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Abstract

How does the human brain recognize faces and represent their many features?
Despite decades of research, we still lack a thorough understanding of the compu-
tations carried out in face-selective regions of the human brain. Deep networks
provide good match to neural data, but lack interpretability. Here we use a new class
of deep generative models, disentangled representation learning models, which
learn a latent space where each dimension “disentangles” a different interpretable
dimension of faces, such as rotation, lighting, or hairstyle. We show that these
disentangled networks are a good encoding model for human fMRI data. We further
find that the latent dimensions in these models map onto non-overlapping regions
in fMRI data, allowing us to "disentangle" different features such as 3D rotation,
skin tone, and facial expression in the human brain. These methods provide an
exciting alternative to standard “black box” deep learning methods, and have the
potential to change the way we understand representations of visual processing in
the human brain.

1 Introduction

Humans are very good at recognizing faces despite the complex high dimensional space that faces
occupy. A given face can vary across many dimensions. Some dimensions (such as 3D rotation and
lighting) are constantly changing and thus irrelevant to recognizing the face, while others (such as
facial features or skin tone) are generally stable and useful for recognizing individuals, and still others
(such as hair style) can change but also offer important clues for recognition. Face networks in the
macaque and human brains have been thoroughly mapped and individual cells in the macaque have
been identified that are selective to particular face features [1, 2]. However, the overall computations
in face regions are still poorly understood. This lack of understanding can be seen in the relatively
poor decoding of face identity from fMRI data compared to other visual categories [3].

Recently, deep generative models have been shown to provide a good match to human fMRI data and
provide high decoding accuracy of individual faces [4]. These models, however, transform faces into
a high dimensional latent space that is difficult to interpret, and thus provide only limited additional
information about the underlying neural computations. Here we used a new class of deep generative
models, disentangled representation learning models, to understand the computations underlying
human face recognition. There are multiple disentangled representation learning models [5–9], and
we will refer to all of the models based on Variational Autoencoders [10] as Disentangled Variational
Autoencoders (dVAEs). dVAEs learn a latent space that “disentangles” different explanatory factors
in the training distribution [11]. When applied to faces, these models isolate specific face features
(such as lighting, viewpoint and facial expression) in specific neurons [5–9]. This latent space is
computationally effective and highly interpretable by humans. We asked if the human brain might be
using a similar disentangled feature space to recognize faces.
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We trained a dVAE to reconstruct face images through a bottleneck and confirmed that its latent space
contains several interpretable features. We learned a linear transformation between the dVAE latent
dimensions and face-selective voxels in the human brain, and used this transformation as an encoding
model to predict the fMRI responses to held-out face images. We showed that this encoding model
is as accurate as a standard VAE, suggesting that the added interpretability constraint on the dVAE
does not affect its match to human neural data. Finally, we found evidence with the dVAE that key
dimensions such as rotation, skin tone, smile, and gender appearance are also disentangled in the
human brain.

2 Disentangled Variational Autoencoder

Figure 1: Diagram of the dVAE adapted from [9]. The dVAE
has a standard VAE architecture with an additional loss term to
encourage the elements of q(z) to be factorized. We learn a linear
map between the VAE latent vector (highlighted in blue) and
fMRI data.

Variational Autoencoders (VAEs)
[10] are a common framework
for producing generative models
with neural networks. A major
goal of the machine learning com-
munity is to disentangle the fac-
tors of variation that underlie a
dataset [11]. These explanatory
factors can change independently
and produce large changes in the
data distribution while requiring
only minor changes in a disen-
tangled latent space. The genera-
tive capacity of VAEs make them
a prime candidate for learning
disentangled representations, and
there are many methods that at-
tempt to learn disentangled latent
spaces through supervised train-
ing methods [5] and information-
theoretic approaches [6–9]. We
use FactorVAE [9] as our model because it is a simple approach. In addition to the standard VAE
objective, FactorVAE adds an additional term to the objective function which minimizes the Total
Correlation [12]. The Total Correlation is the KL Divergence between a joint distribution of random
variables and the product of those the individual random variables. Let q(z) be our joint distribution of
d random variables and q̄(z) =

∏d
i=1 q(zi) be the product of the individual variables. By minimizing

the KL Divergence between q(z) and q̄(z), FactorVAE encourages a latent space where the different
dimensions are independent from each other.

We trained a standard VAE and a FactorVAE using the CelebA dataset [13] which consists of
200,000 face images. The two models both had latent vectors of size 24 and achieved similar image
reconstruction loss (see Appendix A.1 for more training details). After training the FactorVAE
model, two raters manually inspected the latent traversals and tagged the dimensions with the human
interpretable transformations. Figure 2 shows the latent traversals for two of these dimensions
representing 3D rotation and smile. Additional traversals for gender and skin tone are shown in
Figure 6 in the Appendix.

3 fMRI analysis

3.1 fMRI data

We used publicly available fMRI data of four subjects from [4]. Briefly, subjects viewed around
8000 “training” face images each presented once, and 20 “test” face images presented between 40-60
times each. Subjects were scanned on separate face-object localizer runs, which we used to identify
voxels that responded significantly more to faces than objects (p<10^-4, uncorrected). Data were
pre-processed and projected onto subjects’ individual cortical surfaces using Freesurfer [14].
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(a) 3D rotation (b) Smile

Figure 2: dVAE latent dimensions. Examples of faces generated by altering the dVAE latent
dimension representing (a) 3D rotation and (b) smile (note that smile is slightly entangled with
sunglasses towards the positive side). Input face on left and face reconstructions for different values
of the latent dimension shown on right (all other latent dimensions are kept fixed).

3.2 Encoding model

We estimated a linear map between the latent dimensions in our VAE and the fMRI data via a
generalized linear model (GLM). To do this we extracted the latent representation for each training
image, and used these weighted latent dimensions as regressors in the GLM. We also estimated the
response to each test image as a separate regressor in the GLM.

To test the accuracy of the encoding model, we extracted the latent dimensions for each test image
and multiplied this by the linear transformation learned in the GLM to get a predicted voxel response
to each test image (Figure 3). We then correlated the predicted fMRI response in each voxel activity
to the true voxel activity across all test images.

Figure 3: Encoding model procedure. Each test image is passed through the VAE encoder to extract
its N-dimensional latent representation. This latent representation is multiplied by the regression
weights learned from the training images via GLM. We next add a bias term coding for the presence
of a face in the GLM. This produces a predicted voxel response for each test image. These predicted
voxel responses are correlated with the true voxel responses to evaluate encoding performance.

4 Results

4.1 Encoding model performance

We compared the encoding model performance of our dVAE to the standard VAE. We found that the
dVAE encoding results were comparable to a VAE, and led to better encoding performance in two
of three subjects (Table 1, Figure 4). This suggests that dVAEs provide a similarly good match to
human neural data as VAEs despite the additional disentanglement term applied during training.
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Table 1: Average Spearman Correlation across face selective voxels. All correlation values are
significantly above chance (p <0.001 based on a permutation test).

Subject 1 Subject 2 Subject 3 Subject 4

dVAE .071 .165 .023 .118
VAE .034 .176 .014 .21

Figure 4: Correlation (Spearman’s rho) for Subject 1 in face-selective voxels between the fMRI
activity predicted by the dVAE (top row) and VAE (bottom row) and the ground-truth fMRI recordings
on the test images.

4.2 Disentangling features in the human brain

The main promise of a disentangled model over standard deep learning models is the ability to
use their disentangled representations to interpret brain data. To do this, we visualized the beta
weights for two of the latent dimensions: rotation and smile. These were two of the 15 dimensions
consistently labeled by both raters. Since the dVAE learns to de-correlate its latent dimensions, it is
straightforward to examine each of their independent beta weights.

We found that these two dimensions are contained in largely non-overlapping voxels in all four
subjects as seen in Figure 5 (though see Appendix Figure 7 for two additional dimensions with more
overlapping voxels). This provides a promising first proof-of-concept that the variables disentangled
by the dVAE may also be disentangled in the human brain. In addition to the spatial segregation, the
different latent dimensions have a distinct weighting that is consistent across subjects.

5 Discussion

Here we showed that a dVAE serves as a good encoding model of face processing in the human
brain, and that it allows us to "disentangle" two key dimensions of face processing: gender and
rotation. This model provides, for the first time, an interpretable and straightforward way to identify
the representations for several key face features in the human brain. Prior work on disentangled
representations has shown that they are helpful for generalizing on downstream reasoning [15]. It is
possible that the human brain may use disentangled representations to achieve robust generalization.
If the human brain implements disentangled representations, different architectures and training
objectives which encourage disentanglement could reveal new biologically plausible inductive biases.

Prior work has shown that discriminative deep neural networks provide a good match to human neural
data for general visual processing [16]. More recent work though, suggests that generative models
may provide a better match to face responses than discriminative models [17]. In particular, prior
work showed high encoding/decoding performance of faces in human fMRI data [4]. This work was
also able to provide some information about how different face features are coded in the brain since it
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Figure 5: Beta weights in the right hemisphere across four subjects for two latent dimensions in
the dVAE model for 3D rotation (columns 1 and 3) and smile (columns 2 and 4). The voxels
corresponding to rotation and smile are largely non-overlapping. Additional betas for the gender
appearance and skin tone disentangled dimensions can be seen in the Appendix Figure 7

.

used a dataset of face images that was annotated with information like gender appearance and facial
expression.

Our work extends these results and provides several advantages over traditional "entangled" deep
learning models. First, since the feature information is learned in the disentangled model, we do not
need to rely on annotated datasets. Not only is annotation expensive, but some continuous features
(like lighting or rotation changes) are almost impossible to label in uncontrolled natural images.
In addition to a more thorough characterization of the representations of different disentangled
features, dVAEs may also be useful for understanding transformation-invariant representations of
faces. Several features "disentangled" by the dVAE are identity-preserving transformations, such as
lighting and viewpoint. By discounting the contribution of these features, we can decode different
face identities with less data and better understand how identity information is represented in the
brain, despite the fact that identity is not a feature that is disentangled by the model.

One other study recently used dVAEs to analyze face monkey physiology data [18]. They found that
different dimensions disentangled by the dVAE were highly correlated with single cell responses in
the anterior face patch of monkeys. Here we showed that this work can be extended to whole-brain
fMRI data. This allows us to move beyond single cell tuning and examine computational properties
of the entire face processing network.
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6 Broader Impact

Computational models of face perception have many potential adverse societal affects, including
invasion of privacy and racial bias. Since disentangled models can isolate variable that we know
lead to bias (such as skin tone, gender appearance, and hair style), they may further these problems.
On the other hand, if applied thoughtfully, disentangled models can be used as a tool to combat
bias in downstream decision making, since they make it easier to identify and discount potential
sources of bias. Indeed, prior work has shown that disentangled representations can increase the
fairness on downstream prediction tasks [19]. Purely algorithmic attempts to correct racial bias in
the computational sciences, however, are sure to fall short [20]. Therefore we are also committed to
examine racial bias in our training set and model by comparing model reconstruction performance
on different races, and addressing any biases this analysis reveals. Another pervasive issue in face
recognition research is "gender" classification in face images [20]. This is problematic first because it
treats gender as a binary dimension and second because it assumes gender can be identified based
purely on visual facial appearance. While we identified a latent variable that seemingly coded for
stereotypically "masculine" vs. "feminine" facial features (referred to as "gender appearance" above),
we do not claim the model can "classify gender".

7 Conclusion

Here we showed that disentangled deep generative models provide a good match to human neural
data, and improve interpretability without sacrificing performance. These models allow us to identify
human-relevant and computationally important face features in the brain, and are a promising tool to
understand the complex visual representations underlying human face perception.
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A Appendix

A.1 Model training details

We trained our models using the Disentanglement Lib framework [21]. The CelebA input images
were first scaled to 64x64x3. The first four layers are convolutional layers. The first two layers have
32 filters, a kernel size of 4, a stride of 2, and use the ReLU activation function. The third and fourth
layer have 64 filters, a kernel size of 2, a stride of 2, and use the ReLU activation function. This is
followed fully-connected layer to dimension 256 using the ReLU activation function. Finally, this
last vector is linearly projected to two vectors of the latent dimension size to represent the mean and
variance of the VAE. The decoder follows a similar architecture, but in reverse with deconvolutional
layers.

We perform a hyperparameter search over the size of the latent vector and the hyperparameter
coefficient γ applied to the disentanglement objective. We searched across latent vector sizes of 24
and 32, and searched for γ values in [3, 6.4, 12, 24]. For every hyperparameter combination, we train
two models to avoid one model getting stuck in a bad local optimum. We qualitatively analyzed the
models to see which one was disetangling well. The chosen model used a latent dimension of 24 and
γ of 24.

7



(a) Gender appearance (b) Skin tone

Figure 6: dVAE latent dimensions. Examples of faces generated by altering the dVAE latent dimension
representing (a) gender appearance and (b) skin tone. Input face on left and face reconstructions for
different values of the latent dimension shown on right (all other latent dimensions are kept fixed).

After the FactorVAE model was trained, we trained a VAE with the exact same hyperparameters. This
is akin to trainng another FactorVAE model where the Total Correlation coefficient hyperparameter γ
is set to 0.

The final FactorVAE achieves a reconstruction loss on the test set of 6477 while the final VAE
achieves a reconstruction loss of 6470.
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Figure 7: Beta weights in the right hemisphere across four subjects for two latent dimensions in the
dVAE model for gender appearance (columns 1 and 3) and skin tone (columns 2 and 4).
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