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ABSTRACT

Domain shift in finetuning from pre-training can significantly impact the perfor-
mance of deep neural networks. In NLP, this led to domain specific models such
as SciBERT, BioBERT, ClinicalBERT, and FinBERT; each pre-trained on a differ-
ent, manually curated, domain-specific corpus. In this work, we present a novel
domain-adaptation framework to tailor pre-training so as to reap the benefits of
domain specific pre-training even if we do not have access to large domain spe-
cific pre-training corpus. The need for such a method is clear as it is infeasible
to collect a large pre-training corpus for every possible domain. Our method is
completely unsupervised and unlike related methods, works well in the setting
where the target domain data is limited in size. We draw a connection between
the task of adapting a large corpus to a target domain and that of anomaly de-
tection, resulting in a scalable and efficient domain adaptation framework. We
evaluate our framework and various baselines on eight tasks across four different
domains: Biomedical, Computer Science, News, and Movie reviews. Our frame-
work outperforms all the baseline methods and yields an average gain of 1.07%
in performance. We also evaluate it on one of the GLUE task, sentiment analysis
and achieve an improvement of 0.4% in accuracy.

1 INTRODUCTION

Pre-trained language models such as ELMo(Peters et al., 2018), GPT (Radford et al., 2018), BERT
(Devlin et al., 2018), Transformer-xl (Dai et al., 2019) and XLNet (Yang et al., 2019) have be-
come a key component in solving virtually all natural language tasks. BERT in particular has been
the most popular such model in recent years. It achieves state-of-the-art performance on a wide
variety of tasks such as sentiment analysis, question answering, semantic textual similarity and re-
lation extraction. These models are pre-trained on large amount of cross-domain data ranging from
Wikipedia to Book corpus to news articles, to learn powerful representations. A generic approach
for using these models consists of two steps: (a) Pre-training: train the model on an extremely large
general domain corpus with language modeling loss; (b) Finetuning: finetune the language model
on labeled task dataset, for the downstream task.

Even though this approach has been very successful, it has a known weakness when applied to tasks
containing text from a domain that is not sufficiently represented in the pre-training corpus. For
instance, word distribution and their contextual meaning could be very different in the pre-training
corpus and the task data resulting in limited applicability of embeddings learnt during pre-training.
For this reason, the research community invested time and resources to pre-training language models
on specific domains. The models include BioBERT pre-trained on biomedical text (Lee et al., 2020),
ClinicalBERT pre-trained on clinical notes (Huang et al., 2019), SciBERT pre-trained on semantic
scholar corpus (Beltagy et al., 2019), FinBERT pre-trained on financial documents (Araci, 2019).
They achieve significant gain in performance when finetuned on tasks belonging to the same domain.

Despite its evident success, domain specific pre-training suffers from two issues when applied to
new tasks. First, it requires explicit definition of the domain of the task data. Every task data
has its own vocabulary, stylistic preferences and text characteristics which likely deviates from all
encompassing general domain corpus used in pre-training. It may be hard to define a single genre
for each new task and thus collect domain-specific data. The second, and likely more crucial issue is
the cost of collecting domain-specific pre-training corpus. Pre-training is usually done on massive
amount of data such as Wikipedia or Book corpus with millions of documents (several GBs of data)
whereas the task data is usually very small (few MBs). Such task-domain specific corpus is hard
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to find and very expensive to collect. For instance, clincalBERT used the public Multiparameter
Intelligent Monitoring in Intensive Care (mimiciii) dataset (Johnson et al., 2016), that took long
to be curated, then they had to parse it so that it could be processed by BERT. BioBERT is pre-
trained on biomedical domain corpora PubMed. Authors had to crawl the documents in PubMed
with abstracts having 4.5B words and the full-text articles with 13.5B words.

The question we attempt to answer in this paper is: can the pre-training procedure on a generic
large corpus be automatically adapted to a custom task domain? Given an affirmative answer to
this question, the major pain-points listed above are no longer there, and we would be able to boost
the performance of language models on multiple domains, even if a large corpus of documents
related to said domain cannot be found.

At a high level, our approach is motivated by the following observation; in a corpus that is rich and
diverse enough, there must be many documents/sentences that are related to the domain of interest.
Figure 1 shows an example where task domain data is identified in the general domain corpus data.

RCT20K TASK DATA

To investigate the efficacy of 6 weeks of daily low-
dose oral prednisolone in improving pain, mobility,
and systemic los-grade . . . [OBJECTIVE]
A total of 125 patients with primary knee OA were
randomize . . . [METHODS]
Outcome measures included pain reduction and
systemic inflammation markers . . . [METHODS]

News Article

For as much as we workout warriors recite that
whole “no pain, no gain” mantra, we sure do pop
a lot of painkillers. A recent article published
in. . . These popular medicines, known as nons-
teroidal anti-inflammatory drugs, or NSAIDs, work
by suppressing inflammation. . . the article kind of
blows past is the fact plenty of racers . . .

Figure 1: Identification of task-data (left panel, medical data) in general domain corpus (right panel).

One way to take advantage of this observation is to discover the subset of documents most similar to
the task domain and run pre-training only on it. A softer approach would be to consider not an actual
subset but a re-weighting of the instances in the pre-training set; this is of course a generalization of
the subset approach. The main question with this approach is how to find the relevance weights in a
way that is both reliable and scalable. Previous papers tried to solve this issue with either a simple
language model (Moore & Lewis, 2010; Axelrod et al., 2011; Duh et al., 2013; Wang et al., 2017b;
van der Wees et al., 2017), or by using a hand crafted similarity score (Wang et al., 2017a; Plank
& Van Noord, 2011; Remus, 2012; Van Asch & Daelemans, 2010). The former works are on the
one hand simplistic due to the nature of the simple language model they use and on the other hand
require a fairly large corpus of task data in order to train a reasonable language model. The latter
works have been shown not to generalize well to new tasks. We elaborate on these techniques in
Section 2.

In this work, we propose Domain adaptation via ANomAly detection - DANA, a domain adaptation
framework based on anomaly detection. DANA eliminates major limitations of the existing domain
adaptation approaches. To handle scenarios wherein task data is too small to train a language model,
we exploit pre-trained models to get a representation of the sentences. Further, instead of using
these representations directly via some ad hoc techniques that do not generalize well to new tasks,
we draw a connection to the area of anomaly detection. Indeed, in the problem of anomaly detection
we must answer how likely is a new item to belong to a collection. The collection is the task data
corpus, transformed into a vectorized representation using the pre-trained language model, and the
new item is a candidate sentence from the large general domain corpus. By drawing this connection
we are able to take advantage of well thought-out techniques, proven to work on a wide variety of
domains, ensuring that our method generalizes well.

We present a comparative study of various anomaly detection methods for their usefulness in esti-
mating relevance weights of sentences of the large general domain corpus. We establish a quantita-
tive criterion and provide a data-driven approach to identify the best method for a given task data.
Further, we provide two approaches for converting the raw anomaly scores into continuous/discrete
relevance weights. To establish the performance gain of DANA, we evaluate it on eight tasks across
four domains: Biomedical, Computer Science, News, and Movie reviews. We investigate all as-
pects of DANA by comparing its performance with various baselines based on its variants and the
competitive methods available in literature. In particular, we compare DANA with language model
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based domain adaptation technique proposed in Moore & Lewis (2010), distance scoring function
based text filtration technique given in Wang et al. (2017a), and continued pre-training on the text
data as done in Gururangan et al. (2020). DANA outperforms all these baseline methods and yield
an average gain of 1.07% in accuracy.

2 RELATED WORK

There has been a sequence of works in trying to find the relevance weights via language mod-
els Moore & Lewis (2010); Wang et al. (2017b); van der Wees et al. (2017). For instance, Moore &
Lewis (2010), Axelrod et al. (2011) and Duh et al. (2013) train two language models, an in-domain
language model on the target domain dataset (same as task domain in our case) and an out-of-domain
language model on (a subset of) general domain corpus. Then, relevance score is defined as the dif-
ference in the cross-entropy w.r.t. two language models. These methods achieve some gain over the
baseline methods but have two major drawbacks. First is the crucial assumption they rely on: there
is enough in-domain data to train a reasonable in-domain language model. This assumption is not
true in most cases. For most tasks, we only have access to a few thousands or in some cases a few
hundreds of examples which is not enough to train a reasonably accurate language model. Second
is that these methods fail to bridge the gap in performance created due to absence of large domain
specific pre-training corpus. Models pre-trained on data filtered by these methods are significantly
outperformed by models pre-trained on domain-specific pre-training corpus.

Another line of work defines hand crafted domain similarity measures to assign relevance score and
filter out text from a general domain corpus (Wang et al., 2017a; Plank & Van Noord, 2011; Remus,
2012; Van Asch & Daelemans, 2010). For instance, Wang et al. (2017a) define the domain similarity
of a sentence as the difference between Euclidean distance of the sentence embedding from the
mean of in-domain sentence embeddings and the mean of out-of-domain sentence embeddings.
Plank & Van Noord (2011) and Remus (2012) define the similarity measure as the Kullback-Leibler
(KL) divergence between the relative frequencies of words, character tetra-grams, and topic models.
Van Asch & Daelemans (2010) define domain similarity as Rényi divergence between the relevant
token frequencies. These are adhoc measures suitable only for the respective tasks, and are a poor
version of anomaly detection. They fail to generalize well for new tasks and domains. Ruder &
Plank (2017) attempts to remedy this issue and tries to learn the correct combination of these metrics
for each task. They learn the combination weight vector via Bayesian optimization. However,
Bayesian optimization is infeasible for deep networks like BERT. Each optimization step of this
process amounts to pre-training the model and finetuning it for the task. One needs to train the
model many times which is infeasible in the realm of deep networks. Thus, they use models such
as linear SVM classifier and LDA which do not yield state-of-the-art performance. In contrast, we
propose a lightweight method - based on anomaly detection - that can be applied to state-of-the-art
deep language models like BERT.

3 DANA: DOMAIN ADAPTATION VIA ANOMALY DETECTION

Language model and Downstream Tasks. A generic approach for using state-of-the-art language
models such as ELMo, GPT, BERT, and XLNet is to pre-train them on an extremely large general
domain corpus and then finetune the pre-trained model on the downstream labeled task data. There
is evident correlation between model’s pre-training loss and its performance on the downstream
task after finetuning (Devlin et al., 2018). Our design is motivated by an observation, backed by
empirical evidence, that the correlation is even stronger if we consider the pre-training loss not on
the pre-training data but the downstream task data.

To make this distinction formal, let D, Din be the pre-training and task data. Let Θ denote the
parameters of the language model and `LM denote the language model loss function. The pre-training
loss on pre-training data (LLM(Θ)) and target data (Lin

LM(Θ)) are defined as follows

LLM(Θ) =
∑
x∈D

`LM(x; Θ), Lin
LM(Θ) =

∑
x∈Din

`LM(x; Θ) .

To show that Lin
LM(Θ) is better correlated with the performance of the downstream task we consider

several BERT language models pre-trained on random combinations of datasets from different do-
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mains mentioned in Section 4. These models are selected such that for all the models LLM(Θ) is
roughly the same. For each model Θ, we estimate Lin

LM(Θ) and contrast it with the downstream
accuracy/f1 score by finetuning the model on the labeled task data.

Figure 2: MLM loss of pre-trained BERT on the task data vs f1 score of corresponding finetuned BERT.
Different points correspond to different BERT models, pre-trained on random combination of different datasets.
Details of the tasks, SST and Chemprot can be found in Section 4.

Figure 2 provides the plots corresponding to this experiment and shows clear evidence that if the
language model performs better on the task domain data, then the performance (accuracy/f1 score)
of the finetuned model improves. We conclude that in order to ensure success in the downstream
task, we should aim to minimize Lin

LM(Θ). A first attempt would be to pre-train or finetune the
language model on Din. However, training a language model such as ELMo, GPT, BERT or XLNet
requires a large corpus with several GBs of text and the available domain specific corpusDin is often
just the task data which has few MBs of text. Training on such a small dataset would introduce high
variance. We reduce this variance by taking training examples from the general domain corpus D,
but control the bias this incurs by considering only elements having high relevance to the domain
Din. Formally, we optimize a weighted pre-training loss function

LΛ
LM(Θ) =

∑
x∈D

λ(x,Din) · `LM(x; Θ) , (1)

where λ(x,Din) are relevance weights of instance x for domain Din. λ(x,Din) is (close to) 1 if x is
relevant to Din and (close to) 0 otherwise. We compute these weights using an anomaly detection
model fitted on Din.

3.1 ANOMALY DETECTION TO SOLVE THE DOMAIN MEMBERSHIP PROBLEM

Detecting whether an instance x is an in-domain instance is equivalent to solving the following
problem: Given task data T and a sentence s, determine if s is likely to come from the distribution
generating T or if s is an anomaly.

This view helps us make use of a wide variety of anomaly detection techniques developed in liter-
ature (Noble & Cook, 2003; Chandola et al., 2009; Chalapathy & Chawla, 2019). To make use of
these techniques, we first need a good numeric representation (embedding) with domain discrimina-
tion property. We use pre-trained BERT to embed each sentence into a 768 dimensional vector. Once
the data is embedded, we need to decide which among the many anomaly detection algorithms pro-
posed in literature should be applied on the embeddings. To decide the anomaly detection method,
we propose an evaluation method ranking the techniques based on their discriminative properties.

Ranking anomaly detection algorithms: The idea is to treat the anomaly score as the prediction
of a classifier distinguishing between in-domain and out-of-domain data. By doing so, we can
consider classification metrics such as the f1 score as the score used to rank the anomaly detection
algorithm. To do this, we split the in-domain data (the task data) into Dtrain

in ,Dtest
in using a 90/10

split. We also create out-of-domain data Dout as a random subset of D of the same size as Dtest
in . We

train an anomaly detection algorithm A with Dtrain
in , and evaluate it’s f1 score on the labeled test set

composed of the unionDtest
in ∪Dout, where the labels indicate which set the instance originated from.

Table 1 provides the results of this evaluation on six anomaly detection algorithms. Details of the
tasks can be found in Section 4. We can see that Isolation Forest consistently performs well for most
of the tasks. Local Outlier Factor performs almost equally well but is slower in prediction. Although
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it is possible to adaptively choose for every task the anomaly detection algorithm maximizing the
f1 score, we chose to use a single algorithm, Isolation Forests, for the sake of having a simpler
technique and generalizable results.

Task RC kNN PCA OCS LOF IF

CHEMPROT 0.89 0.85 0.92 0.87 0.92 0.96
ACL-ARC 0.77 0.88 0.90 0.89 0.91 0.88
HYPERPARTISAN 0.86 0.86 0.95 0.98 0.91 0.98
RCT20K 0.85 0.88 0.82 0.76 0.87 0.93
IMDB 0.88 0.96 0.87 0.81 0.96 0.94
SCIERC 0.78 0.84 0.86 0.76 0.88 0.92
HELPFULNESS 0.82 0.89 0.83 0.76 0.83 0.92
IMDB 0.84 0.89 0.80 0.73 0.92 0.87

Table 1: Scores of different anomaly detection algorithms for different tasks. RC: Robust Covariance (Nguyen
& Welsch, 2010), kNN: Nearest neighbor (Gu et al., 2019), PCA: Principal Component Analysis (Harrou et al.,
2015), OCS: One Class SVM (Schölkopf et al., 2000), LOF: Local Outlier Factor (Breunig et al., 2000), IF:
Isolation Forest (Liu et al., 2008)

Isolation Forest (Liu et al., 2008): For completeness, we provide a brief description of the Isolation
Forest algorithm. Isolation Forest is an unsupervised decision tree ensemble method that identifies
anomalies by isolating outliers of the data. It isolates anomalies in data points instead of profiling the
normal points. Algorithm works by recursively partitioning the data using a random split between
the minimum and maximum value of a random feature. It works due to the observation that outliers
are less frequent than the normal points and lie further away from normal points in the feature space.
Thus, in a random partitioning, anomalous points would require fewer splits on features resulting in
shorter paths and distinguishing from the rest of the points. Anomaly score of a point x is defined

as s(x, n) = 2−
E(h(x))
c(n) , where E[h(x)] is the expected path length of x in various decision trees,

c(n) = 2H(n− 1)− 2(n− 1)/n is the average path length of unsuccessful search in a Binary Tree
and H(n− 1) is the n− 1-th harmonic number and n is the number of external nodes.

Now that we chose the anomaly detection technique, we move to discuss the effectiveness of the
algorithm in (i) identifying the domain from the task data (ii) identifying the domain related data
from the general domain corpus. Figure 3 (left) shows that the anomaly detection algorithm is able

Figure 3: Sentence anomaly scores for SST with anomaly detection algorithm trained on embeddings from
Left: pre-trained BERT, Right: finetuned BERT. In-task: sentences from the task data, out-of-task: sentences
from general domain corpus.

to distinguish between the in-task-domain data and the out-of-task domain data. These experiments
are done for the Sentiment Analysis task (SST) discussed in Section 4. Interestingly, we noticed
in our experiments that a language model pre-trained on a diverse corpus is a better choice when
compared to a model finetuned on the target domain. We conjecture that the reason is that a finetuned
BERT is overly focused on the variations in the task data which are useful for task prediction and
forgets information pertaining to different domains which is useful for domain discrimination. We
exhibit this phenomenon more clearly in Figure 3 (right) where it is evident that the discriminating
ability of the finetuned model is worse.

.
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Corpus Input data Filtered (Bio) Filtered (CS)

News 7.1GB (21.8%) 0.13GB (2.04%) 0.04GB (0.71%)
Finance 4.9GB (15.0%) 0.01GB (0.15%) 0.02GB (0.35%)
CS abstracts 8.0GB (24.5%) 1.00GB (15.41%) 5.08GB (78.01%)
Bio abstracts 12.6GB (38.7%) 5.37GB (82.4%) 1.36GB (20.94%)

Table 2: Filtering algorithm trained with Bio Abstracts and CS task data. We mix four corpora, filter out 80%
of the data and retain the remaining 20% in both cases.

In order to assess the ability of our model to identify related text we perform the following ex-
periment. First, we create a diverse corpus by taking the union of 4 datasets: News, Finance, CS
abstracts and Biology abstracts. Table 2, column ‘Input data’ contains their respective sizes. We then
train two anomaly score based discriminators, one on CS task data and the other on Bio abstracts.
For each model we choose a threshold that would filter out 80% of the data, and observe the data
eventually retained by it. The fraction of data retained from each corpus for each model is given in
Table 2, columns ‘Filtered (Bio)’ and ‘Filtered (CS)’. We see that data from the News and Finance
corpus is almost completely filtered as it is quite different than the text in abstracts of academic
papers. We also see that a non-negligible percent of the filtered data for the Bio model comes from
CS and vice versa. Since both corpora are abstracts of academic papers it makes sense that each
corpus contains relevant data for the other. The details related to the datasets used to construct the
corpora above are given in Appendix A.

3.2 FROM ANOMALY DETECTION SCORES TO DOMAIN ADAPTED PRE-TRAINING

Once the anomaly detection object is trained, we use it to compute the relevance weights i.e. com-
pute λ values defined in equation 1 . Let the sentences in the pre-training corpus be s1, . . . , sN with
anomaly scores {A(s1), . . . , A(sN )}. We explore two different strategies of λ value computation.
First is when we normalize and transform the scores to compute continuous values and second when
we use threshold and compute 0/1 values.

Continuous λ values: We start by normalizing the anomaly scores to be mean zero and variance

1. Let µ = (
∑N
i=1A(si))/N, σ =

√
(
∑N
i=1(A(si)− µ)2)/N . Then, for every i ∈ {1, . . . , N},

normalized score is Ā(si) = (A(si)− µ)/σ. Using these normalized sentence anomaly scores, we
compute the relevance weights as follows:

λ(si) =
1

1 + e−C(α−Ā(si))

where C and α are hyper-parameters. C controls the sensitivity of the weight in terms of anomaly
score andα controls the fraction of target domain data present in the general domain corpus. C →∞
results in 0/1 weights corresponding to discrete λ setting whereas C = 0 results in uniform λ values
resulting in the no domain adaptation setting.

Discrete λ values: We sort the sentences as per anomaly scores, A(sσ(1)) ≤ A(sσ(2)) ≤ · · · ≤
A(sσ(N)) and pick β fraction of the sentences with lowest anomaly scores,

λ(sσ(i)) = 1 for i ∈ {1, . . . , βN} and 0 otherwise

Even though this approach is less general than the continuous λ values case, it has an advantage of
being model independent. We can filter out text, save it and use it to train any language model in a
black box fashion. It does not require any change in pre-training or finetuning procedure. However,
to utilize this option we need to make a change. Instead of filtering out sentences we need to filter
out segments containing several consecutive sentences.

To understand why, suppose we filter out sentence 1 and sentence 10 and none of the sentences
in between. When we save the text and construct input instances from it for a language model,
then an input instance may contain the end of sentence 1 and the start of sentence 10. This is
problematic as sentence 1 and sentence 10 were not adjacent to each other in the original corpus
and hence, language model does not apply to them. It distorts the training procedure resulting in
worse language models. To resolve this issue, we group sentences into segments and classify the
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relevance of each segment. Formally, let γ be a hyper-parameter and for all j ∈ 1, . . . , bN/γc let
the segment score be yj =

∑j∗γ
i=(j−1)∗γ+1

A(si)
γ . We sort the segments according to their anomaly

scores, yσ′(1) ≤ · · · ≤ yσ′(N/γ) and select the β fraction with lowest anomaly scores; save the
sentences corresponding to these segments.

To completely avoid the issue, we may set segment length very large. However, this is not feasible
as the diverse nature of pre-training corpus makes sure that large enough segments rarely belong to
a specific domain, meaning that the extracted data will no longer represent our target domain. We
experimented with a handful of options for the segment length, and found the results to be stable
when choosing segments of 15 sentences.

Continued pre-training instead of pre-training from scratch: Once we have computed the relevance
weights λ(si), we do not start pre-training the language model from scratch as this is not feasible for
each new task/domain. Instead, we start with a language model pre-trained on the general domain
corpus and perform additional pre-training for relatively fewer steps with the weighted loss function.
In our case, we start with a BERT language model pre-trained for one million steps and continued
pre-training with updated loss function for either 50, 000 or 100, 000 steps.

4 EXPERIMENTS

Task Train Dev Test C

CHEMPROT 4169 2427 3469 13
RCT20K 180040 30212 30135 5
HYPERPARTISAN 516 64 65 2
AGNEWS 115000 5000 7600 4
HELPFULNESS 115251 5000 25000 2

Task Train Dev Test C

IMDB 20000 5000 25000 2
ACL-ARC 1688 114 139 6
SCIERC 3219 455 974 7
SST 67349 872 1821 2

Table 3: Specification of task datasets. C refers to the number of classes. CHEMPROT (Kringelum et al.,
2016) and RCT20K (Dernoncourt & Lee, 2017) are from biomedical domain. HYPERPARTISAN (Kiesel et al.,
2019) and AGNEWS (Zhang et al., 2015) are from news domain. HELPFULNESS (McAuley et al., 2015) and
IMDB (Maas et al., 2011) are from reviews domain. ACL-ARC (Jurgens et al., 2018) and SCIERC (Luan
et al., 2018) are from CS domain. SST (Socher et al., 2013) is a general domain sentiment analysis task.

We use datasets listed in Table 3 along with a general domain corpus consisting of 8GB of text
from Wikipedia articles. As a base for our experiments we use the BERTBASE model provided in
the Gluon-NLP package. It has 12 layers, 768 hidden dimensions per token, 12 attention heads and
a total of 110 million parameters. It is pre-trained with sum of two objectives. First is the masked
language model objective where model learns to predict masked tokens. Second is the next sentence
prediction objective where sentence learns to predict if sentence B follows sentence A or not. We
use learning rate of 0.0001, batch size 256 and warm-up ratio 0.01. For finetuning, we pass the
final layer [CLS] token embedding through a task specific feed-forward layer for prediction. We
use learning rate 3e-5, batch size 8, warm-up ratio 0.1 and train the network for five epochs. In all
the experiments, we start with a BERT pre-trained for one million steps and continue pre-training
for 50, 000 steps in case of discrete λ case and 100, 000 steps in case of continuous λ case. Also,
as mentioned in Section 3.2, we filter out segments instead of sentences and save them. We set the
segment length to be 15 sentences and filter out 20% of the data. Pseudo-code of the end-to-end
algorithm can be found in Appendix A.

4.1 BASELINE METHODS

For each baseline, we start with a BERT pre-trained on general domain corpus for one million steps
as in case of our anomaly detection based method. Then, we continue pre-training the baseline
method for the same number of steps as in case of our method. In case of baseline methods which
filter general domain corpus, we filter the same fraction of text as in case of our method.

General: Continued pre-training on general domain corpus. We know that more pre-training leads
to a better model. To estimate the impact of extra pre-training, we consider a baseline where we
continue pre-training on the general domain corpus.
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Random: Continued pre-training on random subset of general domain corpus.

Task (Gururangan et al., 2020): Continued pre-training on task data. We continue pre-training on
the task text. Since task text is low, we can not pre-train on task data for as many steps as in other
case. Instead we do 100 epochs, save the model after every 10 epoch and pick the best one.

LM (Moore & Lewis, 2010): Continued pre-training on text filtered via language models trained
on task data. We train two language models, one on the task text and one on a subset of general
domain corpus (same size as the task text). We select sentences with lowest scores given by the
function f(s) = HI(s) − HO(s) where HI(s) and HO(s) are the cross-entropy between the n-
gram distribution and the language model distribution. More formally, cross entropy of a string s
with empirical n-gram distribution p given a language model qI is HI(s) = −

∑
x p(x) log qI(x).

Distance (Wang et al., 2017a): Continued pre-training on text filtered via Euclidean distance
scoring function. For each sentence f , we consider BERT embedding vf and compute vector
centers CFin and CFout of the task data Fin and a random subset of general domain corpus Fout;

CFin =
∑
f∈Fin

vf

|Fin| , CFout =
∑
f∈Fout

vf

|Fout| . We score a sentence f as per the scoring function:δf =

d(vf , CFin)− d(vf , CFout). We pick the text with lowest scores.

4.2 RESULTS

Task Base General Random Task LM Distance DANA

CHEMPROT 81.620.74 81.590.67 81.620.71 81.630.82 81.830.74 81.640.76 82.410.62

RCT20K 87.520.16 87.570.16 87.540.17 87.600.18 87.850.23 87.620.24 87.820.13

HPRPARTISAN 70.573.04 70.972.03 71.042.32 70.882.63 71.472.56 72.162.14 73.582.39

AGNEWS 93.990.13 94.060.19 94.090.11 94.040.08 94.030.13 94.040.11 94.030.16

HELPFULNESS 69.300.60 69.390.78 69.340.58 69.410.50 69.580.59 69.420.69 69.700.92

IMDB 88.650.24 88.530.27 88.630.26 88.770.39 88.670.44 88.690.47 89.290.22

ACL-ARC 72.314.7 72.383.93 72.423.71 72.463.48 72.401.85 72.472.64 72.813.83

SCIERC 82.841.39 82.851.38 82.811.13 83.181.09 82.992.75 83.402.17 85.850.95

SST 92.020.29 92.210.31 92.140.24 92.210.24 92.250.4 92.150.35 92.420.32

Table 4: Performance of DANA and five Baseline methods. Base corresponds to the pre-trained model on
general domain corpus with no further pre-training. Baseline methods are mentioned in previous subsection.
DANA corresponds to our method with discrete relevance weights. Keeping in line with the previous works, we
use the following metrics: accuracy for SST, micro f1 score for CHEMPROT and RCT20K, macro f1 score for
ACL-ARC, SCIERC, HELPFULNESS, HPRPARTISAN, IMDB, and AGNEWS. Each model is finetuned eight
times with different seeds and the mean value is reported. Subscript correspond to the standard deviation in the
finetuned model performance.

Table 4 shows the effectiveness of automatically adapting pre-training to the task domain. Our
method achieves performance gain in all domains with an average gain of 1.01% over the base
model pre-trained on the general domain corpus and beats all the baseline methods. Our method
has the advantage that it does not require access to any large domain specific corpus. Instead we
only have access to a very small task dataset available for finetuning. So, it is applicable to any
new task from any new domain. Results are presented for discrete relevant weight case as they are
better when the number of steps available to continue pre-training are small. Results for continuous
relevance weights case can be found in Appendix C. We also observe that the performance boost
is higher if the corresponding boost via additional pre-training on large domain specific corpus is
higher. Results for this comparison can be found in Appendix D.

5 CONCLUSION

Recent development of various domain specific models in language modeling shows that domain
shift in finetuning from pre-training can significantly deteriorate the performance of the downstream
task. The existing domain adaptation methods either require sufficiently large task data, or are based
on adhoc techniques that do not generalize well across tasks. Our major contribution is providing a
new domain adaptation technique that performs well even with very little task data, and generalizes
well across tasks.
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APPENDIX

A DATASETS IN ACCURACY ESTIMATION OF ANOMALY SCORE BASED DATA
FILTRATION

CS task data: To train anomaly score discriminator for CS data, we use the tasks data from ACL-
ARC and SCIERC. Details of these datasets are mentioned in Section 4.

CS and Bio Abstracts: Semantic Scholar corpus (Ammar et al., 2018) contains datasets from a
variety of domain. We filter out text based on the domain field and only keep the abstracts from CS
and bio domain.

News: We use REALNEWS (Zellers et al., 2019) corpus containing news articles from 500 news
domains indexed by Google News. It is obtained by scraping dumps from Common Crawl.

Finance: We use the TRC2-financial dataset. This a subset of Reuters TRC24 corpus containing
news articles published between 2008 and 2010. It can be obtained by applying here: https:
//trec.nist.gov/data/reuters/reuters.html

B PSEUDO CODE

Algorithm 1 Task Adaptive Pre-training
Input: Pre-trained model B, Pre-training instances x1, . . . , xN , task data T , (C,α), #steps
Stage 1: Instance weight computation
Let the sentences of the task be s1, . . . , st with sentence embeddings P =
{Embed(s1), . . . ,Embed(st)}.
Let a random subset of pre-training instances (sentences of these instances) be s′1, . . . , s

′
t/10 with

BERT based sentence embeddings N = {Embed(s′1), . . . ,Embed(s′t/10)}
Train an anomaly detection object, IF = IsolationForest(P ∪N)
For i ∈ [N ], let S(xi) = IF.score(Embed(xi))

Let µ = 1
N

∑N
i=1 S(xi) and σ =

√
1
N

∑N
i=1(S(xi)− µ)2.

For every i ∈ [N ], S̄(xi) = S(xi)−µ
σ .

For every i ∈ [N ], λ(xi) = 1
1+e−C(α−S̄(xi))

Stage 2: Adaptation of pre-training to target domain
Continue training language model B for #steps on instances x1, . . . , xN with instance weights
λ(x1), . . . , λ(xN ).
Finetune resulting model on the labeled task data T

Algorithm 1 shows the pseudo code for the case of continuous relevance weights. Discrete relevance
weight setting is same as C → ∞. As discussed in 3.2, in case of discrete relevance weights, we
filter out segments containing several consecutive sentences. We experimented with several options
for the segment length and found the stable segment length to be 15 sentences. Here, a sentence
is a consecutive piece of text such that when applied through the BERT tokenizer, it results in 256
sentences.

C CONTINUOUS RELEVANCE WEIGHTS

We see in Table 5 that a model additionally pre-trained for 50,000 with discrete λ values consistently
over performs the continuous case even when we train with continuous relevance weights for far
higher number of steps. This is because of the fact that many of those steps yield virtually no
training at all. For instance, suppose the relevance weights are uniformly distributed between 0 and
1; [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. Then, in discrete case we pick the top two sentences
and thus two steps are sufficient to train on these most relevant sentences (assume batch size is 1).
However, in continuous case, we need to train the model for ten steps to train on these top two
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Task Base Discrete Continuous-1 Continuous-3

CHEMPROT 81.620.74 82.410.62 81.740.81 81.640.83

RCT20K 87.520.16 87.820.13 87.490.28 87.560.22

HPRPARTISAN 70.573.04 73.582.39 70.941.98 71.292.95

AGNEWS 93.990.13 94.030.16 94.010.14 94.010.15

HELPFULNESS 69.300.60 69.700.92 69.350.5 69.370.44

IMDB 88.650.24 89.290.22 88.630.51 88.710.46

ACL-ARC 72.314.7 72.813.83 72.262.33 72.362.12

SCIERC 82.841.39 85.850.95 83.141.96 83.132.65

SST 92.020.29 92.420.32 92.110.32 92.130.37

Table 5: Comparison of discrete vs continuous relevance weight setting. Base corresponds to the pre-trained
model on general domain corpus with no further pre-training. Discrete refers to DANA with discrete relevance
weights/filtered out text and pre-trained additionally for 50000 steps. Continuous-x refers to DANA with
continuous relevance weights and pre-trained additionally for x∗100, 000 more steps. Metrics used for different
tasks: accuracy for SST, micro f1 score for CHEMPROT and RCT20K, macro f1 score for ACL-ARC, SCIERC,
HELPFULNESS, HPRPARTISAN, IMDB, and AGNEWS. Each model is finetuned eight times with different
seeds and the mean value is reported. Subscript correspond to the standard deviation in the finetuned model
performance.

relevant sentences. Thus, we need many more steps to achieve and beat the performance achieved
in the Discrete case. An open question is to combine the two settings so as to benefit from the
generality of Continuous case and efficiency of the discrete case.

D PERFORMANCE BOOST WITH DOMAIN-SPECIFIC CORPUS VS DANA

Task DANA Domain Corpus

CHEMPROT 0.79 2.3
RCT20K 0.3 0.4
HYPERPARTISAN 3.01 1.6
AGNEWS 0.04 0.0
HELPFULNESS 0.4 1.4
IMDB 0.64 5.4
ACL-ARC 0.5 3.5
SCIERC 3.01 12.4

Table 6: Performance boost via DANA vs pre-training on domain specific corpus. DANA corresponds to our
method with discrete relevance weights/filtered out text and pre-trained additionally for 50000 steps. Domain
Corpus refers to the model trained in Gururangan et al. (2020) over the domain same as the downstream task.
Metrics used for different tasks: accuracy for SST, micro f1 score for CHEMPROT and RCT20K, macro f1 score
for ACL-ARC, SCIERC, HELPFULNESS, HPRPARTISAN, IMDB, and AGNEWS. Each model is finetuned
eight times with different seeds. We report the difference in the mean value of performance between the model
with additional pre-training and base model with no additional pre-training.

We compare the performance boost we achieved due to DANA with the performance boost we
achieve if we have access to large pre-training corpus. In Table 6, we list the gain in performance
in both cases over eight tasks from four domains. We see that the performance boost is higher
with DANA if the corresponding boost is higher with domain specific corpus. Thus if there is a
large domain shift between the general domain corpus and the task data, as can be measured by the
performance boost via large pre-training corpus, then DANA is able to achieve large performance
boost via Domain Adaptation. Scale of numbers in the two columns are not directly comparable due
to the following two reasons. First is that additional pre-training done is Gururangan et al. (2020)
is for almost as many steps as the number of steps required to pre-train a network from scratch.
However, in our case additional pre-training is done for only 5% of the number of steps required to
pre-train a network from scratch. Second reason is that the model used in (Gururangan et al., 2020)
is different, ROBERTA. Also, the general domain corpus is different and thus the domain shift is
not exactly the same as in our case. The point however remains the same, which is that as the target
domain is further away from the pre-training corpus, the benefits of DANA increase.
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