
Tensor Product Attention Is All You Need

Yifan Zhang * 1 Yifeng Liu * 2 Huizhuo Yuan 2 Zhen Qin 3 Yang Yuan 1 4 Quanquan Gu 2 Andrew C Yao 1 4

Abstract
Scaling language models to handle longer in-
put sequences typically necessitates large key-
value (KV) caches, resulting in substantial mem-
ory overhead during inference. In this paper,
we propose Tensor Product Attention (TPA), a
novel attention mechanism that uses tensor de-
compositions to represent queries, keys, and val-
ues compactly, substantially shrinking the KV
cache size at inference time. By factorizing
these representations into contextual low-rank
components and seamlessly integrating with Ro-
tary Position Embedding (RoPE), TPA achieves
improved model quality alongside memory ef-
ficiency. Based on TPA, we introduce the
Tensor ProducT ATTenTion Transformer (T6),
a new model architecture for sequence model-
ing. Through extensive empirical evaluation on
language modeling tasks, we demonstrate that
T6 surpasses or matches the performance of
standard Transformer baselines, including Multi-
Head Attention (MHA), Multi-Query Attention
(MQA), Grouped-Query Attention (GQA), and
Multi-Head Latent Attention (MLA) across var-
ious metrics, including perplexity and a range
of established evaluation benchmarks. Notably,
TPA’s memory efficiency and computational ef-
ficiency at the decoding stage enable processing
longer sequences under fixed resource constraints,
addressing a critical scalability challenge in mod-
ern language models. The code is available at
https://github.com/tensorgi/TPA.

1 Introduction
Large language models (LLMs) have revolutionized natu-
ral language processing, demonstrating exceptional perfor-

*Equal contribution 1IIIS, Tsinghua University, Beijing, China
2Department of Computer Science, University of California,
Los Angeles, California, USA 3TapTap Inc., Shanghai, China
4Shanghai Qi Zhi Institute, Shanghai, China. Correspondence to:
Andrew C Yao <andrewcyao@tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

RoPE

Scale

Linear

Scaled Dot-Product Attention

Concat

Linear

AQ BQ

RoPE

Scale

Linear

AK

Scale

Linear

AV

h

RQ

1

BV

RK

1
RV

1

Linear Linear

BK

Linear

Figure 1. Tensor Product Attention (TPA) within the Tensor Pro-
ducT ATTenTion Transformer (T6). Latent factor matrices (e.g.,
AQ(xt),BQ(xt) for query) are derived from input xt. RoPE is
applied to BQ(xt),BK(xt). Query, key, value tensors are ten-
sor products of these factors (e.g., Qt =

1
RQ

AQ(xt)
⊤BQ(xt)).

Standard scaled dot-product attention follows.

mance across tasks (Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023; Bubeck et al., 2023). As these
models evolve, their ability to process longer contexts be-
comes increasingly important for sophisticated applications
such as document analysis, complex reasoning, and code
completion. However, managing longer sequences during
inference poses significant computational and memory chal-
lenges, particularly due to the storage of key-value (KV)
caches (Zhang et al., 2023c; Liu et al., 2024c). Because
memory consumption grows linearly with sequence length,
the maximum context window is limited by practical hard-
ware constraints.
A variety of solutions have been explored to address this
memory bottleneck. Some approaches compress or se-
lectively prune cached states through sparse attention pat-
terns (Child et al., 2019) or token eviction strategies (Zhang
et al., 2023c; Xiao et al., 2024; Ribar et al., 2024), though
such methods risk discarding tokens that may later prove
important. Other work proposes off-chip storage of key-
value states (He & Zhai, 2024), at the expense of increased
I/O latency. Attention variants like Multi-Query Atten-
tion (MQA) (Shazeer, 2019) and Grouped-Query Attention
(GQA) (Ainslie et al., 2023) reduce per-token cache require-
ments by sharing keys and values across heads, but often
compromise flexibility or require significant architectural
modifications. Meanwhile, low-rank weight factorization

1

https://github.com/tensorgi/TPA

Tensor Product Attention Is All You Need

methods such as LoRA (Hu et al., 2022) effectively reduce
fine-tuning memory, yet do not address the KV cache over-
head that dominates inference at runtime. The recently in-
troduced Multi-Head Latent Attention (MLA) in Deepseek-
V2 (Liu et al., 2024a) caches compressed key-value repre-
sentations but encounters difficulties with efficient Rotary
Position Embedding (RoPE) (Su et al., 2024) integration,
necessitating additional position-encoded parameters per
head.
To overcome the limitations of existing approaches, we
introduce Tensor Product Attention (TPA), illustrated in
Figure 1. TPA is a novel attention mechanism that em-
ploys tensor factorizations for queries (Q), keys (K), and
values (V). By dynamically factorizing activations rather
than static weights (as in LoRA), TPA constructs low-rank,
contextual representations. This approach substantially re-
duces KV cache memory usage while offering improved
representational capacity. In practice, TPA can decrease
memory overhead by an order of magnitude compared to
standard Multi-Head Attention (MHA), alongside achiev-
ing lower pretraining validation loss (perplexity) and better
downstream performance.
A key advantage of TPA is its native compatibility with
rotary positional embeddings (RoPE) (Su et al., 2024), en-
abling a straightforward drop-in replacement for multi-head
attention (MHA) layers in modern LLM architectures such
as LLaMA (Touvron et al., 2023) and Gemma (Team et al.,
2024).
Our main contributions are summarized as follows:

• We propose Tensor Product Attention (TPA), factoriz-
ing Q,K,V activations via contextual tensor decompo-
sitions. This greatly reduces KV cache size compared
to MHA, MQA, GQA, and MLA, often improving per-
formance. MHA, MQA, and GQA can be seen as non-
contextual TPA variants (details in Appendix B).

• We introduce the Tensor ProducT ATTenTion
Transformer (T6), a TPA-based architecture. T6 matches
or improves perplexity and downstream task performance
with smaller KV caches.

• TPA seamlessly integrates with RoPE, allowing easy adop-
tion in LLaMA-like models.

• We develop FlashTPA Decoding, an efficient inference
algorithm for TPA, showing competitive speed, especially
for long sequences.

2 Background

We review Scaled Dot-Product Attention, Multi-Head Atten-
tion (MHA) (Vaswani et al., 2017), and key notations. Multi-
Query/Grouped-Query Attention (MQA/GQA) (Shazeer,
2019; Ainslie et al., 2023), Multi-head Latent Attention
(MLA) (Liu et al., 2024a), and Rotary Position Embedding
(RoPE) (Su et al., 2024) are detailed in Appendix I.

Notations. We use bold uppercase letters (e.g., X, Q) for
matrices, bold lowercase (e.g., a, b) for vectors, and italic
uppercase (e.g., WQ

i) for learnable parameter matrices. We
denote by [n] the set {1, . . . , n} for some positive integer
n. We use ⊤ to denote the transpose of a vector or a matrix.
Let dmodel be the embedding dimension, h the number of
attention heads, dh the dimension per head, xt ∈ Rd the
input for the t-th token at a given attention layer, X ∈
RT×dmodel denotes the input embeddings for T tokens, and
Q, K, V ∈ RT×h×dh denote the queries, keys, and values
of h heads for T tokens. With a little abuse of notation,
Qi, Ki, Vi ∈ RT×dh denote the i-th head of queries, keys,
and values, and Qt, Kt, Vt ∈ Rh×dh denote the heads
of the query, key, and value for t-th token. Throughout
the paper, WQ,WK ,W V denote projection matrices for
queries, keys, and values, respectively. Appendix B relates
MHA to TPA. Appendix H discusses more related work.

3 Tensor Product Attention
This section details Tensor Product Attention (TPA), en-
abling contextual low-rank QKV factorization. We describe
the factorization, multi-head integration, KV cache reduc-
tion, and RoPE compatibility.

3.1 Tensor Factorization of Queries, Keys, and Values

Let xt ∈ Rdmodel for t = 1, . . . , T be the hidden-state vector
corresponding to the t-th token in a sequence of length
T . A typical multi-head attention block has h heads, each
of dimension dh, satisfying dmodel = h × dh. Standard
attention projects the entire sequence into three tensors,
Q, K, V ∈ RT×h×dh , where Qt,Kt,Vt ∈ Rh×dh

denote the slices for the t-th token.
Contextual Factorization. Instead of forming each head’s
query, key, or value via a single linear map, TPA factorizes
each Qt,Kt,Vt into a sum of (contextual) tensor products
whose ranks are Rq, Rk, and Rv, respectively and may
differ. Specifically, for each token t, with a small abuse of
notation, we define:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ bQ
r (xt),

Kt =
1

RK

RK∑
r=1

aKr (xt) ⊗ bK
r (xt),

Vt =
1

RV

RV∑
r=1

aVr (xt) ⊗ bV
r (xt), (3.1)

where aQr (xt),a
K
r (xt),a

V
r (xt) ∈ Rh,

bQ
r (xt),b

K
r (xt),b

V
r (xt) ∈ Rdh . Hence, for queries, each

tensor product aQr (xt)⊗bQ
r (xt) : Rh×Rdh → Rh×dh (an

outer product) contributes to the query slice Qt ∈ Rh×dh .
Analogous definitions apply to the key slice Kt and value
slice Vt.

2

Tensor Product Attention Is All You Need

Latent Factor Maps. Each factor in the tensor product
depends on the token’s hidden state xt. For example, for
queries, we can write:

aQr (xt) = W aQ

r xt ∈ Rh, bQ
r (xt) = W bQ

r xt ∈ Rdh ,

where W aQ

r ∈ Rh×dmodel and W bQ

r ∈ Rdh×dmodel are learn-
able weight matrices. Similar linear maps produce the fac-
tors for keys and values.
One often merges the rank index into a single output dimen-
sion. For instance, for queries:

aQ(xt) = W aQ

xt ∈ RRq·h, bQ(xt) = W bQ xt ∈ RRq·dh ,

which are then reshaped into AQ(xt) ∈ RRQ×h and
BQ(xt) ∈ RRQ×dh (where each row of AQ(xt) cor-
responds to an aQr (xt)

⊤ and each row of BQ(xt) to a
bQ
r (xt)

⊤). The query tensor for token t can then be ex-
pressed as:

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh .

This operation is equivalent to Qt =
1

RQ

∑RQ

r=1 a
Q
r (xt)(b

Q
r (xt))

⊤, where aQr is the r-th
column of AQ(xt)

⊤ and (bQ
r)

⊤ is the r-th row of BQ(xt).
Repeating for all tokens reconstitutes Q ∈ RT×h×dh .
Similar procedures are applied to obtain K and V with
ranks RK and RV , respectively.
Scaled Dot-Product Attention. Once Q,K,V are fac-
torized, multi-head attention proceeds as in standard Trans-
formers. For each head i ∈ {1, . . . , h}:

headi = Softmax
(

1√
dh

Qi (Ki)
⊤
)
Vi, (3.2)

where Qi,Ki,Vi ∈ RT×dh are the slices along the head di-
mension. Concatenating these h heads along the last dimen-
sion yields an RT×(h·dh) tensor, which is projected back to
RT×dmodel by an output weight matrix WO ∈ R(h·dh)×dmodel :

TPA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO.

(3.3)

Parameter Initialization. We use Xavier initialization (Glo-
rot & Bengio, 2010) for the factor weight matrices; details
are in Appendix J.

3.2 KV Caching and Memory Reduction

In autoregressive decoding, standard attention caches
Kt,Vt ∈ Rh×dh for each past token t. This accumulates to
RT×h×dh for keys and RT×h×dh for values, i.e., 2T h dh
total.
TPA Factorized KV Caching. Instead of storing the full
Kt and Vt, TPA stores only their factor components. Specif-
ically, for each past token t, we cache:

AK(xt), B̃K(xt) and AV (xt), BV (xt),

where AK(xt) ∈ RRK×h, B̃K(xt) ∈
RRK×dh(pre-rotated), AV (xt) ∈ RRV ×h, BV (xt) ∈
RRV ×dh .
Hence, the memory cost per token is
RK(h+ dh)︸ ︷︷ ︸

for K

+ RV (h+ dh)︸ ︷︷ ︸
for V

= (RK + RV)
(
h + dh

)
.

Compared to the standard caching cost of 2h dh, the ratio is
(RK+RV) (h+dh)

2h dh
. For large h and dh (typically dh = 64 or

128), setting RK , RV ≪ h (e.g., rank 1 or 2) often yields
substantial reduction of KV cache size. Table 1 provides a
comparative overview of different attention mechanisms,
including TPA and its variants, focusing on KV cache size
per token and the number of parameters in an attention
layer.

3.3 Expressing MHA, MQA, and GQA as
Non-contextual TPA

MHA, MQA, and GQA can be expressed as non-contextual
TPA variants by constraining TPA factors (see Appendix B
for derivations).

3.4 Model Architectures

We propose a new architecture called Tensor ProducT
ATTenTion Transformer (T6), which uses our Tensor Prod-
uct Attention (TPA) in place of standard MHA (multi-head
attention) or GQA (grouped-query attention). Building upon
the query, key, and value tensors Q,K,V ∈ RT×h×dh de-
fined in Section 3.1, T6 utilize the overall architecture of
LLaMA (Touvron et al., 2023) while changing the self-
attention block to our TPA-based version. The feed-forward
network (FFN) adopts a SwiGLU layer, as in (Shazeer, 2020;
Touvron et al., 2023).
The specific mechanisms for TPA-based query, key, and
value factorization, as well as the attention computation
within T6, directly follow the comprehensive descriptions
provided in Section 3 (particularly Section 3.1 for factoriza-
tion, and Equations 3.2 and 3.3 for attention computation).
A brief recap of these steps within the T6 model context is
provided in Appendix C.
Rotary Positional Embedding (RoPE). As discussed in
Section A, RoPE (Su et al., 2024) is applied to the Q and K.
Within TPA, we pre-rotate the factor bQ

t (xt) and bK
s (xs)

directly, so that each Ks is already rotated prior to caching,
see (A.2) and Theorem A.1.
SwiGLU Feed-Forward Network. Following (Shazeer,
2020; Touvron et al., 2023), our T6 uses a SwiGLU-based
Feed-Forward Network (FFN): FFN(x) =

[
σ(xW1) ⊙

(xW2)
]
W3, where σ is the SiLU (a.k.a., swish) nonlin-

earity, ⊙ is element-wise product, and W1,W2,W3 are
learnable parameters. Note that other activation functions
can also be used.
Overall T6 Block Structure. Putting everything together,

3

Tensor Product Attention Is All You Need

one T6 block consists of:

x ← x+TPA
(
RMSNorm(x)

)
,

x ← x+ SwiGLU-FFN
(
RMSNorm(x)

)
.

We place norm layers (e.g., RMSNorm) before each sub-
layer. Stacking L such blocks yields a T6 model architecture
with L layers.

4 FlashTPA Decoding Algorithm
For efficient autoregressive inference with TPA, we intro-
duce FlashTPA Decoding. This algorithm generates one
token at a time by leveraging the factorized QKV represen-
tation. As shown in Figure 3, it uses Einstein summations
(“einsum”) on factorized components, avoiding material-
ization of full QKV tensors, which is beneficial for long
sequences.
FlashTPA Decoding computes attention efficiently by mini-
mizing memory for large intermediate tensors and reducing
computational load compared to materializing full QKV
tensors. Thus, TPA is memory-efficient (smaller KV cache)
and can be computationally efficient during inference.
The detailed pseudocode for FlashTPA Decoding (Algo-
rithm 2) and an optimized Triton kernel implementation
(Algorithm 3) are in Appendix E. Experimental results for
decoding time are in Section E.4.

5 Experiments

5.1 Language Modeling Tasks

All experiments reported in this paper are implemented
on the nanoGPT code base (Karpathy, 2022), using the
FineWeb-Edu 100B dataset (Lozhkov et al., 2024). The
dataset contains 100 billion tokens for training and 0.1 bil-
lion tokens for validation. We compare T6 against the base-
line Llama architecture (Touvron et al., 2023) with SwiGLU
activation (Shazeer, 2020) and RoPE embeddings (Su et al.,
2024), as well as Llama variants that replace Multi-Head
Attention (MHA; (Vaswani et al., 2017)) with Multi-Query
Attention (MQA; (Shazeer, 2019)), Grouped Query Atten-
tion (GQA; (Ainslie et al., 2023)), or Multi-head Latent
Attention (MLA; (Liu et al., 2024a)). In our experiments,
the number of heads h is adjusted for each attention mecha-
nism to ensure that all attention mechanisms have the same
number of parameters as the standard Multi-Head Attention
(MHA), which has 4d2model parameters per attention layer.
We train models at four scales: small (124M parameters),
medium (353M), large (773M), and XL (1.5B). Details on ar-
chitecture hyperparameters and training hardware are shown
in Appendix K.1.
Training & Validation Performance. Figure 8 shows
validation loss curves for medium, large, and XL models.
Training loss curves are in Appendix Figure 7. TPA (red)

and TPA-KVonly (pink) (details in Appendix J) generally
converge faster and achieve lower final validation losses than
MHA, MQA, GQA, and MLA. For example, in Figure 8(b),
TPA variants consistently outperform MHA. MLA (blue)
often shows slower training and higher validation losses.
Validation Perplexity. Validation perplexities (Appendix
Figure 9) mirror these trends, with TPA-based models
achieving the lowest perplexities.
Downstream Evaluation. We evaluate zero-shot and
two-shot performance on standard benchmarks, including
ARC (Yadav et al., 2019), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2020), and MMLU (Hendrycks et al., 2021), using the
lm-evaluation-harness codebase (Gao et al., 2024).
For ARC-E, ARC-C, HellaSwag, OBQA, PIQA, and SciQ,
we report accuracy norm; for other tasks, we report standard
accuracy. Due to the page limitation, we only display the
zero-shot evaluation results of medium and large models
here in Tables 3 and 4. Zero-shot evaluation of small and
XL models are displayed in Tables 11 and 12 in the ap-
pendix. Moreover, we also present 2-shot evaluation results
in Tables 13, 14, 15 and 16 in the appendix.
For medium (353M) models (Table 3 for 0-shot; Appendix
Table 14 for 2-shot), TPA often outperforms competitors,
e.g., 51.41% 0-shot average vs. MHA’s 50.11For large
(773M) models (0-shot in Appendix Table 4; 2-shot in Ap-
pendix Table 15), TPA-KVonly achieves a high average
(53.52% 0-shot). For XL (1.5B) models (Appendix Ta-
ble 12), TPA-KVonly also performs strongly (55.03% 0-shot
average). Additional results for small models and 2-shot
evaluations are in Appendix K.
Our experiments confirm that TPA consistently matches or
exceeds the performance of established attention mecha-
nisms (MHA, MQA, GQA, MLA) across medium and large
model scales.

6 Conclusion

We introduced Tensor Product Attention (TPA), which fac-
torizes query, key, and value matrices into rank-R tensor
products dependent on the token’s hidden state. Storing
only the factorized key/value components during autoregres-
sive decoding substantially decreases the KV memory size
with improved performance compared with MHA, MQA,
GQA, and MLA. The approach is fully compatible with
RoPE (and can store pre-rotated keys). Variants of TPA in-
clude factorizing only the key/value or sharing basis vectors
across tokens. Overall, TPA offers a powerful mechanism
for compressing KV storage while improving the model per-
formance, thereby enabling longer sequence contexts under
constrained memory.

4

Tensor Product Attention Is All You Need

Impact Statement

This paper presents work whose goal is to advance the field
of foundation models especially Large Language Models
(LLMs). We believe that our work contributes meaningfully
to the field, specifically on advancing the efficiency in the
inference stage of LLMs by reducing KV cache size. By re-
ducing memory requirements, our method could enable the
deployment of capable language models on more resource-
constrained devices and in broader settings, opening new
avenues for their application in various downstream tasks.
Lower memory usage typically correlates with reduced en-
ergy consumption, potentially decreasing the environmental
footprint of LLM inference. This advancement underscores
the potential of LLMs architecture design in both techno-
logical and societal contexts.

References

Adnan, M., Arunkumar, A., Jain, G., Nair, P., Solovey-
chik, I., and Kamath, P. Keyformer: Kv cache reduction
through key tokens selection for efficient generative in-
ference. Proceedings of Machine Learning and Systems,
6:114–127, 2024.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. GQA: training generalized
multi-query transformer models from multi-head check-
points. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singa-
pore, December 6-10, 2023, pp. 4895–4901. Association
for Computational Linguistics, 2023.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in natural
language. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 7432–7439. AAAI
Press, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Büyükakyüz, K. Olora: Orthonormal low-rank adaptation of
large language models. arXiv preprint arXiv:2406.01775,
2024.

Cai, Z., Zhang, Y., Gao, B., Liu, Y., Liu, T., Lu, K., Xiong,
W., Dong, Y., Chang, B., Hu, J., et al. Pyramidkv: Dy-
namic kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069, 2024.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024, 2024.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlós, T., Hawkins, P., Davis, J. Q., Mohi-
uddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J., and
Weller, A. Rethinking attention with performers. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M.,
Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scaling
language modeling with pathways. J. Mach. Learn. Res.,
24:240:1–240:113, 2023.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pp. 2924–2936, 2019.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,

5

Tensor Product Attention Is All You Need

A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Han, I., Jayaram, R., Karbasi, A., Mirrokno, V., Woodruff,
D., and Zandieh, A. Hyperattention: Long-context atten-
tion in near-linear time. In International Conference on
Learning Representations. International Conference on
Learning Representations, 2024.

He, J. and Zhai, J. Fastdecode: High-throughput gpu-
efficient llm serving using heterogeneous pipelines. arXiv
preprint arXiv:2403.11421, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022.

Hu, J., Li, H., Zhang, Y., Wang, Z., Zhou, S., Zhang, X., and
Shum, H.-Y. Multi-matrix factorization attention. arXiv
preprint arXiv:2412.19255, 2024.

Jiang, T., Huang, S., Luo, S., Zhang, Z., Huang, H., Wei,
F., Deng, W., Sun, F., Zhang, Q., Wang, D., et al. Mora:
High-rank updating for parameter-efficient fine-tuning.
arXiv preprint arXiv:2405.12130, 2024.

Jiashi Li, S. L. Flashmla: Efficient mla decoding
kernels. https://github.com/deepseek-ai/
FlashMLA, 2025.

Karpathy, A. NanoGPT. https://github.com/
karpathy/nanoGPT, 2022.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Lee, W., Lee, J., Seo, J., and Sim, J. {InfiniGen}: Effi-
cient generative inference of large language models with
dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 155–172, 2024.

Li, X., Liang, Y., Shi, Z., and Song, Z. A tighter complexity
analysis of sparsegpt. arXiv preprint arXiv:2408.12151,
2024.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,
A. Relora: High-rank training through low-rank updates.
In The Twelfth International Conference on Learning
Representations, 2023.

Liang, Y., Liu, H., Shi, Z., Song, Z., Xu, Z., and Yin, J.
Conv-basis: A new paradigm for efficient attention in-
ference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Liang, Y., Long, J., Shi, Z., Song, Z., and Zhou, Y. Be-
yond linear approximations: A novel pruning approach
for attention matrix. arXiv preprint arXiv:2410.11261,
2024b.

Liang, Y.-S. and Li, W.-J. Inflora: Interference-free low-
rank adaptation for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 23638–23647, 2024.

Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C.,
Dengr, C., Ruan, C., Dai, D., Guo, D., et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts
language model. arXiv preprint arXiv:2405.04434,
2024a.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. KIVI: A tuning-free asymmetric
2bit quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024, 2024c.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Lozhkov, A., Ben Allal, L., von Werra, L., and Wolf,
T. Fineweb-edu: the finest collection of educational
content, 2024. URL https://huggingface.co/
datasets/HuggingFaceFW/fineweb-edu.

6

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://github.com/deepseek-ai/FlashMLA
https://github.com/deepseek-ai/FlashMLA
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

Tensor Product Attention Is All You Need

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. A
kernel-based view of language model fine-tuning. In In-
ternational Conference on Machine Learning, pp. 23610–
23641. PMLR, 2023.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 2381–2391, 2018.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, extensible
toolkit for sequence modeling. In Ammar, W., Louis, A.,
and Mostafazadeh, N. (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Demonstrations, pp. 48–53. Association
for Computational Linguistics, 2019.

Ren, W., Li, X., Wang, L., Zhao, T., and Qin, W. Analyzing
and reducing catastrophic forgetting in parameter efficient
tuning. arXiv preprint arXiv:2402.18865, 2024.

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C.,
Luschi, C., and Orr, D. Sparq attention: Bandwidth-
efficient LLM inference. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Aus-
tria, July 21-27, 2024, 2024.

Sakaguchi, K., Le Bras, R., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 34, pp. 8732–8740. Association
for the Advancement of Artificial Intelligence (AAAI),
2020.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transform-
ers are secretly fast weight programmers. In Interna-
tional Conference on Machine Learning, pp. 9355–9366.
PMLR, 2021.

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P.,
and Dao, T. Flashattention-3: Fast and accurate attention
with asynchrony and low-precision. Advances in Neural
Information Processing Systems, 37:68658–68685, 2024.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shi, Y., Wei, J., Wu, Y., Ran, R., Sun, C., He, S., and Yang,
Y. Loldu: Low-rank adaptation via lower-diag-upper
decomposition for parameter-efficient fine-tuning. arXiv
preprint arXiv:2410.13618, 2024.

Shi, Z., Chen, J., Li, K., Raghuram, J., Wu, X., Liang, Y.,
and Jha, S. The trade-off between universality and label
efficiency of representations from contrastive learning.
In The Eleventh International Conference on Learning
Representations, 2023.

Singhania, P., Singh, S., He, S., Feizi, S., and Bhatele, A.
Loki: Low-rank keys for efficient sparse attention. arXiv
preprint arXiv:2406.02542, 2024.

Su, J. The extreme pull between cache and effect: From
MHA, MQA, GQA to MLA. https://spaces.ac.
cn/archives/10091, May 2024.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, H., Chang, L.-W., Bao, W., Zheng, S., Zheng, N., Liu,
X., Dong, H., Chi, Y., and Chen, B. Shadowkv: Kv
cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han, S.
QUEST: query-aware sparsity for efficient long-context
LLM inference. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024, 2024.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Tillet, P., Kung, H., and Cox, D. Triton: An intermediate lan-
guage and compiler for tiled neural network computations.
In ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages co-located with
PLDI. Association for Computing Machinery, 2019.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: An unified
understanding for transformer’s attention via the lens of
kernel. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 4344–4353, 2019.

7

https://spaces.ac.cn/archives/10091
https://spaces.ac.cn/archives/10091

Tensor Product Attention Is All You Need

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks. In
The Twelfth International Conference on Learning Repre-
sentations, ICLR 2024, Vienna, Austria, May 7-11, 2024,
2024.

Yadav, V., Bethard, S., and Surdeanu, M. Quick and (not
so) dirty: Unsupervised selection of justification sen-
tences for multi-hop question answering. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 2578–2589, 2019.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association for
Computational Linguistics, 2019.

Zeng, Y. and Lee, K. The expressive power of low-rank
adaptation. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024, 2024.

Zhang, H. Sinklora: Enhanced efficiency and chat capa-
bilities for long-context large language models. arXiv
preprint arXiv:2406.05678, 2024.

Zhang, M., Bhatia, K., Kumbong, H., and Re, C. The hedge-
hog & the porcupine: Expressive linear attentions with
softmax mimicry. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023b.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023c.

Zhao, H., Ni, B., Fan, J., Wang, Y., Chen, Y., Meng, G.,
and Zhang, Z. Continual forgetting for pre-trained vision
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 28631–
28642, 2024.

8

Tensor Product Attention Is All You Need

Appendix

A RoPE Compatibility and Acceleration 11

B Expressing MHA, MQA, and GQA as Non-contextual TPA 11
B.1 MHA as Non-contextual TPA . 12

B.2 MQA and GQA as Non-contextual TPA . 13

C T6 Model Architecture Details 13

D Toward Faster Computation Without Materializing Q, K and V 14
D.1 Single-Head Factorization Setup Without Materializing Q and K . 14

D.2 Multi-Head Case . 14

D.3 Complexity Analysis . 14

D.4 Complexity Analysis for the Specialized Implementation . 15

D.5 Toward Faster Computation Without Materializing Q, K, V . 16

D.6 Overall Complexity for Single-Head (Specialized) . 16

D.7 Multi-Head and Batch Extensions (Reuse of B-Dot Products) . 16

D.8 Inference Time Decoding of Different Attention Mechanisms . 17

E More on FlashTPA Decoding Algorithm 19
E.1 Detailed Computation Steps of FlashTPA Decoding Algorithm . 20

E.2 Triton FlashTPA Decoding Kernel . 21

E.3 Additional Experimental Results . 21

E.4 Experimental Results on FlashTPA Decoding . 23

F Higher-Order Tensor Product Attention 26
F.1 RoPE Compatibility in Higher-Order TPA . 26

G Proofs of Theorems 27
G.1 Proof of Theorem A.1 . 27

G.2 Proof of Theorem F.1 . 28

H More Related Work 30

I More on Attention Mechanisms 30
I.1 Scaled Dot-Product Attention . 31

I.2 Multi-Head Attention (MHA) . 31

I.3 Multi-Query Attention (MQA) . 31

I.4 Grouped Query Attention (GQA) . 32

I.5 Multi-head Latent Attention (MLA) . 32

I.6 Multi-matrix Factorization Attention (MFA) . 33

I.7 Rotary Position Embedding (RoPE) . 33

J More on TPA 34

9

Tensor Product Attention Is All You Need

K More on Experiments 35
K.1 Experimental Settings . 35
K.2 Additional Experimental Results . 36
K.3 Ablation Studies on Learning Rates . 37

10

Tensor Product Attention Is All You Need

A RoPE Compatibility and Acceleration

In a typical workflow of adding RoPE to standard multi-head attention, one first computes Qt,Ks ∈ Rh×dh of the t-th
token and s-th token and then applies:

Qt 7→ Q̃t = RoPEt(Qt), Ks 7→ K̃s = RoPEs(Ks). (A.1)

Direct Integration. A useful optimization is to integrate RoPE directly into the TPA factorization. For example, one can
pre-rotate the token-dimension factors:

B̃K(xt) ←− RoPEt

(
BK(xt)

)
, (A.2)

yielding a pre-rotated key representation:

K̃t =
1

RK

RK∑
r=1

aK(r)(xt)⊗ RoPEt

(
bK
(r)(xt)

)
=

1

RK
AK(xt)

⊤ RoPEt

(
BK(xt)

)
.

Here, RoPEt is applied to each row of BK(xt) (i.e., to each bK
(r)(xt) vector). Thus, each Kt is effectively rotated before

caching. This removes the need for explicit rotation at decoding time, accelerating autoregressive inference. Depending on
hardware and performance requirements, different RoPE integration strategies can be adopted for training and inference.

Theorem A.1 (RoPE’s Compatibility with TPA). Let Qt be factorized by TPA as

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh ,

where AQ(xt) ∈ RRQ×h and BQ(xt) ∈ RRQ×dh . Then we have:

RoPE(Qt) =
1

RQ
AQ(xt)

⊤ B̃Q(xt), (A.3)

where B̃Q(xt) = RoPEt

(
BQ(xt)

)
(RoPE applied row-wise to BQ(xt)). Furthermore, let Qt and Ks be factorized by

TPA. Let Q̃t = RoPEt(Qt) and K̃s = RoPEs(Ks) be their RoPE-transformed versions. The relative positional encoding
property of RoPE is preserved:

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

where RoPEt−s denotes applying RoPE with relative position t− s. Focusing on individual heads i, if qt,i and ks,i are
the i-th head vectors from Qt and Ks respectively (as column vectors of dimension dh), and q̃t,i = RoPE(qt,i, t) and
k̃s,i = RoPE(ks,i, s), then the dot product for attention scores satisfies:

q̃⊤
t,i k̃s,i = q⊤

t,i RoPE(·, t− s)ks,i.

Theorem A.1 indicates that TPA does not break RoPE’s relative translational property. We prove Theorem A.1 in Ap-
pendix G.1. In essence, RoPEt applies a linear transformation (rotation matrix Rt) to the dh-dimensional space. Since
Qt = 1

RQ
AQ(xt)

⊤BQ(xt), applying RoPE yields QtRt = 1
RQ

AQ(xt)
⊤(BQ(xt)Rt). Thus, RoPE effectively trans-

forms BQ(xt) to B̃Q(xt) = BQ(xt)Rt, where Rt acts on each row of BQ(xt). The AQ(xt) factor remains unchanged,
preserving the TPA structure.

B Expressing MHA, MQA, and GQA as Non-contextual TPA
This appendix section details how standard Multi-Head Attention (MHA), Multi-Query Attention (MQA), and Grouped-
Query Attention (GQA) can be expressed as special, non-contextual variants of Tensor Product Attention (TPA).

11

Tensor Product Attention Is All You Need

Table 1. Comparison of different attention mechanisms. Here, RQ, RK , and RV denote the ranks for queries, keys, and values in TPA,
respectively. Variants of TPA, such as TPA (KVonly), TPA (Non-contextual A), and TPA (Non-contextual B), are detailed in Appendix J.
For MLA, dRh and dh are the dimensions for RoPE and non-RoPE parts; d′c and dc are the dimensions of compressed vectors for query
and key-value, respectively.

METHOD KV CACHE # PARAMETERS # QUERY HEADS # KV HEADS

MHA 2hdh 4d2model h h
MQA 2dh (2 + 2/h)d2model h 1
GQA 2gdh (2 + 2g/h)d2model h g

MLA dc + dRh
d′c(dmodel + hdh + hdRh)

+dmodeld
R
h + dc(dmodel + 2hdh) h h

TPA (RK +RV)(h+ dh) dmodel(RQ +RK +RV)(h+ dh) + dmodel hdh h h
TPA (KVonly) (RK +RV)(h+ dh) dmodel(RK +RV)(h+ dh) + 2dmodel hdh h h

TPA (Non-contextual A) (RK +RV)dh (RQ +RK +RV)(dmodeldh + h) + dmodel hdh h h
TPA (Non-contextual B) (RK +RV)h (RQ +RK +RV)(dmodelh+ dh) + dmodel hdh h h

B.1 MHA as Non-contextual TPA

Standard multi-head attention (MHA) can be viewed as a specific instance of TPA in which: 1) the rank is set equal to the
number of heads; 2) the head dimension factor is non-contextual (i.e., independent of the t-th token embedding xt ∈ Rdmodel);
3) the token dimension factor is a linear function of xt. More precisely, if we set RQ = RK = RV = h (the number of
heads) and define the factors appropriately, MHA emerges. To match MHA with TPA, let RQ = RK = RV = h. Focusing
on Qt:

(a) Non-contextual head factors. Define

aQi = hei ∈ Rh, (B.1)

where ei ∈ Rh is the i-th standard basis vector, so that ei ⊗ · corresponds to the i-th head of Qt.
(b) Contextual token factors. Define

bQ
i (xt) = (WQ

i)⊤xt ∈ Rdh , (B.2)

where WQ
i ∈ Rdmodel×dh is the per-head query projection matrix, hence bQ

i (xt) is dependent on xt.

Substituting Equations (B.1) and (B.2) into the TPA formulation for Qt (Equation 3.1 from the main paper, with scaling
1/RQ = 1/h absorbed into aQi for this example by setting aQi = ei and adjusting the sum, or keeping the 1/h prefactor and
setting aQi = hei as originally written, then adjusting the sum from

∑RQ

r=1 to
∑h

i=1 and scaling by 1/h): If we use aQi = ei
and sum up h such terms:

Qt =

h∑
i=1

[
ei ⊗

(
(WQ

i)⊤ xt

)]
∈ Rh×dh . (B.3)

Each term ei ⊗
(
(WQ

i)⊤xt

)
in Equation (B.3) is a matrix where only the i-th row is non-zero and equals

(
(WQ

i)⊤xt

)⊤
.

Summing these terms reconstitutes the usual MHA form of Qt. Analogous constructions hold for Kt and Vt using their
respective projection matrices WK

i ,W V
i . Thus, MHA can be interpreted as a non-contextual, rank-h variant of TPA where

the head-dimension factors are fixed basis vectors and the token-dimension factors are standard linear projections of the
input.
TPA with Non-contextual A factors. More broadly, TPA can use non-contextual head-dimension factors aQr ,a

K
r ,aVr ∈ Rh

(i.e., independent of xt), while allowing the token-dimension factors bQ
r (xt),b

K
r (xt),b

V
r (xt) to remain context-dependent.

Then, for keys (using the original 1/RK scaling):

Kt =
1

RK

RK∑
r=1

aKr ⊗ bK
r (xt),

and similarly for queries and values. This version, referred to as TPA (Non-contextual A), reduces per-token computations
for the A factors and can be effective when head-dimension relationships are relatively stable across tokens. The KV cache
for this variant would store bK

r (xt) and bV
r (xt) for each token, while aKr and aVr are fixed.

12

Tensor Product Attention Is All You Need

B.2 MQA and GQA as Non-contextual TPA

Multi-Query Attention (MQA) (Shazeer, 2019) and Grouped Query Attention (GQA) (Ainslie et al., 2023) (detailed in
Appendix I.3 and I.4) also emerge naturally from TPA by restricting the head-dimension factors (aK ,aV) to be non-
contextual and low-rank:

• MQA as Rank-1 TPA (for K and V). In MQA, all heads share a single set of keys and values. This corresponds to TPA
with RK = RV = 1, where the head-dimension factors for keys and values are non-contextual vectors of all ones (or any
constant non-zero vector, as it’s a shared projection). For example:

Kt =
1

1
1h ⊗ bK(xt), Vt =

1

1
1h ⊗ bV (xt),

where 1h ∈ Rh is a vector of ones. This forces every head to use the same key and value vectors bK(xt) and bV (xt)
(which are effectively XWK

shared and XW V
shared from MQA’s definition). Each head i would still use its distinct query Qt,i,

which in TPA could be modeled with RQ = h and aQi = ei as in the MHA case if queries are not factorized, or a different
TPA structure for queries.

• GQA as Grouped Rank-1 TPA (for K and V within groups). GQA partitions h heads into G groups, with each group
sharing keys and values. In TPA form, this means for keys and values, the rank RK and RV would be G. For each group
j ∈ [G], there would be a non-contextual head-dimension factor aKj ∈ Rh (and similarly aVj) that acts as a ”mask” or
selector for the heads in that group (e.g., aKj has ones for heads in group j and zeros elsewhere). Then:

Kt =
1

G

G∑
j=1

aKj ⊗ bK
j (xt), Vt =

1

G

G∑
j=1

aVj ⊗ bV
j (xt),

where bK
j (xt) is the shared key vector for group j. Varying G from 1 (MQA) to h (MHA, if bK

j are distinct per original
head) shows GQA as an interpolation.

Hence, by constraining TPA’s head-dimension factors aK ,aV to be specific constant vectors (or masks) and choosing
appropriate ranks, these popular attention variants can be recovered as special cases of TPA with non-contextual A factors
for keys and values. This underscores the flexibility and unifying nature of the TPA framework.

C T6 Model Architecture Details
This section provides a recap of how Tensor Product Attention (TPA) components are integrated within the Tensor ProducT
ATTenTion Transformer (T6) architecture, building upon the detailed exposition in Section 3.
TPA QKV Factorization Recap. As defined in Section 3.1, for each token’s hidden-state vector xt ∈ Rdmodel , TPA projects
the input into three tensors Q,K,V ∈ RT×h×dh . The slices for the t-th token, Qt, Kt, Vt ∈ Rh×dh , are formed by
sums of tensor products. The factor components aQr (xt),b

Q
r (xt),a

K
r (xt),b

K
r (xt),a

V
r (xt),b

V
r (xt) are produced by linear

transformations on xt. For instance, for queries, with learnable weight matrices W aQ

r ∈ Rh×dmodel and W bQ

r ∈ Rdh×dmodel ,
these factors are:

aQr (xt) = W aQ

r xt, bQ
r (xt) = W bQ

r xt.

In practice, these are often computed by merging ranks into a single linear layer followed by reshaping, as detailed in
Section 3.1. The factorization for keys (Kt) and values (Vt) follows the same pattern using their respective ranks RK , RV

and projection matrices.
Attention Step and Output Projection Recap. Once the factorized Q,K,V tensors are obtained for all tokens (with
RoPE applied to the appropriate factors of Q and K as per Section A), the attention output for each head i ∈ {1, . . . , h} is
computed using the scaled dot-product attention formula (Equation 3.2 from the main paper):

headi = Softmax
(

1√
dh

Qi (Ki)
⊤
)
Vi.

Finally, the outputs from all h heads are concatenated and projected back to the model dimension using an output weight
matrix WO, as shown in Equation 3.3 from the main paper:

TPA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO.

This constitutes the output of the TPA sub-layer in a T6 block.

13

Tensor Product Attention Is All You Need

D Toward Faster Computation Without Materializing Q, K and V

In TPA, the query, key, and value tensors (Qt,Kt,Vt) are constructed as sums of RQ, RK , RV rank-one tensors, respectively,
as detailed in Equation 3.1. These sums are typically normalized by scaling factors sQ = 1/RQ, sK = 1/RK , and
sV = 1/RV . This section explores the computational advantages of performing attention calculations directly on these
factorized representations, including their scaling factors, without explicitly materializing the full Q,K,V tensors. This
approach can potentially reduce floating-point operations (FLOPs) and memory bandwidth.

D.1 Single-Head Factorization Setup Without Materializing Q and K

Consider a single head i. Each query vector Q(i)
t ∈ Rdh is factorized (with rank RQ and scale sQ = 1/RQ):

Q
(i)
t = sQ

RQ∑
r=1

a
(r)
q,i (xt)b

(r)
q (xt),

and each key vector K(i)
τ ∈ Rdh is factorized (with rank RK and scale sK = 1/RK):

K(i)
τ = sK

RK∑
s=1

a
(s)
k,i(xτ)b

(s)
k (xτ).

Their dot-product for tokens t, τ is

[
Q(i) (K(i))⊤

]
t,τ

= sQsK

RQ∑
r=1

RK∑
s=1

a
(r)
q,i (xt) a

(s)
k,i(xτ)

〈
b(r)
q (xt),b

(s)
k (xτ)

〉
. (D.1)

Similarly, the value vector V(i)
τ ∈ Rdh is factorized (with rank RV and scale sV = 1/RV):

V(i)
τ = sV

RV∑
u=1

a
(u)
v,i (xτ)b

(u)
v (xτ).

D.2 Multi-Head Case

For multi-head attention with h heads, one repeats the factorization across all heads. The b
(r)
q ,b

(s)
k ,b

(u)
v vectors are shared

across heads. The scaling factors sQ, sK , sV are applied per head as part of the definition.

D.3 Complexity Analysis

We compare the cost of standard multi-head attention versus TPA under two scenarios:

1. Naı̈ve: Materialize Q,K,V from factors (including their scales), then perform the usual batched GEMM.
2. Specialized: Attempt to compute QK⊤ and the final attention output directly from the rank-(RQ, RK , RV) factors and

their scales, without explicitly forming full Q,K,V.

Standard Multi-Head Attention. For batch size B and sequence length T :

• Projection cost: O
(
B T d2model

)
or O

(
B T dmodel dh

)
.

• Dot-product: Q (K)⊤ ∈ R(B h)×T×T costs O
(
B T 2 dmodel

)
.

For large T , the O(B T 2 dmodel) term dominates.

TPA: Naı̈ve Implementation.
• Constructing factors: O

(
B T dmodel × (RQ(h+ dh) +RK(h+ dh) +RV (h+ dh))

)
.

• Materializing Q,K,V (including scaling): O
(
B T (RQ h dh + RK h dh + RV h dh)

)
. The scaling is a per-element

multiplication.
• Dot-product Q (K)⊤ and multiply by V: O

(
B T 2 dmodel

)
for scores, and O

(
B T 2 dmodel

)
for value aggregation.

14

Tensor Product Attention Is All You Need

Typically RQ, RK , RV ≪ h, dh, so the overhead of constructing factors and materializing is influenced by these ranks. The
key benefit of TPA is in reducing KV cache size and potentially computation if specialized kernels are used.

TPA: Specialized Implementation. If we bypass explicitly forming Q,K,V, the computation involves the sums over
ranks and the scaling factors. Below, we detail its complexity.

Algorithm 1 Specialized TPA Computation (Without Materializing Q,K,V)
Require: Factorized Query components: AQ(T,H,RQ), BQ(T,RQ, dh)
Require: Factorized Key components: AK(T,H,RK), BK(T,RK , dh)
Require: Factorized Value components: AV (T,H,RV), BV (T,RV , dv) (Note: dv is value head dim, often dv = dh)
Require: Sequence length T , Number of heads H , Ranks RQ, RK , RV , Head feature dimension dh
Require: Scaling factors: sQ = 1/RQ, sK = 1/RK , sV = 1/RV (or other pre-defined scales)
Ensure: Output tensor O(T,H, dv)

// Phase 1: Attention Score Computation
1: ▷ Step 1.1: Compute shared B-factor dot products P
2: P ← einsum(”tqrd, tkrd→ tqtkrqrk”,BQ,BK)

▷ Indices: tq=query token, tk=key token, rq=query rank, rk=key rank, d=feature dim
3: ▷ Step 1.2: Combine P with AQ,AK and apply sQ, sK to form scaled logits L′

4: Lunscaled ← einsum(”tqhrq, tkhrk, tqtkrqrk→ tqtkh”,AQ,AK , P)
5: L′ ← sQ · sK · Lunscaled

▷ Indices: h=head
6: ▷ Step 1.3: Apply attention scaling (1/

√
dh) and Softmax to get probabilities α

7: L′′
scaled ← L′/

√
dh

8: α← SoftmaxTk
(L′′

scaled) ▷ Softmax over key tokens Tk for each query Tq and head H
▷ Output α(tq, tk, h)

// Phase 2: Value Aggregation
9: ▷ Step 2.1: Conceptually weight AV by α to form WAV

10: WAV
← einsum(”tqtkh, tkhrv→ tqtkhrv”,α,AV)

▷ Indices: rv=value rank
11: ▷ Step 2.2: Aggregate WAV

with BV and apply sV to get final output O
12: Ounscaled ← einsum(”tqtkhrv, tkrvd→ tqhd”,WAV

,BV) ▷ d is value feature dim dv
13: O← sV ·Ounscaled
14: return O

D.4 Complexity Analysis for the Specialized Implementation

Complexity for a Single Query Token (Autoregressive Decoding). The dot product Q(i)
t ·K

(i)
τ from Eq. (D.1) includes

the sQsK scaling. For each pair (r, s), we pay:

1. O(1) for multiplying a
(r)
q,i (xt) a

(s)
k,i(xτ),

2. O(dh) for the dot product ⟨b(r)
q (xt),b

(s)
k (xτ)⟩.

The sQsK scaling is a single multiplication after the sums. Since (r, s) runs over RQ ×RK , each token-pair (t, τ) costs

roughly O
(
RQ RK

(
1 + dh

))
≈ O(RQ RK dh). For a single query token t and M cached key tokens τ = 1 . . .M , this

is O(M RQ RK dh) for a single head to compute all unscaled dot products. The scaling by sQsK is O(M) for the score
vector.

Multi-Head and Batches (Full Sequence Processing - reusing b-Dot Products as in Algorithm 1). The b-vectors can
be shared across heads. Let T be the sequence length.

15

Tensor Product Attention Is All You Need

1. b-Dot-Product Stage (P):
Compute P (tq, τk, rq, rk) = ⟨b

(rq)
q (xtq),b

(rk)
k (xτk)⟩. Cost: O

(
T 2 RQRK dh

)
. This is shared across heads.

2. Per-Head Score Computation:
For each head h, compute Ltq,τk,h = sQsK

∑
rq,rk

a
(rq)
q,h (xtq) a

(rk)
k,h (xτk)P (tq, τk, rq, rk). Cost: O

(
H T 2 RQRK

)
.

Putting these together for batch size B, the total cost for scores is O
(
B T 2 RQRK dh

)
+ O

(
BH T 2 RQRK

)
=

O
(
B T 2 RQRK

(
dh +H

))
. This is for computing the scaled logits before softmax. The standard attention dot-product

step is O
(
B T 2 H dh

)
. For the specialized TPA to reduce flops in score computation: RQRK (dh + H) < H dh. This

implies RQRK < H/(1 +H/dh). If H ≈ dh, then RQRK ≈ H/2.

D.5 Toward Faster Computation Without Materializing Q, K, V

We extend the idea to also avoid explicitly forming V. After obtaining scaled logits L′
tq,τk

= sQsK(QtqK
⊤
τk
) (per

head), we apply αtq,τk = softmaxτk
(

1√
dh
L′
tq,τk

)
. The final attention output at token tq (single head) using Vτk =

sV
∑RV

u=1 a
(u)
v (xτk)b

(u)
v (xτk) is:

head(tq) =

T∑
τk=1

αtq,τk Vτk = sV

T∑
τk=1

αtq,τk

RV∑
u=1

a(u)v (xτk)b
(u)
v (xτk).

Rearranging sums:

head(tq) = sV

RV∑
u=1

[
T∑

τk=1

(
αtq,τk a

(u)
v (xτk)

)
b(u)
v (xτk)

]
.

The computation of b(u)
v (xτk) from xτk is O(T RV dmodeldv) if contextual, or loaded if fixed (where dv is the dimension

of bv). Assuming b
(u)
v are available, the weighted summation for each (tq, u) pair (inner sum over τk) costs O(T dv).

Summed over tq = 1 . . . T and u = 1 . . . RV , this stage is O(T 2 RV dv). The final scaling by sV is O(Tdv).

D.6 Overall Complexity for Single-Head (Specialized)

The dominant costs for a single head, assuming factors A,B are already computed from X:

(i) QK B-Dot Product Stage (P): O(T 2 RQ RK dh) (shared calculation if multi-head).
(ii) QK A-Factor Combination and Scaling Stage (L′): O(T 2 RQ RK). (Scaling by sQsK is part of this per-element

operation on scores).
(iii) Value Aggregation Stage (including sV scaling): O(T 2 RV dv).

Total for single head, assuming P is computed once: O
(
T 2 RQ RK dh + T 2 RQ RK + T 2 RV dv

)
.

D.7 Multi-Head and Batch Extensions (Reuse of B-Dot Products)

QK B-Dot Products (P): Shared across heads. Cost: O
(
B T 2 RQ RK dh

)
.

Per-Head QK A-Factor Combination and Scaling (L′): Each head combines its AQ,AK with P and applies sQsK .
Cost: O

(
BH T 2 RQ RK

)
.

Value Aggregation (including sV): Assuming BV factors are shared and AV are per-head. Cost: O
(
BH T 2 RV dh

)
.

Assuming dv = dh. Total FLOPs for specialized multi-head TPA (full sequence processing) with batch size B:

FTPA-specialized = O
(
B T 2 RQ RK dh

)︸ ︷︷ ︸
QK B-dot products P

+ O
(
BH T 2 RQ RK

)︸ ︷︷ ︸
Per-head QK A-comb. + sQsK scale

+ O
(
BH T 2 RV dh

)︸ ︷︷ ︸
Value Aggregation + sV scale

.

Discussion. By contrast, standard multi-head attention typically requires FMHA = O
(
2B T 2 H dh

)
FLOPs (for QK⊤ and

attention-weighted V). The specialized TPA can be more efficient if RQRKdh +HRQRK +HRV dh < 2Hdh. Dividing
by Hdh, this condition becomes (RQRK/H) + (RQRK/dh) + RV < 2. For example, if RQ = RK = RV = 1, the
condition is 1/H + 1/dh + 1 < 2, or 1/H + 1/dh < 1, which is generally true for typical H, dh ≥ 2. Thus, with small

16

Tensor Product Attention Is All You Need

ranks, TPA can offer computational savings. Actual speedups also depend critically on memory access patterns and kernel
implementations, as demonstrated by FlashAttention-style approaches. By retaining Q,K, and V in factorized form, one
can bypass the explicit materialization of these large tensors:

xt → Qt, Kτ ,Vτ (materialized)→ (QK⊤)→ softmax(QK⊤)V→ final output.

Instead, the large Q,K,V tensors (each of size B×T ×H×dh) are not explicitly formed. The computation is restructured
into rank-based B-dot-product computations, per-head A-factor combinations, and appropriate scaling. The challenge lies
in choosing ranks (RQ, RK , RV) small enough to ensure computational benefits while maintaining model quality, and in
implementing the multi-stage kernels efficiently. When ranks are sufficiently small, this specialized approach can lead to
gains in both computation and memory footprint.

Phase 1: Attention Score Computation
BQ

BK

∑
d P

d

AQ AK

∑
rq,rk L′

incl. sQ, sK

Softmax α

incl. 1/
√
dh

over key
tokens tk

Phase 2: Value Aggregation

AV

BV

⊙ WAV

∑
tk,rv O

tk, rv

incl. sV

Figure 2. Data flow diagram for specialized TPA computation, avoiding materialization of full Q,K,V tensors. Phase 1 (Top): Attention
Score Computation. Factorized BQ,BK produce shared dot-products P (summing over feature dimension d). P is combined with
factorized AQ,AK and scaled by sQsK (summing over ranks rq, rk) to form scaled logits L′. These are then scaled by 1/

√
dh

and passed through Softmax to yield attention probabilities α. Phase 2 (Bottom): Value Aggregation. α weights the factorized AV

(conceptually forming WAV via an einsum-like combination), which then aggregates with BV and is scaled by sV (summing over key
tokens tk and value ranks rv) to produce the final output O. (Diagram simplifies batch dimensions B; T denotes sequence length; H
is heads; RX are ranks RQ, RK , RV corresponding to indices rq, rk, rv; dh is the feature dimension d for B factors. Operations

∑
X

denote contractions over index X , and ⊙ denotes an einsum-like combination. Scaling factors sQ, sK , sV are incorporated as described.).

D.8 Inference Time Decoding of Different Attention Mechanisms

In autoregressive decoding, we generate the output for the current token xM (where M is the current sequence length,
previously denoted T in this section for a generic single token, but M is used in Alg. 2) given cached keys and values from

17

Tensor Product Attention Is All You Need

M − 1 previous tokens. We analyze the FLOPs for computing the attention output for this single query token. For all
mechanisms, we consider the FLOPs for computing scaled logits and aggregating values, excluding the initial projection of
the current token’s hidden state xM into Q, K, V representations.
MHA, MQA, and GQA. For Multi-Head Attention (MHA), with H query heads and H distinct Key/Value heads:
• Logits: Each of the H query vectors (dim dh) interacts with its corresponding K-cache (size M×dh). Cost: H ·(M ·dh) =
MHdh.

• Value Aggregation: Each of the H attention patterns interacts with its V-cache (size M×dh). Cost: H ·(M ·dh) = MHdh.
• Total MHA: 2MHdh.
Multi-Query Attention (MQA) uses H query heads but shares a single Key/Value head (Hkv = 1).
• Logits: Each of the H query vectors (dim dh) interacts with the single shared K-cache (size M×dh). Cost: H ·(M ·dh) =
MHdh.

• Value Aggregation: Each of the H attention patterns interacts with the single shared V-cache (size M × dh). Cost:
H · (M · dh) = MHdh.

• Total MQA: 2MHdh.
Grouped-Query Attention (GQA) uses H query heads and Ng Key/Value head groups (Hkv = Ng). The H query heads
are partitioned into Ng groups, each containing H/Ng query heads that share one K/V head pair within that group.
• Logits: For each of the Ng groups, H/Ng query vectors interact with the group’s K-cache. Cost per group: (H/Ng) ·
(M · dh). Total for Ng groups: Ng · (H/Ng) ·Mdh = MHdh.

• Value Aggregation: Similarly, MHdh.
• Total GQA: 2MHdh.
MQA and GQA significantly reduce the KV cache size and memory bandwidth requirements compared to MHA. While the
arithmetic FLOP count for the core attention computation (dot products and weighted sums) is 2MHdh for all three if they
have the same number of query heads H and head dimension dh, the practical speedups for MQA/GQA often arise from
better memory access patterns due to smaller K/V caches.
MLA. Multi-Head Latent Attention (MLA), as described in Appendix I.5, uses H heads. For each head, the key Ki has
dimension d′k = dc + dRh (compressed part + RoPE part), and the value VC

i has dimension d′v = dc (only compressed part).

• Logits: H query heads (dim d′k) interact with K-caches (dim d′k). Cost: MHd′k.
• Value Aggregation: H attention patterns interact with V-caches (dim d′v). Cost: MHd′v .
• Total MLA: MH(d′k + d′v) = MH(dc + dRh + dc) = MH(2dc + dRh).

TPA. We use the FlashTPA Decoding algorithm (Algorithm 2) for FLOPs analysis, with N = 1 query token, M cached
items, D as feature dimension for BQ/b

K (typically dh), and E for bV (typically dh). For ranks (RQ, RK , RV):

• Logits computation (Steps 1-3 of Alg. 2): O(M(RQRKD +HRQRK +HRK)).
• Value aggregation (Steps 5-6 of Alg. 2): O(M(HRV +HRV E)).
• Total for TPA decoding: O(M [RK(RQD +HRQ +H) +RV H(1 + E)]).

Example Comparison.
Let’s use the ranks from FlashTPA experiments (Section E.4): (RQ, RK , RV) = (16, 1, 1), and typical dimensions
D = E = dh = 64, H = 32 (e.g., for a 2048 dmodel).

MHA Logits: M ·H · dh = M · 32 · 64 = 2048M

MHA Value Agg.: M ·H · dh = M · 32 · 64 = 2048M

MHA Total: 4096M

TPA Logits(RK = 1, RQ = 16) : M(RQdh +HRQ +H) = M(16 · 64 + 32 · 16 + 32)

= M(1024 + 512 + 32) = 1568M

TPA Value Agg.(RV = 1, E = dh) : MH(1 + E) = M · 32(1 + 64) = M · 32 · 65 = 2080M

TPA Total: 1568M + 2080M = 3648M

For MQA and GQA, assuming H = 32 query heads and dh = 64:

MQA/GQA Total: 2MHdh = 2 ·M · 32 · 64 = 4096M

18

Tensor Product Attention Is All You Need

For MLA, with H = 32, dc = 256, dRh = 32:

MLA Logits: MH(dc + dRh) = M · 32 · (256 + 32) = M · 32 · 288 = 9216M

MLA Value Agg.: MHdc = M · 32 · 256 = 8192M

MLA Total: M · 32 · (2 · 256 + 32) = M · 32 · 544 = 17408M

In this configuration, TPA requires fewer FLOPs (3648M) than MHA (4096M). The FLOPs for scaled logits in TPA
(1568M) are less than MHA’s (2048M). The value aggregation FLOPs for TPA (2080M) are comparable to MHA’s
(2048M).
This reduction in FLOPs, particularly when RK and RV are small (e.g., 1), combined with optimized memory access
patterns in algorithms like FlashTPA Decoding, contributes to TPA’s competitive decoding speed, especially for long
sequences. The actual end-to-end wall-clock speedup also depends on kernel fusion, hardware specifics, and the efficiency
of einsum implementations, but the factorized formulation offers a clear path to reduced computational load.

E More on FlashTPA Decoding Algorithm

Algorithm 2 FlashTPA Decoding Algorithm
Require: AQ: Query A tensor (B, 1, H,RQ)
Require: BQ: Query B tensor (B, 1, RQ, D)
Require: aKcache: Cached Key A tensor (B,M,H)
Require: bKcache: Cached Key B tensor (B,M,D)
Require: aVcache: Cached Value A tensor (B,M,H)
Require: bVcache: Cached Value B tensor (B,M,E)

Require: stotal, sQ, sK , sV : Scaling factors (with defaults stotal ← 1/
√
D, sQ ← 1/RQ)

Ensure: O: Output tensor (B, 1, H,E)
1: ▷ Step 1: Interaction between BQ and bKcache components
2: S(1) ← einsum(“bnrd, bmd→ bnmr”,BQ, b

K
cache) ▷ Shape: (B, 1,M,RQ). S

(1)
b,n,m,r =

∑
d(BQ)b,n,r,d · (bKcache)b,m,d

3: ▷ Step 2: Incorporate AQ component
4: S(2) ← einsum(“bnhr, bnmr→ bnmh”,AQ, S

(1)) ▷ Shape: (B, 1,M,H). S(2)
b,n,m,h =

∑
r(AQ)b,n,h,r · S(1)

b,n,m,r

5: ▷ Step 3: Incorporate aKcache component to get full logits
6: L ← einsum(“bnmh, bmh→ bhnm”, S(2),aKcache) ▷ Shape: (B,H, 1,M). Lb,h,n,m = S

(2)
b,n,m,h · (aKcache)b,m,h

7: ▷ Step 4: Apply scaling and Softmax
8: α← SoftmaxM (L · sQ · sK · stotal) ▷ Shape: (B,H, 1,M). Softmax over cache dimension M
9: ▷ Step 5: Compute weighted sum with aVcache component

10: O(A) ← einsum(“bhnm, bmh→ bnmh”,α,aVcache) ▷ Shape: (B, 1,M,H). O(A)
b,n,m,h = αb,h,n,m · (aVcache)b,m,h

11: ▷ Step 6: Incorporate bVcache component and final scaling
12: O← einsum(“bnmh, bme→ bnhe”,O(A), bVcache) · sV ▷ Shape: (B, 1, H,E). Final output
13: return O

BQ

(RQ, D)

bKcache
(M,D)

∑
D

S(1)

(M,RQ)

AQ

(H,RQ)

∑
RQ

S(2)

(M,H)

aK
cache

(M,H)

⊙ L
(H,M) Softmax

α
(H,M)

aV
cache

(M,H)

⊙ O(A)

(M,H)

bVcache
(M,E)

∑
M

O
(H,E)

Figure 3. Data flow diagram for FlashTPA Decoding. Rectangles represent tensors (blue for inputs, yellow for intermediates, red for
final output), circles with

∑
or ⊙ denote Einstein summation contractions or element-wise products respectively, and the green rounded

rectangle is the softmax operation. Shapes are shown for a single query (N = 1) interacting with M cached items. H is the number of
heads, RQ is the query rank, and D,E are respective feature dimensions for the BQ/b

K
cache and bVcache factors. Scaling factors in softmax

are omitted for visual clarity.

19

Tensor Product Attention Is All You Need

This section provides further details on the FlashTPA Decoding algorithm, including the setup of factorized components and
the algorithm’s pseudocode.
Factorized Component Setup for FlashTPA Decoding. Let B be the batch size, N the number of query tokens (which is 1
for decoding, N = 1), M the current length of the KV cache, H the number of attention heads, and RQ the rank of the
query factorization. The feature dimensions for the factorized components are D (for query BQ and key bK) and E (for
value bV). Typically, D and E correspond to the head dimension dh.
The query for the current token xt (where t is the current time step, N = 1) is factorized as Qt =

1
RQ

AQ(xt)
⊤BQ(xt),

where AQ(xt) ∈ RH×RQ (derived from the input tensor ‘Aq’ of shape (B, 1, H,RQ) for the current token) and BQ(xt) ∈
RRQ×D (similarly from ‘Bq’ of shape (B, 1, RQ, D)).
The cached keys Ks and values Vs for past tokens s ∈ [1,M] are stored in their factorized form. For clarity in the data
flow diagram (Figure 3 in the main paper) and the pseudo-code in Algorithm 2, we present the case where cached keys and
values use ranks RK = 1 and RV = 1. The general TPA formulation allows for RK > 1 and RV > 1 for cached items
(by storing, for example, AK(xs) ∈ RRK×H and BK(xs) ∈ RRK×D). The einsum operations detailed in Algorithm 2
can be extended to accommodate higher ranks for keys and values by including summations over these additional rank
dimensions. For RK = 1 and RV = 1, the cached s-th key and value are: Ks = aK(xs) ⊗ bK(xs) ∈ RH×D, Vs =
aV (xs)⊗ bV (xs) ∈ RH×E . Here, aK(xs) ∈ RH (from the cached tensor aKcache of shape (B,M,H)), bK(xs) ∈ RD

(from bKcache of shape (B,M,D)), aV (xs) ∈ RH (from aVcache of shape (B,M,H)), and bV (xs) ∈ RE (from bVcache of shape
(B,M,E)).

E.1 Detailed Computation Steps of FlashTPA Decoding Algorithm

The algorithm proceeds through a series of einsum operations, which correspond to specific tensor contractions:

1. Compute BQ-bK inner products (S(1)): For each query (batch b, query index n = 0), each query rank component
r, and each cached key position m, we compute the dot product of the D-dimensional feature vector of the r-th query
factor (BQ)b,n,r,: with the D-dimensional feature vector of the m-th cached key (bKcache)b,m,:.

S
(1)
b,n,m,r =

D∑
d=1

(BQ)b,n,r,d · (bKcache)b,m,d.

This step captures the similarity between the feature parts of the query factors and the cached key factors.
2. Combine with query factor AQ (S(2)): The result S(1) is then combined with the head-specific query factors AQ. For

each head h, the contributions from all query ranks r are summed up.

S
(2)
b,n,m,h =

RQ∑
r=1

(AQ)b,n,h,r · S(1)
b,n,m,r.

This yields an intermediate score for each query, cached key, and head.
3. Incorporate cached key factor aKcache for full logits (L): The head-specific factor of the cached keys, aKcache, is multiplied

with S(2) to produce the final unscaled attention logits.

Lb,h,n,m = S
(2)
b,n,m,h · (a

K
cache)b,m,h.

This logit Lb,h,n,m represents s−1
Q · (QtK

⊤
m)h, i.e., the dot product between the query Qt and the m-th cached key Km

for head h, scaled by RQ (since sQ = 1/RQ). The ‘einsum‘ operation also rearranges dimensions to (B,H,N,M) for
the subsequent softmax operation.

4. Apply Scaling and Softmax (α): The logits L are scaled by the product of sQ (e.g., 1/RQ), sK (e.g., 1/RK , which is
1 if RK = 1), and stotal (e.g., 1/

√
D, where D is the dimension used for dot products, typically dh). Softmax is then

applied across the M cached key positions for each head independently.

αb,h,n,m = Softmaxm (Lb,h,n,m · sQ · sK · stotal)

These are the attention probabilities.

20

Tensor Product Attention Is All You Need

5. Compute weighted sum with cached value factor aVcache (O(A)): The attention probabilities α are used to weight the
head-specific factors of the cached values, aVcache.

O
(A)
b,n,m,h = αb,h,n,m · (aVcache)b,m,h.

This step prepares the value components for the final aggregation. The ‘einsum‘ operation also reorders dimensions to
(B,N,M,H).

6. Incorporate cached value factor bVcache and apply final scaling (O): Finally, the intermediate weighted value factors
O(A) are combined with the feature-specific factors of the cached values, bVcache, by summing over the M cached positions.
The result is then scaled by sV (e.g., 1/RV , which is 1 if RV = 1).

Ob,n,h,e =

(
M∑

m=1

O
(A)
b,n,m,h · (b

V
cache)b,m,e

)
· sV .

This produces the final output tensor of shape (B, 1, H,E).

E.2 Triton FlashTPA Decoding Kernel

We implement the experiments using Triton language (Tillet et al., 2019), and the detailed implementation pseudo code is
displayed in Algorithm 3. The Triton FlashTPA decoding kernel supports parallelism across the number of heads, rank, and
head dimensions. And in 3, we will show the experiment results with this kernel.

E.3 Additional Experimental Results

The following figures present additional speed comparisons for different embedding dimensions, with dh = 64 maintained.
The y-axis represents log2(time) in seconds (lower is faster), and the x-axis represents log2(sequence length).
Detailed Analysis of Figure 6 (Main Text; Embedding Dimension 2048): Figure 6 in the main paper depicts speed
comparisons for an embedding dimension of 2048. The results indicate that FlashTPA (blue line) is highly competitive.
Across all tested batch sizes (1 to 16) for dmodel = 2048:

• MHA (orange line) is consistently the slowest mechanism, with its decoding time increasing most rapidly with sequence
length.

• MQA (green line) and GQA (red line) offer significant speedups over MHA and perform very similarly to each other,
often overlapping in the plots.

• MLA (purple line) demonstrates strong performance, generally being faster than MQA/GQA, particularly at longer
sequence lengths.

• FlashTPA shows excellent scalability. While at very short sequence lengths (e.g., 212 to 213), its performance is comparable
to MQA/GQA and MLA, its decoding time increases at a notably slower rate with sequence length. Consequently,
FlashTPA becomes significantly faster than MQA/GQA for sequences longer than approximately 214.

• Compared to MLA, FlashTPA is consistently among the top two performers. In many instances, particularly at sequence
lengths greater than 214 or 215, FlashTPA matches or slightly surpasses MLA in speed. The logarithmic scale for time
suggests that these differences can be substantial in practice for very long contexts. For example, at a sequence length of
219 across various batch sizes, FlashTPA often shows a visible advantage over MLA.

Figure 4 (Embedding Dimension 3072): With a larger embedding dimension of 3072, the relative performance trends
observed in Figure 6 largely persist.

• FlashTPA (blue line) remains one of the most efficient decoding methods. MHA (orange line) is consistently the slowest,
while MQA (green line) and GQA (red line) offer considerable improvements over MHA.

• MLA (purple line) and FlashTPA are the top two performers. FlashTPA consistently matches or exceeds the speed of
MLA, particularly at longer sequence lengths (e.g., beyond 215 or 216 depending on the batch size). Its advantage often
becomes more pronounced at the longest sequences tested (219). For instance, in batch size 1, TPA is clearly faster
than MLA for sequence lengths 216 and above. A similar trend is seen across other batch sizes, where TPA maintains a
competitive edge or becomes superior at longer contexts.

This suggests that FlashTPA’s efficiency is well-maintained even as the model’s embedding dimension increases.
Figure 5 (Embedding Dimension 1024): For a smaller embedding dimension of 1024, similar trends are observed:

21

Tensor Product Attention Is All You Need

Algorithm 3 Triton FlashTPA Decoding Kernel
Require: Input Tensors: AQ(B,N,H,RQ), aK(B,M,H), aV (B,M,H), BQ(B,N,RQ, D), bK(B,M,D),

bV (B,M,E)
Require: Scaling factors: stotal, sQ, sK , sV ; Dimensions: B,N(= 1),M,H,RQ, D,E
Require: Kernel Block dims: BH , BR, BD, BE ; Sequence Blocking: Mblock,Mchunk
Require: Program IDs: pidB

, pidH
, pidM

Ensure: Partial Output Opartial(B,NumM , N,H,E), Log-Sum-Exp LSEpartial(B,NumM , H)

1: b← pidB
; hstart ← pidH

·BH

2: mblock start ← pidM
·Mblock; mblock end ← min((pidM

+ 1) ·Mblock,M)
3: ▷ BH , BR, BD, BE are tile sizes for dimensions H, R, D, E, respectively.

4: ▷ Initialize accumulators for the head block
5: oaccum ← 0(E×BH); mmax ← −∞(BH); sexp sum ← 0(BH); cscale ← stotal · sQ · sK

6: ▷ Load query factors (fixed for this program as N=1)
7: Load A

(RQ×BH)
Q,local from AQ[b, 0, hstart . . . , :]

8: Load B
(D×RQ)
Q,local from BQ[b, 0, :, :] ▷ Dimensions may be transposed after loading for matmul

9: ▷ Iterate over Mchunk-sized chunks within the K/V block
10: for mchunk start from mblock start to mblock end − 1 step Mchunk do
11: mchunk end ← min(mchunk start +Mchunk,mblock end)
12: Mcurr chunk ← mchunk end −mchunk start
13: ▷ Load K/V factors for the current chunk
14: Load aKchunk(Mcurr chunk, BH); aVchunk(Mcurr chunk, BH); bKchunk(Mcurr chunk, D); bVchunk(E,Mcurr chunk) ▷ Layouts

optimized for memory access and matmuls
15: bVchunk ← bVchunk · sV
16: ▷ Core TPA Score Calculation for the chunk
17: S1chunk ← MatMul(bKchunk,BQ,local) ▷ Shape: (Mcurr chunk, RQ)
18: S2chunk ← MatMul(S1chunk,AQ,local) ▷ Shape: (Mcurr chunk, BH)
19: S3chunk ← S2chunk ⊙ aKchunk · cscale ▷ Shape: (Mcurr chunk, BH)
20: ▷ Online Softmax Update for the chunk
21: mmax local ← maxaxis=0(S3chunk) ▷ Shape: (BH)
22: mmax new ← max(mmax,mmax local)
23: pnum ← exp(S3chunk −mmax new[None, :])
24: sexp sum local ←

∑
axis=0(pnum)

25: pweighted av ← (pnum/sexp sum local[None, :])⊙ aVchunk
26: ochunk ← MatMul(bVchunk,pweighted av) ▷ Shape: (E,BH)
27: ▷ Update global (M-block level) accumulators
28: sexp sum prev rescaled ← sexp sum · exp(mmax −mmax new)
29: sexp sum ← sexp sum prev rescaled + sexp sum local
30: ratio← sexp sum local/sexp sum ▷ This is sexp sum local/sexp sum new
31: oaccum ← (1− ratio) · oaccum + ratio · ochunk
32: mmax ←mmax new
33: end for

34: ▷ Store partial results for this program’s (batch, head block, M block)
35: Store oaccum into Opartial[b, pidM

, 0, hstart . . . , :]
36: LSEval ← log(sexp sum) +mmax
37: Store LSEval into LSEpartial[b, pidM

, hstart . . .]

22

Tensor Product Attention Is All You Need

• FlashTPA (blue line) is highly competitive. MHA (orange line) remains the least performant. MQA (green line) and GQA
(red line) are faster than MHA.

• At very short sequence lengths (around 212 to 213), MQA/GQA can be slightly faster than or comparable to TPA and
MLA, especially for smaller batch sizes (e.g., Batch Size 1).

• However, as sequence length increases, both MLA (purple line) and FlashTPA demonstrate superior scalability. FlashTPA
generally matches or outperforms MLA, particularly for sequences longer than 215. For example, with a batch size of 16,
TPA shows a clear speed advantage over MLA for sequence lengths 216 and greater.

These results across different embedding dimensions highlight the robustness of FlashTPA’s decoding speed advantages,
especially for long sequences where it consistently ranks as one of the fastest, if not the fastest, attention mechanisms among
those tested.

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 1, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(a) Batch Size=1

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

2
lo

g 2
(ti

m
e)

 (s
ec

on
ds

)

Batch Size: 2, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(b) Batch Size=2

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 4, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(c) Batch Size=4

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 8, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(d) Batch Size=8

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

6

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 16, Embedding Dim: 3072
MHA
MQA
GQA
MLA
TPA

(e) Batch Size=16

Figure 4. Decoding time comparison of different attention mechanisms with an embedding dimension of 3072 and dh = 64.

E.4 Experimental Results on FlashTPA Decoding

This section presents an evaluation of FlashTPA’s decoding time in comparison to several other optimized attention mecha-
nisms. We benchmark FlashTPA against FlashMHA (Shah et al., 2024), FlashGQA, FlashMQA, and FlashMLA (Jiashi Li,
2025). It is important to note that our current FlashTPA implementation utilizes Triton (Tillet et al., 2019). While the
compared methods are typically available as highly optimized CUDA kernels, these experiments provide initial insights
into FlashTPA’s potential. Development of a CUDA-based FlashTPA kernel is ongoing and is expected to yield further
performance improvements.
The evaluations were performed with batch sizes selected from {1, 2, 4, 8, 16}, model embedding dimensions (dmodel)
chosen from {1024, 2048, 3072}, and sequence lengths ranging from 212 (4,096) to 219 (524,288). For all experiments, the
dimension per head (dh) was fixed at 64. The ranks for TPA’s factorized components (RQ, RK , RV) were set to (16, 1, 1),
and for GQA configurations, the number of key-value head groups was 4.
The decoding time per token, measured as log2(time) in seconds, is plotted against log2(sequence length). Lower values
on the y-axis indicate faster decoding times. Results are presented in Figure 6 for an embedding dimension of 2048
(corresponding to 32 attention heads). Additional results for embedding dimensions of 1024 (16 heads, Figure 5) and 3072
(48 heads, Figure 4) are provided in Appendix E. Figure 6 depicts these speed comparisons for an embedding dimension of

23

Tensor Product Attention Is All You Need

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 1, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(a) Batch Size=1

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 2, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(b) Batch Size=2

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 4, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(c) Batch Size=4

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 8, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(d) Batch Size=8

12 13 14 15 16 17 18 19
log2(sequence length)

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 16, Embedding Dim: 1024
MHA
MQA
GQA
MLA
TPA

(e) Batch Size=16

Figure 5. Decoding time comparison of different attention mechanisms with an embedding dimension of 1024 and dh = 64.

2048. The results indicate that FlashTPA (blue line) is highly competitive and often outperforms other attention mechanisms,
especially as the sequence length increases. A detailed breakdown for dmodel = 2048 (Figure 6) and other dimensions is in
Appendix E.
These findings for an embedding dimension of 2048 underscore the computational efficiency of the FlashTPA decoding
algorithm, particularly its favorable scaling with increasing sequence lengths.

24

Tensor Product Attention Is All You Need

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 1, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(a) Batch Size=1

12 13 14 15 16 17 18 19
log2(sequence length)

6

5

4

3

2

1

0

1

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 2, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(b) Batch Size=2

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 4, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(c) Batch Size=4

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 8, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(d) Batch Size=8

12 13 14 15 16 17 18 19
log2(sequence length)

6

4

2

0

2

4

lo
g 2

(ti
m

e)
 (s

ec
on

ds
)

Batch Size: 16, Embedding Dim: 2048
MHA
MQA
GQA
MLA
TPA

(e) Batch Size=16

Figure 6. Decoding time comparison of different attention mechanisms with an embedding dimension of 2048 and dh = 64. The y-axis
represents log2(time) in seconds, and the x-axis represents log2(sequence length). Each subfigure corresponds to a different batch size.

25

Tensor Product Attention Is All You Need

F Higher-Order Tensor Product Attention

All prior discussions have focused on TPA where the query, key, and value matrices (e.g., Qt ∈ Rh×dh) are formed
as a sum of RQ components. Each component is an outer product of two context-dependent vectors, one spanning
the head dimension (Rh) and the other spanning the feature-per-head dimension (Rdh), as detailed in Section 3.1 (e.g.,
Qt = 1

RQ
AQ(xt)

⊤BQ(xt) implies Qt =
∑

r arb
⊤
r where ar are columns of A⊤

Q and b⊤r are rows of BQ). We now
generalize this by introducing additional latent factors in the construction of the feature-per-head vectors, leading to what
we term higher-order TPA. This approach allows for more complex interactions in forming these feature vectors.
For instance, in a third-order factorization, the query tensor Qt ∈ Rh×dh for a single token t is constructed as:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ vec
(
bQ
r (xt) ⊗ cQr (xt)

)
,

where aQr (xt) ∈ Rh. The term bQ
r (xt) ∈ Rdb and the newly introduced factor cQr (xt) ∈ Rdc first form a matrix

bQ
r (xt)⊗ cQr (xt) ∈ Rdb×dc via an outer product (as defined in Section 2). This matrix is then vectorized by vec(·) into a

column vector of dimension dh = dbdc. The final query Qt is formed by the sum of outer products between aQr (xt) and
these resulting dh-dimensional vectors. Analogous expansions apply to Kt and Vt.
The additional factor cQr (xt) can be viewed as a learnable, context-dependent modulation or gating term for the features
generated by bQ

r (xt).

bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , dh = dbdc.

This higher-order construction can enhance expressiveness. While introducing cQr increases the parameter count for the
factors, it might allow for the use of smaller base ranks (RQ, RK , RV) to achieve comparable representational power, thus
offering a different design choice. One could also explore tying or sharing cQr across queries, keys, and values to manage
parameter overhead.
From a memory perspective during inference, higher-order TPA maintains the benefit of factorized KV caching. Only the
constituent factors aK(xt),bK(xt), cK(xt) (and similarly for values) for each past token need to be stored. A trade-off
arises between model capacity and the overhead of memory and computation. Higher-order tensor decompositions can
provide additional flexibility and potentially increased capacity.

F.1 RoPE Compatibility in Higher-Order TPA

Rotary positional embeddings (RoPE) remain compatible with higher-order factorizations. In second-order TPA, RoPE
applies rotations to the dh-dimensional feature vectors. This compatibility extends to higher-order TPA. Consider the case
where RoPE is intended to primarily rotate feature pairs derived from the bQ

r (xt) components, while the structural influence
of cQr (xt) components on the dh-dimensional vector is preserved. More formally, RoPE acts on the dh-dimensional vector
vec(bQ

r ⊗ cQr) such that the transformation is equivalent to rotating bQ
r to b̃Q

r = Rtb
Q
r (where Rt is the RoPE rotation

matrix for db dimensions) and then forming vec(b̃Q
r ⊗ cQr). This is achieved by a specific RoPE transformation matrix Tt

acting on the full dh-dimensional vector, as stated in the following theorem.

Theorem F.1 (RoPE Compatibility in Higher-Order TPA). Consider the higher-order (3-order) Tensor Product Attention
(TPA) query factorization

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,

where aQr (xt) ∈ Rh, bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , with dh = dbdc. Define the RoPE-transformed query as Q̃t =

RoPEt

(
Qt

)
= QtTt, where

Tt = Idc ⊗ (Rt)
⊤ =

(Rt)

⊤ · · · 0 0
0 (Rt)

⊤ · · · 0
...

...
. . .

...
0 0 · · · (Rt)

⊤

 ∈ Rdh×dh ,

26

Tensor Product Attention Is All You Need

Idc
is the identity matrix of size dc × dc, and Rt ∈ Rdb×db (db ∈ Z+ is even) is the standard RoPE block-diagonal matrix

composed of 2× 2 rotation matrices:

Rt =

cos(tθ1) − sin(tθ1)
sin(tθ1) cos(tθ1)

cos(tθ2) − sin(tθ2)
sin(tθ2) cos(tθ2)

. . .
cos(tθdb/2) − sin(tθdb/2)
sin(tθdb/2) cos(tθdb/2)

,

for t ∈ {1, . . . , T} and j ∈ {1, . . . , db/2}. The transformation Tt = Idc
⊗ (Rt)

⊤ operates on the dh-dimensional
vectorized features by post-multiplication. This structure of Tt ensures that the rotation effectively applied to the bQ

r (xt)
component (which is a column vector) corresponds to a pre-multiplication by Rt, as detailed in the proof (Appendix G.2).
This preserves the structure induced by cQr (xt) while rotating bQ

r (xt).
Under these conditions, the RoPE-transformed query RoPEt

(
Qt

)
admits a higher-order TPA factorization of the same rank

RQ:

1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
= RoPEt

(
Qt

)
, (F.1)

where b̃Q
r (xt) = Rtb

Q
r (xt).

Please see Appendix G.2 for the proof. For fourth-order or higher, this result still holds.
To assess its empirical performance, we implemented third-order TPA. Table 2 lists the evaluation results for a small model.
These results provide an initial indication of its viability. A comprehensive comparison with second-order TPA variants of
similar parameter counts or ranks would be necessary to fully evaluate the trade-offs.

Table 2. The evaluation results of small models with third-order TPA pre-trained using FineWeb-Edu 100B dataset with lm-evaluation-
harness. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Few-shot ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

0-shot 49.24 24.91 57.06 34.01 31.80 63.33 50.59 23.23 66.9 44.56
2-shot 53.37 25.34 48.78 34.00 29.20 62.79 52.33 26.41 75.3 45.28

G Proofs of Theorems

G.1 Proof of Theorem A.1

Proof. Because RoPE is a linear orthogonal transform, we can write

Q̃t = Qt Tt =
1

RQ

(
AQ(xt)

⊤ BQ(xt)
)
Tt =

1

RQ
AQ(xt)

⊤(BQ(xt)Tt

)
,

where Tt is the block-diagonal matrix encoding RoPE. This allows us to define

B̃Q(xt) = BQ(xt)Tt,

thereby obtaining

RoPE(Qt) =
1

RQ
AQ(xt)

⊤B̃Q(xt).

Similarly, for the key tensor Ks, we have

K̃s = Ks Ts =
1

RK

(
AK(xs)

⊤ BK(xs)
)
Ts =

1

RK
AK(xs)

⊤(BK(xs)Ts

)
,

27

Tensor Product Attention Is All You Need

which defines

B̃K(xs) = BK(xs)Ts,

and thus

RoPE(Ks) =
1

RK
AK(xs)

⊤B̃K(xs).

Now, consider the product of the rotated queries and keys:

Q̃t K̃
⊤
s =

1

RQRK

(
AQ(xt)

⊤B̃Q(xt)
)(

AK(xs)
⊤B̃K(xs)

)⊤
=

1

RQRK
AQ(xt)

⊤B̃Q(xt)B̃K(xs)
⊤AK(xs),

Since Tt and Ts encode positional rotations, the product TtT
⊤
s corresponds to a relative rotation Tt−s. Therefore, we can

express the above as

Q̃t K̃
⊤
s =

1

RQRK
AQ(xt)

⊤ (BQ(xt)TtT
⊤
s BK(xs)

⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (BQ(xt)Tt−sBK(xs)
⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (BQ(xt)Tt−s)
(
BK(xs)

⊤AK(xs)
)

=

(
1

RQ
AQ(xt)

⊤BQ(xt)Tt−s

)(
1

RK
AK(xs)

⊤BK(xs)

)⊤

,

This shows that

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

Focusing on individual heads i, the above matrix equality implies:

RoPEt−s(qt,i)
⊤ks,i = q̃⊤

t,ik̃s,i,

where

q̃t,i = RoPE(qt,i) = Ttqt,i ∈ Rdh , k̃s,i = RoPE(ks,i) = Tsks,i ∈ Rdh .

This equality confirms that the relative positional encoding between queries and keys is preserved under TPA’s factorization
and RoPE’s rotation. Thus, TPA maintains compatibility with RoPE. This completes the proof of Theorem A.1.

G.2 Proof of Theorem F.1

Theorem F.1 addresses the compatibility of RoPE with higher-order (specifically, 3rd-order) Tensor Product Attention. The
theorem considers the query factorization:

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,

where aQr (xt) ∈ Rh (column vector), bQ
r (xt) ∈ Rdb (column vector), cQr (xt) ∈ Rdc (column vector), and dh = dbdc. The

term bQ
r (xt) ⊗ cQr (xt) is interpreted as the matrix Mr = bQ

r (xt)(c
Q
r (xt))

⊤ ∈ Rdb×dc . The notation a ⊗ v for a ∈ Rh

and v ∈ Rdh (column vectors) implies the outer product av⊤. Thus, Qt =
1

RQ

∑RQ

r=1 a
Q
r (xt)(vec(Mr))

⊤.

28

Tensor Product Attention Is All You Need

The RoPE-transformed query is defined as Q̃t = RoPEt

(
Qt

)
= QtTt. Crucially, for the theorem’s conclusion to hold as

intended (i.e., that the bQ
r component is transformed by pre-multiplication with the standard RoPE matrix Rt), the global

transformation matrix Tt ∈ Rdh×dh (that post-multiplies Qt) is given by:

Tt = Idc
⊗ (Rt)

⊤,

where Idc is the dc × dc identity matrix, and Rt ∈ Rdb×db is the standard RoPE block-diagonal matrix that pre-multiplies
db-dimensional column vectors (as defined explicitly in the theorem statement in Section F).
The theorem claims that, under these conditions, Q̃t admits a higher-order TPA factorization:

Q̃t =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
,

where b̃Q
r (xt) = Rtb

Q
r (xt).

Proof. Let aQr ≡ aQr (xt), bQ
r ≡ bQ

r (xt), and cQr ≡ cQr (xt) for brevity. Let Mr = bQ
r (c

Q
r)

⊤ ∈ Rdb×dc . Let
vr = vec(Mr) ∈ Rdh be the column vector obtained by stacking the columns of Mr. The query tensor is
Qt =

1
RQ

∑RQ

r=1 a
Q
r (vr)

⊤.

The RoPE transformation is Q̃t = QtTt. Substituting the factorization and the revised definition of Tt:

Q̃t =

 1

RQ

RQ∑
r=1

aQr (vr)
⊤

 (Idc ⊗ (Rt)
⊤)

=
1

RQ

RQ∑
r=1

aQr
(
(vr)

⊤(Idc
⊗ (Rt)

⊤)
)
.

Let’s analyze the transformed vector part for the r-th component: (vr)
⊤(Idc

⊗ (Rt)
⊤). This row vector is the transpose of

((Idc ⊗ (Rt)
⊤)⊤vr). Let’s compute the pre-multiplying matrix:

((Idc
⊗ (Rt)

⊤)⊤ = (Idc
)⊤ ⊗ ((Rt)

⊤)⊤ = Idc
⊗Rt.

So, the column vector transformation is (Idc ⊗Rt)vr. Substitute vr = vec(Mr) = vec(bQ
r (c

Q
r)

⊤):

(Idc
⊗Rt) vec(b

Q
r (c

Q
r)

⊤).

We use the Kronecker product identity: (B0
⊤ ⊗ A0) vec(X0) = vec(A0X0B0). To match our expression (Idc ⊗

Rt) vec(Mr), we identify: A0 = Rt, B0
⊤ = Idc =⇒ B0 = Idc , X0 = Mr = bQ

r (c
Q
r)

⊤. Applying the identity, we get:

vec
(
Rt(b

Q
r (c

Q
r)

⊤)Idc

)
= vec

(
(Rtb

Q
r)(c

Q
r)

⊤) .
Let b̃Q

r = Rtb
Q
r . This is precisely the transformation for the bQ

r component as claimed in the theorem. So the transformed
column vector is vec(b̃Q

r (c
Q
r)

⊤). The corresponding row vector in the sum for Q̃t is therefore (vec(b̃Q
r (c

Q
r)

⊤))⊤.

Substituting this back into the expression for Q̃t:

Q̃t =
1

RQ

RQ∑
r=1

aQr (vec(b̃
Q
r (c

Q
r)

⊤))⊤.

This is equivalent to the theorem’s claimed factorization, using the definition a⊗ col vec = a(col vec)⊤:

Q̃t =
1

RQ

RQ∑
r=1

aQr ⊗ vec
(
b̃Q
r ⊗ cQr

)
,

where b̃Q
r = Rtb

Q
r . This completes the proof, showing that RoPE can be consistently applied to higher-order TPA

representations if the global RoPE transformation matrix Tt (that post-multiplies Qt) is appropriately defined as Idc⊗(Rt)
⊤,

ensuring that the standard RoPE matrix Rt effectively pre-multiplies the bQ
r component.

29

Tensor Product Attention Is All You Need

H More Related Work

Transformers and Attention. As a sequence-to-sequence architecture, Transformer (Vaswani et al., 2017) introduced Multi-
Head Attention (MHA), enabling more effective capture of long-range dependencies. Subsequent work has explored a variety
of attention mechanisms aimed at improving scalability and efficiency, including sparse patterns (Child et al., 2019; Shi et al.,
2023; Han et al., 2024; Liang et al., 2024a; Li et al., 2024; Liang et al., 2024b), kernel-based projections (Choromanski et al.,
2021), and linearized transformers (Tsai et al., 2019; Katharopoulos et al., 2020; Schlag et al., 2021; Zhang et al., 2023b;
Sun et al., 2023; Zhang et al., 2024). To decrease memory usage and circumvent the limitation of memory bandwidth in
training, (Shazeer, 2019) proposed Multi-Query Attention (MQA) where multiple query heads share the same key head and
value head. To tackle the issue of quality degradation and instability in training, Grouped-Query Attention (GQA) (Ainslie
et al., 2023) divides queries into several groups, and each group of queries shares a single key head and value head. Recently,
DeepSeek-V2 (Liu et al., 2024a) applied multihead latent attention (MLA) to achieve better performance than MHA while
reducing KV cache in inference time by sharing the same low-rank representation of key and value. Concurrently, (Hu et al.,
2024) proposed Multi-matrix Factorization Attention (MFA), which can be simply seen as MQA with low-rank factorized Q.
Compared to the approaches above, TPA applied contextual tensor decompositions to represent queries, keys, and values
activations compactly, achieving better reduction on the size of KV cache with improved performance.
KV Cache Optimization. During the auto-regressive inference of Transformers, key and value (KV) tensors from previous
tokens are cached to avoid recomputation, a technique first proposed by (Ott et al., 2019). This Key-Value (KV) cache,
while crucial for efficiency, consumes significant memory and can introduce latency bottlenecks due to memory bandwidth
limitations (Adnan et al., 2024). Consequently, various studies have explored methods to mitigate these issues. These
include KV cache eviction strategies that discard less significant tokens (Zhang et al., 2023c; Xiao et al., 2024; Cai et al.,
2024; Adnan et al., 2024), dynamic sparse attention mechanisms focusing on selected keys and values (Ribar et al., 2024;
Tang et al., 2024; Singhania et al., 2024), offloading the KV cache to CPU memory (He & Zhai, 2024; Lee et al., 2024; Sun
et al., 2024), and quantizing the KV cache (Xiao et al., 2023; Liu et al., 2024c; Hooper et al., 2024). In contrast to these
approaches, TPA focuses on reducing the intrinsic size of the KV cache by employing tensor-decomposed key and value
representations.
Low-Rank Factorizations. Low-rank approximations are widely used to compress model parameters and reduce computa-
tional complexity. Notable examples include LoRA (Hu et al., 2022), which factorizes weight updates during fine-tuning, and
its derivatives tailored for various training scenarios such as efficient pretraining (ReLoRA (Lialin et al., 2023), MoRA (Jiang
et al., 2024)), long-context training (LongLoRA (Chen et al., 2024), SinkLoRA (Zhang, 2024)), and continual training
(InfLoRA (Liang & Li, 2024), GS-LoRA (Zhao et al., 2024), I-LoRA (Ren et al., 2024)). These methods generally produce
static low-rank expansions that are independent of the input context. Theoretical justifications for the expressiveness of
low-rank approximations have been provided by (Malladi et al., 2023; Zeng & Lee, 2024). Initialization strategies for
these factorization matrices have also been explored: OLoRA (Büyükakyüz, 2024) utilizes QR-decomposition of pretrained
weights for improved language model performance, while LoLDU (Shi et al., 2024) employs LDU-decomposition to
accelerate LoRA training. Furthermore, AdaLoRA (Zhang et al., 2023a) uses Singular Value Decomposition (SVD) on
pretrained weights and introduces parameter importance scores to dynamically adjust ranks. TPA, in contrast, constructs Q,
K, and V tensors using contextually-aware factorizations, allowing for dynamic adaptation based on the input.

I More on Attention Mechanisms

Throughout the paper, WQ,WK ,W V denote projection matrices for queries, keys, and values, respectively. In multi-
head attention, each head is associated with its own set of WQ

i ,WK
i ,W V

i , and each has dimension WQ
i ,WK

i ,W V
i ∈

R dmodel×dk , where dk is typically set to dh, the dimension of each head.5 Similarly, we have an output projection matrix
WO ∈ R(h·dh)×dmodel . For methods like MQA and GQA, some of these projection matrices are shared or partially shared
across heads, but their shapes remain consistent.
We define the tensor product of two vectors as follows: for vectors a ∈ Rm,b ∈ Rn, the tensor product of a and b is:
a⊗ b = C ∈ Rm×n,with Cij = aibj , where ai is the i-th element of a, bj is the j-th element of b, and Cij is the (i, j)-th
entry of C. The vectorization of a matrix C ∈ Rm×n, denoted vec(C) ∈ Rmn, stacks the columns of C into a single
column vector. For example, if C = [c1, c2, . . . , cn] where cj are columns, then vec(C) = [c⊤1 , c

⊤
2 , . . . , c

⊤
n]

⊤.

5Often, h× dh = dmodel, so each head has query/key/value dimension dh.

30

Tensor Product Attention Is All You Need

I.1 Scaled Dot-Product Attention

Scaled dot-product attention (Vaswani et al., 2017) determines how to focus on different parts of an input sequence by
comparing queries (Q) and keys (K). It produces a weighted combination of the values (V). Formally, the attention output
is:

Attention(Q,K,V) = Softmax
(

QK⊤
√
dk

)
V,

where each of Q,K,V is an (n× dk) matrix for n tokens and key dimension dk.

I.2 Multi-Head Attention (MHA)

Multi-Head Attention (MHA) (Vaswani et al., 2017) extends scaled dot-product attention by dividing the model’s internal
representation into several heads. Each head learns different projections for queries, keys, and values, allowing the model to
attend to different types of information from different representational subspaces. For each token embedding xt ∈ Rdmodel ,
MHA computes each head i as follows:

Qt,i = (WQ
i)⊤ xt ∈ Rdh ,

Kt,i = (WK
i)⊤ xt ∈ Rdh ,

Vt,i = (W V
i)⊤ xt ∈ Rdh ,

headi = Attention
(
Qi,Ki,Vi

)
,

where WQ
i ,WK

i ,W V
i ∈ Rdmodel×dh are learnable projection matrices for the i-th head, and Qi,Ki,Vi ∈ RT×dh are

the query, key, and value matrices for the i-th head over T tokens. After computing each head’s attention output, the
results are concatenated and mapped back to the model’s original dimension via another learnable linear projection matrix
WO ∈ Rhdh×dmodel :

MHA(X) = Concat
(
head1, . . . ,headh

)
WO.

MHA captures diverse dependencies by allowing each head to focus on different input aspects.

I.3 Multi-Query Attention (MQA)

Multi-Query Attention (MQA) (Shazeer, 2019) significantly reduces memory usage, particularly for the KV cache, by
sharing a single key and value projection across all attention heads, while each head maintains a unique query projection.
Given a sequence of input embeddings X ∈ RT×dmodel , the query, shared key, and shared value tensors are computed as:

Qi = XWQ
i , Kshared = XWK

shared, Vshared = XW V
shared.

Thus, each head i uses a distinct query projection Qi ∈ RT×dh but shares the common key Kshared ∈ RT×dh and value
Vshared ∈ RT×dh tensors. The weight matrices are:

WQ
i ∈ Rdmodel×dh , WK

shared,W
V
shared ∈ R dmodel×dh .

The resulting MQA operation is:

MQA(X) = Concat
(

head1, . . . ,headh

)
WO,

where

headi = Attention
(
Qi,Kshared,Vshared

)
.

By sharing key and value projections, MQA substantially reduces memory demands, especially for the KV cache during
autoregressive inference. However, this comes at the cost of reduced model expressivity, as all heads must utilize the same
key and value representations.

31

Tensor Product Attention Is All You Need

I.4 Grouped Query Attention (GQA)

Grouped Query Attention (GQA) (Ainslie et al., 2023) generalizes Multi-Head Attention (MHA) and MQA by dividing
the total h attention heads into G groups. Within each group, heads share a common key and value projection, while each
head maintains its own unique query projection. Formally, let g(i) denote the group index for head i ∈ {1, . . . , h}, where
g(i) ∈ {1, . . . , G}. The projections are:

Kg(i) = XWK
g(i), Vg(i) = XW V

g(i), Qi = XWQ
i ,

and

headi = Attention
(
Qi,Kg(i),Vg(i)

)
.

Here, WK
g and W V

g are the shared weight matrices for group g, each in Rdmodel×dh , and WQ
i ∈ Rdmodel×dh is the query

weight matrix for head i. The complete output is again a concatenation of all heads:

GQA(X) = Concat
(

head1, . . . , headh
)
WO.

By varying G from 1 (equivalent to MQA) to h (equivalent to MHA), GQA offers a trade-off between memory efficiency
and model capacity.

I.5 Multi-head Latent Attention (MLA)

Multi-head Latent Attention (MLA), as used in DeepSeek-V2 (Liu et al., 2024a) and DeepSeek-V3 (Liu et al., 2024b),
introduces low-rank compression for keys and values to reduce KV caching costs during inference.

CKV = XWDKV ,

Concat
(
KC

1 ,K
C
2 , . . . ,K

C
h

)
= KC = CKV WUK ,

KR = RoPE
(
XWKR

)
,

Ki = Concat
(
KC

i ,K
R
)
,

Concat
(
VC

1 ,V
C
2 , . . . ,V

C
h

)
= VC = CKV WUV ,

Here, WDKV ∈ Rdmodel×dc projects to a compressed dimension dc, WUK ∈ Rdc×(dhh) up-projects the compressed keys,
WKR ∈ Rdmodel×dR

h projects to a residual key component for RoPE, and WUV ∈ Rdc×(dhh) up-projects the compressed
values. CKV ∈ RT×dc is the shared compressed KV latent (where dc ≪ dhh). The RoPE transformation is applied to a
separate key embedding KR ∈ RT×dR

h . Thus, only CKV and KR are cached, reducing KV memory usage while largely
preserving performance compared to standard MHA (Vaswani et al., 2017).
MLA also compresses the queries, lowering their training-time memory footprint:

CQ = XWDQ,

Concat
(
QC

1 ,Q
C
2 , . . . ,Q

C
h

)
= QC = CQWUQ,

Concat
(
QR

1 , Q
R
2 , . . . , Q

R
h

)
= QR = RoPE

(
CQWQR

)
,

Q = Concat
(
QC ,QR

)
.

The weight matrices are WDQ ∈ Rdmodel×d′
c , WUQ ∈ Rd′

c×(dhh), and WQR ∈ Rd′
c×(dR

h h). Here, CQ ∈ RT×d′
c (where

d′c ≪ dhh) is the compressed query latent. The final query Qi for each head, formed by concatenating QC
i and QR

i , has a
dimension of dh + dRh .
Given compressed queries, keys, and values, the final attention output for the t-th token is:

Oi = Softmax
(

QiK
⊤
i√

dh+dR
h

)
VC

i ,

U = Concat
(
O1,O2, . . . ,Oh

)
WO,

32

Tensor Product Attention Is All You Need

where Vi is typically VC
i as no residual value component is explicitly defined, and WO ∈ R(dhh)×dmodel is the output

projection.
During inference, CKV and KR are cached to accelerate decoding. In detail, if RoPE were ignored for the compressed
components, the inner product q⊤

t,iks,i (where qt,i,ks,i ∈ Rdh) of the i-th head between t-th token query and s-th token
key could be calculated using the current hidden state xt ∈ Rdmodel and the cached latent state cKV

s ∈ Rdc for the s-th token:

q⊤
t,iks,i = [(WUQ

i)⊤(WDQ
i)⊤xt]

⊤[(WUK
i)⊤cKV

s] (I.1)

= x⊤
t [W

DQ
i WUQ

i (WUK
i)⊤]cKV

s , (I.2)

where W
(·)
i denotes the i-th head’s portion of the respective weight matrix. The term [WDQ

i WUQ
i (WUK

i)⊤] could be
pre-computed for faster decoding. However, as noted by (Su, 2024), this pre-computation strategy is not directly compatible
with RoPE if RoPE were applied to these compressed representations. RoPE applies a rotation matrix Tt ∈ Rdh×dh based
on position t (see Section I.7), satisfying TtT

⊤
s = Tt−s (Equation I.4). If RoPE were applied to the up-projected QC and

KC :

q⊤
t,iks,i = [Tt

⊤(WUQ
i)⊤(WDQ

i)⊤xt]
⊤[Ts

⊤(WUK
i)⊤cKV

s]

= x⊤
t [W

DQ
i WUQ

i Tt−s(W
UK
i)⊤]cKV

s .
(I.3)

Unlike Equation (I.2), acceleration by pre-computing the term [WDQ
i WUQ

i Tt−s(W
UK
i)⊤] is not possible because it

depends on the relative position (t − s) and thus varies for different (t, s) pairs. To maintain RoPE compatibility while
benefiting from compression, MLA introduces an additional, smaller key component KR (and similarly QR) to which
RoPE is applied, while the main compressed components KC and VC (derived from CKV) remain RoPE-free. As we will
demonstrate in Section A of the main paper, TPA offers a different approach to integrate RoPE efficiently with factorized
attention through its tensor product formulation.

I.6 Multi-matrix Factorization Attention (MFA)

(Hu et al., 2024) proposed Multi-matrix Factorization Attention (MFA), which can be conceptualized as a variation of
MQA where the shared key and value projections have a dimension dc, and the query projection for each head is low-rank
factorized:

Qi = XWDQWUQ
i , Kshared = XWK

shared, Vshared = XW V
shared,

where

WDQ ∈ Rdmodel×dc , WUQ
i ∈ Rdc×dc , WK

shared,W
V
shared ∈ R dmodel×dc .

I.7 Rotary Position Embedding (RoPE)

Many recent LLMs use rotary position embedding (RoPE; Su et al., 2024) to encode positional information in the query/key
vectors. Specifically, for a vector at position t, RoPE applies a rotation matrix Tt ∈ Rd×d (where d is the dimension
of the query/key vectors, typically dh per head). Tt is a block-diagonal matrix composed of d/2 rotation blocks of the

form
(
cos(tθj) − sin(tθj)
sin(tθj) cos(tθj)

)
for j ∈ {1, . . . , d/2}. The frequencies {θj} are typically defined as θj = base−2j/d, with a

common base like 10000. If qt ∈ Rd is a query (or key) row vector for a specific head at position t, RoPE is applied as:

RoPE(qt) ≜ qtTt.

A key property of RoPE is that the inner product between RoPE-transformed vectors depends only on their relative position.
For a query qt and key ks: (qtTt)(ksTs)

⊤ = qtTtT
⊤
s k

⊤
s = qtTt−sk

⊤
s . This relies on the property:

TtT
⊤
s = Tt−s, (I.4)

which embeds relative positional information (t− s) into the attention scores.

33

Tensor Product Attention Is All You Need

J More on TPA

Parameter Initialization for TPA Factors. We initialize the weight matrices for TPA factors, such as W aQ

r , W aK

r ,
W aV

r , W bQ

r , W bK

r , and W bV

r (or their combined forms W aQ

, W bQ , etc.), using Xavier initialization (Glorot & Bengio,
2010). Specifically, each entry of a weight matrix is drawn from a uniform distribution U(−bound, bound), where
bound =

√
6/(nin + nout). Here, nin and nout are the input and output dimensions of the respective weight matrix. This

initialization strategy is chosen to help maintain the variance of activations and gradients as they propagate through the
network layers, contributing to stable training.
TPA with Non-contextual B. In Section B.1, we have introduced TPA with non-contextual A, where head-dimension
factors aQr ,a

K
r ,aVr ∈ Rh are fixed. Conversely, one may fix the token-dimension factors bQ

r ,b
K
r ,bV

r ∈ Rdh as learned
parameters, while allowing aQr (xt),a

K
r (xt),a

V
r (xt) to adapt to the input token xt. The key tensor for token t, Kt ∈ Rh×dh ,

would then be constructed as:

Kt =
1

RK

RK∑
r=1

aKr (xt)⊗ bK
r .

A similar formulation applies to values. This configuration might be effective if the fundamental token-level features
(captured by br) are relatively stable, while their combination across heads (captured by ar(xt)) needs to adapt to the
context. Performance comparisons for TPA with non-contextual A factors versus non-contextual B factors on small and
medium-sized models are presented in Tables 5, 6, 7, and 8.

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)

Figure 7. The training loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention
mechanisms on the FineWeb-Edu 100B dataset.

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)

Figure 8. The validation loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention
mechanisms on the FineWeb-Edu 100B dataset.

TPA KV Only. A simpler variant involves using a standard linear projection for queries,

Qt = WQxt ∈ Rh×dh ,

and factorize only the key and value tensors (Kt,Vt). This approach, termed TPA-KVonly, maintains the standard query
projection mechanism but still achieves significant KV cache reduction through factorized key and value representations.

34

Tensor Product Attention Is All You Need

Table 3. The evaluation results of medium models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.51 29.52 59.60 45.68 34.20 68.82 53.43 23.33 76.90 50.11
MQA 57.62 31.91 59.45 45.69 35.40 69.31 53.51 26.47 74.60 50.44
GQA 58.67 31.48 58.29 45.45 35.20 68.50 54.46 24.58 76.50 50.35
MLA 56.65 29.52 57.83 46.05 34.60 69.42 52.80 24.62 79.70 50.13

TPA-KVonly 58.01 30.12 58.01 45.95 35.60 69.10 53.12 25.39 75.10 50.04
TPA 58.38 31.57 59.39 46.83 37.00 70.02 54.06 25.52 79.90 51.41

Table 4. The evaluation results of large models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.93 33.62 61.93 50.63 36.00 71.06 55.41 22.87 81.20 52.52
MQA 60.73 33.62 57.34 50.09 37.00 69.97 55.49 25.30 79.60 52.13
GQA 61.66 34.30 58.72 49.85 38.40 71.16 53.75 25.23 77.60 52.30
MLA 63.55 32.85 60.95 51.72 38.80 70.51 55.01 24.55 81.90 53.32

TPA-KVonly 63.26 34.13 61.96 50.66 37.20 72.09 55.25 26.06 81.10 53.52
TPA 63.22 35.58 60.03 51.26 36.80 71.44 55.56 24.77 79.60 53.10

TPA KV with Shared B. Further parameter reduction can be achieved by sharing the token-dimension factors br between
keys and values:

bK
r (xt) = bV

r (xt) (if contextual), or bK
r = bV

r (if non-contextual).

This sharing reduces both parameter count and the KV cache footprint. Although it constrains Kt and Vt to be constructed
from the same token-level basis vectors, this variant can still offer strong performance with additional memory savings.
Nonlinear Head Factors. Instead of using purely linear transformations to derive the contextual head-dimension factors
aQr (xt),a

K
r (xt),a

V
r (xt), one can introduce element-wise nonlinearities (e.g., sigmoid σ(·) or softmax). Applying softmax,

for instance, to the coefficients that generate ar(xt) could be interpreted as a form of Mixture-of-Heads, where the network
learns to dynamically weight different head configurations based on the input context.
Discussion. These variants highlight the flexibility of the TPA framework, allowing for different trade-offs between memory
efficiency, computational cost, and model expressiveness. By carefully choosing which factor components (head-dimension
or token-dimension) are contextual versus non-contextual, and by adjusting the ranks (RQ, RK , RV), TPA can not only
unify existing mechanisms like MHA, MQA, and GQA but also significantly reduce KV cache size—potentially by an order
of magnitude—during autoregressive inference.

K More on Experiments

K.1 Experimental Settings

We list the main architecture hyper-parameters and training devices in Table 9. For all models, the head dimension dh is
fixed at 64. Specific architectural choices include: 2 KV heads for GQA models; a residual key dimension dRh = 32 for
MLA models; and ranks RK = RV = 2 and RQ = 6 for TPA and TPA-KVonly models, unless otherwise specified. Other
relevant hyper-parameters are listed in Table 10.
Training Setup Details. We follow the nanoGPT training configuration (Karpathy, 2022). In particular, we use the
AdamW (Loshchilov, 2017) optimizer with (β1, β2) = (0.9, 0.95), a weight decay of 0.1, and gradient clipping at 1.0. We
follow the same setting as nanoGPT that the learning rate is managed by a cosine annealing scheduler (Loshchilov &
Hutter, 2016) with 2,000 warmup steps and a (total) global batch size of 480. For the small, medium, large and XL models,
we set maximum learning rates of 6× 10−4, 3× 10−4, 2× 10−4, and 1× 10−4 (respectively), and minimum learning rates
of 3× 10−5, 6× 10−5, 1× 10−5, and 1× 10−5 (respectively).

35

Tensor Product Attention Is All You Need

Table 5. Evaluation results of small models with TPA using non-contextual A or B factors, pre-trained on FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 50.17 25.60 57.95 36.13 31.40 64.80 49.57 24.88 64.80 45.03
TPA (non-ctx-B) 47.39 26.37 54.8 32.71 30.2 63.38 50.2 23.13 64.8 43.66

Table 6. Evaluation results of small models with TPA using non-contextual A or B factors, pre-trained on FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 55.09 27.65 53.82 36.24 30.20 64.53 50.75 26.01 78.60 46.99
TPA (non-ctx-B) 50.8 26.96 57.65 32.4 29.4 63.22 49.57 23.96 66.4 44.48

Table 7. Evaluation results of medium models with TPA using non-contextual A or B factors, pre-trained on FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 58.96 31.48 59.76 45.07 34.80 69.21 53.59 25.42 76.40 50.52
TPA (non-ctx-B) 55.43 29.69 58.32 40.77 34.40 66.92 51.38 25.66 71.10 48.19

Table 8. Evaluation results of medium models with TPA using non-contextual A or B factors, pre-trained on FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 65.45 33.79 56.88 45.23 33.60 68.61 54.22 25.00 85.00 51.98
TPA (non-ctx-B) 61.20 30.20 55.93 40.45 34.40 68.23 51.78 26.11 78.10 49.60

Table 9. The architecture hyper-parameters and training devices of models. Abbreviations: BS. = Batch Size, GAS. = Gradient Accumula-
tion Steps.

MODEL SIZE PARAMETERS DEVICES MICRO BS. GAS. #LAYERS dMODEL

SMALL 124M 4× A100 GPUS 24 5 12 768
MEDIUM 353M 8× A100 GPUS 20 3 24 1024
LARGE 772M 8× A100 GPUS 15 4 36 1280

XL 1.55B 8× A100 GPUS 6 10 48 1600

Table 10. The architecture hyper-parameters for different models.
MODEL SIZE SMALL MEDIUM LARGE XL

h (MHA) 12 16 20 25
h (MQA) 23 31 39 49
h (GQA) 22 30 38 48
h (MLA) 12 23 34 49

h (TPA-KVONLY) 22 29 37 47
h (TPA) 34 47 61 78

dc (MLA) 256 512 512 512
d′c (MLA) 512 1024 1024 1024

K.2 Additional Experimental Results

K.2.1 PERPLEXITY CURVES

We display the perplexity curves for medium, large, and XL size models in Figure 9.

36

Tensor Product Attention Is All You Need

(a) Validation Perplexity (b) Validation Perplexity (c) Validation Perplexity

Figure 9. The validation perplexity of medium-size (353M) models, large-size (773M), and XL-size (1.5B) models with different attention
mechanisms on the FineWeb-Edu 100B dataset.

K.2.2 ABLATION STUDY ON DIFFERENT RANKS

Figure 10 illustrates the training loss, validation loss, and validation perplexity for XL-sized (1.5B parameters) TPA models
with varying key/value ranks (RK = RV = R, as indicated in the figure legend), trained on the FineWeb-Edu 100B dataset.
Corresponding 0-shot evaluation results are presented in Table 12 (rows for TPA-KVonly with different RK,V). These
results indicate that increasing the ranks for key and value factorizations generally improves the performance of the TPA
models.

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 10. The training loss, validation loss and validation perplexity curves of XL-size (1.5B) TPA models with different key/value ranks
(RK = RV = R) on the FineWeb-Edu 100B dataset.

K.2.3 0-SHOT EVALUATION WITH LM-EVALUATION-HARNESS

We present 0-shot evaluation results using the lm-evaluation-harness for small (124M parameters) and XL (1.5B parameters)
models in Tables 11 and 12, respectively.

K.2.4 2-SHOT EVALUATION WITH LM-EVALUATION-HARNESS

Similarly, 2-shot evaluation results are provided in Tables 13 (Small), 14 (Medium), 15 (Large), and 16 (XL).

K.3 Ablation Studies on Learning Rates

To assess sensitivity to learning rates, we conducted parallel experiments on medium-sized models using a learning rate of
3× 10−4 (compared to the default 6× 10−4 used for other medium model results). The training loss, validation loss, and
validation perplexity curves are shown in Figure 11. Performance on standard benchmarks for these models trained with the
3× 10−4 learning rate are reported in Tables 17 (0-shot) and 18 (2-shot). The results demonstrate that TPA and TPA-KVonly
maintain their performance advantages over other attention mechanisms even with this alternative learning rate.

37

Tensor Product Attention Is All You Need

Table 11. Evaluation results of small models (124M) with different attention mechanisms, pre-trained on FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 50.63 26.96 59.39 36.18 32.00 64.96 51.85 23.40 70.30 46.19
MQA 49.62 25.34 55.72 35.94 31.40 64.85 51.30 23.37 68.70 45.14
GQA 48.70 25.68 56.15 35.58 31.40 64.91 51.62 23.12 68.20 45.04
MLA 50.21 26.71 58.01 36.25 32.80 64.69 50.59 24.67 71.90 46.20

TPA-KVonly 51.05 26.54 57.25 36.77 32.60 65.02 50.91 23.64 69.70 45.94
TPA 51.26 27.39 57.00 36.68 32.80 64.47 49.72 24.61 72.00 46.21

Table 12. Evaluation results of XL models (1.5B) with different attention mechanisms, pre-trained on the FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande. If not specified, TPA and TPA-KVonly models use RK = RV = 2.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.81 35.41 61.90 54.32 37.20 72.74 55.80 25.44 82.80 54.49
MQA 64.10 36.01 62.26 54.38 39.00 72.58 56.43 23.70 81.90 54.48
GQA 63.68 35.92 60.46 54.17 38.40 73.56 56.27 24.77 81.70 54.33
MLA 64.14 35.92 60.12 53.60 39.20 72.25 55.17 24.71 81.60 54.08

TPA-KVonly 65.61 36.77 63.02 54.17 37.00 73.34 54.62 25.02 81.60 54.57
TPA-KVonly (RK,V = 4) 64.52 37.03 63.27 54.89 39.80 72.91 56.51 24.74 81.60 55.03
TPA-KVonly (RK,V = 6) 65.78 35.92 61.71 54.86 38.60 72.69 57.93 25.59 82.20 55.03
TPA 66.71 36.52 61.38 54.03 40.40 72.52 56.83 24.49 82.20 55.01

Table 13. Evaluation results of small models (124M) with different attention mechanisms, pre-trained on FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 57.66 28.24 57.28 36.43 29.60 64.09 51.14 26.57 82.00 48.11
MQA 53.79 26.35 44.95 34.18 28.80 62.79 52.01 25.91 78.10 45.21
GQA 55.01 25.94 55.72 35.68 31.80 65.29 51.93 25.27 77.80 47.16
MLA 54.76 27.13 58.07 36.13 31.40 65.07 51.30 25.90 78.90 47.63

TPA-KVonly 54.25 27.90 57.06 36.36 31.80 64.31 53.59 26.18 79.20 47.85
TPA 57.53 28.07 56.33 36.49 31.80 64.36 51.14 25.92 79.70 47.93

Table 14. Evaluation results of medium models (353M) with different attention mechanisms, pre-trained on FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness, default LR 6 × 10−4). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.73 32.42 58.29 45.89 34.20 68.50 53.20 25.86 88.00 52.34
MQA 64.98 33.62 55.02 45.81 34.00 69.59 53.43 24.30 85.20 51.77
GQA 65.24 33.19 56.54 45.41 34.80 69.04 55.72 24.73 87.90 52.51
MLA 64.98 33.62 53.52 45.94 33.00 68.55 51.85 25.46 89.10 51.78

TPA-KVonly 64.69 32.34 59.48 46.23 35.40 70.08 54.06 25.64 86.30 52.69
TPA 67.97 34.56 57.22 46.87 34.60 69.91 52.01 25.07 89.90 53.12

38

Tensor Product Attention Is All You Need

Table 15. Evaluation results of large models (772M) with different attention mechanisms, pre-trained on the FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 67.85 36.35 59.82 50.22 35.00 70.67 53.35 23.92 91.10 54.25
MQA 68.86 36.09 53.79 50.50 37.00 70.89 54.70 25.01 88.00 53.87
GQA 69.15 36.09 58.84 50.29 36.20 70.73 54.22 26.08 90.00 54.62
MLA 70.54 38.74 61.50 51.86 36.00 70.89 54.22 25.47 92.40 55.74

TPA-KVonly 71.34 37.71 59.76 51.10 36.00 71.49 54.62 25.83 90.10 55.33
TPA 70.41 37.71 60.06 51.30 34.00 71.06 54.54 25.79 90.30 55.02

Table 16. Evaluation results of XL models (1.5B) with different attention mechanisms, pre-trained on the FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande. If not specified, RK = RV = 2 for TPA and TPA-KVonly models.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 70.83 39.93 59.85 54.05 36.20 72.52 55.17 25.42 91.70 56.18
MQA 71.34 39.76 58.93 54.27 39.40 72.96 57.38 24.74 91.90 56.74
GQA 71.17 39.08 60.18 54.05 37.40 73.07 56.35 24.87 92.20 56.49
MLA 70.79 37.54 50.83 53.33 40.00 72.09 56.51 24.93 91.80 55.31

TPA-KVonly 72.85 39.68 60.92 53.81 37.00 73.34 56.83 26.19 91.30 56.88
TPA-KVonly (RK,V = 4) 72.98 40.27 60.15 54.88 36.80 73.29 56.43 25.50 92.10 56.93
TPA-KVonly (RK,V = 6) 73.95 39.76 58.99 54.73 36.80 72.91 59.04 24.93 92.90 57.11
TPA 71.76 39.16 61.25 53.74 37.80 72.80 55.49 23.86 90.70 56.28

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 11. The training loss, validation loss, and validation perplexity of medium-size (353M) models (learning rate 3 × 10−4) with
different attention mechanisms on the FineWeb-Edu 100B dataset.

Table 17. The evaluation results of medium models (learning rate 3× 10−4) with different attention mechanisms pretrained using the
FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 56.52 29.27 58.84 44.06 35.00 68.44 51.07 25.35 76.40 49.44
MQA 55.68 28.24 60.86 44.17 35.20 68.66 52.72 25.14 72.90 49.29
GQA 54.88 29.61 56.36 43.77 35.20 68.82 52.57 25.41 74.80 49.05
MLA 59.64 29.78 60.73 45.17 34.20 68.66 52.80 25.34 75.70 50.22

TPA-KVonly 57.11 30.03 61.25 44.83 34.60 69.04 54.54 23.35 74.60 49.93
TPA 59.30 31.91 60.98 45.57 34.60 69.48 53.91 24.93 77.20 50.88

39

Tensor Product Attention Is All You Need

Table 18. The evaluation results of medium models (learning rate 3× 10−4) with different attention mechanisms pre-trained using the
FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.44 32.85 59.05 44.18 33.20 68.72 50.12 26.01 87.40 49.44
MQA 64.27 32.94 57.71 44.36 31.80 68.01 51.70 25.99 86.00 51.42
GQA 61.70 32.17 52.81 43.99 33.80 68.50 53.35 24.44 86.40 50.80
MLA 65.95 31.48 50.98 44.99 32.20 68.93 51.93 25.89 88.80 51.24

TPA-KVonly 65.99 33.70 57.49 44.47 34.20 69.53 53.28 24.23 86.50 52.15
TPA 66.54 34.47 58.96 45.35 33.00 69.21 53.99 24.51 91.30 53.04

40

	Introduction
	Background
	Tensor Product Attention
	Tensor Factorization of Queries, Keys, and Values
	KV Caching and Memory Reduction
	Expressing MHA, MQA, and GQA as Non-contextual TPA
	Model Architectures

	FlashTPA Decoding Algorithm
	Experiments
	Language Modeling Tasks

	Conclusion
	Appendices
	RoPE Compatibility and Acceleration
	Expressing MHA, MQA, and GQA as Non-contextual TPA
	MHA as Non-contextual TPA
	MQA and GQA as Non-contextual TPA

	T6 Model Architecture Details
	Toward Faster Computation Without Materializing Q, K and V
	Single-Head Factorization Setup Without Materializing Q and K
	Multi-Head Case
	Complexity Analysis
	Complexity Analysis for the Specialized Implementation
	Toward Faster Computation Without Materializing Q, K, V
	Overall Complexity for Single-Head (Specialized)
	Multi-Head and Batch Extensions (Reuse of b-Dot Products)
	Inference Time Decoding of Different Attention Mechanisms

	More on FlashTPA Decoding Algorithm
	Detailed Computation Steps of FlashTPA Decoding Algorithm
	Triton FlashTPA Decoding Kernel
	Additional Experimental Results
	Experimental Results on FlashTPA Decoding

	Higher-Order Tensor Product Attention
	RoPE Compatibility in Higher-Order TPA

	Proofs of Theorems
	Proof of Theorem A.1
	Proof of Theorem F.1

	More Related Work
	More on Attention Mechanisms
	Scaled Dot-Product Attention
	Multi-Head Attention (MHA)
	Multi-Query Attention (MQA)
	Grouped Query Attention (GQA)
	Multi-head Latent Attention (MLA)
	Multi-matrix Factorization Attention (MFA)
	Rotary Position Embedding (RoPE)

	More on TPA
	More on Experiments
	Experimental Settings
	Additional Experimental Results
	Ablation Studies on Learning Rates

