Finding, visualizing, and quantifying latent structure across diverse animal
vocal repertoires

Tim Sainburg' Marving Thielk! Timothy Q. Gentner '

Abstract

Animals produce vocalizations that range in com-
plexity from a single repeated call to hundreds
of unique vocal elements patterned in sequences
unfolding over hours. Characterizing complex
vocalizations can require considerable effort and
a deep intuition about each species’ vocal behav-
ior. Even with a great deal of experience, human
characterizations of animal communication can be
affected by human perceptual biases. We present
a set of computational methods for projecting an-
imal vocalizations into low dimensional latent
representational spaces that are directly learned
from the spectrograms of vocal signals. We apply
these methods to diverse datasets from over 20
species, including humans, bats, songbirds, mice,
cetaceans, and nonhuman primates. Latent projec-
tions uncover complex features of data in visually
intuitive and quantifiable ways, enabling high-
powered comparative analyses of unbiased acous-
tic features. We introduce methods for analyzing
vocalizations as both discrete sequences and as
continuous latent variables. Each method can
be used to disentangle complex spectro-temporal
structure and observe long-timescale organization
in communication.

1. Introduction

Vocal communication is a common social behavior among
many species, in which acoustic signals are transmitted
from sender to receiver to convey information such as iden-
tity, individual fitness, or the presence of danger. Across
diverse fields, a set of shared research questions seeks to un-
cover the structure and mechanism of vocal communication:
What information is carried within signals? How are sig-
nals produced and perceived? How does the communicative
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transmission of information affect fitness and reproductive
success? Many methods are available to address these ques-
tions quantitatively, most of which are founded on underly-
ing principles of abstraction and characterization of ’units’
in the vocal time series (Kershenbaum et al., 2016). For
example, segmentation of birdsong into temporally discrete
elements followed by clustering into discrete categories
has played a crucial role in understanding syntactic struc-
ture in birdsong (Kershenbaum et al., 2016; Berwick et al.,
2011; Sainburg et al., 2019; Katahira et al., 2013; Markowitz
et al., 2013; Cody et al., 2016; Hedley, 2016; Koumura &
Okanoya, 2016; Gentner & Hulse, 1998).

The characterization and abstraction of vocal communica-
tion signals remains both an art and a science. In a recent
survey, Kershenbaum et. al., (2016) outline four common
steps used in many analyses to abstract and describe vocal
sequences: (1) the collection of data, (2) segmentation of
vocalizations into units, (3) characterization of sequences,
and (4) identification of meaning. A number of heuristics
guide these steps, but it is largely up to the experimenter to
determine which heuristics to apply and how. This applica-
tion typically requires expert-level knowledge, which in turn
can be difficult and time-consuming to acquire, and often
unique to the structure of each species’ vocal repertoire. For
instance, what constitutes a 'unit’ of humpback whale song?
Do these units generalize to other species? Should they?
When such intuitions are available they should be consid-
ered, of course, but they are generally rare in comparison to
the wide range of communication signals observed naturally.
As a result, communication remains understudied in most
of the thousands of vocally communicating species. Even
in well-documented model species, characterizations of vo-
calizations are often influenced by human perceptual and
cognitive biases (Suzuki et al., 2006; Tyack, 1998; Janik,
1999; Kershenbaum et al., 2016). We explore a class of
unsupervised, computational, machine learning techniques
that avoid many of the foregoing limitations, and provide
an alternative method to characterize vocal communication
signals. Machine learning methods are designed to capture
statistical patterns in complex datasets and have flourished
in many domains (LeCun et al., 2015; Bengio et al., 2013;
Radford et al., 2015; Becht et al., 2019; Brown & De Bivort,
2018; Becht et al., 2019). These techniques are therefore
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Figure 1. Graph-based dimensionality reduction. Current non-linear dimensionality reduction algorithms like TSNE, UMAP, and ISOMAP
work by building a graph representing the relationships between high-dimensional data points, projecting those data points into a low-
dimensional space, and then finds and embedding that retains the structure of the graph. This figure is for visualization, the spectrograms

do not actually correspond to the points in the 3D space.

well suited to quantitatively investigate complex statistical
structure in vocal repertoires that otherwise rely upon expert
intuitions. In this paper, we demonstrate the utility of unsu-
pervised latent models, statistical models that learn latent
(compressed) representations of complex data, in describing
animal communication.

1.1. Latent models of acoustic communication

Dimensionality reduction refers to the compression of high-
dimensional data into a smaller number of dimensions,
while retaining the structure and variance present in the
original high-dimensional data. Each point in the high-
dimensional input space can be projected into the lower-
dimensional ‘latent’ feature space, and dimensions of the
latent space can be thought of as features of the dataset.
Animal vocalizations are good targets for dimensionality re-
duction. They appear naturally as sound pressure waveforms
with rich, multi-dimensional temporal and spectral varia-
tions, but can generally be explained by lower-dimensional
dynamics (Perl et al., 2011; Gardner et al., 2001; Arneodo
et al., 2012). Dimensionality reduction, therefore, offers a
way to infer a smaller set of latent dimensions (or features)
that can explain much of the variance in high-dimensional
vocalizations.

The common practice of developing a set of basis-features
on which vocalizations can be quantitatively compared (also
called Predefined Acoustic Features, or PAFs) is a form of
dimensionality reduction and comes standard in most ani-
mal vocalization analysis software (e.g. Luscinia (Lachlan
et al., 2018), Sound Analysis Pro (Tchernichovski & Mitra,
2004; Tchernichovski et al., 2000), BioSound (Elie & The-
unissen, 2018), Avisoft (Specht, 2002), and Raven (Charif
et al., 2010)). Birdsong, for example, is often analyzed on
the basis of features such as amplitude envelope, Weiner
entropy, spectral continuity, pitch, duration, and frequency
modulation (Tchernichovski & Mitra, 2004; Kershenbaum

et al., 2016). Grouping elements of animal vocalizations
(e.g. syllables of birdsong, mouse ultrasonic vocalizations)
into abstracted discrete categories is also a form of dimen-
sionality reduction, where each category is a single orthog-
onal dimension. In machine learning parlance, the process
of determining the relevant features, or dimensions, of a
particular dataset, is called feature engineering.

An attractive alternative to feature engineering is to project
animal vocalizations into low-dimensional feature spaces
that are determined directly from the structure of the data.
Many methods for data-driven dimensionality reduction are
available. PCA, for example, projects data onto a lower-
dimensional surface that maximizes the variance of the pro-
jected data (Dunlop et al., 2007; Kershenbaum et al., 2016),
while multidimensional scaling (MDS) projects data onto
a lower-dimensional surface that maximally preserves the
pairwise distances between data points. Both PCA and
MDS are capable of learning manifolds that are linear or
near-linear transformations of the original high-dimensional
data space (Tenenbaum et al., 2000).

More recently developed graph-based methods extend di-
mensionality reduction to infer latent manifolds as non-
linear transformations of the original high-dimensional
space using ideas from topology (e.g. ISOMAP, UMAP,
t-SNE; Tenenbaum et al. (2000); Mclnnes et al. (2018);
Maaten & Hinton (2008)). Like their linear predecessors,
these non-linear dimensionality reduction algorithms also
try to find a low-dimensional manifold that captures vari-
ation in the higher-dimensional input data, but the graph-
based methods allow the manifold to be continuously de-
formed, by for example stretching, twisting, and/or shrink-
ing, in high dimensional space. These algorithms work by
building a topological representation of the data and then
learning a low-dimensional embedding that preserves the
structure of the topological representation (Fig 1). For ex-
ample, while MDS learns a low-dimensional embedding
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that preserves the pairwise distance between points in Eu-
clidean space, ISOMAP (Tenenbaum et al., 2000), one of
the original topological non-linear dimensionality reduc-
tion algorithms, infers a graphical representation of the data
and then performs MDS on the pairwise distances between
points within the graph (geodesics) rather than in Euclidean
space.

In this paper, we describe a class of nonlinear latent models
that learn complex feature-spaces of vocalizations, requiring
few a priori assumptions about the features that best de-
scribe a species’ vocalizations. We show that these methods
reveal informative, low-dimensional, feature-spaces that en-
able the formulation and testing of hypotheses about animal
communication. We apply our method to diverse datasets
consisting of over 20 species, including humans, bats, song-
birds, mice, cetaceans, and nonhuman primates. We intro-
duce methods for treating vocalizations both as sequences
of temporally discrete elements such as syllables, as is tra-
ditional in studying animal communication (Kershenbaum
et al., 2016), as well as temporally continuous trajectories,
as is becoming increasingly common in representing neu-
ral sequences (Cunningham & Byron, 2014). Using both
methods, we show that latent projections produce visually-
intuitive and quantifiable representations that capture com-
plex acoustic features. We show comparatively that the
spectrotemporal characteristics of vocal units vary from
species to species in how distributionally discrete they are
and discuss the relative utility of different ways to represent
different communicative signals.

2. Results

2.1. Discrete latent projections of animal vocalizations

To explore the broad utility of latent models in capturing
features of vocal repertoires, we analyzed nineteen datasets
consisting of 400 hours of vocalizations and over 3,000,000
discrete vocal units from 29 unique species. Each vocaliza-
tion dataset was temporally segmented into discrete units
(e.g. syllables, notes), either based upon segmentation
boundaries provided by the dataset (where available), or
using a novel dynamic-thresholding segmentation algorithm
that segments syllables of vocalizations between detected
pauses in the vocal stream. Each dataset was chosen because
it contains large repertoires of vocalizations from relatively
acoustically isolated individuals that can be cleanly sepa-
rated into temporally-discrete vocal units. With each tem-
porally discrete vocal unit we computed a spectrographic
representation. We then projected the spectrograms into la-
tent feature spaces using UMAP (e.g. Figs 2, 3). From these
latent feature spaces, we analyzed datasets for classic vocal
features of animal communication signals, speech features,
stereotypy/clusterability, and sequential organization.

Individual identity Many species produce caller-specific
vocalizations that facilitate the identification of individuals
when other sensory cues, such as sight, are not available.
The features of vocalizations facilitating individual identi-
fication vary between species. We projected identity call
datasets (i.e., sets of calls thought to carry individual identity
information) from four different species into UMAP latent
spaces (one per species) to observe whether individual iden-
tity falls out naturally within the latent space.
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Figure 2. Individual identity is captured in projections for some
datasets. Each plot shows vocal elements discretized, spectro-
grammed, and then embedded into a 2D UMAP space, where each
point in the scatterplot represents a single element (e.g. syllable of
birdsong). Scatterplots are colored by individual identity. The bor-
ders around each plot are example spectrograms pointing toward
different regions of the scatterplot. (A) Rhesus macaque coo calls.
(B) Zebra finch distance calls. (C) Fruit bat infant isolation calls.
(D) Marmoset phee calls.

We looked at four datasets where both caller and call-type
are available. Caller identity is evident in latent projections
of all four datasets (Fig 2). The first dataset is comprised of
Macaque coo calls, where identity information is thought
to be distributed across multiple features including funda-
mental frequency, duration, and Weiner entropy (Fukushima
et al., 2015). Indeed, the latent projection of coo calls clus-
tered tightly by individual identity (silhouette score = 0.378;
Fig 2A). The same is true for Zebra finch distance calls
(Elie & Theunissen, 2016) (silhouette score = 0.615; Fig
2B). Egyptian fruit bat pup isolation calls, which in other
bat species are discriminable by adult females (Bohn et al.,
2007; Engler et al., 2017; Bohn et al., 2007) clearly show
regions of UMAP space densely occupied by single individ-



Latent space characterization for vocal signals

ual’s vocalizations, but no clear clusters (silhouette score =
-0.078; Fig 2C). In the marmoset phee call dataset (Miller
et al., 2010) it is perhaps interesting that given the range
of potential features thought to carry individual identity
(Fukushima et al., 2015), phee calls appear to lie along a
single continuum where each individual’s calls occupy over-
lapping regions of the continuum (silhouette score = -0.062;
Fig 2D). The silhouette score for each species was well
above chance (H(2) > 20, p < 107). These patterns predict
that some calls, such as macaque coo calls, would be more
easily discriminable by conspecifics than other calls, such
as marmoset phee calls.

2.1.1. VARIATION IN DISCRETE DISTRIBUTIONS AND
STEREOTYPY
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Figure 3. UMAP projections of vocal repertoires across diverse
species. Each plot shows vocal elements segmented, spectro-
grammed, and then embedded into a 2D UMAP space, where
each point in the scatterplot represents a single element (e.g. syl-
lable of birdsong). Scatterplots are colored by element categories
over individual vocalizations as defined by the authors of each
dataset, where available. (A) Human phonemes. (B) Egyptian
fruit bat calls (color is context). (C) Cassin’s vireo syllables. (O)
Clusterability (Hopkin’s metric) for each dataset. Lower is more
clusterable. Hopkin’s metric is computed over UMAP projected
vocalizations for each species. Error bars show the 95% confidence
interval across individuals. Color represents species category (red:
mammal, blue: songbird).

In species as phylogenetically diverse as songbirds and rock
hyraxes, analyzing the sequential organization of commu-
nication relies upon similar methods of segmentation and
categorization of discrete vocal elements (Kershenbaum

et al., 2016). In species such as the Bengalese finch, where
syllables are highly stereotyped, clustering syllables into
discrete categories is a natural way to abstract song. The
utility of clustering song elements in other species, however,
is more contentious because discrete category boundaries
are not as easily discerned (Tyack, 1998; Suzuki et al., 2006;
Goffinet et al., 2019; Hertz et al., 2019).

To compare broad structural characteristics across a wide
sampling of species, we projected vocalizations from 14
datasets of different species vocalizations, ranging across
songbirds, cetaceans, primates, and rodents into UMAP
space (Fig 3). To do so, we sampled from a diverse range
of datasets, each of which was recorded from a different
species in a different setting. Some datasets were recorded
from single isolated individuals in a sound isolated chamber
in a laboratory setting, while others were recorded from
large numbers of freely behaving individuals in the wild. In
addition, the units of vocalization from each dataset are vari-
able. We used the smallest units of each vocalization that
could be easily segmented, for example, syllables, notes,
and phonemes. Thus, this comparison across species is not
well-controlled. Still, such a dataset enabling a broad com-
parison in a well-controlled manner does not exist. Latent
projections of such diverse recordings, while limited in a
number of ways, have the potential to provide a glimpse
into broad structure into vocal repertoires, yielding novel in-
sights into broad trends in animal communication. For each
dataset, we computed spectrograms of isolated elements,
and projected those spectrograms into UMAP space (Fig 3).
Where putative element labels are available, we plot them
in color over each dataset.

Visually inspecting the latent projections of vocalizations
reveals appreciable variability in how the repertoires of
different species cluster in latent space. For example, mouse
USVs appear as a single cluster (Fig 31), while zebra finch
syllables appear as multiple discrete clusters (Fig 3M,F),
and gibbon song sits somewhere in between (Fig 3L). This
suggests that the spectro-temporal acoustic diversity of vocal
repertoires fall along a continuum ranging from unclustered
and uni-modal to highly clustered.

We quantified this effect using a linear mixed-effects model
comparing the Hopkin’s statistic across UMAP projections
of vocalizations from single individuals (n = 289), control-
ling for the number of vocalizations produced by each indi-
vidual as well as random variability at the level of species.
We included each of the species in Fig 3 except giant ot-
ter and gibbon vocalizations, as individual identity was
not available for those datasets. We find that songbird
vocalizations are significantly more clustered than mam-
malian vocalizations (x2(1) = 20, p < 10°). The stereotypy
of songbird (and other avian) vocal elements is well docu-
mented (Williams, 2004; Smith et al., 1997) and at least in
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Figure 4. HDBSCAN density-based clustering. Clusters are found by generating a graphical representation of data, and then clustering on
the graph. The data shown in this figure are from the latent projections from Fig 1. Notably, the three clusters in Fig 1. are clustered into
only two clusters using HDBSCAN, exhibiting a potential shortcoming of the HDBSCAN algorithm. The grey colormap in the condensed
trees represent the number of points in the branch of the tree. A is a value used to compute the persistence of clusters in the condensed

trees.

zebra finches is related to the high temporal precision in the
singing-related neural activity of vocal-motor brain regions
(Hahnloser et al., 2002; Fee et al., 2004; Chi & Margoliash,
2001).

2.1.2. CLUSTERING VOCAL ELEMENT CATEGORIES

UMAP projections of birdsongs largely fall more neatly into
discriminable clusters (Fig 3). If clusters in latent space are
highly similar to experimenter-labeled element categories,
unsupervised latent clustering could provide an automated
and less time-intensive alternative to hand-labeling elements
of vocalizations. To examine this, we compared how well
clusters in latent space correspond to experimenter-labeled
categories in three human-labeled datasets: two separate
Bengalese finch datasets (Nicholson et al., 2017; Koumura,
2016), and one Cassin’s vireo dataset (Hedley, 2016). We
compared four different labeling techniques: a hierarchical
density-based clustering algorithm (HDBSCAN; (Campello
et al., 2013; Mclnnes et al., 2017)) applied to UMAP pro-
jections of spectrograms, HDBSCAN applied to PCA pro-
jections of spectrograms', k-means (Pedregosa et al., 2011)
clustering applied over UMAP, and k-means clustering ap-
plied over spectrograms. We found that HDBSCAN cluster-
ing outperformed other clustering algorithms on all metrics
for all datasets (See full manuscript).

Like the contrast between MDS and UMAP, the k-means
clustering algorithm works directly on the Euclidean dis-
tances between data points, whereas HDBSCAN operates
on a graph-based transform of the input data (Fig 4). Briefly,
HDBSCAN first defines a *mutual reachability’ distance
between elements, a measure of the distance between points
in the dataset weighted by the local sparsity/density of each
point (measured as the distance to a kth nearest neighbor).
HDBSCAN then builds a graph, where each edge between

'"HDBSCAN is applied to 100-dimensional PCA projections
rather than spectrograms directly because HDBSCAN does not
perform well in high-dimensional spaces (Mclnnes et al., 2017).

vertices (points in the dataset) is the mutual reachability
between those points, and then prunes the edges to construct
a minimum spanning tree (a graph containing the minimum
set of edges needed to connect all of the vertices). The min-
imum spanning tree is converted into a hierarchy of clusters
of points sorted by mutual reachability distance, and then
condensed iteratively into a smaller hierarchy of putative
clusters. Finally, clusters are chosen as those that persist
and are stable over the greatest range in the hierarchy.

2.1.3. ABSTRACTING AND VISUALIZING SEQUENTIAL
ORGANIZATION

As acoustic signals, animal vocalizations have an inherent
temporal structure that can extend across time scales from
short easily discretized elements such as notes, to longer
duration syllables, phrases, songs, bouts, etc. The latent
projection methods described above can be used to abstract
corpora of song elements well-suited to temporal pattern
analyses (Sainburg et al., 2019), and to make more direct
measures of continuous vocalization time series. Moreover,
their automaticity enables the high throughput necessary
to satisfy intensive data requirements for most quantitative
sequence models.

In practice, modeling sequential organization can be ap-
plied to any discrete dataset of vocal elements, whether
labeled by hand or algorithmically. Latent projections of
vocal element have the added benefit of allowing visualiza-
tion of the sequential organization that can be compared
to abstracted models. As an example of this, we derived
a corpus of symbolically segmented vocalizations from a
dataset of Bengalese finch song using latent projections
and clustering (Fig 5). Bengalese finch song bouts com-
prise a small number ("5-15) of highly stereotyped syllables
produced in well-defined temporal sequences a few dozen
syllables long (Katahira et al., 2013). We first projected
syllables from a single Bengalese finch into UMAP latent
space, then visualized transitions between vocal elements
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Figure 5. Latent visualizations of Bengalese finch song sequences.
(A) Syllables of Bengalese finch songs from one individual are
projected into 2D UMAP latent space and clustered using HDB-
SCAN. (B) Transitions between elements of song are visualized
as line segments, where the color of the line segment represents its
position within a bout. (C) The syllable categories and transitions
in (A) and (B) can be abstracted to transition probabilities between
syllable categories, as in a Markov model. (D) An example vocal-
ization from the same individual, with syllable clusters from (A)
shown above each syllable. (E) A series of song bouts. Each row
is one bout, showing overlapping structure in syllable sequences.
Bouts are sorted by similarity to help show structure in song.

in latent space as line segments between points (Fig 5B),
revealing highly regular patterns. To abstract this organiza-
tion to a grammatical model, we clustered latent projections
into discrete categories using HDBSCAN. Each bout is then
treated as a sequence of symbolically labeled syllables (e.g.
B — B — C — A, Fig 5D) and the entire dataset rendered
as a corpus of transcribed song (Fig SE). Using the tran-
scribed corpus, one can abstract statistical and grammatical
models of song, such as the Markov model shown in Fig
5C or the information-theoretic analysis in Sainburg et al.,
(2019).

2.2. Temporally continuous latent trajectories

Not all vocal repertoires are made up of elements that fall
into highly discrete clusters in latent space (Fig 3). For
several of the datasets we analysed, categorically discrete
elements are not readily apparent, making analyses such as
the cluster-based analyses performed in Figure 5 more diffi-
cult. In addition, many vocalizations are difficult to segment
temporally, and determining what features to use for segmen-
tation requires careful consideration (Kershenbaum et al.,
2016). In many bird songs, for example, clear pauses exist
between song elements that enable one to distinguish sylla-

bles. In other vocalizations, however, experimenters must
rely on less well-defined physical features for segmenta-
tion (Janik, 1999; Kershenbaum et al., 2016), which may in
turn invoke a range of biases and unwarranted assumptions.
At the same time, much of the research on animal vocal
production, perception, and sequential organization relies
on identifying units” of a vocal repertoire (Kershenbaum
et al., 2016). To better understand the effects of temporal
discretization and categorical segmentation in our analyses,
we considered vocalizations as continuous trajectories in
latent space and compared the resulting representations to
those that treat vocal segments as single points (as in the
previous Bengalese finch example in Fig 5). We show here
explorations of two datasets: Bengalese finch (Fig 6) and hu-
man speech (Fig 7). In both dataset, we find that continuous
latent trajectories capture short and long timescale structure
in vocal sequences without requiring vocal elements to be
segmented or labeled.

2.2.1. COMPARING DISCRETE AND CONTINUOUS
REPRESENTATIONS OF SONG IN THE BENGALESE
FINCH

20ms UMAP 100ms UMAP 100ms PCA
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Figure 6. Continuous UMAP projections of Bengalese finch song
from a single bout produced by one individual. (A-C) Bengalese
finch song is segmented into either 1ms (A), 20ms (B), or 100ms
(C) rolling windows of song, which are projected into UMAP.
Color represents time within the bout of song. (D-F) The same
plots as in (A), projected into PCA instead of UMAP. (G-I) The
same plots as (A-C) colored by hand-labeled element categories
(unlabelled points are not shown). (J-L) The same plot as (D-E)
colored by hand-labeled syllable categories. (M) UMAP projec-
tions represented in colorspace over a bout spectrogram. The top
three rows are the UMAP projections from (A-C) projected into
RGB colorspace to show the position within UMAP space over
time as over the underlying spectrogram data. The fourth row are
the hand labels. The final row is a bout spectrogram. (N) a subset
of the bout shown in (M). In G-L, unlabeled points (points that are
in between syllables) are not shown for visual clarity.
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Bengalese finch song provides a relatively easy visual com-
parison between the discrete and continuous treatments of
song, because it consists of a small number of unique highly
stereotyped syllables (Fig 6). With a single bout of Ben-
galese finch song, which contains several dozen syllables,
we generated a latent trajectory of song as UMAP projec-
tions of temporally-rolling windows of the bout spectrogram
(See Projections section). To explore this latent space, we
varied the window length between 1 and 100ms (Fig 6A-L).
At each window size, we compared UMAP projections (Fig
6A-C) to PCA projections (Fig 6D-F). In both PCA and
UMAP, trajectories are more clearly visible as window size
increases across the range tested, and overall the UMAP
trajectories show more well-defined structure than the PCA
trajectories. To compare continuous projections to discrete
syllables, we re-colored the continuous trajectories by the
discrete syllable labels obtained from the dataset. Again, as
the window size increases, each syllable converges to a more
distinct trajectory in UMAP space (Fig 6G-I). To visualize
the discrete syllable labels and the continuous latent projec-
tions in relation to song, we converted the 2D projections
into colorspace and show them as a continuous trajectory
alongside the song spectrograms and discrete labels in Fig-
ure 6M,N. Colorspace representations of the 2D projections
consist of treating the two UMAP dimensions as either a
red, green, or blue channel in RGB (3D) colorspace, and
holding the third channel constant. This creates a colormap
projection of the two UMAP dimensions.

2.2.2. LATENT TRAJECTORIES OF HUMAN SPEECH

Discrete elements of human speech (i.e. phonemes) are
not spoken in isolation and their acoustics are influenced
by neighboring sounds, a process termed co-articulation.
For example, when producing the words ’day’, ’say’, or
way’, the position of the tongue, lips, and teeth differ dra-
matically at the beginning of the phoneme ey’ due to the
preceding ’d’, ’s’, or 'w’ phonemes, respectively. This re-
sults in differences in the pronunciation of ey’ across words
(Fig 7E). Co-articulation explains much of the acoustic vari-
ation observed within phonetic categories. Abstracting to
phonetic categories therefore discounts much of this context-
dependent acoustic variance.

We explored co-articulation in speech, by projecting sets of
words differing by a single phoneme (i.e. minimal pairs)
into continuous latent spaces, then extracted trajectories
of words and phonemes that capture sub-phonetic context-
dependency (Fig 7). We obtained the words from the Buck-
eye corpus of conversational English. We computed spectro-
grams over all examples of each target word, then projected
sliding 4-ms windows from each spectrogram into UMAP
latent space to yield a continuous vocal trajectory over each
word (Fig 7). We visualized trajectories by their correspond-
ing word and phoneme labels (Fig 7A,B) and computed the
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Figure 7. Speech trajectories showing coarticulation in minimal
pairs. (A) Utterances of the words ’day’, ’say’, and 'way’ are
projected into a continuous UMAP latent space with a window
size of 4ms. Color represents the corresponding word. (B) The
same projections are colored by the corresponding phonemes. (D)
The average latent trajectory for each word. (E) The average
trajectory for each phoneme. (F) Example spectrograms of words,
with latent trajectories above spectrograms and phoneme labels
below spectrograms. (G) Average trajectories and corresponding
spectrograms for the words “take’ and ’talk’ showing the different
trajectories for ’t’ in each word. (H) Average trajectories and
the corresponding spectrograms for the words ’then’ and "them’
showing the different trajectories for "eh’ in each word.

average latent trajectory for each word and phoneme (Fig
7C,D). The average trajectories reveal context-dependent
variation within phonemes caused by coarticulation. For
example, the words ’way’, ’day’, and ’say’ each end in
the same phoneme (’ey’; Fig 7A-D), which appears as an
overlapping region in the latent space (the red region in
Fig 7C). The endings of each average word trajectory vary,
however, indicating that the production of "ey’ differs based
on its specific context (Fig 7C). The difference between the
production of ’ey’ can be observed in the average latent
trajectory over each word, where the trajectories for "day’
and ’say’ end in a sharp transition, while the trajectory for
way’ is more smooth (Fig 7C). Latent space trajectories can
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reveal other co-articulations as well. In Figure 7E, we show
the different trajectories characterizing the phoneme ’t’ in
the context of the word ’take’ versus ’talk’. In this case, the
’t” phoneme follows a similar trajectory for both words until
it nears the next phoneme (’ey’ vs. ’ao’), at which point the
production of ’t’ diverges for the different words.

3. Discussion

We have presented a set of computational methods for pro-
jecting vocal communication signals into low-dimensional
latent representational spaces, learned directly from the spec-
trograms of the signals. We demonstrate the flexibility and
power of these methods by applying them to a wide sample
of animal vocal communication signals, including songbirds,
primates, rodents, bats, and cetaceans (Fig 3). Deployed
over short timescales of a few hundred milliseconds, our
methods capture significant behaviorally-relevant structure
in the spectro-temporal acoustics of these diverse species’
vocalizations. We find that complex attributes of vocal sig-
nals, such as individual identity (Fig 2), species identity,
geographic population variability, phonetics, and similarity-
based clusters can all be captured by the unsupervised la-
tent space representations we present. We also show that
songbirds tend to produce signals that cluster discretely in
latent space, whereas mammalian vocalizations are more
uniformly distributed, an observation that deserves much
closer investigation in more species. Applied to longer
timescales, spanning seconds or minutes, the same methods
allowed us to visualize sequential organization and test mod-
els of vocal sequencing (Fig 5). We demonstrated that in
some cases latent approaches confer advantages over hand
labeling or supervised learning (See full manuscript/code).
Finally, we visualized vocalizations as continuous trajecto-
ries in latent space (Figs 6, 7), providing a powerful method
for studying sequential organization without discretization
(Kershenbaum et al., 2016).

Latent models have shown increasing utility in the biologi-
cal sciences over the past several years. As machine learning
algorithms improve, so will their utility in characterizing the
complex patterns present in biological systems like animal
communication. In neuroscience, latent models already play
an important role in characterizing complex neural popu-
lation dynamics (Cunningham & Byron, 2014). Similarly,
latent models are playing an increasingly important role in
computational ethology (Brown & De Bivort, 2018), where
characterizations of animal movements and behaviors have
uncovered complex sequential organization (Marques et al.,
2018; Berman et al., 2016; Wiltschko et al., 2015). In animal
communication, pattern recognition using various machine
learning techniques has been used to characterize vocal-
izations and label auditory objects (Sainburg et al., 2019;
Cohen et al., 2019; Coffey et al., 2019; Van Segbroeck et al.,

2017; Goffinet et al., 2019; Kollmorgen et al., 2019; Hertz
et al., 2019). Our work furthers this emerging research area
by demonstrating the utility of unsupervised latent models
for both systematically visualizing and abstracting structure
from animal vocalizations across a wide range of species.

Software and Data

All software is publicly available and example Jupyter Note-
books are provided for each species vocal repertoire and
analyses type (https://github.com/timsainb/
avgn_paper). The data is provided in Supplementary
Table 1 of the longform paper.
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