
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING IN COMPLEX ACTION SPACES
WITHOUT POLICY GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional wisdom suggests that policy gradient methods are better suited to
complex action spaces than action-value methods. However, foundational studies
have shown equivalences between these paradigms in small and finite action spaces
(O’Donoghue et al., 2017; Schulman et al., 2017a). This raises the question of why
their computational applicability and performance diverge as the complexity of
the action space increases. We hypothesize that the apparent superiority of policy
gradients in such settings stems not from intrinsic qualities of the paradigm, but
from universal principles that can also be applied to action-value methods to serve
similar functionality. We identify three such principles and provide a framework
for incorporating them into action-value methods. To support our hypothesis, we
instantiate this framework in what we term QMLE, for Q-learning with maximum
likelihood estimation. Our results show that QMLE can be applied to complex
action spaces with a controllable computational cost that is comparable to that of
policy gradient methods, all without using policy gradients. Furthermore, QMLE
demonstrates strong performance on the DeepMind Control Suite, even when
compared to the state-of-the-art methods such as DMPO and D4PG.

1 INTRODUCTION

In reinforcement learning, policy gradients have become the backbone of solutions for environments
with complex action spaces, including those involving large, continuous, or combinatorial subaction
spaces (Dulac-Arnold et al., 2015; OpenAI et al., 2019; Vinyals et al., 2019; Hubert et al., 2021;
Ouyang et al., 2022). In contrast, action-value methods have traditionally been confined to tabular-
action models for small and finite action spaces. However, where applicable, such as on the Atari
Suite (Bellemare et al., 2013; Machado et al., 2018), action-value methods are frequently the preferred
approach over policy gradient methods (Kapturowski et al., 2023; Schwarzer et al., 2023).

Over the past years, foundational research has shown that the distinction between action-value and
policy gradient methods is narrower than previously understood, particularly in the basic case of
tabular-action models in small and finite action spaces (see, e.g., Schulman et al., 2017a). Notably,
O’Donoghue et al. (2017) established an equivalency between these paradigms, revealing a direct
connection between the fixed-points of the action-preferences of policies optimized by regularized
policy gradients and the action-values learned by action-value methods. These insights invite further
exploration of the discrepancies that emerge as the complexity of action spaces increases.

What are the core principles that underpin the greater computational applicability and performance
of policy gradient methods in such settings? In this paper, we identify three such principles. First,
policy gradient methods leverage Monte Carlo (MC) approximations for summation or integration
over the action space, enabling computational feasibility even in environments with complex action
spaces. Second, they employ amortized maximization through a special form of maximum likelihood
estimation (namely, the policy gradient itself), iteratively refining the policy to increase the likelihood
of selecting high-value actions without requiring brute-force argmax over the action space. Third,
scalable policy gradient methods employ action-in architectures for action-value approximation,
which covertly enable representation learning and generalization across the joint state-action space.

Are these principles exclusive to policy gradient methods? We argue that these principles can be
adapted to action-value methods. Specifically, instead of using MC methods for summation or

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

integration as in policy gradient methods, they can be used to approximate the argmax in action-
value methods in order to make them computationally scalable for complex action spaces. Moreover,
explicit maximum likelihood estimation can be applied to enable caching and iterative refinement of
parametric predictors for amortized argmax approximation. Lastly, action-in architectures can be
employed not only as a scalable approach for evaluating a limited set of actions in any given state,
but also to enable representation learning and generalization across both states and actions.

We introduce Q-learning with maximum likelihood estimation (QMLE) to test our hypotheses. Our
empirical study shows that QMLE achieves strong performance in environments with complex action
spaces, all while matching the computational complexity of policy gradient methods. These results
provide evidence that the identified principles are core to the success of policy gradient methods in
such environments. Moreover, they support that the principles are not intrinsic to the policy gradient
paradigm, but are universal and adaptable to action-value learning for achieving similar qualities.

The idea of using sampling-based approximation of the argmax in value-based methods has been
explored in earlier works. For example, Tian et al. (2022) studied the combination of value iteration
and random search in discrete domains, with a tabular mechanism for tracking the best historical
value-maximizing action in each state. Kalashnikov et al. (2018) introduced the QT-Opt algorithm,
which employs a fixed stochastic search via the cross-entropy method to approximate argmax in
Q-learning. Closely related to QMLE is the AQL algorithm by de Wiele et al. (2020), which integrates
Q-learning with entropy-regularized MLE to approximate a value-maximizing action distribution.
While QMLE shows superior performance relative to QT-Opt and AQL in complex action spaces
(Appendix C), our emphasis in this work is less on algorithmic novelty and more on dissecting the
core principles that bridge the gap between the two paradigms.

2 BACKGROUND

2.1 THE REINFORCEMENT LEARNING PROBLEM

The reinforcement learning (RL) problem (Sutton & Barto, 2018) is generally described as a Markov
decision process (MDP) (Puterman, 1994), defined by the tuple ⟨S,A,P,R⟩, where S is a state space,
A is an action space, P : S ×A → ∆(S)1 is a state-transition function, andR : S ×A×S → ∆(R)
is a reward function. The behavior of an agent in an RL problem can be formalized by a policy
π : S → ∆(A), which maps a state to a distribution over actions. The value of state s under policy π
may be defined as the expected discounted sum of rewards: V π(s)

.
= Eπ,P,R[

∑∞
t=0 γ

trt+1|s0 = s],
where γ ∈ (0, 1) is a discount factor used to exponentially decay the present value of future rewards.2

The goal of an RL agent is defined as finding an optimal policy π∗ that maximizes this quantity across
the state space: V π∗ ≥ V π for all π. While there may be more than one optimal policy, they all share
the same state-value function: V ∗ = V π∗

. Similarly, we can define the value of state s and action
a under policy π: Qπ(s, a)

.
= Eπ,P,R[

∑∞
t=0 γ

trt+1|s0 = s, a0 = a]. Notice that the goal can be
equivalently phrased as finding an optimal policy π∗ that maximizes this alternative quantity across
the joint state-action space: Qπ∗ ≥ Qπ for all π. Same as before, optimal policies share the same
action-value function: Q∗ = Qπ∗

.

The state and action value functions are related to each other via: V π(s) =
∑

a Q
π(s, a)π(a|s),

where we use
∑

to signify both summation and integration over discrete or continuous actions.
For all MDPs there is always at least one deterministic optimal policy, which can be deduced by
maximizing the optimal action-value function: argmaxa Q

∗(s, a) in any given state s. It is worth
noting that there may be cases where multiple actions yield the same maximum value, resulting in ties.
By breaking such ties at random, considering all conceivable distributions, we can construct the set
of all optimal policies, including both deterministic and stochastic policies. Regardless of the optimal
policy, the optimal state-value and action-value functions are related to each other in the following
way: V ∗(s) = maxa Q

∗(s, a). Similarly, the optimal state-value function can be used to extract
optimal policies by invoking the Bellman recurrence: argmaxa EP,R[rt+1 + γV ∗(st+1)|st = s].

1∆ denotes a distribution.
2Discounts are occasionally employed to specify the true optimization objective, whereby they should be

regarded as part of the MDP. However, more often discounts serve as a hyper-parameter (van Seijen et al., 2019).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

However, this requires access to the MDP model, rendering the sole optimization of state-values
unsuitable for model-free RL.

2.2 ACTION-VALUE LEARNING

Optimizing the action-value function and deducing an optimal policy from it seems to be the most
direct approach to solving the RL problem in a model-free manner. To this end, we first consider the
Bellman recurrence for action-values (Bellman, 1957):

Qπ(s, a) = E
π,P,R

[rt+1 + γQπ(st+1, at+1)|st = s, at = a], (1)

where π is in general a stochastic policy and at+1 ∼ π(.|st+1). By substituting policy π with an
optimal policy π∗ and invoking Q∗(s, argmaxa Q

∗(s, a)) = maxa Q
∗(s, a), we can rewrite Eq. 1:

Q∗(s, a) = E
P,R

[rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a]. (2)

The method of temporal differences (TD) (Sutton, 1988) leverages equations (1) and (2) to contrive
two foundational algorithms for model-free RL: Sarsa (Rummery & Niranjan, 1994) and Q-learning
(Watkins, 1989). Sarsa updates its action-value estimates, Q(st, at), by minimizing the TD residual:(

rt+1 + γQ(st+1, at+1)
)
−Q(st, at), (3)

whereas Q-learning does so by minimizing the TD residual:(
rt+1 + γmax

a
Q(st+1, a)

)
−Q(st, at). (4)

Both algorithms have been shown to converge to the unique fixed-point Q∗ of Eq. 2 under similar
conditions, with one additional and crucial condition for Sarsa (Watkins & Dayan, 1992; Jaakkola
et al., 1994; Singh et al., 2000). Namely, because Sarsa uses the action-value of the action chosen
by its policy in the successor state, the action-values can converge to optimality in the limit only if
it chooses actions greedily in the limit: limk→∞ πk(a|s) = 1a=argmaxa′ Q(s,a′). This is in contrast
with Q-learning which uses its maximum action-value in the successor state regardless of its policy,
thus liberating its learning updates from how it chooses to act. This key distinction makes Sarsa
an on-policy and Q-learning an off-policy algorithm. As a final point, the action-value function can
be approximated by a parameterized function Q, such as a neural network, with parameters ω and
trained by minimizing the squared form of the TD residual (3) or (4).

2.3 POLICY GRADIENT METHODS

Unlike action-value methods (§2.2), policy gradient methods do not require an action-value function
for action selection. Instead they work by explicitly representing the policy using a parameterized
function π, such as a neural network, with parameters θ and only utilizing action-value estimates to
learn the policy parameters. To demonstrate the main idea underpinning policy gradient methods, we
start from the following formulation of the RL problem (cf. §2.1):

π∗ .
= argmax

π
E
π,P

[
V π(st)

]
. (5)

The objective function in this formulation is the expected state-value function, where the expectation
is taken over the state distribution induced by policy π and state-transition function P . This problem
can be solved approximately via gradient-based optimization. In fact, this forms the basis of policy
gradient methods. Accordingly, the policy gradient theorem (Sutton et al., 1999) proves that the
gradient of the expected state-value function with respect to policy parameters θ is governed by:

∇ E
π,P

[
V π(st)

]
= ∇ E

π,P

[∑
a

Qπ(st, a)π(a|st)
]
∝ E

π,P

[∑
a

Qπ(st, a)∇π(a|st)
]
. (6)

By using an estimator of the above expression, denoted ∇̂J(θ), policy parameters can be updated via
stochastic gradient ascent: θ ← θ + α∇̂J(θ), where α is a positive step-size. It is important to note
that, like Sarsa (§2.2), policy gradients are on-policy learners: applying one step of policy gradient

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

updates the policy parameters θ → θ′ and thereby the policy π → π′, thus inducing a different
action-value function Qπ → Qπ′

and a different state distribution.

There have been attempts to extend policy gradients to off-policy data (Degris et al., 2012). The most
common approach in this direction is to use deterministic policy gradients (DPG; Silver et al., 2014):

∇ E
π,P

[
V π(st)

]
= ∇ E

π,P

[∫
Qπ(st, a)δ

(
a− π(st)

)
da

]
(7a)

= ∇ E
π,P

[
Qπ

(
st, π(st)

)]
(7b)

∝ E
π,P

[
∇aQ

π
(
st, a=π(st)

)
∇π(st)

]
. (7c)

This is similar to Eq. 6 with the difference that here we replace the general-form policy π(a|s)
with a deterministic and continuous policy δ

(
a− π(s)

)
, where δ denotes the delta function whose

parameters are given by π(s). Moreover, this derivation only holds in continuous action spaces and,
as such, we substitute our general-form notation

∑
for both summation and integration with

∫
to

specify integration over continuous actions. The expression (7b) is then derived from (7a) by invoking
the sifting property of the delta function and (7c) is deduced from (7b) by applying the chain rule,
yielding a gradient with respect to actions (denoted∇a) and another with respect to policy parameters
θ (denoted as before by the shorthand∇).

To implement an off-policy method using DPG, we must make two key changes to the true deter-
ministic policy gradient (7). First, the deterministic policy—which is the target of optimization by
DPG—generally differs from the behavior policy π(a|s) that the agent uses to interact with and
explore the environment. Therefore, we must modify our notation to reflect this distinction:

E
π,P

[
∇aQ

µ
(
st, a=µ(st)

)
∇µ(st)

]
, (8)

where µ denotes the parameters of the delta function δ and the expectation is computed with respect
to the state distribution induced under behavior policy π and state-transition function P . Second,
our estimator Q ≈ Qµ must be differentiable with respect to actions. This is typically achieved by
training a parameterized function Q by minimizing the squared form of the TD residual:(

rt+1 + γQ
(
st+1, µ(st+1)

))
−Q(st, at). (9)

This expression can be viewed as substituting Q(st+1, µ(st+1)) for maxa Q(st+1, a) in the TD
expression (4), which is used by Q-learning.

2.4 MAXIMUM LIKELIHOOD ESTIMATION

Suppose we have a data set {(xi, yi)} drawn from an unknown joint distribution p(x, y), where
random variables xi and yi respectively represent inputs and targets. Frequently, problem scenarios
involve determining the parameters of an assumed probability distribution that best describe the data.
The method of maximum likelihood estimation (MLE) addresses this by posing the question: “Under
which parameter values is the observed data most likely?”. In this context, we typically start by
representing our assumed distribution using a parameterized function f , such as a neural network,
with parameters θ. Hence, ϕ .

= f(x) serves as our estimator for the distributional parameters in x.
For example, ϕ contains K values in the case of a categorical distribution with K categories, and
contains means µ and variances σ in the case of a multivariate heteroscedastic Gaussian distribution.
We will denote the probability distribution that is specified by parameters ϕ = f(x) as f(y|x). The
problem of finding the optimal parameters can then be formulated as:

argmax
ϕ

E
p(x,y)

[
log f(yi|xi)

]
.3 (10)

This problem can be solved approximately via gradient-based optimization by leveraging the log-
likelihood gradient with respect to parameters θ:

E
p(x,y)

[
∇ log f(yi|xi)

]
. (11)

3Equivalent to minimizing the KL-divergence between p(x, y) = p(y|x)p(x) and p̂(x, y)
.
= f(y|x)p(x).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

By using estimates of the above expression, denoted ∇̂J(θ), we can iteratively refine our distributional
parameters ϕ via stochastic gradient ascent on θ: θ ← θ + α∇̂J(θ), where α is a positive step-size.

3 THE PRINCIPLES UNDERPINNING SCALABILITY IN POLICY GRADIENTS

As we discussed in Section 2.2, both Sarsa and Q-learning require maximization of the action-
value function: Sarsa relies on greedy action-selection in the limit for optimal convergence and
Q-learning needs maximizing the action-value function in the successor state to compute its TD
target. Additionally, both Sarsa and Q-learning need action-value maximization in the current state
for exploitation or, more generally, for constructing their policies (e.g. an ε-greedy policy relies
on choosing greedy actions with probability 1− ε and uniformly at random otherwise). However,
performing exact maximization in complex action spaces is computationally prohibitive. This has in
turn limited the applicability of Sarsa and Q-learning to small and finite action spaces. On the other
hand, policy gradient methods are widely believed to be suitable for dealing with complex action
spaces. In this section, we identify the core principles underlying the scalability of policy gradient
methods and describe each such principle in isolation.

3.1 APPROXIMATE SUMMATION OR INTEGRATION USING MONTE CARLO METHODS

The scalability of policy gradients in their general stochastic form relies heavily on the identity:

E
π,P

[∑
a

Qπ(st, a)∇π(a|st)
]
= E

π,P

[
Qπ(st, at)

∇π(at|st)
π(at|st)

]
= E

π,P

[
Qπ(st, at)∇ log π(at|st)

]
,

(12)

where the middle expression is derived from our original policy gradient expression (6) by substituting
an importance sampling estimator in place of the exact summation or integration over the action
space.4 The rightmost expression is then derived simply by invoking the logarithm differentiation rule,
where log denotes the natural logarithm. Consequently, using an experience batch of the usual form
{(st, at, rt+1, st+1)} with size n, we can construct an estimator of the policy gradient as follows:

1

n

∑
t

Qπ(st, at)∇ log π(at|st), (13)

where Qπ is the true action-value function under policy π which itself needs to be estimated from
experience, e.g. via Qπ(st, at) ≈ rt+1 + γV (st+1) with V serving as a learned approximator of V π .

Considering the fact that the policy gradient estimator (13) is founded upon replacing the exact
summation or integration over the action space with an on-trajectory (single-action) MC estimator,
we can construct a more general class of policy gradient estimators by enabling off-trajectory action
samples to also contribute to this numerical computation (Petit et al., 2019):

1

n

∑
t

1

m+ 1

(
Qπ(st, at)∇ log π(at|st) +

m−1∑
i=0

Qπ(st, ai)∇ log π(ai|st)
)
, (14)

where m is the number of off-trajectory action samples ai ∼ π(.|st) per state st. When m = 0, this
reduces to the original on-trajectory policy gradient estimator (13). It is important to note that using
the policy gradient estimator (14) with m > 0 requires direct approximation of the action-values Qπ

by a function Q, e.g. a neural network trained by minimizing the squared form of the TD residual (3).

A large portion of policy gradient algorithms rely on the on-trajectory estimator (13), including
REINFORCE (Williams, 1992), A3C (Mnih et al., 2016), and PPO (Schulman et al., 2017b). To our
knowledge, surprisingly few algorithms make use of the generalized MC estimator (14), with AAPG
(Petit et al., 2019) and MPO (Abdolmaleki et al., 2018) being our only references. On the flip side,
methods that perform exact summation or integration over the action space are either limited to small
and finite action spaces (Sutton et al., 2001; Allen et al., 2017) or restricted to specific distribution
classes that enable closed-form integration (Silver et al., 2014; Ciosek & Whiteson, 2018; 2020).

4Importance sampling is a Monte Carlo (MC) method used for sampling-based approximation of sums and
integrals (Hammersley & Handscomb, 1964).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ActionAction

Action

P
ro
b
a
b
ili
ty

1 2 3 4 5

R
e
w
a
rd

0

Action
1 2 3 4 5

Action
1 2 3 4 5

Action
1 2 3 4 5

(a) (b)
1

0

(c) (d)

Figure 1: Policy progression according to the true policy gradient in two distinct bandit problems:
(a) reward function and (b) softmax-policy progression over time from a random initialization to
a deterministic policy in a multi-armed bandit; (c) delta-policy progression in a continuous bandit
problem with bimodal rewards; (d) fixed-variance Gaussian-policy progression in the same continuous
bandit problem. In (c) and (d), policy progressions overlay the reward function.

3.2 AMORTIZED MAXIMIZATION USING MAXIMUM LIKELIHOOD ESTIMATION

In RL and dynamic programming, generalized policy iteration (GPI) (Bertsekas, 2017) represents a
class of solution methods for optimizing a policy by alternating between estimating the value function
under the current policy (policy evaluation) and enhancing the current policy (policy improvement).
Sarsa is an instance of GPI, wherein the policy evaluation step involves learning of an estimator
Q ≈ Qπ by minimizing the temporal difference (3) and the policy improvement step occurs implicitly
by acting semi-greedily with respect to Q. Policy gradient methods share a close connection to GPI as
well (Schulman et al., 2015). They also alternate between policy evaluation (i.e. estimating Q ≈ Qπ)
and policy improvement (i.e. updating an explicit policy using an estimate of the policy gradient).
Notably, one can instantiate a policy gradient algorithm by performing the policy evaluation step in
the same fashion as Sarsa. From this standpoint, the mechanism employed for policy improvement is
the main differentiator between policy gradient methods and action-value methods like Sarsa. In the
previous section, we illustrated how policy gradient estimation can be carried out in a computationally
scalable manner. In this section, we delve into the question of how updating the policy using policy
gradients achieves policy improvement, and how it does so in an efficient manner.

We start with recasting the log-likelihood gradient (11) using RL terminology, replacing the variables
(x, y, i, f) with (s, a, t, π). Moreover, we reinterpret the expectation computation to be under the
joint visitation distribution of state-action pairs within an RL context. Subsequently, we contrast the
reframed log-likelihood gradient against the policy gradient (12):

E
π,P

[
∇ log π(at|st)

]
︸ ︷︷ ︸

log-likelihood gradient

vs. E
π,P

[
Qπ(st, at)∇ log π(at|st)

]
︸ ︷︷ ︸

policy gradient

. (15)

This comparison implies that policy gradients perform a modified form of MLE, wherein the log-
likelihood gradient term is weighted by Qπ for each state-action pair. This weighting assigns
importance to actions according to the product of Qπ(s, a) and log π(a|s). Therefore, a single step
of the true policy gradient updates the policy distribution such that actions with higher action-values
become more likely. From this perspective, policy gradients can be construed as a form of amortized
inference (Gershman & Goodman, 2014). Each step of the true policy gradient improves the current
approximate maximizer of an interdependent action-value function, with the policy functioning as a
mechanism for retaining and facilitating retrieval of the best approximation thus far. To elucidate this,
we consider a basic one-state MDP (aka. multi-armed bandit) with deterministic rewards (Fig. 1a).
In such a setting, true action-values are independent of the policy and are equivalent to rewards:
Qπ(a) = Q∗(a) = r(a) for all π and a. For learning, we use a tabular policy function with a
softmax distribution and update it using the true policy gradient in each step. These choices minimize
confounding effects, allowing us to study the way policy gradients achieve policy improvement in
isolation. Figure 1b shows the progression of the policy distribution during training, starting from a
random initialization until convergence. Early in training the policy captures the ranking of actions

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

according to their respective action-values. In other words, sampling from the policy corresponds to
performing a probabilistic arg sort on the action-value function. In the absence of any counteractive
losses, such as entropy regularization, this process continues until convergence to a deterministic
policy corresponding to the argmax over the action-value function.

We have discussed that policy gradients can be viewed as an iterative approach to action-value
maximization. However, they do not always yield the global argmax. This limitation is rooted
in local tendencies of gradient-based optimization, affecting scenarios with non-tabular policy
distributions (Tessler et al., 2019). Figures 1c,d respectively show progression of a delta policy and
a fixed-variance Gaussian policy in a continuous bandit problem with bimodal and deterministic
rewards. In both cases, policy improvement driven by policy gradients results in local movement in
the action space and thus convergence to sub-optimal policies.

3.3 REPRESENTATION LEARNING VIA ACTION-IN ARCHITECTURES

There are two functional forms for constructing an approximate action-value predictor Q: action-in
and action-out architectures. An action-in architecture predicts Q-values for a given state-action pair
at input. An action-out architecture outputs Q predictions for all possible actions in an input state.
Action-out architectures have the computational advantage that a single forward pass through the
predictor collects all actions’ values in a given state, versus requiring as many forward passes as there
are actions in a state by an action-in architecture. Of course, such an advantage is only pertinent
when evaluating all possible actions, or a considerable subset of them, in a given state—a necessity
that varies depending on the algorithm. On the other hand, one notable limitation of action-out
architectures is their incapacity to predict Q-values in continuous action domains without imposing
strict modeling constraints on the functional form of the estimated Q-function (Gu et al., 2016).

Action-value methods are commonly employed with action-out architectures, including DQN (Mnih
et al., 2015) and Rainbow (Hessel et al., 2018). Conversely, policy gradient algorithms that involve Q
approximations resort to action-in architectures for tackling complex action spaces, such as DDPG
(Lillicrap et al., 2016) and MPO (Abdolmaleki et al., 2018). Considering the specific requisites of the
two families of methods in their standard forms, these are reasonable choices. In particular, standard
action-value methods require evaluation of all possible actions in a given state in order to perform the
maximization operation, thereby an action-out architecture is more efficient from a computational
perspective. In contrast, policy gradient methods that rely on Q approximation require evaluation of
only one or a fixed number of actions in any given state (§3.1). Hence, using action-in architectures
in the context of policy gradient methods is more computationally efficient in finite action spaces and
one that functionally supports Q evaluation in complex action spaces.

So far, we have compared action-in and action-out architectures from computational and functional
standpoints. Now, we turn to a fundamental but often overlooked advantage of action-in architectures:
their capacity for representation learning and generalization with respect to actions. Specifically,
by treating both states and actions as inputs, action-in architectures unify the process of learning
representations for both. For example, when training an action-in Q approximator with deep learning,
backpropagation enables learning representations over the joint state-action space. In contrast, action-
out architectures are limited in their capacity for generalizing across actions (Zhou et al., 2022). This
limitation arises because, although many layers may serve to learn deep representations of input
states, action conditioning is introduced only at the output layer in a tabular-like form. While some
action-out architectures introduce structural inductive biases that support combinatorial generalization
across multi-dimensional actions (see, e.g., Tavakoli et al., 2018; 2021), they do not capacitate action
representation learning and generalization in the general form. Moreover, such architectures remain
limited to discrete action spaces and are, generally, subject to statistical biases.

4 INCORPORATING THE PRINCIPLES INTO ACTION-VALUE LEARNING

In Section 3, we identified three core principles that we argued underpin the effectiveness of popular
policy gradient algorithms in complex action spaces. In this section, we challenge the conventional
wisdom that policy gradient methods are inherently more suitable in tackling complex action spaces
by showing that the same principles can be integrated into action-value methods, thus enabling them
to exhibit similar scaling properties to policy gradient methods without the need for policy gradients.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Principle 1 In the same spirit as using an MC estimator in place of exact summation or integration
over the action space in policy gradient methods (§3.1), the first principle that we consolidate into
action-value learning is substituting exact maximization over the action space with a sampling-based
approximation. Formally, we compute an approximation of maxa Q(s, a) via the steps below:

Am
.
= {ai}m ∼ ∆search(As) (16)

argmax
a

Q(s, a) ≈ argmax
ai∈Am

Q(s, ai)
.
= amax (17)

max
a

Q(s, a) ≈ Q(s, amax) (18)

where m ≥ 1 is the number of action samples in state s and ∆search is a probability distribution over
the generally state-conditional action space As. Without any prior information, opting for a uniform
∆search is ideal as it ensures equal sampling across all possible actions in a given state. This approach,
with a constant m, allows for action-value learning at a fixed computational cost in arbitrarily complex
action spaces (be it discrete, continuous, or hybrid).

Principle 2 The next principle is to equip action-value learning with a mechanism for retention and
retrieval of the best argmax approximation so far, analogous to the policy function in policy gradient
methods (§3.2). To do so, let us assume we maintain a memory buffer B .

= {(st, amax
t)}, where amax

t
denotes our best current argmax approximation in a visited state st. In small and finite state spaces,
the memory buffer itself can serve as a basic mechanism for retention and retrieval via table-lookup
(as used by Tian et al., 2022):

amax
t ← B(st) if st in B otherwise ∅. (19)

In this case, we can enable the reuse of past computations for amortized argmax approximations by
modifying Eq. 16 in the following way:

Am
.
= {amax

t } ∪ {ai}m−1 ∼ ∆search(As). (20)

Then, we refine the argmax approximation via Eq. 17 and update the buffer B(st) ← amax
t . This

approach does not achieve generalization across states, thus compromising its general efficacy
in major ways. To enable a capacity for generalization, we resort to training a state-conditional
parameterized distribution function with MLE (§2.4). In other words, we train a parametric argmax
predictor fθ(.|st) by employing the log-likelihood gradient (11) on the stored tuples {(st, amax

t)}.
Notably, this paradigm naturally supports training an ensemble of such predictors, for example based
on different distributions. Therefore, we can rewrite Eq. 20 to explicitly incorporate an ensemble of k
parametric argmax predictors as below:

Am =
⋃

Am0
∼ Uniform(Ast)

Am1 ∼ fθ1(.|st)
· · ·
Amk

∼ fθk
(.|st)

{amax
t } (if a prior approximation exists)

(21)

Principle 3 The third, and final, principle is to combine action-value learning with action-in instead
of action-out architectures in order to enable action-value inference in complex action spaces as
well as representation learning and generalization with respect to actions (§3.3). While the other
ingredients apply more broadly to both tabular and approximate cases, this last one is only relevant in
conjunction with functional approximation. Appendix B.1 provides a neural network architecture
from our experiments that exemplifies the action-in approach.

5 EXPERIMENTS

To evaluate our framework, we instantiate Q-learning with maximum likelihood estimation (QMLE)
as an example of integrating the adapted core principles (§4) into approximate Q-learning with deep
neural networks (Mnih et al., 2015). Appendix A presents the QMLE algorithm in a general form.
Our illustrative study (§5.1) employs a simplified implementation of this algorithm. Appendix B
provides the details of the QMLE agent used in our benchmarking experiments (§5.2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ε
-g

re
e

d
y

G
a

u
s
s
ia

n

E
x

p
lo

ra
tio

n

U
n

ifo
rm

DPG QMLE [delta]
approximate local approximate local & global

QMLE [delta]
local gradient

Maximizer Training

Ground Truth

(a) (b)

Figure 2: QMLE with local sampling approximately subsumes DPG and with added global sampling
transcends DPG by circumventing suboptimality, as examined in a continuous 2D bandit with two
modes and under three canonical exploration strategies. The trajectory of delta distributions during
training (yellow) with endpoints (green) overlay the respective learned Q-functions at convergence.

5.1 ILLUSTRATIVE EXAMPLE

We compare QMLE to the deterministic policy gradient (DPG) algorithm in a continuous 2D bandit
problem with deterministic and bimodal rewards (similar to that presented by Metz et al., 2019).
This problem setting minimizes confounding factors by reducing action-value learning to supervised
learning of rewards and eliminating contributions from differing bootstrapping mechanisms in the
two methods. For an apples-to-apples comparison, we constrain QMLE to only a single parametric
argmax predictor based on a delta distribution, mirroring the strict limitation of DPG to delta policies.
We further simplify QMLE by aligning its computation of greedy actions with that of DPG. This
ensures the only remaining difference between QMLE and DPG is in how their delta parameters
are updated, not in how their greedy actions are computed for constructing behavior policies. Both
methods use the same hyper-parameters, model architecture, and initialization across all experiments.

We examine two simplified variants of QMLE. The first one uses local sampling around the delta
parameters for argmax approximations that are used as targets for MLE training. Precisely, we only
allow samples Am drawn from δθ(s)+ξ, where δθ denotes the delta-based argmax predictor and ξ is
a zero-mean Gaussian noise with a standard deviation of 0.001 (cf. Eq. 21). This is akin to computing
an MC approximation of∇aQ

π
(
st, a=π(st)

)
in DPG (7c). The second variant incorporates global

sampling alongside local sampling, by additionally sampling from the uniform distribution of Eq. 21.

Figure 2a depicts the reward function of the bandit, or equally the ground-truth Q-function. Figure 2b
shows the trajectory of delta distributions during training (yellow) until convergence (green), overlaid
on the final learned Q-function. DPG (Fig. 2b, left) consistently converges to a local optimum,
regardless of the exploration strategy and despite the sufficient accuracy of its learned Q-function.
QMLE with local sampling (Fig. 2b, middle) behaves similarly to DPG. On the other hand, QMLE
with global sampling (Fig. 2b, right) converges to the global optimum across all exploration strategies.

This study illustrates key properties of QMLE with respect to DPG: subsumption, where QMLE
with local sampling approximates DPG updates, and transcendence, where global sampling allows
QMLE to overcome the local tendencies of policy gradients and surpass DPG.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1M
0

250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 2M

Cartpole SwUp Sparse

0 1M

Pendulum SwUp

0 1M

Point Mass Easy

0 1M

Ball In Cup Catch

0 2M

Reacher Hard

0 2M
0

250
500
750

1000

Re
tu

rn

Finger Spin

0 2M

Finger Turn Hard

0 1M

Hopper Stand

0 5M

Hopper Hop

0 1M

Walker Stand

0 1M

Walker Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Walker Run

0 5M
Env step

Cheetah Run

0 10M
Env step

Humanoid Stand

0 10M
Env step

Humanoid Walk

0 5M
Env step

Quadruped Run

0 5M
Env step

Dog Walk

QMLE DMPO A3C [1e8] DDPG [1e8] D4PG [1e8]

Figure 3: Comparison of QMLE with learning curves of DMPO, and evaluation performances of
A3C, DDPG, and D4PG after training for 100M environment steps.

5.2 BENCHMARKING RESULTS

In this section, we evaluate QMLE on 18 continuous control tasks from the DeepMind Control Suite
(Tassa et al., 2018). Figure 3 shows learning curves of QMLE alongside the learning curves or final
performances of several baselines, including state-of-the-art methods DMPO (Hoffman et al., 2022)
and D4PG (Barth-Maron et al., 2018), as well as the canonical (on-policy) A3C (Mnih et al., 2016)
and (off-policy) DDPG (Lillicrap et al., 2016). Results for DMPO (12 tasks) are from Seyde et al.
(2023), while those for A3C, DDPG, and D4PG (16 tasks) are from Tassa et al. (2018).

With the exception of the Finger Turn Hard task, QMLE consistently performs between DDPG and
D4PG. Notably, it matches or outperforms DDPG on 14 out of 16 tasks, with DDPG being the closest
counterpart from the policy gradient paradigm to QMLE. Moreover, QMLE substantially exceeds the
performance of A3C across all tasks. This is despite QMLE being trained on 10 to 100× fewer steps
compared to A3C, DDPG, and D4PG. While QMLE competes well with DMPO in low-dimensional
action spaces, it trails in higher-dimensional ones. Nonetheless, the strong performance of QMLE in
continuous control tasks with up to 38 action dimensions, all without policy gradients, in and of itself
testifies to the core nature of our identified principles and their adaptability to action-value methods.

6 CONCLUSION

In this paper, we distilled the success of policy gradient methods in complex action spaces into three
core principles: MC approximation of sums or integrals, amortized maximization using a special
form of MLE, and action-in architectures for representation learning and generalization over actions.
We then argued that these principles are not exclusive to the policy gradient paradigm and can be
adapted to action-value methods. In turn, we presented a framework for incorporating adaptations
of these principles into action-value methods. To examine our arguments, we instantiated QMLE
by implementing our adapted principles into approximate Q-learning with deep neural networks.
Our results showed that QMLE performs strongly in continuous control problems with up to 38
action dimensions, largely outperforming its closest policy gradient counterpart DDPG. These results
provided empirical support for the core nature of our identified principles and demonstrated that
action-value methods could adopt them to achieve similar qualities, all without policy gradients. In a
comparative study using DPG and two simplified QMLE variants, we highlighted a key limitation of
policy gradients and showed how QMLE could overcome it. This study serves as a motivator for a
shift from policy gradients toward action-value methods with our adapted principles. It also offers a
potential explanation for the improvements observed over DDPG in our benchmarking experiments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1ANxQW0b.

Cameron Allen, Kavosh Asadi, Melrose Roderick, Abdelrahman Mohamed, George Konidaris, and
Michael Littman. Mean actor critic. arXiv preprint arXiv:1709.00503, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SyZipzbCb.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific, 4th
edition, 2017.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients. Proceedings of the AAAI Conference
on Artificial Intelligence, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11607. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/11607.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. Journal
of Machine Learning Research, 21(52):1–51, 2020. URL http://jmlr.org/papers/v21/
18-012.html.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multiagent
systems. Proceedings of the AAAI Conference on Artificial Intelligence, 15:746–752, 1998.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learn-
ing by exponential linear units (ELUs). In International Conference on Learning Representations,
2016.

Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. Q-learning in enormous
action spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116, 2020.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In John Langford and
Joelle Pineau (eds.), Proceedings of the 29th International Conference on Machine Learning, pp.
457–464, Edinburgh, Scotland, July 2012. Omnipress.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Théophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
dVpFKfqF3R.

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, and Gabriel
Synnaeve. Growing action spaces. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3040–3051. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/farquhar20a.html.

11

https://openreview.net/forum?id=S1ANxQW0b
https://openreview.net/forum?id=SyZipzbCb
https://openreview.net/forum?id=SyZipzbCb
https://ojs.aaai.org/index.php/AAAI/article/view/11607
https://ojs.aaai.org/index.php/AAAI/article/view/11607
http://jmlr.org/papers/v21/18-012.html
http://jmlr.org/papers/v21/18-012.html
https://openreview.net/forum?id=dVpFKfqF3R
https://openreview.net/forum?id=dVpFKfqF3R
https://proceedings.mlr.press/v119/farquhar20a.html
https://proceedings.mlr.press/v119/farquhar20a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mehdi Fatemi and Arash Tavakoli. Orchestrated value mapping for reinforcement learning. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=c87d0TS4yX.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_
files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 1587–1596. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
fujimoto18a.html.

Samuel J. Gershman and Noah D. Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 36, 2014.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep Q-learning with
model-based acceleration. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings
of the 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 2829–2838, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/gu16.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/haarnoja18b.html.

John M. Hammersley and David C. Handscomb. Monte Carlo Methods. John Wiley & Sons, 1964.

Hado Hasselt. Double Q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran Asso-
ciates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/
2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.
doi: 10.1109/CVPR.2016.90.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1),
Apr. 2018. doi: 10.1609/aaai.v32i1.11796. URL https://ojs.aaai.org/index.php/
AAAI/article/view/11796.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard
Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino
Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson,
Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar
Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando
de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2022.

Shengyi Huang, Rousslan Fernand, Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

12

https://openreview.net/forum?id=c87d0TS4yX
https://openreview.net/forum?id=c87d0TS4yX
https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11796
https://ojs.aaai.org/index.php/AAAI/article/view/11796
http://jmlr.org/papers/v23/21-1342.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 4476–4486. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/hubert21a.html.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185–1201, 1994.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable deep
reinforcement learning for vision-based robotic manipulation. In Aude Billard, Anca Dragan, Jan
Peters, and Jun Morimoto (eds.), Proceedings of the 2nd Conference on Robot Learning, volume 87
of Proceedings of Machine Learning Research, pp. 651–673. PMLR, 29–31 Oct 2018. URL
https://proceedings.mlr.press/v87/kalashnikov18a.html.

Steven Kapturowski, Vı́ctor Campos, Ray Jiang, Nemanja Rakicevic, Hado van Hasselt, Charles
Blundell, and Adria Puigdomenech Badia. Human-level Atari 200x faster. In International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=JtC6yOHRoJJ.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Parallel Q-learning:
Scaling off-policy reinforcement learning under massively parallel simulation. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 19440–19459. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/li23f.html.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations, 2016.

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep rl. arXiv preprint arXiv:1705.05035, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https:
//proceedings.mlr.press/v48/mniha16.html.

13

https://proceedings.mlr.press/v139/hubert21a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://openreview.net/forum?id=JtC6yOHRoJJ
https://openreview.net/forum?id=JtC6yOHRoJJ
https://proceedings.mlr.press/v202/li23f.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning, pp. 807–814, Haifa,
Israel, 2010. Omnipress.

Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
gradient and Q-learning. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=B1kJ6H9ex.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving Rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
arXiv preprint arXiv:2011.07537, 2020.

Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in reinforcement
learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 4045–4054. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
pardo18a.html.

Benjamin Petit, Loren Amdahl-Culleton, Yao Liu, Jimmy Smith, and Pierre-Luc Bacon. All-action
policy gradient methods: A numerical integration approach. arXiv preprint arXiv:1910.09093,
2019.

Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020. URL http://jmlr.
org/papers/v21/20-081.html.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. Tech-
nical report CUED/F-INFENG/TR 166, Department of Engineering, University of Cambridge,
1994.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/schulman15.html.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft Q-
learning. arXiv preprint arXiv:1704.06440, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

14

https://openreview.net/forum?id=B1kJ6H9ex
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.mlr.press/v80/pardo18a.html
https://proceedings.mlr.press/v80/pardo18a.html
http://jmlr.org/papers/v21/20-081.html
http://jmlr.org/papers/v21/20-081.html
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G. Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level Atari with human-level efficiency.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 30365–30380. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/schwarzer23a.html.

Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the pitfalls of het-
eroscedastic uncertainty estimation with probabilistic neural networks. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
aPOpXlnV1T.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? Solving continuous control
with Bernoulli policies. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 27209–27221.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf.

Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela Rus,
and Markus Wulfmeier. Solving continuous control via Q-learning. In International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
U5XOGxAgccS.

Tim Seyde, Peter Werner, Wilko Schwarting, Markus Wulfmeier, and Daniela Rus. Growing Q-
networks: Solving continuous control tasks with adaptive control resolution. In Alessandro Abate,
Mark Cannon, Kostas Margellos, and Antonis Papachristodoulou (eds.), Proceedings of the 6th
Annual Learning for Dynamics and Control Conference, volume 242 of Proceedings of Machine
Learning Research, pp. 1646–1661. PMLR, 15–17 Jul 2024. URL https://proceedings.
mlr.press/v242/seyde24a.html.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Eric P. Xing and Tony Jebara (eds.), Proceedings of
the 31st International Conference on Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pp. 387–395, Bejing, China, 22–24 Jun 2014. PMLR. URL https://
proceedings.mlr.press/v32/silver14.html.

Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence results
for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308,
2000.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3
(1):9–44, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2018.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Richard S. Sutton, Satinder Singh, and David McAllester. Comparing policy-gradient algorithms,
2001. URL http://incompleteideas.net/papers/SSM-unpublished.

15

https://proceedings.mlr.press/v202/schwarzer23a.html
https://openreview.net/forum?id=aPOpXlnV1T
https://openreview.net/forum?id=aPOpXlnV1T
https://proceedings.neurips.cc/paper_files/paper/2021/file/e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf
https://openreview.net/forum?id=U5XOGxAgccS
https://openreview.net/forum?id=U5XOGxAgccS
https://proceedings.mlr.press/v242/seyde24a.html
https://proceedings.mlr.press/v242/seyde24a.html
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
http://incompleteideas.net/papers/SSM-unpublished

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(4):5981–5988, Apr. 2020. doi: 10.
1609/aaai.v34i04.6059. URL https://ojs.aaai.org/index.php/AAAI/article/
view/6059.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
DeepMind Control Suite. arXiv preprint arXiv:1801.00690, 2018.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
forcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr.
2018. doi: 10.1609/aaai.v32i1.11798. URL https://ojs.aaai.org/index.php/AAAI/
article/view/11798.

Arash Tavakoli, Mehdi Fatemi, and Petar Kormushev. Learning to represent action values as a
hypergraph on the action vertices. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=Xv_s64FiXTv.

Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimiza-
tion: An alternative approach for continuous control. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32, pp. 1352–1362. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf.

Tian Tian, Kenny Young, and Richard S. Sutton. Doubly-asynchronous value iter-
ation: Making value iteration asynchronous in actions. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 5575–5585. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/24e4e3234178a836b70e0aa48827e0ff-Paper-Conference.pdf.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1):2094–2100, Mar.
2016. doi: 10.1609/aaai.v30i1.10295. URL https://ojs.aaai.org/index.php/AAAI/
article/view/10295.

Harm van Seijen, Mehdi Fatemi, and Arash Tavakoli. Using a logarithmic mapping to
enable lower discount factors in reinforcement learning. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32, pp. 14134–14144. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/eba237eccc24353ccaa4d62013556ac6-Paper.pdf.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando de Freitas. Dueling
network architectures for deep reinforcement learning. In Maria Florina Balcan and Kilian Q.
Weinberger (eds.), Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, pp. 1995–2003, New York, New
York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/
wangf16.html.

16

https://ojs.aaai.org/index.php/AAAI/article/view/6059
https://ojs.aaai.org/index.php/AAAI/article/view/6059
https://ojs.aaai.org/index.php/AAAI/article/view/11798
https://ojs.aaai.org/index.php/AAAI/article/view/11798
https://openreview.net/forum?id=Xv_s64FiXTv
https://proceedings.neurips.cc/paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/24e4e3234178a836b70e0aa48827e0ff-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/24e4e3234178a836b70e0aa48827e0ff-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://proceedings.neurips.cc/paper_files/paper/2019/file/eba237eccc24353ccaa4d62013556ac6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/eba237eccc24353ccaa4d62013556ac6-Paper.pdf
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Christopher J. C. H. Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge,
1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

Zhiyuan Zhou, Cameron Allen, Kavosh Asadi, and George Konidaris. Characterizing the action-
generalization gap in deep Q-learning. arXiv preprint arXiv:2205.05588, 2022.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A Q-LEARNING WITH MAXIMUM LIKELIHOOD ESTIMATION

In this section, we present the Q-learning with maximum likelihood estimation (QMLE) algorithm.
Specifically, our presentation is based on integrating our framework (§4) into the deep Q-learning
algorithm by Mnih et al. (2015). In line with this, we make use of experience replay and a target
network that is only periodically updated with the parameters of the online network. Importantly, we
extend the scope of the target network to encompass the argmax predictors in QMLE. Although the
algorithm does not mandate the use of action-in Q approximators per se, such architectures become
necessary for addressing problems with arbitrarily complex action spaces (§3.3).

Algorithm 1 details the training procedures for QMLE. Notably, the algorithm is flexible regarding
the composition of the ensemble of argmax predictors. For instance, the ensemble can consist of
a combination of continuous and discrete distributions for problems with continuous action spaces.
QMLE introduces several hyper-parameters related to its action-sampling processes. These include
the sampling budgets for target maximization, mtarget, and greedy action selection in the environment,
mgreedy. Additionally, QMLE uses sample allocation ratios {ρ0, ρ1, . . . , ρk}, where ρ0 corresponds
to the proportion of the budget allocated to uniform sampling from the action space, and ρ1 through
ρk correspond to the proportions assigned to the ensemble of k parametric argmax predictors.

To effectively manage training inference costs in QMLE, we recommend allocating a larger budget to
mgreedy than to mtarget. Since mgreedy is used at most once per interaction step, increasing it incurs
relatively little computational burden. In addition, more accurate argmax approximations during
training interactions can lead to higher quality data for learning, making this increase particularly
beneficial. In contrast, each training update requires mtarget ×Nb inferences on the target Q-network,
where Nb is the batch size. This makes increasing mtarget much more costly in terms of training
inference costs. On that account, choosing a moderate mtarget allows for computational tractability
with larger batch sizes. Remarkably, a moderate mtarget could also help reduce the overestimation
of action values (Hasselt, 2010; van Hasselt et al., 2016). Also, assigning a smaller mtarget relative

Algorithm 1: QMLE algorithm.
Input :sampling budgets mtarget, mgreedy and ratios {ρ0, ρ1, . . . , ρk} (k is the # of argmax predictors)
Input : initial model parameters ω, {θ1,θ2, . . . ,θk}; step sizes αq, αargmax
Input : target update frequency N−; batch size Nb; replay period K; interaction budget Ne · T
Initialize target parameters ω−, {θ−

i }
k
1 ← ω, {θi}k1 , accumulators ∆q = {∆i}k1 = 0

Initialize memory buffer B = ∅
for episode ∈ {1, 2, . . . , Ne} do

Observe initial state s0
for t ∈ {0, 1, . . . , T − 1} do

with probability ε do
Sample action at ∼ Uniform(Ast)

otherwise do
Generate actions Agreedy

m using {θi}k1 , {mi = ρi ×mgreedy}k0 in Eq. 21,
Approximate greedy action at using Qω , st, Agreedy

m in Eq. 17
Observe rt+1, st+1, γt+1 from environment given at, set amax

t+1 ← at

Store transition (st, at, rt+1, st+1, γt+1, a
max
t+1) in B

if t ≡ 0 mod K then
for j ∈ {1, 2, . . . , Nb} do

Sample random transition (sj , aj , rj+1, sj+1, γj+1, a
max
j+1) from B

Generate actions Atarget
m using {θ−

i }
k
1 , {mi = ρi ×mtarget}k0 , amax

j+1 (prior) in Eq. 21
Approximate target-maximizing action aj+1 using Qω− , sj+1, Atarget

m in Eq. 17
Set amax

j+1 ← aj+1 and update B
Compute squared TD residual Lq = (rj+1 + γj+1Qω−(sj+1, a

max
j+1)−Qω(sj , aj))

2

Compute MLE losses {Li}k1 using parameters {θi}k1 and target amax
j+1

Accumulate parameter-changes ∆q ← ∆q +∇ωLq , {∆i ← ∆i +∇θiLi}k1
Update parameters ω ← ω + 1

Nb
· αq ·∆q , {θi ← θi +

1
Nb
· αargmax ·∆i}k1

Reset accumulators ∆q = {∆i}k1 = 0
Update target parameters ω−, {θ−

i }
k
1 ← ω, {θi}k1 every N− time steps

Terminate episode on reaching a terminal state, where γt+1 = 0

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

to mgreedy is further justified because target maximization benefits from additional amortization.
Specifically, each time a transition is sampled from the memory buffer for experience replay, we use
the previously stored argmax approximation as a prior. This approximation is then recalibrated and
updated in the memory buffer for the next time that the transition is sampled for replay.

B EXPERIMENTAL DETAILS

This section details the specific QMLE instance that we evaluated in our benchmarking experiments.
We adopted prioritized experience replay (Schaul et al., 2016), in place of the uniform variant that was
described in Algorithm 1. Furthermore, we deployed QMLE with two argmax predictors: one based
on a delta distribution over the continuous action space, and another based on a factored categorical
distribution defined over a finite subset of the original action space (Tang & Agrawal, 2020).

To build the discrete action support, we applied the bang-off-bang (3 bins) discretization scheme to
the action space (Seyde et al., 2021). For sampling from the delta-based argmax predictor, we always
included the parameter of the delta distribution as the initial sample. Any additional samples were
generated through Gaussian perturbations around this parameter using a small standard deviation.

Sections B.1, B.2, and B.3 provide details around the model architecture, hyper-parameters, and
implementation of QMLE in our benchmarking experiments, respectively. Section B.4 details the
number of seeds per agent and the computation of our learning curves.

B.1 MODEL ARCHITECTURE

ResNet layer
with ReLU

State vector

ELU

LayerNorm

Linear layer

Linear layer

ELU

LayerNorm

Action vector

Concatenate

ELU

LayerNorm

Linear layer

Q scalar

Linear layer

ReLU

Linear layer

Tanh

amax (vector)

Linear layer

ReLU

Linear layer

Softmax 1

Linear layer 1

Softmax Nd

Linear layer Nd

Factored Categorical Delta

Figure 4: Schematic of the model architecture used with QMLE for our benchmarking experiments.
Dashed lines indicate paths without gradient flow during backpropagation.

Figure 4 depicts the model architecture of QMLE in our benchmarking experiments. The model
begins with two separate streams, one for the observation inputs and the other for the action inputs.
The outputs of these streams are then concatenated and jointly processed by the Q-value predictor.
Furthermore, the output of the observation stream is separately processed by each argmax predictor.

In the observation stream, we apply a linear embedding layer with 128 units followed by a residual
block (He et al., 2016) that maintains this width and uses rectified linear unit (ReLU) activation (Nair
& Hinton, 2010). The residual block is succeeded by a layer normalization (LayerNorm) operation
(Ba et al., 2016) and exponential linear unit (ELU) activation (Clevert et al., 2016).

In the action stream, we apply a linear embedding layer with 128 units. The output of the embedding
layer is then directly followed by LayerNorm and ELU activation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The outputs from both streams are concatenated and passed through a joint observation-action residual
block with 256 units and ReLU activation. Subsequently, we apply LayerNorm and ELU activation.
The outputs are then linearly mapped to a single scalar, representing the predicted Q-value.

The output of the observation stream is also used as input to the two argmax predictors. To avoid
interference, we prevent backpropagation from the argmax predictor streams through the shared
observation stream. Each argmax predictor stream leverages a hidden multilayer perceptron (MLP)
layer with 128 units and ReLU activation.

In the argmax predictor stream based on the delta distribution, we produce one output per action
dimension. Each output is passed through hyperbolic tangent (Tanh) activation to yield a continuous
value constrained within the support of each action dimension in our benchmark. In the argmax
predictor stream based on the factored categorical distribution, we produce three outputs per action
dimension. We apply the softmax function to the outputs for each action dimension, producing
multiple softmax distributions over a bang-off-bang discrete action support.

B.2 HYPER-PARAMETERS

Table 1 provides the hyper-parameters of QMLE in our benchmarking experiments.

Table 1: QMLE hyper-parameters in our benchmarking experiments.

Parameter Value

mtarget 100
mgreedy 1000
ρ0 (uniform) 0.9
ρ1 (delta) 0.01
ρ2 (factored categorical) 0.09

step sizes αq, αargmax 0.0005
update frequency 10
batch size 256
training start size 1000
memory buffer size 1000000
target network update frequency 2000
loss function mean-squared error
optimizer Adam (Kingma & Ba, 2015)
exploration ε 0.1
discount factor 0.99
time limit 1000 (Tassa et al., 2018)
truncation approach partial-episode bootstrapping (Pardo et al., 2018)

importance sampling exponent 0.2
priority exponent 0.6

B.3 IMPLEMENTATION

Our QMLE implementation is based on the open-source DQN codebase by Huang et al. (2022). To
support reproducibility, we will make our code publicly available upon publication.

B.4 SEEDS AND PERFORMANCES

All curves report the mean undiscounted return over seeds with one standard error. Performance
levels of DDPG, D4PG, and A3C represent the mean over 100 episodes per seed, after training for
100M environment steps. Table 2 details the number of seeds used for each agent in our experiments,
grouped by the source of the results.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: Number of seeds used in benchmarking experiments.

Agent Trials

QMLE 5 or 10 (depending on the task)

Results from Seyde et al. (2023)
DMPO 10
DQN 10

Results from Tassa et al. (2018)
A3C 15
DDPG 15
D4PG 5

Results from Pardo (2020)
MPO 10
SAC 10
TD3 10
PPO 10
TRPO 10
A2C 10

Results from de Wiele et al. (2020)
AQL 3
QT-Opt 3

C SUPPLEMENTARY BENCHMARKING RESULTS

Figures 5 and 6 provide comparisons of QMLE with a range of mainstream policy gradient methods.
The baseline results are due to Pardo (2020).

• Figure 5 presents a comparison between QMLE and policy gradient methods that rely on
action-value approximation: MPO (Abdolmaleki et al., 2018), SAC (Haarnoja et al., 2018),
and TD3 (Fujimoto et al., 2018).

• Figure 6 compares QMLE with policy gradient methods that use state-value approximation:
PPO (Schulman et al., 2017b), TRPO (Schulman et al., 2015), and A2C (Mnih et al., 2016).

Figure 7 shows a comparison of QMLE with QT-Opt (Kalashnikov et al., 2018) and both the discrete
and continuous action variants of AQL (de Wiele et al., 2020). The baseline results are taken from
de Wiele et al. (2020).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 2M
Env step

Cartpole SwUp Sparse

0 1M
Env step

Pendulum SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Ball In Cup Catch

0 2M
Env step

Reacher Hard

0 2M
Env step

Finger Spin

0 2M
Env step

Finger Turn Hard

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Hopper Stand

0 5M
Env step

Hopper Hop

0 1M
Env step

Walker Stand

0 1M
Env step

Walker Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Walker Run

0 5M
Env step

Cheetah Run

0 5M
Env step

Humanoid Stand

0 5M
Env step

Humanoid Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Quadruped Run

QMLE MPO SAC TD3

Figure 5: Learning curves of QMLE against MPO, SAC, and TD3.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 2M
Env step

Cartpole SwUp Sparse

0 1M
Env step

Pendulum SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Ball In Cup Catch

0 2M
Env step

Reacher Hard

0 2M
Env step

Finger Spin

0 2M
Env step

Finger Turn Hard

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Hopper Stand

0 5M
Env step

Hopper Hop

0 1M
Env step

Walker Stand

0 1M
Env step

Walker Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Walker Run

0 5M
Env step

Cheetah Run

0 5M
Env step

Humanoid Stand

0 5M
Env step

Humanoid Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Quadruped Run

QMLE PPO TRPO A2C

Figure 6: Learning curves of QMLE against PPO, TRPO, and A2C.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

200M

200M

200M

200M

5M0

5M0

10M0

10M
Env step

Env step

Env step

Humanoid Walk

Humanoid Stand

R
e

tu
rn

R
e

tu
rn

Cheetah Run

Env step

Walker Run

Env step

QMLE AQL-Autoregressive AQL-Gaussian QT-Opt

AQL-Gaussian QT-Opt

AQL-Gaussian QT-Opt

Hopper Hop

0

250

500

750

1000

R
e

tu
rn

R
e

tu
rn

R
e

tu
rn

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

0

5M0

200M

Figure 7: Comparison of QMLE with QT-Opt and AQL.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D ABLATION STUDIES

In this section, we present ablation studies to evaluate the impact of the principles in our framework
on the performance of QMLE.

D.1 AMORTIZED MAXIMIZATION

Figure 8 compares the performance of QMLE against its ablation without amortized maximization.
In this experiment, QMLE employs a delta-based argmax predictor, while its ablated variant relies
solely on uniform sampling for argmax approximation. We use the same sampling budgets of
mtarget = mgreedy = 2 for both variants, with QMLE allocating its budgets equally between uniform
sampling and the delta-based argmax predictor (ρuniform = ρdelta = 0.5), and the ablated variant
allocating them entirely to uniform sampling (ρuniform = 1).

The action spaces range from 1-dimensional (leftmost) to 6-dimensional (rightmost) for the considered
problems. The results demonstrate that amortized maximization significantly improves performance,
particularly as the complexity of the action space increases.

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

Ball In Cup Catch

0 1M
Env step

Finger Spin

0 1M
Env step

Walker Stand

QMLE [continuous] no amortization

Figure 8: Comparison of a continuous variant of QMLE with and without amortized maximization.

D.2 APPROXIMATE MAXIMIZATION

Figure 9 shows the learning curves for QMLE with sampling budgets of 2 and 1000. Expectedly,
increasing the number of samples for Q-maximization improves performance by yielding more
accurate estimates of the TD target and greedy actions. Nevertheless, amortization dampens the
negative impact of undersampling by enabling reuse of past computations over time.

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

Ball In Cup Catch

0 1M
Env step

Finger Spin

0 1M
Env step

Walker Stand

m=2 m=1000

Figure 9: Comparison of QMLE with sampling budgets of 2 and 1000.

D.3 ACTION-IN ARCHITECTURE

We compare the performance of QMLE with action-in and action-out architectures. Since action-out
Q-approximators are not readily compatible with continuous action spaces, we examine both agents
on the bang-off-bang (3 bins) discretized versions of the considered environments.

The QMLE variant with an action-in architecture employs an argmax predictor based on a factored
categorical distribution, with the same sampling budgets and uniform sampling ratio as in Table 1 but
with ρdelta = 0 and ρfactored categorical = 1. On the other hand, exact maximization is performed for the
ablated variant as a forward pass through an action-out Q-approximator collects all actions’ values

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

in a given state. Therefore, using an action-out architecture in the ablated variant obviates the need
for learned argmax predictors or any approximate maximization altogether. That is to say, when
inference with an action-out architecture is computationally feasible, performing exact maximization
should also be feasible given that its cost is generally negligible compared to that of inference. This,
in effect, reduces the ablated variant to DQN.

Figure 10 shows the learning curves for QMLE and DQN.

• In lower-dimensional action spaces, such as Finger Spin and Walker Walk with 2 and 6 action
dimensions respectively, where DQN is computationally tractable, both QMLE and DQN
achieve similar final performance levels. However, QMLE performs more sample-efficiently
due to the use of an action-in architecture, which enables generalization across actions.

• In higher-dimensional action spaces, DQN becomes computationally intractable, resulting in
out-of-memory errors or exceeding computational time constraints. In contrast, QMLE per-
forms strongly in these environments, including Dog Walk with 338 ≈ 1.35× 1018 discrete
actions, underscoring the benefits of action-in architectures both in terms of computational
scalability and generalization across enormous action spaces.

0 2M
Env step

0
250
500
750

1000

Re
tu

rn

Finger Spin

0 1M
Env step

Walker Walk

0 5M
Env step

Quadruped Run

0 10M
Env step

Humanoid Walk

0 5M
Env step

Dog Walk

QMLE [discrete] DQN

Figure 10: Comparison of QMLE with DQN where DQN represents the ablation of action-in
architectures, and in turn all three principles, in QMLE. Dashed lines indicate out-of-memory errors
or excessive computational demands for DQN.

E FUTURE WORK

E.1 COMBINING WITH OTHER IMPROVEMENTS

In this paper, we integrated our framework into the deep Q-learning algorithm of Mnih et al. (2015),
in a proof-of-concept agent that we termed QMLE (Algorithm 1). In our benchmarking experiments,
we further combined QMLE with prioritized experience replay (Schaul et al., 2016; see details in
Section B). While this setup is relatively basic compared to the advancements in deep Q-learning, it
served our purpose of demonstrating the general competency of action-value methods in complex
action spaces without involving policy gradients. We anticipate that a purposeful integration with
advancements in deep Q-learning could significantly improve the performance of our QMLE agent.
For instance, fundamental methods that can be trivially combined with QMLE include N -step returns
and distributional learning, similarly to the critics in DMPO and D4PG. Certain methods, including
double Q-learning (Hasselt, 2010; van Hasselt et al., 2016) and dueling networks (Wang et al.,
2016) may not be directly applicable or relevant to QMLE, underscoring the importance of careful
integration. We are particularly excited about using a cross-entropy classification loss in place of
regression for training Q approximators (Farebrother et al., 2024), as well as combining with ideas
introduced by Li et al. (2023); Schwarzer et al. (2023). Moreover, formal explorations into the space
of value mappings (van Seijen et al., 2019; Fatemi & Tavakoli, 2022), particularly those that benefit
Q-function approximation with action-in architectures, offer an intriguing direction for future work.

Since our approach employs maximum likelihood estimation (MLE) in a disentangled manner (see
discussions in Section 3.2), it makes it trivial to incorporate advances from supervised learning for
training the parametric argmax predictors. To provide an example, advancements in heteroscedastic
uncertainty estimation, such that introduced by Seitzer et al. (2022), can be readily applied to model
state-conditional variances for Gaussian argmax predictors.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.2 MULTIAGENT REINFORCEMENT LEARNING VIA CTDE

A problem scenario that could benefit from QMLE, and more broadly our framework, is multiagent
reinforcement learning (MARL) under centralized training with decentralized execution (CTDE;
Foerster et al., 2016; Lowe et al., 2017). Currently, the dominant class of solutions in this paradigm is
based on combinations of deep Q-learning and value decomposition methods (Sunehag et al., 2017;
Rashid et al., 2020). These approaches decompose the Q-function into local utilities for each agent,
aiming for the local argmax to correspond to the global argmax on the joint Q-function. However,
maintaining this alignment requires imposing structural constraints that limit the representational
capacity of the joint Q-approximator, which can lead to suboptimal decentralized argmax policies.

QMLE avoids these constraints by disentangling the process of approximating the joint Q-function
from learning the decentralized argmax policies, allowing for a universal representational capacity
of the joint Q-function while maintaining decentralized execution. Instead of relying on a factored
Q approximation, QMLE models the joint Q-function in an unconstrained manner. Simultaneously,
an argmax predictor (or an ensemble of them) is separately trained for each agent, conditioned on
their respective observations. This approach allows for improved coordination between agents by
preserving the full representational capacity of the joint Q-function. As demonstrated in Fig. 11, in a
continuous variant of the “climbing” game (Claus & Boutilier, 1998), linear value decomposition
(Sunehag et al., 2017) leads to a suboptimal reward of 5 due to its constrained capacity to represent the
joint Q-function as Q .

= U1 + U2. In contrast, QMLE, by accurately modeling the joint Q-function,
enables decentralized argmax predictors that guide agents to the globally optimal reward of 11.

Q ≐ U1 + U2

11 -30

-30 7 6

5

0

00 0

-30

-20

-10

0

10

20

30

a
2

a
2

a1

a
2

-30

-20

-10

0

10

20

30

-5.0

-7.5

-2.5

0.0

2.5

5.0

7.5

10.0

-10.0

Ground Truth QMLE

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 0.0 1.00.5-0.5

a1

-1.0 0.0 1.00.5-0.5

a1

-1.0 0.0 1.00.5-0.5

a1

-1.0 0.0 1.00.5-0.5

-2.9 -4.3 7.1

a2

-1.0 0.0 1.00.5-0.5

1.6 -5.8 -6.4

U1

U2

Figure 11: Comparison of QMLE with linear value decomposition in a continuous variant of the
“climbing” game with two agents (Claus & Boutilier, 1998). Linear value decomposition leads to a
suboptimal reward of 5 due its limited representational capacity (Q .

= U1 + U2), whereas QMLE,
by modeling the joint Q-function without such constraints, enables decentralized argmax predictors
that guide agents to the globally optimal reward of 11.

E.3 CURRICULUM SHAPING THROUGH GROWING ACTION SPACES

Growing of the action space as a form of curriculum shaping is an effective approach for improving
learning performance in complex problems. Nonetheless, existing approaches, such as that presented
by Farquhar et al. (2020), are restricted to discrete actions. Seyde et al. (2024) report improvements
in sample efficiency and solution smoothness on physical control tasks by adaptively increasing the
granularity of discretization during training. This is because coarse action discretizations can provide
exploration benefits and yield lower variance updates early in training, while finer control resolutions
later on help reduce bias at convergence. However, due to the strict dependence of this approach
on a class of action-out architectures (Tavakoli et al., 2021; Seyde et al., 2023), it cannot ultimately
transition from coarse discretization to the original continuous action space.

On the other hand, QMLE can support learning with dynamically growing action spaces, including
transitions from finite to continuous supports in continuous action problems. We show this capability
in a preliminary experiment, where we start with a coarse bang-off-bang discretization and later shift
to the original continuous action space (Figure 12). This capacity positions QMLE, and more broadly
our framework, as a promising candidate for future research in the context of growing action spaces.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 5M
Env step

Hopper Hop

0 5M
Env step

Walker Run

curriculum discrete continuous

Figure 12: Learning curves for discrete, continuous, and discrete-to-continuous (“curriculum”)
variants of QMLE. Dashed lines mark the transition from discrete to continuous actions for the
curriculum-based agents.

28

	Introduction
	Background
	The reinforcement learning problem
	Action-value learning
	Policy gradient methods
	Maximum likelihood estimation

	The principles underpinning scalability in policy gradients
	Approximate summation or integration using Monte Carlo methods
	Amortized maximization using maximum likelihood estimation
	Representation learning via action-in architectures

	Incorporating the principles into action-value learning
	Experiments
	Illustrative example
	Benchmarking results

	Conclusion
	Q-learning with maximum likelihood estimation
	Experimental details
	Model architecture
	Hyper-parameters
	Implementation
	Seeds and performances

	Supplementary benchmarking results
	Ablation studies
	Amortized maximization
	Approximate maximization
	Action-in architecture

	Future work
	Combining with other improvements
	Multiagent reinforcement learning via CTDE
	Curriculum shaping through growing action spaces

