2) **Visual Down-sampling**: aggregating many screenshots reduces effective resolution, harming precision actions such as small UI target clicks. 3) **Efficiency**: longer histories increase inference latency, problematic for real-time mobile scenarios. By contrast, the no-history setting runs faster inference but underperforms due to insufficient grounding (1.15% lower EM). Effective history utilization depends on model design rather than merely context length, and saliency-aware or memory-pruned histories are future directions.

Instruction Language and Platform. We further separate results by instruction language and operation systems (more results in Appendix H and G). Qwen2.5-VL-7B is the most robust to English-Chinese instruction shifts due to its training corpora distribution, with 3.5% higher EM on Chinese instruction. In addition, we observe that InfiGUI-R1-3B series benefits from its “thinking” prompting, effectively reduces outputs formatting errors. For all tested agents, high-level instructions produce more irregular responses than low-level ones, and Chinese prompts are more error-prone than English. As for platform difference, since most mobile GUI training corpora skewed toward Android, average performance drops by 5.30% on iOS, likely due to GUI styling and action differences. These factors, spanning action coverage, history utilization, multilingual grounding, and multi-platform robustness, are orthogonal to the challenges discussed in Section 4.3. GAMBIT systematically exposes both decision-aware reasoning failures and broader robustness limitations, providing a rigorous and comprehensive benchmark for future mobile GUI agents.

5 CONCLUSION

In this paper, we introduced **GAMBIT**, the first benchmark targeting *long-horizon workflows* and *decision-aware execution* in mobile GUI agents. Unlike prior template-based datasets, it captures realistic user interactions through graph-structured instructions and cross-platform annotation. Experiments show that while current agents handle single-step execution well, they struggle with long chains, branching, and generalization, making GAMBIT a comprehensive testbed for mobile agents.

486 6 ETHICS STATEMENT
487

488 GAMBIT was constructed with careful consideration of privacy, safety and fairness. All task instruc-
489 tions and screenshots were collected by professional annotators on mobile devices using publicly
490 available mobile applications and no personal or sensitive user data are included. The dataset con-
491 tains only synthetic task instructions generated during controlled annotation as stated in Section 3,
492 ensuring that no private information is exposed. No emulators are used for annotation.

493 All annotators, co-authors and quality checkers are clearly notified the instruction, meta data and
494 screenshot usage. Annotators are paid at market price according to local laws and requirements.
495

496 All applications were operated in safe environments without accessing sensitive content such as
497 payments, contacts, or personal communications(all mentioned user profiles, names, emails and
498 accounts are separately created with no relations to real-world individuals). The dataset is intended
499 solely for academic research on mobile GUI agents and is released under a non-commercial license
500 to discourage misuse.

501 7 REPRODUCIBILITY STATEMENT
502

503 Our paper’s main contribution is a benchmark dataset, currently it is available in anonymous code
504 base for review: <https://anonymous.4open.science/r/GAMBIT-40BB/>. We would
505 open-source all instructions, annotated data, screenshots, metadata and sufficient experimental code
506 (inference and evaluation) for reproducibility. The construction pipeline code, hyperparameters,
507 settings and prompt will also be included in open-source code base, including sufficient guidelines.
508 Our current implementation are under each agents’ official guidance and settings, detailed in code
509 base.

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Anthropic. Claude-3.7-sonnet, 2025. URL <https://www.anthropic.com/news/claude-3-7-sonnet>. Accessed: 2025-09-25.

546

547 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
548 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
549 2025.

550

551 Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A Plummer.
552 Mobile app tasks with iterative feedback (motif): Addressing task feasibility in interactive visual
553 environments. *arXiv preprint arXiv:2104.08560*, 2021.

554

555 Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Shuai Ren, and
556 Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. *arXiv
557 preprint arXiv:2407.17490*, 2024.

558

559 Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guangyi Liu, Guozhi Wang, Shuai Ren, Siyuan
560 Huang, and Hongsheng Li. A3: Android agent arena for mobile gui agents. *arXiv preprint
arXiv:2501.01149*, 2025.

561

562 Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui
563 Zhou, Weiwen Liu, Shuai Wang, et al. Spa-bench: A comprehensive benchmark for smartphone
564 agent evaluation. In *NeurIPS 2024 Workshop on Open-World Agents*, 2024.

565

566 Shengda Fan, Xin Cong, Yuepeng Fu, Zhong Zhang, Shuyan Zhang, Yuanwei Liu, Yesai Wu, Yankai
567 Lin, Zhiyuan Liu, and Maosong Sun. Workflowllm: Enhancing workflow orchestration capability
568 of large language models. *arXiv preprint arXiv:2411.05451*, 2024.

569

570 Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao,
571 Xiangxin Zhou, Ziyu Zhao, et al. Os agents: A survey on mllm-based agents for general comput-
572 ing devices use. *arXiv preprint arXiv:2508.04482*, 2025.

573

574 Wenjia Jiang, Yangyang Zhuang, Chenxi Song, Xu Yang, Joey Tianyi Zhou, and Chi Zhang. Ap-
575 parentx: Evolving gui agents as proficient smartphone users. *arXiv preprint arXiv:2503.02268*,
576 2025.

577

578 Juyong Lee, Taywon Min, Minyong An, Dongyoohn Hahm, Haeone Lee, Changyeon Kim, and Kimin
579 Lee. Benchmarking mobile device control agents across diverse configurations. *arXiv preprint
arXiv:2404.16660*, 2024.

580

581 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
582 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
583 *arXiv preprint arXiv:2504.07981*, 2025.

584

585 Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
586 Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
587 embodied decision making. *Advances in Neural Information Processing Systems*, 37:100428–
588 100534, 2024a.

589

590 Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyam-
591 agundlu, and Oriana Riva. On the effects of data scale on ui control agents. *Advances in Neural
592 Information Processing Systems*, 37:92130–92154, 2024b.

593

594 Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
595 instructions to mobile ui action sequences. *arXiv preprint arXiv:2005.03776*, 2020.

596

597 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
598 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
arXiv:2412.19437*, 2024a.

594 Guangyi Liu, Pengxiang Zhao, Liang Liu, Zhiming Chen, Yuxiang Chai, Shuai Ren, Hao Wang,
 595 Shibo He, and Wenchao Meng. Learnact: Few-shot mobile gui agent with a unified demonstration
 596 benchmark. *arXiv preprint arXiv:2504.13805*, 2025a.

597

598 Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
 599 Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. *arXiv*
 600 *preprint arXiv:2411.00820*, 2024b.

601

602 Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
 603 and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
 604 reasoners. *arXiv preprint arXiv:2504.14239*, 2025b.

605

606 Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
 607 Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
 608 navigation on mobile devices. *arXiv preprint arXiv:2406.08451*, 2024.

609

610 Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
 611 Wu, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
 612 large language models. *arXiv preprint arXiv:2401.03601*, 2024.

613

614 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 615 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 616 agents. *arXiv preprint arXiv:2501.12326*, 2025.

617

618 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
 619 droidinthewild: A large-scale dataset for android device control. *Advances in Neural Information
 620 Processing Systems*, 36:59708–59728, 2023.

621

622 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
 623 beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
 624 dynamic benchmarking environment for autonomous agents. *arXiv preprint arXiv:2405.14573*,
 625 2024.

626

627 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
 628 gpt: Solving ai tasks with chatgpt and its friends in hugging face. *Advances in Neural Information
 629 Processing Systems*, 36:38154–38180, 2023.

630

631 Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
 632 multi-modal conversational agents on mobile gui. *arXiv preprint arXiv:2205.11029*, 2022.

633

634 Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang, Guiyang
 635 Hou, Zeqi Tan, Yuchen Yan, et al. A survey on (m) llm-based gui agents. *arXiv preprint
 636 arXiv:2504.13865*, 2025.

637

638 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricu-
 639 t, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 640 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

641

642 Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen,
 643 and Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile llm
 644 agents. *arXiv preprint arXiv:2406.08184*, 2024.

645

646 Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
 647 Wendy Gao, Jiaxing Xu, et al. Benchmarking complex instruction-following with multiple con-
 648 straints composition. *Advances in Neural Information Processing Systems*, 37:137610–137645,
 649 2024a.

650

651 Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
 652 Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In
 653 *Proceedings of the 30th Annual International Conference on Mobile Computing and Networking*,
 654 pp. 543–557, 2024b.

648 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
 649 Zichen Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for gener-
 650 alist gui agents. *arXiv preprint arXiv:2410.23218*, 2024.

651

652 Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
 653 weakness of large language model agents within a complex android environment. In *Proceedings*
 654 *of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6061–
 655 6072, 2024.

656 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 657 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. *arXiv*
 658 *preprint arXiv:2412.04454*, 2024.

659

660 Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
 661 Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
 662 *arXiv preprint arXiv:2508.15144*, 2025.

663 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 664 multimodal large language models. *National Science Review*, 11(12):nwae403, 2024.

665

666 Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue
 667 Liu, Qingwei Lin, et al. Large language model-brained gui agents: A survey. *arXiv preprint*
 668 *arXiv:2411.18279*, 2024a.

669 Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
 670 Gang Yu. Appagent: Multimodal agents as smartphone users. In *Proceedings of the 2025 CHI*
 671 *Conference on Human Factors in Computing Systems*, pp. 1–20, 2025a.

672 Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
 673 Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents. *arXiv preprint*
 674 *arXiv:2403.02713*, 2024b.

675

676 Shaoqing Zhang, Kehai Chen, Zhuosheng Zhang, Rumei Li, Rongxiang Weng, Yang Xiang, Liqiang
 677 Nie, and Min Zhang. Xbound: Exploring the capability boundaries of device-control agents
 678 through trajectory tree exploration. *arXiv preprint arXiv:2505.21279*, 2025b.

679 Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, Yesai Wu, Han Si, Xin Cong, Haotian
 680 Chen, Yankai Lin, et al. Agentcpm-gui: Building mobile-use agents with reinforcement fine-
 681 tuning. *arXiv preprint arXiv:2506.01391*, 2025c.

682

683

684

685

686

687

688

689

690

691

692

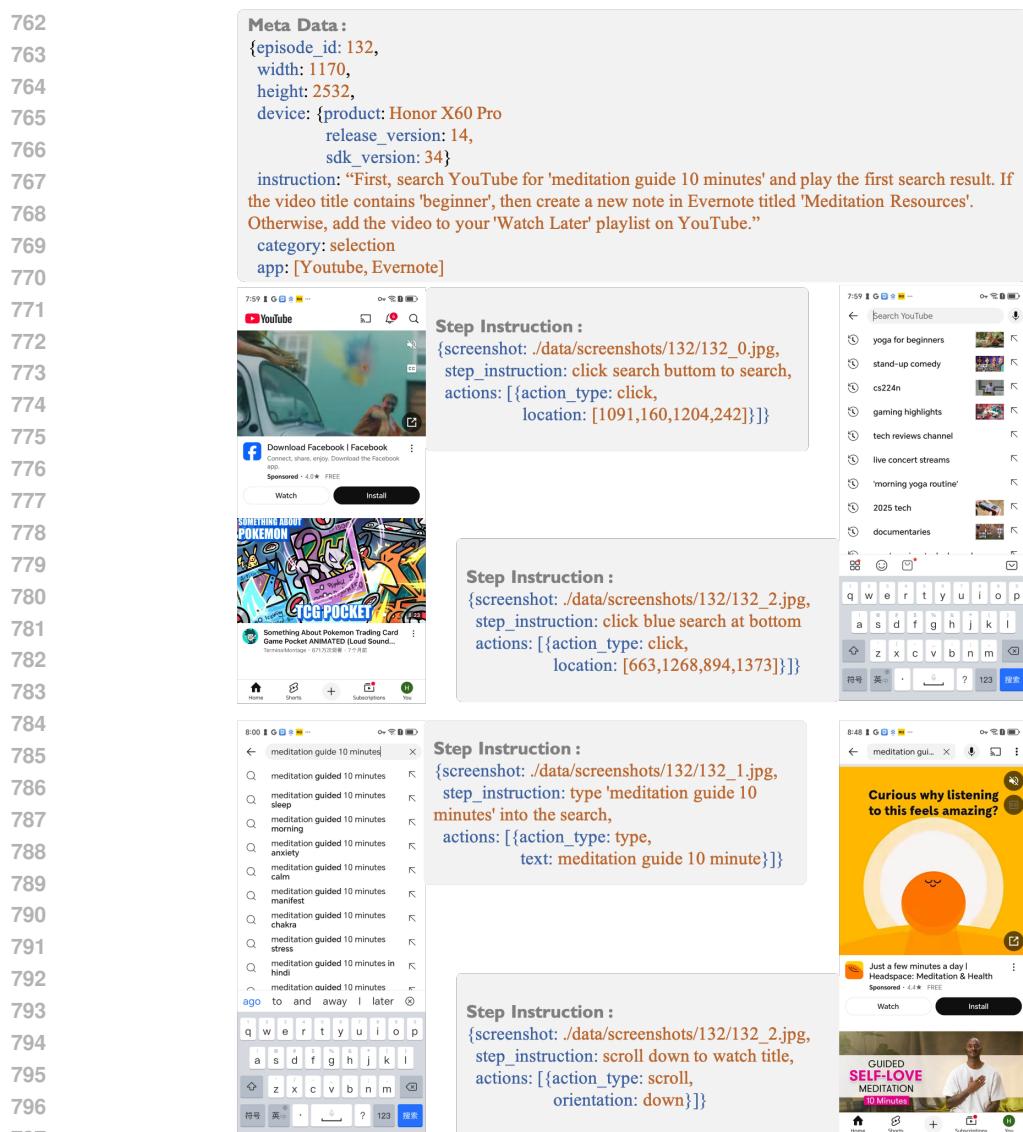
693

694

695

696

697


698

699

700

701

702 **A APPENDIX: USE OF LLMs**
703704 Our LLM usage are stated in Section 3 and concluded as below. *Instruction Augmentation*: we
705 utilized multiple LLMs for expanding human seed atomic instructions, collecting constraints and it-
706 eratively refinement with human collaboration. *Complex Instruction Construction*: we utilized mul-
707 tiple LLMs for construction longer instructions from atomic actions, iterative enhancing and quality
708 checking (e.g., grammar, coherence, feasibility). We ensured that all LLM generated instructions are
709 double verified by either paper co-authors or annotators to prohibit usage/inappropriate instructions,
710 with essential manual re-writing.711 The experiments related to mobile GUI agents are conducted with LLMs, all models (checkpoints,
712 configurations and licenses) are obtained from their official open-source implementation without
713 additional training or modification. We did not use LLM-generated contents for paper writing, but
714 merely grammar checking.716 **B APPENDIX: LIMITATION**
717718 We acknowledge that although GAMBIT covers diverse application categories, platforms (An-
719 droid/iOS), and bilingual instructions (English/Chinese), it remains limited in cultural and linguistic
720 scope, including more device brands and models (e.g., Mobile Tablets and iPads), more applica-
721 tion categories and comparison of same application under different langue settings (e.g., Chinese
722 applications may contain advertisements compared with their English versions). Future extensions
723 may address these limitations to ensure broader fairness and inclusiveness. We consider actively
724 incorporating more downstream application categories such as Medical, Education and Games.725 We also acknowledge that current workflows are human-LLM approximation of real-world user
726 actions, and may not fully reflect all user cases and complex decisions. Additionally, although we
727 allow annotators mark some tasks as “IMPOSSIBLE”, ambiguous or conflicting tasks may still exist
728 in real user requests and our dataset has limited coverage for such scenarios.729 Despite employing 20 professional annotators and a dual-review process, a small number of ambigu-
730 ous or unclear low-level instructions may still exist. The linguistic diversity of high-level instructions
731 remains limited (ambiguous, colloquial phrasing characteristic of real users), with most maintaining
732 relatively standardized expressions.733 We did not systematically verify potential overlap between GAMBIT and other agents’ training data
734 in this work (although our data are unique by paper submission), so we cannot entirely rule out the
735 possibility that a small number of task patterns appeared in other agents’ training.
736737 **C APPENDIX: PROMPT FOR INSTRUCTION GENERATION**
739740 We provide detailed prompt templates for utilizing LLMs for generating complex instructions.
741 The prompts are available in our code base [https://anonymous.4open.science/r/
742 GAMBIT-40BB/](https://anonymous.4open.science/r/GAMBIT-40BB/).743
744
745
746
747
748
749
750
751
752
753
754
755

756 **D APPENDIX: ANNOTATION DETAILS**
757758 We wrote a standardized annotation guideline for the 20 annotators, with example JSON file format,
759 example annotated data and other required information. Here we provide a snapshot of our proposed
760 dataset meta data, with more details available in code base.
761799 **Figure 6: Illustration of annotation details and meta data.**
800
801
802
803
804
805
806
807
808
809

810 E APPENDIX: STEP LENGTH EXPERIMENTS
811812 Here we provide detailed experimental Results of Agent’s performance across different step length
813 in compensation to Section 4.3 discussions. Here 1a denotes atomic action level GP, 1b denotes
814 atomic action level GP with branching length weighted. 2a denotes step level GP, 1b denotes step
815 level GP with branching length weighted. 3a denotes the longest common sequence from first step,
816 3b denotes the longest common sequence from first step with branching length weighted. 4a denotes
817 the longest common sequence taking all steps into consideration, 4b denotes the longest common
818 sequence taking all steps into consideration with branching length weighted. 5a denotes the longest
819 common sequence taking all steps into consideration with task length weighted, 5b denotes the
820 longest common sequence taking all steps into consideration with branching length and task length
821 weighted. 6a denotes the longest common sequence percentage, 6b denotes the longest common
822 sequence percentage with task length weighted.
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

865

Table 5: Model performance(GP) on different step size

866

867

Model	Group	Level	Tasks	1a (%)	1b (%)	2a (%)	2b (%)	3a (Abs)	3b (Abs)	4a (Abs)	4b (Abs)	5a (Abs)	5b (Abs)	6a (%)	6b (%)
AGUVIS	2-5 steps	HL	281	1.48	2.76	0.85	0.95	0.03	0.06	1.20	1.31	0.81	0.84	24.54	22.63
		LL	281	63.32	62.72	62.56	61.28	0.75	0.89	2.90	3.16	2.55	2.75	72.53	71.39
	6-8 steps	HL	225	6.35	8.82	4.12	4.17	0.17	0.24	1.58	1.58	0.85	0.84	13.43	13.11
		LL	226	54.03	58.12	52.00	52.12	1.15	1.51	5.02	5.09	3.96	4.02	62.02	61.91
	9-12 steps	HL	222	10.79	12.32	6.27	6.07	0.28	0.34	1.77	1.79	1.13	1.14	13.85	13.58
		LL	222	56.73	59.54	53.94	53.57	1.42	1.71	6.67	6.79	5.49	5.58	64.77	64.51
AgentCPM	13+ steps	HL	351	10.49	10.99	5.94	5.16	0.33	0.38	2.51	2.57	1.76	1.80	13.16	11.80
		LL	351	59.32	59.82	55.16	55.05	1.91	2.14	11.98	14.56	9.78	11.79	65.16	64.89
	Overall	HL	1079	7.34	9.94	4.30	4.85	0.21	0.31	1.82	2.18	1.19	1.47	16.32	13.23
		LL	1080	58.72	59.81	56.17	54.91	1.35	1.79	7.07	10.88	5.80	8.82	66.34	64.98
	2-5 steps	HL	281	28.20	27.40	27.92	23.97	0.33	0.37	1.99	2.12	1.25	1.27	38.52	34.99
		LL	281	53.05	55.01	52.57	51.07	0.65	0.81	2.77	3.02	2.44	2.64	69.79	68.59
UI-TARS	6-8 steps	HL	226	13.09	16.46	11.42	11.42	0.32	0.46	2.56	2.58	1.27	1.27	20.16	19.83
		LL	226	50.21	54.25	48.10	47.65	1.08	1.42	4.66	4.72	3.73	3.75	58.90	58.39
	9-12 steps	HL	222	12.57	15.37	8.95	8.56	0.34	0.45	2.91	2.94	1.37	1.37	16.78	16.29
		LL	222	50.90	56.91	47.13	46.87	1.32	1.67	6.19	6.30	4.78	4.88	57.45	57.36
	13+ steps	HL	351	10.85	11.49	6.62	5.92	0.37	0.42	4.01	4.40	1.89	2.03	13.52	12.37
		LL	351	45.50	47.52	39.48	38.77	1.52	1.75	9.49	11.31	8.64	49.05	48.28	
Overall	Overall	HL	1080	16.19	15.06	13.65	8.67	0.34	0.43	2.96	3.69	1.49	1.74	22.09	16.00
		LL	1080	49.56	51.60	46.26	42.52	1.16	1.56	6.05	8.79	4.75	6.78	58.23	53.05
	2-5 steps	HL	281	25.86	24.85	25.28	20.95	0.30	0.34	1.94	2.07	1.14	1.14	35.39	31.66
		LL	281	69.04	69.48	68.50	64.83	0.83	1.02	2.98	3.21	2.50	2.65	72.95	70.05
	6-8 steps	HL	226	9.28	12.19	7.28	7.46	0.23	0.33	2.43	2.45	1.08	1.10	16.98	16.92
		LL	226	43.74	49.78	41.75	41.28	0.97	1.27	4.37	4.41	3.51	3.52	56.16	55.55
UI-TARS	9-12 steps	HL	222	12.08	14.39	7.77	7.43	0.33	0.42	2.73	2.76	1.32	1.33	16.03	15.73
		LL	222	43.06	49.36	38.91	38.33	1.10	1.38	5.14	5.21	4.20	4.27	52.47	51.99
	13+ steps	HL	351	11.99	12.53	7.06	6.22	0.40	0.44	3.53	3.80	2.02	2.23	14.63	13.46
		LL	351	32.41	34.10	25.44	21.37	1.05	1.20	6.86	7.39	4.86	5.05	37.42	33.44
	Overall	HL	1080	15.05	14.33	12.00	7.86	0.32	0.41	2.72	3.28	1.45	1.82	20.81	15.88
		LL	1080	46.50	44.27	42.82	30.88	0.99	1.23	4.98	6.23	3.83	4.50	53.68	42.97
Qwen2.5-VL	2-5 steps	HL	281	22.21	24.35	21.55	20.89	0.29	0.40	1.88	2.06	1.24	1.28	37.15	34.75
		LL	281	51.63	53.12	50.85	52.93	0.63	0.80	2.75	3.05	2.30	2.54	63.86	64.52
	6-8 steps	HL	226	15.10	19.33	12.37	12.49	0.39	0.56	2.68	2.70	1.37	1.39	21.04	21.03
		LL	226	45.06	50.03	43.25	43.41	1.01	1.36	4.55	4.61	3.48	3.53	53.40	53.40
	9-12 steps	HL	222	12.16	13.87	7.90	7.48	0.32	0.38	2.83	2.85	1.26	1.26	15.56	15.17
		LL	222	45.56	49.67	42.14	41.30	1.15	1.43	5.64	5.72	4.39	4.43	53.31	52.69
OS-Atlas-Pro	13+ steps	HL	351	12.88	13.68	8.30	7.32	0.43	0.49	3.23	3.31	2.02	2.10	15.08	13.54
		LL	351	35.81	37.94	28.97	26.59	1.19	1.37	7.33	8.00	5.59	6.24	39.99	37.52
	Overall	HL	1080	15.62	15.94	12.52	9.17	0.36	0.47	2.68	3.03	1.52	1.78	22.17	16.62
		LL	1080	43.87	44.35	40.36	33.83	1.00	1.32	5.21	6.70	4.04	5.23	51.74	44.78
	2-5 steps	HL	281	13.49	13.44	13.11	11.46	0.16	0.19	1.66	1.81	1.08	1.12	32.82	30.08
		LL	281	52.94	54.80	52.35	51.40	0.66	0.82	2.76	3.02	2.45	2.67	69.29	68.51
InfiGUI	6-8 steps	HL	226	8.85	12.19	6.78	6.73	0.23	0.35	1.98	1.99	0.97	0.97	15.51	15.19
		LL	226	41.84	47.73	38.58	38.03	0.95	1.29	4.15	4.18	3.41	3.42	53.73	53.04
	9-12 steps	HL	222	9.61	11.82	6.66	6.50	0.28	0.36	2.41	2.44	1.13	1.13	13.30	13.03
		LL	222	34.86	39.96	29.28	28.42	0.91	1.16	4.47	4.50	3.61	3.63	44.57	43.77
	13+ steps	HL	351	9.21	9.57	5.35	4.80	0.30	0.34	3.20	3.43	1.60	1.74	11.23	10.37
		LL	351	26.14	27.39	18.65	16.55	0.86	0.97	4.95	5.07	4.03	4.19	30.16	27.17
Overall	Overall	HL	1080	10.33	10.96	7.94	5.94	0.25	0.33	2.38	2.91	1.24	1.47	18.17	13.17
		LL	1080	38.19	36.83	33.77	24.57	0.84	1.05	4.11	4.67	3.40	3.85	48.23	37.21
	2-5 steps	HL	281	6.45	7.67	5.80	5.49	0.09	0.13	1.19	1.29	0.77	0.78	23.56	21.47
		LL	281	9.46	16.19	8.61	9.61	0.19	0.39	2.05	2.28	1.76	1.92	48.81	49.12
	6-8 steps	HL	226	5.86	9.34	4.04	4.34	0.18	0.30	1.74	1.75	0.70	0.72	10.82	11.01
		LL	226	24.17	34.29	20.19	21.04	0.74	1.18	3.51	3.50	2.87	2.86	43.80	43.30
InfiGUI tk	9-12 steps	HL	222	8.24	10.37	4.83	4.79	0.23	0.31	2.09	2.08	0.90	0.88	11.11	10.78
		LL	222	26.96	35.52	19.90	20.17	0.83	1.19	3.99	4.01	3.10	3.12	38.16	38.26
	13+ steps	HL	351	6.83	7.60	3.53	3.09	0.24	0.29	2.95	3.25	0.96	0.99	7.38	6.60
		LL	351	24.19	25.71	16.72	14.98	0.82	0.97	4.96	5.11	3.67	3.76	27.85	24.68
	Overall	HL	1080	6.82	8.48	4.50	3.74	0.19	0.28	2.06	2.71	0.84	0.92	13.08	9.03
		LL	1080	20.92	28.24	15.99	16.27	0.64	0.99	3.70	4.50	2.89	3.39	38.76	31.30
Overall	2-5 steps	HL	281	5.92	8.52	5.28	5.98	0.10	0.20	1.45	1.58	0.96	0.98	28.84	26.76
		LL	281	9.25	17.90	8.23	10.39	0.21	0.47	2.16	2.44	1.93	2.16 </		

918 **F APPENDIX: ACTION TYPE EXPERIMENTS**
919920 Here we provide detailed experimental Results of Agent’s performance across different action types
921 in compensation to Section 4.4 Q2 discussions.
922923 Table 6: Model performance on different action types
924

925 Model	926 Action Type	927 Eval Level	928 Count	929 Type Acc (%)	930 Exact Acc (%)
AGUVIS-7B	CLICK	LL	7542	99.84	91.65
		HL	7269	67.48	34.68
	TYPE	LL	1122	95.28	91.89
		HL	1063	28.69	23.52
	SCROLL	LL	1563	99.04	87.33
		HL	1507	14.27	11.02
	STOP	LL	1460	86.85	86.85
		HL	1422	0.00	0.00
	LONG_PRESS	LL	74	94.59	48.65
		HL	70	1.43	1.43
	PRESS	LL	262	93.13	93.13
		HL	355	53.80	53.80
	Overall	LL	12023	97.55	90.29
		HL	11686	48.07	26.78
AgentCPM-GUI-7B	CLICK	LL	7545	97.27	88.30
		HL	7579	86.50	54.24
	TYPE	LL	1105	89.32	84.98
		HL	1121	64.67	52.45
	SCROLL	LL	1564	98.27	96.61
		HL	1561	45.42	41.83
	STOP	LL	1460	79.79	79.79
		HL	1461	66.19	66.19
	LONG_PRESS	LL	73	82.19	36.99
		HL	74	2.70	1.35
	PRESS	LL	260	29.62	29.62
		HL	231	39.39	39.39
	Overall	LL	12007	92.99	86.46
		HL	12027	75.25	53.31
UI-TARS-SFT-7B	CLICK	LL	7517	99.16	79.01
		HL	7464	88.45	54.74
	TYPE	LL	1124	94.40	89.15
		HL	1121	64.32	53.35
	SCROLL	LL	1101	99.00	94.19
		HL	1196	52.34	47.74
	STOP	LL	1460	99.04	99.04
		HL	1455	44.81	44.81
	LONG_PRESS	LL	74	0.00	0.00
		HL	74	0.00	0.00
	PRESS	LL	291	53.95	53.95
		HL	281	35.23	35.23
	Overall	LL	11567	96.90	82.83
		HL	11591	75.06	51.82
Qwen2.5-VL-7B	CLICK	LL	7562	93.12	83.21
		HL	7564	67.41	44.79
	TYPE	LL	1124	84.34	81.49
		HL	1123	53.25	48.00

Continued on next page

Table 6 – *Continued from previous page*

Model	Action Type	Eval Level	Count	Type Acc (%)	Exact Acc (%)
OS-Atlas-Pro-7B	SCROLL	LL	1564	81.01	46.04
		HL	1561	15.25	11.40
	STOP	LL	1460	89.86	89.86
		HL	1465	79.66	79.66
	LONG_PRESS	LL	73	60.27	50.68
		HL	74	0.00	0.00
		LL	239	51.46	51.46
		HL	231	25.54	25.54
	Overall	LL	12022	89.30	78.19
		HL	12018	59.59	44.36
InfiGUI-R1-3B tk	CLICK	LL	7364	94.96	74.66
		HL	7587	86.37	48.53
	TYPE	LL	1054	85.67	82.16
		HL	1123	54.50	44.43
	SCROLL	LL	1517	48.65	28.94
		HL	1561	29.85	26.71
		LL	1459	67.31	67.31
		HL	1457	35.55	35.55
	LONG_PRESS	LL	71	57.75	32.39
		HL	74	0.00	0.00
		LL	224	72.32	72.32
		HL	223	57.85	57.85
	Overall	LL	11689	84.00	68.18
		HL	12025	68.84	43.62
InfiGUI-R1-3B	Click	LL	7576	97.94	88.79
		HL	7576	88.56	55.16
	Type	LL	1125	89.78	86.84
		HL	1125	57.24	49.33
	Scroll	LL	1561	96.28	7.69
		HL	1561	41.38	23.45
	Complete	LL	1448	8.91	8.91
		HL	1448	9.05	8.98
	Long Press	LL	74	87.84	58.11
		HL	74	1.35	1.35
	Navigate Home	LL	209	90.91	0.96
		HL	209	48.80	42.58
	Navigate Back	LL	22	90.91	86.36
		HL	22	54.55	18.18
	Wait	LL	13	100.00	100.00
		HL	13	7.69	7.69
	Impossible	LL	1	0.00	0.00
		HL	1	0.00	0.00
	Overall	LL	12029	86.04	66.76
		HL	12029	68.55	44.27
InfiGUI-R1-3B	Click	LL	7576	87.04	79.14
		HL	7576	75.17	46.57
	Type	LL	1125	85.16	82.67
		HL	1125	54.22	47.91
	Scroll	LL	1561	81.81	5.64
		HL	1561	32.42	20.24
	Complete	LL	1448	10.43	10.43
		HL	1448	17.47	17.40

Continued on next page

Table 6 – *Continued from previous page*

Model	Action Type	Eval Level	Count	Type Acc (%)	Exact Acc (%)
	Long Press	LL	74	79.73	47.30
		HL	74	1.35	1.35
	Navigate Home	LL	209	88.52	4.31
		HL	209	45.93	39.71
	Navigate Back	LL	22	77.27	72.73
		HL	22	40.91	18.18
	Wait	LL	13	100.00	100.00
		HL	13	7.69	7.69
	Impossible	LL	1	0.00	0.00
		HL	1	0.00	0.00
	Overall	LL	12029	76.93	60.17
		HL	12029	59.61	39.27

1080 **G APPENDIX: PLATFORM EXPERIMENTS**
10811082 Here we provide detailed experimental Results of Agent’s performance across different platforms in
1083 compensation to Section 4.4 Q2 discussions.
10841085 **Table 7: Model performance on iOS and Android devices**
1086

1087 Model	1088 Level	1089 Metric	1090 iOS Devices	1091 Android Devices	1092 Overall
1093 AgentCPM-GUI-8B	1094 LL	1095 EM	1096 75.49%	1097 82.96%	1098 79.32%
		1099 TM	1100 89.11%	1101 91.11%	1102 90.13%
	1103 HL	1104 EM	1105 42.02%	1106 55.19%	1107 48.77%
		1108 TM	1109 68.87%	1110 80.74%	1111 74.95%
1112 UI-TARS-7B	1113 LL	1114 EM	1115 73.54%	1116 86.38%	1117 79.96%
		1118 TM	1119 94.16%	1120 99.22%	1121 96.69%
	1122 HL	1123 EM	1124 39.30%	1125 49.02%	1126 44.14%
		1127 TM	1128 73.15%	1129 78.43%	1130 75.78%
1131 Qwen2.5-VL-7B	1132 LL	1133 EM	1134 66.15%	1135 71.11%	1136 68.69%
		1137 TM	1138 81.32%	1139 85.93%	1140 83.68%
	1141 HL	1142 EM	1143 33.85%	1144 37.04%	1145 35.48%
		1146 TM	1147 53.31%	1148 57.78%	1149 55.60%
1150 OS-Atlas-Pro-7B	1151 LL	1152 EM	1153 63.89%	1154 62.31%	1155 63.08%
		1156 TM	1157 86.51%	1158 82.09%	1159 84.23%
	1160 HL	1161 EM	1162 34.63%	1163 39.63%	1164 37.19%
		1165 TM	1166 64.59%	1167 66.30%	1168 65.46%
1169 AGUVIS-7B	1170 LL	1171 EM	1172 82.10%	1173 88.89%	1174 85.58%
		1175 TM	1176 95.72%	1177 99.26%	1178 97.53%
	1179 HL	1180 EM	1181 19.43%	1182 27.17%	1183 23.44%
		1184 TM	1185 53.44%	1186 57.36%	1187 55.47%
1188 InfiGUI-R1-3B thinking	1189 LL	1190 EM	1191 66.15%	1192 65.70%	1193 65.92%
		1194 TM	1195 81.54%	1196 90.97%	1197 86.41%
	1198 HL	1199 EM	1200 32.69%	1201 37.91%	1202 35.38%
		1203 TM	1204 65.77%	1205 67.87%	1206 66.85%
1207 InfiGUI-R1-3B	1208 LL	1209 EM	1210 59.23%	1211 54.87%	1212 56.98%
		1213 TM	1214 70.00%	1215 78.70%	1216 74.49%
	1217 HL	1218 EM	1219 29.62%	1220 38.99%	1221 34.45%
		1222 TM	1223 56.15%	1224 64.98%	1225 60.71%

1134 **H APPENDIX: LANGUAGE EXPERIMENTS**
11351136 Here we provide detailed experimental Results of Agent’s performance across different languages
1137 in compensation to Section 4.4 Q2 discussions.
11381139
1140 Table 8: Model performance on Chinese(CN) and English(EN) instructions

1141 Model Name	1142 Language	1143 Level	1144 TM	1145 EM	1146 EN-CN Difference
1147 OS-Atlas-Pro-7B	CN	1148 HL	65.09	40.88	TM: +0.36, EM: -0.43
	EN	1149 HL	65.45	40.45	
	CN	1150 LL	83.68	66.86	TM: 0.00, EM: +2.93
	EN	1151 LL	83.68	69.79	
1152 Qwen2.5-VL-7B	CN	1153 HL	64.53	45.76	TM: -5.96, EM: -2.46
	EN	1154 HL	58.57	43.30	
	CN	1155 LL	95.11	86.14	TM: -3.09, EM: -4.54
	EN	1156 LL	92.02	81.60	
1157 AGUVIS-7B	CN	1158 HL	47.95	26.65	TM: -4.36, EM: -1.61
	EN	1159 HL	43.59	25.04	
	CN	1160 LL	96.69	88.93	TM: +0.87, EM: +2.95
	EN	1161 LL	97.56	91.88	
1162 UI-TARS-7B	CN	1163 HL	70.61	45.57	TM: -1.24, EM: +3.01
	EN	1164 HL	69.37	48.58	
	CN	1165 LL	96.76	80.44	TM: -0.21, EM: +5.67
	EN	1166 LL	96.55	86.11	
1167 AgentCPM-GUI-8B	CN	1168 HL	72.63	50.07	TM: +0.14, EM: +3.02
	EN	1169 HL	72.77	53.09	
	CN	1170 LL	93.24	88.21	TM: +0.15, EM: +0.29
	EN	1171 LL	93.39	88.50	
1172 InfiGUI-R1-3B	CN	1173 HL	48.64	30.96	TM: +7.39, EM: +6.76
	EN	1174 HL	56.03	37.72	
	CN	1175 LL	72.84	55.17	TM: +2.16, EM: +3.38
	EN	1176 LL	75.00	58.55	
1177 InfiGUI-R1-3B thinking	CN	1178 HL	65.37	41.31	TM: -2.01, EM: -0.58
	EN	1179 HL	63.36	40.73	
	CN	1180 LL	87.28	65.73	TM: -3.95, EM: -1.87
	EN	1181 LL	83.33	63.86	