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ABSTRACT

Conventional wisdom suggests that policy gradient methods are better suited to
complex action spaces than action-value methods. However, foundational studies
have shown equivalences between these paradigms in small and finite action spaces
(O’Donoghue et al., 2017; Schulman et al., 2017a). This raises the question of why
their computational applicability and performance diverge as the complexity of
the action space increases. We hypothesize that the apparent superiority of policy
gradients in such settings stems not from intrinsic qualities of the paradigm, but
from universal principles that can also be applied to action-value methods to serve
similar functionality. We identify three such principles and provide a framework
for incorporating them into action-value methods. To support our hypothesis, we
instantiate this framework in what we term QMLE, for Q-learning with maximum
likelihood estimation. Our results show that QMLE can be applied to complex
action spaces with a controllable computational cost that is comparable to that of
policy gradient methods, all without using policy gradients. Furthermore, QMLE
demonstrates strong performance on the DeepMind Control Suite, even when
compared to the state-of-the-art methods such as DMPO and D4PG.

1 INTRODUCTION

In reinforcement learning, policy gradients have become the backbone of solutions for environments
with complex action spaces, including those involving large, continuous, or combinatorial subaction
spaces (Dulac-Arnold et al., 2015; OpenAI et al., 2019; Vinyals et al., 2019; Hubert et al., 2021;
Ouyang et al., 2022). In contrast, action-value methods have traditionally been confined to tabular-
action models for small and finite action spaces. However, where applicable, such as on the Atari
Suite (Bellemare et al., 2013; Machado et al., 2018), action-value methods are frequently the preferred
approach over policy gradient methods (Kapturowski et al., 2023; Schwarzer et al., 2023).

Over the past years, foundational research has shown that the distinction between action-value and
policy gradient methods is narrower than previously understood, particularly in the basic case of
tabular-action models in small and finite action spaces (see, e.g., Schulman et al., 2017a). Notably,
O’Donoghue et al. (2017) established an equivalency between these paradigms, revealing a direct
connection between the fixed-points of the action-preferences of policies optimized by regularized
policy gradients and the action-values learned by action-value methods. These insights invite further
exploration of the discrepancies that emerge as the complexity of action spaces increases.

What are the core principles that underpin the greater computational applicability and performance
of policy gradient methods in such settings? In this paper, we identify three such principles. First,
policy gradient methods leverage Monte Carlo (MC) approximations for summation or integration
over the action space, enabling computational feasibility even in environments with complex action
spaces. Second, they employ amortized maximization through a special form of maximum likelihood
estimation (namely, the policy gradient itself), iteratively refining the policy to increase the likelihood
of selecting high-value actions without requiring brute-force argmax over the action space. Third,
scalable policy gradient methods employ action-in architectures for action-value approximation,
which covertly enable representation learning and generalization across the joint state-action space.

Are these principles exclusive to policy gradient methods? We argue that these principles can be
adapted to action-value methods. Specifically, instead of using MC methods for summation or
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integration as in policy gradient methods, they can be used to approximate the argmax in action-
value methods in order to make them computationally scalable for complex action spaces. Moreover,
explicit maximum likelihood estimation can be applied to enable caching and iterative refinement of
parametric predictors for amortized argmax approximation. Lastly, action-in architectures can be
employed not only as a scalable approach for evaluating a limited set of actions in any given state,
but also to enable representation learning and generalization across both states and actions.

We introduce Q-learning with maximum likelihood estimation (QMLE) to test our hypotheses. Our
empirical study shows that QMLE achieves strong performance in environments with complex action
spaces, all while matching the computational complexity of policy gradient methods. These results
provide evidence that the identified principles are core to the success of policy gradient methods in
such environments. Moreover, they support that the principles are not intrinsic to the policy gradient
paradigm, but are universal and adaptable to action-value learning for achieving similar qualities.

The idea of using sampling-based approximation of the argmax in value-based methods has been
explored in earlier works. For example, Tian et al. (2022) studied the combination of value iteration
and random search in discrete domains, with a tabular mechanism for tracking the best historical
value-maximizing action in each state. Kalashnikov et al. (2018) introduced the QT-Opt algorithm,
which employs a fixed stochastic search via the cross-entropy method to approximate argmax in
Q-learning. Closely related to QMLE is the AQL algorithm by de Wiele et al. (2020), which integrates
Q-learning with entropy-regularized MLE to approximate a value-maximizing action distribution.
While QMLE shows superior performance relative to QT-Opt and AQL in complex action spaces
(Appendix C), our emphasis in this work is less on algorithmic novelty and more on dissecting the
core principles that bridge the gap between the two paradigms.

2 BACKGROUND

2.1 THE REINFORCEMENT LEARNING PROBLEM

The reinforcement learning (RL) problem (Sutton & Barto, 2018) is generally described as a Markov
decision process (MDP) (Puterman, 1994), defined by the tuple ⟨S,A,P,R⟩, where S is a state space,
A is an action space, P : S ×A → ∆(S)1 is a state-transition function, andR : S ×A×S → ∆(R)
is a reward function. The behavior of an agent in an RL problem can be formalized by a policy
π : S → ∆(A), which maps a state to a distribution over actions. The value of state s under policy π
may be defined as the expected discounted sum of rewards: V π(s)

.
= Eπ,P,R[

∑∞
t=0 γ

trt+1|s0 = s],
where γ ∈ (0, 1) is a discount factor used to exponentially decay the present value of future rewards.2

The goal of an RL agent is defined as finding an optimal policy π∗ that maximizes this quantity across
the state space: V π∗ ≥ V π for all π. While there may be more than one optimal policy, they all share
the same state-value function: V ∗ = V π∗

. Similarly, we can define the value of state s and action
a under policy π: Qπ(s, a)

.
= Eπ,P,R[

∑∞
t=0 γ

trt+1|s0 = s, a0 = a]. Notice that the goal can be
equivalently phrased as finding an optimal policy π∗ that maximizes this alternative quantity across
the joint state-action space: Qπ∗ ≥ Qπ for all π. Same as before, optimal policies share the same
action-value function: Q∗ = Qπ∗

.

The state and action value functions are related to each other via: V π(s) =
∑

a Q
π(s, a)π(a|s),

where we use
∑

to signify both summation and integration over discrete or continuous actions.
For all MDPs there is always at least one deterministic optimal policy, which can be deduced by
maximizing the optimal action-value function: argmaxa Q

∗(s, a) in any given state s. It is worth
noting that there may be cases where multiple actions yield the same maximum value, resulting in ties.
By breaking such ties at random, considering all conceivable distributions, we can construct the set
of all optimal policies, including both deterministic and stochastic policies. Regardless of the optimal
policy, the optimal state-value and action-value functions are related to each other in the following
way: V ∗(s) = maxa Q

∗(s, a). Similarly, the optimal state-value function can be used to extract
optimal policies by invoking the Bellman recurrence: argmaxa EP,R[rt+1 + γV ∗(st+1)|st = s].

1∆ denotes a distribution.
2Discounts are occasionally employed to specify the true optimization objective, whereby they should be

regarded as part of the MDP. However, more often discounts serve as a hyper-parameter (van Seijen et al., 2019).
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However, this requires access to the MDP model, rendering the sole optimization of state-values
unsuitable for model-free RL.

2.2 ACTION-VALUE LEARNING

Optimizing the action-value function and deducing an optimal policy from it seems to be the most
direct approach to solving the RL problem in a model-free manner. To this end, we first consider the
Bellman recurrence for action-values (Bellman, 1957):

Qπ(s, a) = E
π,P,R

[rt+1 + γQπ(st+1, at+1)|st = s, at = a], (1)

where π is in general a stochastic policy and at+1 ∼ π(.|st+1). By substituting policy π with an
optimal policy π∗ and invoking Q∗(s, argmaxa Q

∗(s, a)) = maxa Q
∗(s, a), we can rewrite Eq. 1:

Q∗(s, a) = E
P,R

[rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a]. (2)

The method of temporal differences (TD) (Sutton, 1988) leverages equations (1) and (2) to contrive
two foundational algorithms for model-free RL: Sarsa (Rummery & Niranjan, 1994) and Q-learning
(Watkins, 1989). Sarsa updates its action-value estimates, Q(st, at), by minimizing the TD residual:(

rt+1 + γQ(st+1, at+1)
)
−Q(st, at), (3)

whereas Q-learning does so by minimizing the TD residual:(
rt+1 + γmax

a
Q(st+1, a)

)
−Q(st, at). (4)

Both algorithms have been shown to converge to the unique fixed-point Q∗ of Eq. 2 under similar
conditions, with one additional and crucial condition for Sarsa (Watkins & Dayan, 1992; Jaakkola
et al., 1994; Singh et al., 2000). Namely, because Sarsa uses the action-value of the action chosen
by its policy in the successor state, the action-values can converge to optimality in the limit only if
it chooses actions greedily in the limit: limk→∞ πk(a|s) = 1a=argmaxa′ Q(s,a′). This is in contrast
with Q-learning which uses its maximum action-value in the successor state regardless of its policy,
thus liberating its learning updates from how it chooses to act. This key distinction makes Sarsa
an on-policy and Q-learning an off-policy algorithm. As a final point, the action-value function can
be approximated by a parameterized function Q, such as a neural network, with parameters ω and
trained by minimizing the squared form of the TD residual (3) or (4).

2.3 POLICY GRADIENT METHODS

Unlike action-value methods (§2.2), policy gradient methods do not require an action-value function
for action selection. Instead they work by explicitly representing the policy using a parameterized
function π, such as a neural network, with parameters θ and only utilizing action-value estimates to
learn the policy parameters. To demonstrate the main idea underpinning policy gradient methods, we
start from the following formulation of the RL problem (cf. §2.1):

π∗ .
= argmax

π
E
π,P

[
V π(st)

]
. (5)

The objective function in this formulation is the expected state-value function, where the expectation
is taken over the state distribution induced by policy π and state-transition function P . This problem
can be solved approximately via gradient-based optimization. In fact, this forms the basis of policy
gradient methods. Accordingly, the policy gradient theorem (Sutton et al., 1999) proves that the
gradient of the expected state-value function with respect to policy parameters θ is governed by:

∇ E
π,P

[
V π(st)

]
= ∇ E

π,P

[∑
a

Qπ(st, a)π(a|st)
]
∝ E

π,P

[∑
a

Qπ(st, a)∇π(a|st)
]
. (6)

By using an estimator of the above expression, denoted ∇̂J(θ), policy parameters can be updated via
stochastic gradient ascent: θ ← θ + α∇̂J(θ), where α is a positive step-size. It is important to note
that, like Sarsa (§2.2), policy gradients are on-policy learners: applying one step of policy gradient
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updates the policy parameters θ → θ′ and thereby the policy π → π′, thus inducing a different
action-value function Qπ → Qπ′

and a different state distribution.

There have been attempts to extend policy gradients to off-policy data (Degris et al., 2012). The most
common approach in this direction is to use deterministic policy gradients (DPG; Silver et al., 2014):

∇ E
π,P

[
V π(st)

]
= ∇ E

π,P

[ ∫
Qπ(st, a)δ

(
a− π(st)

)
da

]
(7a)

= ∇ E
π,P

[
Qπ

(
st, π(st)

)]
(7b)

∝ E
π,P

[
∇aQ

π
(
st, a=π(st)

)
∇π(st)

]
. (7c)

This is similar to Eq. 6 with the difference that here we replace the general-form policy π(a|s)
with a deterministic and continuous policy δ

(
a− π(s)

)
, where δ denotes the delta function whose

parameters are given by π(s). Moreover, this derivation only holds in continuous action spaces and,
as such, we substitute our general-form notation

∑
for both summation and integration with

∫
to

specify integration over continuous actions. The expression (7b) is then derived from (7a) by invoking
the sifting property of the delta function and (7c) is deduced from (7b) by applying the chain rule,
yielding a gradient with respect to actions (denoted∇a) and another with respect to policy parameters
θ (denoted as before by the shorthand∇).

To implement an off-policy method using DPG, we must make two key changes to the true deter-
ministic policy gradient (7). First, the deterministic policy—which is the target of optimization by
DPG—generally differs from the behavior policy π(a|s) that the agent uses to interact with and
explore the environment. Therefore, we must modify our notation to reflect this distinction:

E
π,P

[
∇aQ

µ
(
st, a=µ(st)

)
∇µ(st)

]
, (8)

where µ denotes the parameters of the delta function δ and the expectation is computed with respect
to the state distribution induced under behavior policy π and state-transition function P . Second,
our estimator Q ≈ Qµ must be differentiable with respect to actions. This is typically achieved by
training a parameterized function Q by minimizing the squared form of the TD residual:(

rt+1 + γQ
(
st+1, µ(st+1)

))
−Q(st, at). (9)

This expression can be viewed as substituting Q(st+1, µ(st+1)) for maxa Q(st+1, a) in the TD
expression (4), which is used by Q-learning.

2.4 MAXIMUM LIKELIHOOD ESTIMATION

Suppose we have a data set {(xi, yi)} drawn from an unknown joint distribution p(x, y), where
random variables xi and yi respectively represent inputs and targets. Frequently, problem scenarios
involve determining the parameters of an assumed probability distribution that best describe the data.
The method of maximum likelihood estimation (MLE) addresses this by posing the question: “Under
which parameter values is the observed data most likely?”. In this context, we typically start by
representing our assumed distribution using a parameterized function f , such as a neural network,
with parameters θ. Hence, ϕ .

= f(x) serves as our estimator for the distributional parameters in x.
For example, ϕ contains K values in the case of a categorical distribution with K categories, and
contains means µ and variances σ in the case of a multivariate heteroscedastic Gaussian distribution.
We will denote the probability distribution that is specified by parameters ϕ = f(x) as f(y|x). The
problem of finding the optimal parameters can then be formulated as:

argmax
ϕ

E
p(x,y)

[
log f(yi|xi)

]
.3 (10)

This problem can be solved approximately via gradient-based optimization by leveraging the log-
likelihood gradient with respect to parameters θ:

E
p(x,y)

[
∇ log f(yi|xi)

]
. (11)

3Equivalent to minimizing the KL-divergence between p(x, y) = p(y|x)p(x) and p̂(x, y)
.
= f(y|x)p(x).
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By using estimates of the above expression, denoted ∇̂J(θ), we can iteratively refine our distributional
parameters ϕ via stochastic gradient ascent on θ: θ ← θ + α∇̂J(θ), where α is a positive step-size.

3 THE PRINCIPLES UNDERPINNING SCALABILITY IN POLICY GRADIENTS

As we discussed in Section 2.2, both Sarsa and Q-learning require maximization of the action-
value function: Sarsa relies on greedy action-selection in the limit for optimal convergence and
Q-learning needs maximizing the action-value function in the successor state to compute its TD
target. Additionally, both Sarsa and Q-learning need action-value maximization in the current state
for exploitation or, more generally, for constructing their policies (e.g. an ε-greedy policy relies
on choosing greedy actions with probability 1− ε and uniformly at random otherwise). However,
performing exact maximization in complex action spaces is computationally prohibitive. This has in
turn limited the applicability of Sarsa and Q-learning to small and finite action spaces. On the other
hand, policy gradient methods are widely believed to be suitable for dealing with complex action
spaces. In this section, we identify the core principles underlying the scalability of policy gradient
methods and describe each such principle in isolation.

3.1 APPROXIMATE SUMMATION OR INTEGRATION USING MONTE CARLO METHODS

The scalability of policy gradients in their general stochastic form relies heavily on the identity:

E
π,P

[∑
a

Qπ(st, a)∇π(a|st)
]
= E

π,P

[
Qπ(st, at)

∇π(at|st)
π(at|st)

]
= E

π,P

[
Qπ(st, at)∇ log π(at|st)

]
,

(12)

where the middle expression is derived from our original policy gradient expression (6) by substituting
an importance sampling estimator in place of the exact summation or integration over the action
space.4 The rightmost expression is then derived simply by invoking the logarithm differentiation rule,
where log denotes the natural logarithm. Consequently, using an experience batch of the usual form
{(st, at, rt+1, st+1)} with size n, we can construct an estimator of the policy gradient as follows:

1

n

∑
t

Qπ(st, at)∇ log π(at|st), (13)

where Qπ is the true action-value function under policy π which itself needs to be estimated from
experience, e.g. via Qπ(st, at) ≈ rt+1 + γV (st+1) with V serving as a learned approximator of V π .

Considering the fact that the policy gradient estimator (13) is founded upon replacing the exact
summation or integration over the action space with an on-trajectory (single-action) MC estimator,
we can construct a more general class of policy gradient estimators by enabling off-trajectory action
samples to also contribute to this numerical computation (Petit et al., 2019):

1

n

∑
t

1

m+ 1

(
Qπ(st, at)∇ log π(at|st) +

m−1∑
i=0

Qπ(st, ai)∇ log π(ai|st)
)
, (14)

where m is the number of off-trajectory action samples ai ∼ π(.|st) per state st. When m = 0, this
reduces to the original on-trajectory policy gradient estimator (13). It is important to note that using
the policy gradient estimator (14) with m > 0 requires direct approximation of the action-values Qπ

by a function Q, e.g. a neural network trained by minimizing the squared form of the TD residual (3).

A large portion of policy gradient algorithms rely on the on-trajectory estimator (13), including
REINFORCE (Williams, 1992), A3C (Mnih et al., 2016), and PPO (Schulman et al., 2017b). To our
knowledge, surprisingly few algorithms make use of the generalized MC estimator (14), with AAPG
(Petit et al., 2019) and MPO (Abdolmaleki et al., 2018) being our only references. On the flip side,
methods that perform exact summation or integration over the action space are either limited to small
and finite action spaces (Sutton et al., 2001; Allen et al., 2017) or restricted to specific distribution
classes that enable closed-form integration (Silver et al., 2014; Ciosek & Whiteson, 2018; 2020).

4Importance sampling is a Monte Carlo (MC) method used for sampling-based approximation of sums and
integrals (Hammersley & Handscomb, 1964).
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Figure 1: Policy progression according to the true policy gradient in two distinct bandit problems:
(a) reward function and (b) softmax-policy progression over time from a random initialization to
a deterministic policy in a multi-armed bandit; (c) delta-policy progression in a continuous bandit
problem with bimodal rewards; (d) fixed-variance Gaussian-policy progression in the same continuous
bandit problem. In (c) and (d), policy progressions overlay the reward function.

3.2 AMORTIZED MAXIMIZATION USING MAXIMUM LIKELIHOOD ESTIMATION

In RL and dynamic programming, generalized policy iteration (GPI) (Bertsekas, 2017) represents a
class of solution methods for optimizing a policy by alternating between estimating the value function
under the current policy (policy evaluation) and enhancing the current policy (policy improvement).
Sarsa is an instance of GPI, wherein the policy evaluation step involves learning of an estimator
Q ≈ Qπ by minimizing the temporal difference (3) and the policy improvement step occurs implicitly
by acting semi-greedily with respect to Q. Policy gradient methods share a close connection to GPI as
well (Schulman et al., 2015). They also alternate between policy evaluation (i.e. estimating Q ≈ Qπ)
and policy improvement (i.e. updating an explicit policy using an estimate of the policy gradient).
Notably, one can instantiate a policy gradient algorithm by performing the policy evaluation step in
the same fashion as Sarsa. From this standpoint, the mechanism employed for policy improvement is
the main differentiator between policy gradient methods and action-value methods like Sarsa. In the
previous section, we illustrated how policy gradient estimation can be carried out in a computationally
scalable manner. In this section, we delve into the question of how updating the policy using policy
gradients achieves policy improvement, and how it does so in an efficient manner.

We start with recasting the log-likelihood gradient (11) using RL terminology, replacing the variables
(x, y, i, f) with (s, a, t, π). Moreover, we reinterpret the expectation computation to be under the
joint visitation distribution of state-action pairs within an RL context. Subsequently, we contrast the
reframed log-likelihood gradient against the policy gradient (12):

E
π,P

[
∇ log π(at|st)

]
︸ ︷︷ ︸

log-likelihood gradient

vs. E
π,P

[
Qπ(st, at)∇ log π(at|st)

]
︸ ︷︷ ︸

policy gradient

. (15)

This comparison implies that policy gradients perform a modified form of MLE, wherein the log-
likelihood gradient term is weighted by Qπ for each state-action pair. This weighting assigns
importance to actions according to the product of Qπ(s, a) and log π(a|s). Therefore, a single step
of the true policy gradient updates the policy distribution such that actions with higher action-values
become more likely. From this perspective, policy gradients can be construed as a form of amortized
inference (Gershman & Goodman, 2014). Each step of the true policy gradient improves the current
approximate maximizer of an interdependent action-value function, with the policy functioning as a
mechanism for retaining and facilitating retrieval of the best approximation thus far. To elucidate this,
we consider a basic one-state MDP (aka. multi-armed bandit) with deterministic rewards (Fig. 1a).
In such a setting, true action-values are independent of the policy and are equivalent to rewards:
Qπ(a) = Q∗(a) = r(a) for all π and a. For learning, we use a tabular policy function with a
softmax distribution and update it using the true policy gradient in each step. These choices minimize
confounding effects, allowing us to study the way policy gradients achieve policy improvement in
isolation. Figure 1b shows the progression of the policy distribution during training, starting from a
random initialization until convergence. Early in training the policy captures the ranking of actions

6
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according to their respective action-values. In other words, sampling from the policy corresponds to
performing a probabilistic arg sort on the action-value function. In the absence of any counteractive
losses, such as entropy regularization, this process continues until convergence to a deterministic
policy corresponding to the argmax over the action-value function.

We have discussed that policy gradients can be viewed as an iterative approach to action-value
maximization. However, they do not always yield the global argmax. This limitation is rooted
in local tendencies of gradient-based optimization, affecting scenarios with non-tabular policy
distributions (Tessler et al., 2019). Figures 1c,d respectively show progression of a delta policy and
a fixed-variance Gaussian policy in a continuous bandit problem with bimodal and deterministic
rewards. In both cases, policy improvement driven by policy gradients results in local movement in
the action space and thus convergence to sub-optimal policies.

3.3 REPRESENTATION LEARNING VIA ACTION-IN ARCHITECTURES

There are two functional forms for constructing an approximate action-value predictor Q: action-in
and action-out architectures. An action-in architecture predicts Q-values for a given state-action pair
at input. An action-out architecture outputs Q predictions for all possible actions in an input state.
Action-out architectures have the computational advantage that a single forward pass through the
predictor collects all actions’ values in a given state, versus requiring as many forward passes as there
are actions in a state by an action-in architecture. Of course, such an advantage is only pertinent
when evaluating all possible actions, or a considerable subset of them, in a given state—a necessity
that varies depending on the algorithm. On the other hand, one notable limitation of action-out
architectures is their incapacity to predict Q-values in continuous action domains without imposing
strict modeling constraints on the functional form of the estimated Q-function (Gu et al., 2016).

Action-value methods are commonly employed with action-out architectures, including DQN (Mnih
et al., 2015) and Rainbow (Hessel et al., 2018). Conversely, policy gradient algorithms that involve Q
approximations resort to action-in architectures for tackling complex action spaces, such as DDPG
(Lillicrap et al., 2016) and MPO (Abdolmaleki et al., 2018). Considering the specific requisites of the
two families of methods in their standard forms, these are reasonable choices. In particular, standard
action-value methods require evaluation of all possible actions in a given state in order to perform the
maximization operation, thereby an action-out architecture is more efficient from a computational
perspective. In contrast, policy gradient methods that rely on Q approximation require evaluation of
only one or a fixed number of actions in any given state (§3.1). Hence, using action-in architectures
in the context of policy gradient methods is more computationally efficient in finite action spaces and
one that functionally supports Q evaluation in complex action spaces.

So far, we have compared action-in and action-out architectures from computational and functional
standpoints. Now, we turn to a fundamental but often overlooked advantage of action-in architectures:
their capacity for representation learning and generalization with respect to actions. Specifically,
by treating both states and actions as inputs, action-in architectures unify the process of learning
representations for both. For example, when training an action-in Q approximator with deep learning,
backpropagation enables learning representations over the joint state-action space. In contrast, action-
out architectures are limited in their capacity for generalizing across actions (Zhou et al., 2022). This
limitation arises because, although many layers may serve to learn deep representations of input
states, action conditioning is introduced only at the output layer in a tabular-like form. While some
action-out architectures introduce structural inductive biases that support combinatorial generalization
across multi-dimensional actions (see, e.g., Tavakoli et al., 2018; 2021), they do not capacitate action
representation learning and generalization in the general form. Moreover, such architectures remain
limited to discrete action spaces and are, generally, subject to statistical biases.

4 INCORPORATING THE PRINCIPLES INTO ACTION-VALUE LEARNING

In Section 3, we identified three core principles that we argued underpin the effectiveness of popular
policy gradient algorithms in complex action spaces. In this section, we challenge the conventional
wisdom that policy gradient methods are inherently more suitable in tackling complex action spaces
by showing that the same principles can be integrated into action-value methods, thus enabling them
to exhibit similar scaling properties to policy gradient methods without the need for policy gradients.
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Principle 1 In the same spirit as using an MC estimator in place of exact summation or integration
over the action space in policy gradient methods (§3.1), the first principle that we consolidate into
action-value learning is substituting exact maximization over the action space with a sampling-based
approximation. Formally, we compute an approximation of maxa Q(s, a) via the steps below:

Am
.
= {ai}m ∼ ∆search(As) (16)

argmax
a

Q(s, a) ≈ argmax
ai∈Am

Q(s, ai)
.
= amax (17)

max
a

Q(s, a) ≈ Q(s, amax) (18)

where m ≥ 1 is the number of action samples in state s and ∆search is a probability distribution over
the generally state-conditional action space As. Without any prior information, opting for a uniform
∆search is ideal as it ensures equal sampling across all possible actions in a given state. This approach,
with a constant m, allows for action-value learning at a fixed computational cost in arbitrarily complex
action spaces (be it discrete, continuous, or hybrid).

Principle 2 The next principle is to equip action-value learning with a mechanism for retention and
retrieval of the best argmax approximation so far, analogous to the policy function in policy gradient
methods (§3.2). To do so, let us assume we maintain a memory buffer B .

= {(st, amax
t )}, where amax

t
denotes our best current argmax approximation in a visited state st. In small and finite state spaces,
the memory buffer itself can serve as a basic mechanism for retention and retrieval via table-lookup
(as used by Tian et al., 2022):

amax
t ← B(st) if st in B otherwise ∅. (19)

In this case, we can enable the reuse of past computations for amortized argmax approximations by
modifying Eq. 16 in the following way:

Am
.
= {amax

t } ∪ {ai}m−1 ∼ ∆search(As). (20)

Then, we refine the argmax approximation via Eq. 17 and update the buffer B(st) ← amax
t . This

approach does not achieve generalization across states, thus compromising its general efficacy
in major ways. To enable a capacity for generalization, we resort to training a state-conditional
parameterized distribution function with MLE (§2.4). In other words, we train a parametric argmax
predictor fθ(.|st) by employing the log-likelihood gradient (11) on the stored tuples {(st, amax

t )}.
Notably, this paradigm naturally supports training an ensemble of such predictors, for example based
on different distributions. Therefore, we can rewrite Eq. 20 to explicitly incorporate an ensemble of k
parametric argmax predictors as below:

Am =
⋃



Am0
∼ Uniform(Ast)

Am1 ∼ fθ1(.|st)
· · ·
Amk

∼ fθk
(.|st)

{amax
t } (if a prior approximation exists)

(21)

Principle 3 The third, and final, principle is to combine action-value learning with action-in instead
of action-out architectures in order to enable action-value inference in complex action spaces as
well as representation learning and generalization with respect to actions (§3.3). While the other
ingredients apply more broadly to both tabular and approximate cases, this last one is only relevant in
conjunction with functional approximation. Appendix B.1 provides a neural network architecture
from our experiments that exemplifies the action-in approach.

5 EXPERIMENTS

To evaluate our framework, we instantiate Q-learning with maximum likelihood estimation (QMLE)
as an example of integrating the adapted core principles (§4) into approximate Q-learning with deep
neural networks (Mnih et al., 2015). Appendix A presents the QMLE algorithm in a general form.
Our illustrative study (§5.1) employs a simplified implementation of this algorithm. Appendix B
provides the details of the QMLE agent used in our benchmarking experiments (§5.2).
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Figure 2: QMLE with local sampling approximately subsumes DPG and with added global sampling
transcends DPG by circumventing suboptimality, as examined in a continuous 2D bandit with two
modes and under three canonical exploration strategies. The trajectory of delta distributions during
training (yellow) with endpoints (green) overlay the respective learned Q-functions at convergence.

5.1 ILLUSTRATIVE EXAMPLE

We compare QMLE to the deterministic policy gradient (DPG) algorithm in a continuous 2D bandit
problem with deterministic and bimodal rewards (similar to that presented by Metz et al., 2019).
This problem setting minimizes confounding factors by reducing action-value learning to supervised
learning of rewards and eliminating contributions from differing bootstrapping mechanisms in the
two methods. For an apples-to-apples comparison, we constrain QMLE to only a single parametric
argmax predictor based on a delta distribution, mirroring the strict limitation of DPG to delta policies.
We further simplify QMLE by aligning its computation of greedy actions with that of DPG. This
ensures the only remaining difference between QMLE and DPG is in how their delta parameters
are updated, not in how their greedy actions are computed for constructing behavior policies. Both
methods use the same hyper-parameters, model architecture, and initialization across all experiments.

We examine two simplified variants of QMLE. The first one uses local sampling around the delta
parameters for argmax approximations that are used as targets for MLE training. Precisely, we only
allow samples Am drawn from δθ(s)+ξ, where δθ denotes the delta-based argmax predictor and ξ is
a zero-mean Gaussian noise with a standard deviation of 0.001 (cf. Eq. 21). This is akin to computing
an MC approximation of∇aQ

π
(
st, a=π(st)

)
in DPG (7c). The second variant incorporates global

sampling alongside local sampling, by additionally sampling from the uniform distribution of Eq. 21.

Figure 2a depicts the reward function of the bandit, or equally the ground-truth Q-function. Figure 2b
shows the trajectory of delta distributions during training (yellow) until convergence (green), overlaid
on the final learned Q-function. DPG (Fig. 2b, left) consistently converges to a local optimum,
regardless of the exploration strategy and despite the sufficient accuracy of its learned Q-function.
QMLE with local sampling (Fig. 2b, middle) behaves similarly to DPG. On the other hand, QMLE
with global sampling (Fig. 2b, right) converges to the global optimum across all exploration strategies.

This study illustrates key properties of QMLE with respect to DPG: subsumption, where QMLE
with local sampling approximates DPG updates, and transcendence, where global sampling allows
QMLE to overcome the local tendencies of policy gradients and surpass DPG.

9
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Figure 3: Comparison of QMLE with learning curves of DMPO, and evaluation performances of
A3C, DDPG, and D4PG after training for 100M environment steps.

5.2 BENCHMARKING RESULTS

In this section, we evaluate QMLE on 18 continuous control tasks from the DeepMind Control Suite
(Tassa et al., 2018). Figure 3 shows learning curves of QMLE alongside the learning curves or final
performances of several baselines, including state-of-the-art methods DMPO (Hoffman et al., 2022)
and D4PG (Barth-Maron et al., 2018), as well as the canonical (on-policy) A3C (Mnih et al., 2016)
and (off-policy) DDPG (Lillicrap et al., 2016). Results for DMPO (12 tasks) are from Seyde et al.
(2023), while those for A3C, DDPG, and D4PG (16 tasks) are from Tassa et al. (2018).

With the exception of the Finger Turn Hard task, QMLE consistently performs between DDPG and
D4PG. Notably, it matches or outperforms DDPG on 14 out of 16 tasks, with DDPG being the closest
counterpart from the policy gradient paradigm to QMLE. Moreover, QMLE substantially exceeds the
performance of A3C across all tasks. This is despite QMLE being trained on 10 to 100× fewer steps
compared to A3C, DDPG, and D4PG. While QMLE competes well with DMPO in low-dimensional
action spaces, it trails in higher-dimensional ones. Nonetheless, the strong performance of QMLE in
continuous control tasks with up to 38 action dimensions, all without policy gradients, in and of itself
testifies to the core nature of our identified principles and their adaptability to action-value methods.

6 CONCLUSION

In this paper, we distilled the success of policy gradient methods in complex action spaces into three
core principles: MC approximation of sums or integrals, amortized maximization using a special
form of MLE, and action-in architectures for representation learning and generalization over actions.
We then argued that these principles are not exclusive to the policy gradient paradigm and can be
adapted to action-value methods. In turn, we presented a framework for incorporating adaptations
of these principles into action-value methods. To examine our arguments, we instantiated QMLE
by implementing our adapted principles into approximate Q-learning with deep neural networks.
Our results showed that QMLE performs strongly in continuous control problems with up to 38
action dimensions, largely outperforming its closest policy gradient counterpart DDPG. These results
provided empirical support for the core nature of our identified principles and demonstrated that
action-value methods could adopt them to achieve similar qualities, all without policy gradients. In a
comparative study using DPG and two simplified QMLE variants, we highlighted a key limitation of
policy gradients and showed how QMLE could overcome it. This study serves as a motivator for a
shift from policy gradients toward action-value methods with our adapted principles. It also offers a
potential explanation for the improvements observed over DDPG in our benchmarking experiments.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learn-
ing by exponential linear units (ELUs). In International Conference on Learning Representations,
2016.

Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. Q-learning in enormous
action spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116, 2020.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In John Langford and
Joelle Pineau (eds.), Proceedings of the 29th International Conference on Machine Learning, pp.
457–464, Edinburgh, Scotland, July 2012. Omnipress.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
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for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308,
2000.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3
(1):9–44, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2018.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Richard S. Sutton, Satinder Singh, and David McAllester. Comparing policy-gradient algorithms,
2001. URL http://incompleteideas.net/papers/SSM-unpublished.

15

https://proceedings.mlr.press/v202/schwarzer23a.html
https://openreview.net/forum?id=aPOpXlnV1T
https://openreview.net/forum?id=aPOpXlnV1T
https://proceedings.neurips.cc/paper_files/paper/2021/file/e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf
https://openreview.net/forum?id=U5XOGxAgccS
https://openreview.net/forum?id=U5XOGxAgccS
https://proceedings.mlr.press/v242/seyde24a.html
https://proceedings.mlr.press/v242/seyde24a.html
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
http://incompleteideas.net/papers/SSM-unpublished


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(4):5981–5988, Apr. 2020. doi: 10.
1609/aaai.v34i04.6059. URL https://ojs.aaai.org/index.php/AAAI/article/
view/6059.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
DeepMind Control Suite. arXiv preprint arXiv:1801.00690, 2018.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
forcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr.
2018. doi: 10.1609/aaai.v32i1.11798. URL https://ojs.aaai.org/index.php/AAAI/
article/view/11798.

Arash Tavakoli, Mehdi Fatemi, and Petar Kormushev. Learning to represent action values as a
hypergraph on the action vertices. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=Xv_s64FiXTv.

Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimiza-
tion: An alternative approach for continuous control. In H. Wallach, H. Larochelle,
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A Q-LEARNING WITH MAXIMUM LIKELIHOOD ESTIMATION

In this section, we present the Q-learning with maximum likelihood estimation (QMLE) algorithm.
Specifically, our presentation is based on integrating our framework (§4) into the deep Q-learning
algorithm by Mnih et al. (2015). In line with this, we make use of experience replay and a target
network that is only periodically updated with the parameters of the online network. Importantly, we
extend the scope of the target network to encompass the argmax predictors in QMLE. Although the
algorithm does not mandate the use of action-in Q approximators per se, such architectures become
necessary for addressing problems with arbitrarily complex action spaces (§3.3).

Algorithm 1 details the training procedures for QMLE. Notably, the algorithm is flexible regarding
the composition of the ensemble of argmax predictors. For instance, the ensemble can consist of
a combination of continuous and discrete distributions for problems with continuous action spaces.
QMLE introduces several hyper-parameters related to its action-sampling processes. These include
the sampling budgets for target maximization, mtarget, and greedy action selection in the environment,
mgreedy. Additionally, QMLE uses sample allocation ratios {ρ0, ρ1, . . . , ρk}, where ρ0 corresponds
to the proportion of the budget allocated to uniform sampling from the action space, and ρ1 through
ρk correspond to the proportions assigned to the ensemble of k parametric argmax predictors.

To effectively manage training inference costs in QMLE, we recommend allocating a larger budget to
mgreedy than to mtarget. Since mgreedy is used at most once per interaction step, increasing it incurs
relatively little computational burden. In addition, more accurate argmax approximations during
training interactions can lead to higher quality data for learning, making this increase particularly
beneficial. In contrast, each training update requires mtarget ×Nb inferences on the target Q-network,
where Nb is the batch size. This makes increasing mtarget much more costly in terms of training
inference costs. On that account, choosing a moderate mtarget allows for computational tractability
with larger batch sizes. Remarkably, a moderate mtarget could also help reduce the overestimation
of action values (Hasselt, 2010; van Hasselt et al., 2016). Also, assigning a smaller mtarget relative

Algorithm 1: QMLE algorithm.
Input :sampling budgets mtarget, mgreedy and ratios {ρ0, ρ1, . . . , ρk} (k is the # of argmax predictors)
Input : initial model parameters ω, {θ1,θ2, . . . ,θk}; step sizes αq, αargmax
Input : target update frequency N−; batch size Nb; replay period K; interaction budget Ne · T
Initialize target parameters ω−, {θ−

i }
k
1 ← ω, {θi}k1 , accumulators ∆q = {∆i}k1 = 0

Initialize memory buffer B = ∅
for episode ∈ {1, 2, . . . , Ne} do

Observe initial state s0
for t ∈ {0, 1, . . . , T − 1} do

with probability ε do
Sample action at ∼ Uniform(Ast)

otherwise do
Generate actions Agreedy

m using {θi}k1 , {mi = ρi ×mgreedy}k0 in Eq. 21,
Approximate greedy action at using Qω , st, Agreedy

m in Eq. 17
Observe rt+1, st+1, γt+1 from environment given at, set amax

t+1 ← at

Store transition (st, at, rt+1, st+1, γt+1, a
max
t+1) in B

if t ≡ 0 mod K then
for j ∈ {1, 2, . . . , Nb} do

Sample random transition (sj , aj , rj+1, sj+1, γj+1, a
max
j+1) from B

Generate actions Atarget
m using {θ−

i }
k
1 , {mi = ρi ×mtarget}k0 , amax

j+1 (prior) in Eq. 21
Approximate target-maximizing action aj+1 using Qω− , sj+1, Atarget

m in Eq. 17
Set amax

j+1 ← aj+1 and update B
Compute squared TD residual Lq = (rj+1 + γj+1Qω−(sj+1, a

max
j+1)−Qω(sj , aj))

2

Compute MLE losses {Li}k1 using parameters {θi}k1 and target amax
j+1

Accumulate parameter-changes ∆q ← ∆q +∇ωLq , {∆i ← ∆i +∇θiLi}k1
Update parameters ω ← ω + 1

Nb
· αq ·∆q , {θi ← θi +

1
Nb
· αargmax ·∆i}k1

Reset accumulators ∆q = {∆i}k1 = 0
Update target parameters ω−, {θ−

i }
k
1 ← ω, {θi}k1 every N− time steps

Terminate episode on reaching a terminal state, where γt+1 = 0
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to mgreedy is further justified because target maximization benefits from additional amortization.
Specifically, each time a transition is sampled from the memory buffer for experience replay, we use
the previously stored argmax approximation as a prior. This approximation is then recalibrated and
updated in the memory buffer for the next time that the transition is sampled for replay.

B EXPERIMENTAL DETAILS

This section details the specific QMLE instance that we evaluated in our benchmarking experiments.
We adopted prioritized experience replay (Schaul et al., 2016), in place of the uniform variant that was
described in Algorithm 1. Furthermore, we deployed QMLE with two argmax predictors: one based
on a delta distribution over the continuous action space, and another based on a factored categorical
distribution defined over a finite subset of the original action space (Tang & Agrawal, 2020).

To build the discrete action support, we applied the bang-off-bang (3 bins) discretization scheme to
the action space (Seyde et al., 2021). For sampling from the delta-based argmax predictor, we always
included the parameter of the delta distribution as the initial sample. Any additional samples were
generated through Gaussian perturbations around this parameter using a small standard deviation.

Sections B.1, B.2, and B.3 provide details around the model architecture, hyper-parameters, and
implementation of QMLE in our benchmarking experiments, respectively. Section B.4 details the
number of seeds per agent and the computation of our learning curves.

B.1 MODEL ARCHITECTURE

ResNet layer 
with ReLU

State vector

ELU

LayerNorm

Linear layer

Linear layer

ELU

LayerNorm

Action vector

Concatenate

ELU

LayerNorm

Linear layer

Q scalar

Linear layer

ReLU

Linear layer

Tanh

amax (vector)

Linear layer

ReLU

Linear layer

Softmax 1

Linear layer 1

Softmax Nd

Linear layer Nd

Factored Categorical Delta

Figure 4: Schematic of the model architecture used with QMLE for our benchmarking experiments.
Dashed lines indicate paths without gradient flow during backpropagation.

Figure 4 depicts the model architecture of QMLE in our benchmarking experiments. The model
begins with two separate streams, one for the observation inputs and the other for the action inputs.
The outputs of these streams are then concatenated and jointly processed by the Q-value predictor.
Furthermore, the output of the observation stream is separately processed by each argmax predictor.

In the observation stream, we apply a linear embedding layer with 128 units followed by a residual
block (He et al., 2016) that maintains this width and uses rectified linear unit (ReLU) activation (Nair
& Hinton, 2010). The residual block is succeeded by a layer normalization (LayerNorm) operation
(Ba et al., 2016) and exponential linear unit (ELU) activation (Clevert et al., 2016).

In the action stream, we apply a linear embedding layer with 128 units. The output of the embedding
layer is then directly followed by LayerNorm and ELU activation.
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The outputs from both streams are concatenated and passed through a joint observation-action residual
block with 256 units and ReLU activation. Subsequently, we apply LayerNorm and ELU activation.
The outputs are then linearly mapped to a single scalar, representing the predicted Q-value.

The output of the observation stream is also used as input to the two argmax predictors. To avoid
interference, we prevent backpropagation from the argmax predictor streams through the shared
observation stream. Each argmax predictor stream leverages a hidden multilayer perceptron (MLP)
layer with 128 units and ReLU activation.

In the argmax predictor stream based on the delta distribution, we produce one output per action
dimension. Each output is passed through hyperbolic tangent (Tanh) activation to yield a continuous
value constrained within the support of each action dimension in our benchmark. In the argmax
predictor stream based on the factored categorical distribution, we produce three outputs per action
dimension. We apply the softmax function to the outputs for each action dimension, producing
multiple softmax distributions over a bang-off-bang discrete action support.

B.2 HYPER-PARAMETERS

Table 1 provides the hyper-parameters of QMLE in our benchmarking experiments.

Table 1: QMLE hyper-parameters in our benchmarking experiments.

Parameter Value

mtarget 100
mgreedy 1000
ρ0 (uniform) 0.9
ρ1 (delta) 0.01
ρ2 (factored categorical) 0.09

step sizes αq, αargmax 0.0005
update frequency 10
batch size 256
training start size 1000
memory buffer size 1000000
target network update frequency 2000
loss function mean-squared error
optimizer Adam (Kingma & Ba, 2015)
exploration ε 0.1
discount factor 0.99
time limit 1000 (Tassa et al., 2018)
truncation approach partial-episode bootstrapping (Pardo et al., 2018)

importance sampling exponent 0.2
priority exponent 0.6

B.3 IMPLEMENTATION

Our QMLE implementation is based on the open-source DQN codebase by Huang et al. (2022). To
support reproducibility, we will make our code publicly available upon publication.

B.4 SEEDS AND PERFORMANCES

All curves report the mean undiscounted return over seeds with one standard error. Performance
levels of DDPG, D4PG, and A3C represent the mean over 100 episodes per seed, after training for
100M environment steps. Table 2 details the number of seeds used for each agent in our experiments,
grouped by the source of the results.
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Table 2: Number of seeds used in benchmarking experiments.

Agent Trials

QMLE 5 or 10 (depending on the task)

Results from Seyde et al. (2023)
DMPO 10
DQN 10

Results from Tassa et al. (2018)
A3C 15
DDPG 15
D4PG 5

Results from Pardo (2020)
MPO 10
SAC 10
TD3 10
PPO 10
TRPO 10
A2C 10

Results from de Wiele et al. (2020)
AQL 3
QT-Opt 3

C SUPPLEMENTARY BENCHMARKING RESULTS

Figures 5 and 6 provide comparisons of QMLE with a range of mainstream policy gradient methods.
The baseline results are due to Pardo (2020).

• Figure 5 presents a comparison between QMLE and policy gradient methods that rely on
action-value approximation: MPO (Abdolmaleki et al., 2018), SAC (Haarnoja et al., 2018),
and TD3 (Fujimoto et al., 2018).

• Figure 6 compares QMLE with policy gradient methods that use state-value approximation:
PPO (Schulman et al., 2017b), TRPO (Schulman et al., 2015), and A2C (Mnih et al., 2016).

Figure 7 shows a comparison of QMLE with QT-Opt (Kalashnikov et al., 2018) and both the discrete
and continuous action variants of AQL (de Wiele et al., 2020). The baseline results are taken from
de Wiele et al. (2020).
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Figure 5: Learning curves of QMLE against MPO, SAC, and TD3.
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Figure 6: Learning curves of QMLE against PPO, TRPO, and A2C.
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Figure 7: Comparison of QMLE with QT-Opt and AQL.
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D ABLATION STUDIES

In this section, we present ablation studies to evaluate the impact of the principles in our framework
on the performance of QMLE.

D.1 AMORTIZED MAXIMIZATION

Figure 8 compares the performance of QMLE against its ablation without amortized maximization.
In this experiment, QMLE employs a delta-based argmax predictor, while its ablated variant relies
solely on uniform sampling for argmax approximation. We use the same sampling budgets of
mtarget = mgreedy = 2 for both variants, with QMLE allocating its budgets equally between uniform
sampling and the delta-based argmax predictor (ρuniform = ρdelta = 0.5), and the ablated variant
allocating them entirely to uniform sampling (ρuniform = 1).

The action spaces range from 1-dimensional (leftmost) to 6-dimensional (rightmost) for the considered
problems. The results demonstrate that amortized maximization significantly improves performance,
particularly as the complexity of the action space increases.
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Figure 8: Comparison of a continuous variant of QMLE with and without amortized maximization.

D.2 APPROXIMATE MAXIMIZATION

Figure 9 shows the learning curves for QMLE with sampling budgets of 2 and 1000. Expectedly,
increasing the number of samples for Q-maximization improves performance by yielding more
accurate estimates of the TD target and greedy actions. Nevertheless, amortization dampens the
negative impact of undersampling by enabling reuse of past computations over time.
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Figure 9: Comparison of QMLE with sampling budgets of 2 and 1000.

D.3 ACTION-IN ARCHITECTURE

We compare the performance of QMLE with action-in and action-out architectures. Since action-out
Q-approximators are not readily compatible with continuous action spaces, we examine both agents
on the bang-off-bang (3 bins) discretized versions of the considered environments.

The QMLE variant with an action-in architecture employs an argmax predictor based on a factored
categorical distribution, with the same sampling budgets and uniform sampling ratio as in Table 1 but
with ρdelta = 0 and ρfactored categorical = 1. On the other hand, exact maximization is performed for the
ablated variant as a forward pass through an action-out Q-approximator collects all actions’ values
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in a given state. Therefore, using an action-out architecture in the ablated variant obviates the need
for learned argmax predictors or any approximate maximization altogether. That is to say, when
inference with an action-out architecture is computationally feasible, performing exact maximization
should also be feasible given that its cost is generally negligible compared to that of inference. This,
in effect, reduces the ablated variant to DQN.

Figure 10 shows the learning curves for QMLE and DQN.

• In lower-dimensional action spaces, such as Finger Spin and Walker Walk with 2 and 6 action
dimensions respectively, where DQN is computationally tractable, both QMLE and DQN
achieve similar final performance levels. However, QMLE performs more sample-efficiently
due to the use of an action-in architecture, which enables generalization across actions.

• In higher-dimensional action spaces, DQN becomes computationally intractable, resulting in
out-of-memory errors or exceeding computational time constraints. In contrast, QMLE per-
forms strongly in these environments, including Dog Walk with 338 ≈ 1.35× 1018 discrete
actions, underscoring the benefits of action-in architectures both in terms of computational
scalability and generalization across enormous action spaces.
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Figure 10: Comparison of QMLE with DQN where DQN represents the ablation of action-in
architectures, and in turn all three principles, in QMLE. Dashed lines indicate out-of-memory errors
or excessive computational demands for DQN.

E FUTURE WORK

E.1 COMBINING WITH OTHER IMPROVEMENTS

In this paper, we integrated our framework into the deep Q-learning algorithm of Mnih et al. (2015),
in a proof-of-concept agent that we termed QMLE (Algorithm 1). In our benchmarking experiments,
we further combined QMLE with prioritized experience replay (Schaul et al., 2016; see details in
Section B). While this setup is relatively basic compared to the advancements in deep Q-learning, it
served our purpose of demonstrating the general competency of action-value methods in complex
action spaces without involving policy gradients. We anticipate that a purposeful integration with
advancements in deep Q-learning could significantly improve the performance of our QMLE agent.
For instance, fundamental methods that can be trivially combined with QMLE include N -step returns
and distributional learning, similarly to the critics in DMPO and D4PG. Certain methods, including
double Q-learning (Hasselt, 2010; van Hasselt et al., 2016) and dueling networks (Wang et al.,
2016) may not be directly applicable or relevant to QMLE, underscoring the importance of careful
integration. We are particularly excited about using a cross-entropy classification loss in place of
regression for training Q approximators (Farebrother et al., 2024), as well as combining with ideas
introduced by Li et al. (2023); Schwarzer et al. (2023). Moreover, formal explorations into the space
of value mappings (van Seijen et al., 2019; Fatemi & Tavakoli, 2022), particularly those that benefit
Q-function approximation with action-in architectures, offer an intriguing direction for future work.

Since our approach employs maximum likelihood estimation (MLE) in a disentangled manner (see
discussions in Section 3.2), it makes it trivial to incorporate advances from supervised learning for
training the parametric argmax predictors. To provide an example, advancements in heteroscedastic
uncertainty estimation, such that introduced by Seitzer et al. (2022), can be readily applied to model
state-conditional variances for Gaussian argmax predictors.
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E.2 MULTIAGENT REINFORCEMENT LEARNING VIA CTDE

A problem scenario that could benefit from QMLE, and more broadly our framework, is multiagent
reinforcement learning (MARL) under centralized training with decentralized execution (CTDE;
Foerster et al., 2016; Lowe et al., 2017). Currently, the dominant class of solutions in this paradigm is
based on combinations of deep Q-learning and value decomposition methods (Sunehag et al., 2017;
Rashid et al., 2020). These approaches decompose the Q-function into local utilities for each agent,
aiming for the local argmax to correspond to the global argmax on the joint Q-function. However,
maintaining this alignment requires imposing structural constraints that limit the representational
capacity of the joint Q-approximator, which can lead to suboptimal decentralized argmax policies.

QMLE avoids these constraints by disentangling the process of approximating the joint Q-function
from learning the decentralized argmax policies, allowing for a universal representational capacity
of the joint Q-function while maintaining decentralized execution. Instead of relying on a factored
Q approximation, QMLE models the joint Q-function in an unconstrained manner. Simultaneously,
an argmax predictor (or an ensemble of them) is separately trained for each agent, conditioned on
their respective observations. This approach allows for improved coordination between agents by
preserving the full representational capacity of the joint Q-function. As demonstrated in Fig. 11, in a
continuous variant of the “climbing” game (Claus & Boutilier, 1998), linear value decomposition
(Sunehag et al., 2017) leads to a suboptimal reward of 5 due to its constrained capacity to represent the
joint Q-function as Q .

= U1 + U2. In contrast, QMLE, by accurately modeling the joint Q-function,
enables decentralized argmax predictors that guide agents to the globally optimal reward of 11.

Q ≐ U1 + U2
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Figure 11: Comparison of QMLE with linear value decomposition in a continuous variant of the
“climbing” game with two agents (Claus & Boutilier, 1998). Linear value decomposition leads to a
suboptimal reward of 5 due its limited representational capacity (Q .

= U1 + U2), whereas QMLE,
by modeling the joint Q-function without such constraints, enables decentralized argmax predictors
that guide agents to the globally optimal reward of 11.

E.3 CURRICULUM SHAPING THROUGH GROWING ACTION SPACES

Growing of the action space as a form of curriculum shaping is an effective approach for improving
learning performance in complex problems. Nonetheless, existing approaches, such as that presented
by Farquhar et al. (2020), are restricted to discrete actions. Seyde et al. (2024) report improvements
in sample efficiency and solution smoothness on physical control tasks by adaptively increasing the
granularity of discretization during training. This is because coarse action discretizations can provide
exploration benefits and yield lower variance updates early in training, while finer control resolutions
later on help reduce bias at convergence. However, due to the strict dependence of this approach
on a class of action-out architectures (Tavakoli et al., 2021; Seyde et al., 2023), it cannot ultimately
transition from coarse discretization to the original continuous action space.

On the other hand, QMLE can support learning with dynamically growing action spaces, including
transitions from finite to continuous supports in continuous action problems. We show this capability
in a preliminary experiment, where we start with a coarse bang-off-bang discretization and later shift
to the original continuous action space (Figure 12). This capacity positions QMLE, and more broadly
our framework, as a promising candidate for future research in the context of growing action spaces.
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Figure 12: Learning curves for discrete, continuous, and discrete-to-continuous (“curriculum”)
variants of QMLE. Dashed lines mark the transition from discrete to continuous actions for the
curriculum-based agents.
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