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Abstract

Vision and language models (VL) are known to
exploit unrobust indicators in individual modal-
ities (e.g., introduced by distributional biases),
instead of focusing on relevant information in
each modality. A small drop in accuracy obtain-
ed on a VL task with a unimodal model sug-
gest that so-called unimodal collapse occurs.
But how to quantify the amount of unimodal
collapse, i.e., how multimodal are VL. models
really? We present MM-SHAP, a performance-
agnostic multimodality score that quantifies the
proportion by which a model uses individual
modalities in multimodal tasks. MM-SHAP is
based on Shapley values and will be applied
in two ways: (1) we compare models for their
degree of multimodality, and (2) measure the
importance of individual modalities for a given
task and dataset. Experiments with 6 VL. mod-
els — LXMERT, CLIP and four ALBEF variants
—on four VL tasks — image-sentence-alignment,
Visual Question Answering, GQA and the more
fine-grained VALSE  benchmark — highlight
that unimodal collapse can occur to different
degrees and in different directions, contradict-
ing the wide-spread assumption that unimodal
collapse is one-sided. We recommend MM-
SHAP to complement accuracy metrics when
analysing multimodal tasks, as this can help
guide progress towards multimodal integration.

1 Introduction

Vision and language (VL) tasks are dominated by
general-purpose pretrained transformer-based VL
models (Lu et al., 2019; Tan and Bansal, 2019;
Li et al., 2019; Chen et al., 2020; Li et al., 2020,
2021a). But we are only starting to understand why
these models work so well, and how they utilise
and fuse the image and text modalities (Hessel and
Lee, 2020; Cao et al., 2020). Even worse, these
highly parametrised neural VL models, pretrained
on large amounts of data, tend to exploit artefacts
and statistical correlations in the data (Shekhar

Figure 1: Image-sentence-alignment score (ISA) of
three VL models with their textual degree T-SHAP
(in %). Each text and image token (image patch) is
colour-coded: Blue tokens contribute to a high ISA,
while red ones lower the ISA. The visual degree is
100 — T-SHAP%. Cf. §4.5 for more explanation, App.
B a more detailed analysis of this instance and for more
samples. Note that the ISA of CLIP is an absolute score,
while ALBEF and LXMERT predict ISA probabilities.

et al., 2019; Kafle et al., 2019), showing little
to no evidence of detailed linguistic or visual un-
derstanding (Milewski et al., 2022; Parcalabescu
et al., 2022; Thrush et al., 2022). Statistical bi-
ases towards indicators in one modality — to the
detriment of others — can cause unimodal collapse
(Parcalabescu et al., 2022), where seemingly mul-
timodal models exploit one modality exhibiting
biases, meaning that a multimodal system effec-



tively reduces to a unimodal model (Madhyastha
etal., 2018) —e.g., amodel answers “How many...?”
questions with “two”, the most frequent answer in
the train set (Goyal et al., 2017). Unimodal collapse
is severe, as it leads to loss of system reliability. It
also shows that modality fusion is far from being
solved. Hence the importance of measuring multi-
modal degree — the degree to which modalities are
used for model predictions — with reliable metrics.

To test for unimodal collapse, research so far
focuses on performance tests where a VL model is
evaluated on a task — while one modality crucial for
solving it correctly is missing, corrupted (Shekhar
et al., 2017) or permuted (Gat et al., 2021).

But we argue that an appropriate contribution
of each modality is not necessarily reflected in a
VL model’s measured performance. Clearly, accu-
racy reflects whether a model prediction is correct
— but we cannot use it to identify cases where the
model’s prediction is wrong even though it con-
siders relevant indicators in a given modality — or
conversely, when a prediction is correct but derived
on the grounds of inappropriate indicators. Fig. 1
shows how model responses, with almost identical
image-sentence alignment (ISA) scores (and hence
ISA accuracy), are concentrated on very different
image regions and text tokens that contribute to the
final model output, as indicated by Shapley values.

As an alternative to accuracy-based methods,
we propose MM-SHAP as a performance-agnostic
metric to quantify and interpret the contribution of
individual modalities in VL. models. MM-SHAP is
based on Shapley values (Shapley, 1953), a theoret-
ically well-founded interpretability method from
cooperative game theory. They can be applied to
measure the contribution of specific parts of the
input towards a model prediction.

Our main contributions are:

i) We propose MM-SHAP, a performance-agno-
stic metric to measure the contribution of each
modality in VL models (but which is not lim-
ited to V&L) to answer the question: How
much do VL models use individual modali-
ties? We combine MM-SHAP with model
accuracy to analyse the degree to which each
modality contributes to model predictions.

i) We make use of MM-SHAP to (1) compare
models in terms of their focus on different
modalities, (2) to compare the relevance of dif-
ferent modalities for a given task and dataset,
and to (3) zoom in at sample-level, to deter-

mine the contribution of each modality and
each token in each modality for specific model
predictions (see Fig. 1).

iii) We conduct experiments with six VL models:
LXMERT (Tan and Bansal, 2019), CLIP (Rad-
ford et al., 2021a) and four ALBEF (Li et al.,
2021a) variants — on four VL tasks: image-
sentence-alignment, VQA (Goyal et al., 2017),
GQA (Hudson and Manning, 2019) and on the
more fine-grained VALSE VL benchmark
(Parcalabescu et al., 2022).

iv) We identify VL models that are balanced in
their usage of two modalities (CLIP), models
that have a higher visual degree (LXMERT)
or a stronger textual degree (ALBEF).

v) We show that (i) fine-tuning a model can af-
fect its multimodal degree and that (ii) cur-
rent VL models do not all collapse towards
the same modality, as found by recent work
(Frank et al., 2021; Gat et al., 2021), but that
sides can differ from model to model.

2 Related Work

Testing for unimodal collapse Strong predic-
tion indicators in either modality can cause mul-
timodal models to ignore weaker indicators in an-
other modality. Prior work has proposed different
methods to identify and possibly remove such bi-
ases from the data (Goyal et al., 2017).

Foiling approaches introduce mistakes in image
descriptions and test whether VL. models notice the
discrepancy between image and captions (Shekhar
et al., 2019; Parcalabescu et al., 2022), finding that
models are surprisingly insensitive to constructed
foils. Gat et al. (2021), in a similar line of work,
exchange the image with another image or the cap-
tion with a different caption. They assume that
with inputs containing misleading information in
one modality, model accuracy on the task decreases.
They measure the decrease in task accuracy to cal-
culate a perceptual score measuring the multimodal
degree of the models. Their findings suggest that
across the tested VL models, the textual input con-
sistently matters more than the visual input.

Ablation methods remove information from ei-
ther modality and test whether the model can still
solve the task. Here, Frank et al. (2021) find an a-
symmetry: VL models suffer from removed image
inputs when predicting masked text, but can predict
masked visual inputs when textual input is ablated.
Their findings contradict the conclusions of Gat



et al. (2021), but note that their investigations have
only a single model in common, namely LXMERT.

We observe that the literature commonly agrees
that VL models are not as cross-modal as expected
— but we find considerable divergence in findings
attributing models to rely more on the textual or on
the visual side. In this work we argue that methods
for measuring a model’s multimodal degree should
not rely solely on accuracy. This is because in ro-
bustness tests with ablated, permuted or corrupted
inputs, accuracy-based methods can fail to capture
cases where the model is right for the wrong rea-
sons — or incorrect despite taking the right informa-
tion into account. Moreover, accuracy-based meth-
ods cannot properly assess the contribution of each
modality in cases where model accuracy is gener-
ally very low — as in out-of-domain or zero-shot set-
tings. We therefore propose an accuracy-agnostic
method for measuring the multimodal degree of VL
models, using SHAP (Lundberg and Lee, 2017) as a
theoretically well-founded interpretability method.

Interpretability Methods for explaining predic-
tions of neural models can be classified into two
categories: White-box methods, which require ac-
cess to specific components of neural architectures
and black-box methods, which are model-agnostic,
requiring only access to model inputs and outputs.
Notable white-box methods are: Attention-based
methods, which correlate high attention weights
with high feature importance. However, the equiv-
alence between importance score and attention is
debated and has to be taken with care (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019). Cf.
Appendix C for a discussion on why not to use
attention for defining a multimodal score. Layer-
wise relevance propagation (Binder et al., 2016)
and gradient-based methods like Grad-CAM (Sel-
varaju et al., 2017) can also be used for determining
the importance of inputs, but can be deceived by
small changes in inputs (adversarial attacks).
Notable black-box methods are: LIME (Ribeiro
et al., 2016), which approximates the vicinity of
the input with a linear function that is interpretable.
But depending on the choice of the size of the vicin-
ity, LIME can lead to very different results. Meth-
ods like RISE (Petsiuk et al., 2018) and SHAP
(Lundberg and Lee, 2017) compute importance
scores by randomly masking parts of the input
and determining the effect this has on the output.
Among the latter two, SHAP exhibits great proper-
ties for interpretability, as detailed in Section 3.1.

3 Quantifying Multimodal Contributions
3.1 Background on Shapley Values

Shapley values were first introduced in a game
theoretical setting to estimate fair rewards among
cooperative players (Shapley, 1953). For machine
learning, the outcome of a game is the model’s pre-
diction, the players are parts of the input and are
assigned Shapley values that represent the impor-
tance of each player (Lundberg and Lee, 2017).

We compute Shapley values for pretrained trans-
former-based VL models at prediction time. Their
input consists of p input tokens (image and text
tokens alike). We create subsets S C {1,...,n}
of tokens, where tokens not being part of the subset
are masked, and all tokens contained in the sub-
set form a coalition towards the model prediction
val(S). val(D) is the output of the model when all
tokens are masked. Then the Shapley value for a
token j is computed by formula (1):

val(SU{j}) —val(S)
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Here, is the normalising factor
accounting for all possible combinations of choos-
ing the subset S. When masking (or not masking)
p tokens, the coalition possibilities grow exponen-
tially, i.e. n = 2P. Therefore we use a Monte Carlo
approximation of the Shapley values by randomly
sub-sampling n = 2p + 1 coalitions.

The Shapley value of a token measures its con-
tribution towards the model prediction (e.g., the
probability of image-sentence-alignment) and can
be positive (increases the model prediction) or neg-
ative (decreases it) or zero (no effect). Shapley val-
ues exhibit four defining properties of a fair payout,
which are all beneficial for model interpretability:
(1) Efficiency: the contributions of all players sum
up to the model outcome; (2) Symmetry: any two
players that contribute the same are assigned the
same payout; (3) Dummy: a non-contributing part
is assigned zero value and (4) Additivity, enabling
us to simply average the Shapley Values to deter-
mine the overall player contributions in a game
with combined payouts (e.g., the two halves of a
soccer match, or ensembling of decision trees).

Most importantly, Shapley values are not based
on the model’s accuracy or performance, but solely
on the model’s input and its prediction, such as the
probability for an image and a caption to match.
This is an important property for a multimodality



score to have, since its objective is to quantify how
much multimodal inputs of either modality matter
for prediction — even if the cooperation between
(multimodal) inputs is not sufficient to reach suc-
cess (i.e., yielding the correct outcome).

3.2 MM-SHAP

For a pretrained VL transformer with np text to-
kens and n; image tokens, Eq. 2 defines the textual
contribution 7 and the image contribution ®; to-
wards a prediction as the sum of (absolute) Shapley
Values (Eq. 1) of all textual resp. visual tokens:
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We ignore the sign of the token contributions' and
consider their magnitude since we are interested
in measuring whether a token is active within a
modality — irrespective of the correctness of the
ensuing prediction. In Eq. 3 we define MM-SHAP
as a proportion of modality contributions, which
allows us to determine a model’s textual degree
T—-SHAP and its visual degree V-SHAP:

T-SHAP = ——:
dr + Pr

We can extend MM-SHAP to any number of moda-
lities. Here we only use image and text.

When generating coalitions, i.e., subsets of to-
kens from which to compute Shapley Values, we do
not differentiate between image and text tokens, be-
cause the idea of MM-SHAP is to fairly distribute
potential token contributions first, and to aggregate
contributions modality-wise in a second step, using
Eq. 2. For masking tokens, text tokens are re-
placed with the [MASK] token,” while for images,
we mask out patches by image space, replacing
pixel values with zero (see Section 4.4 for details).

3.3 Ways of using MM-SHAP

Sample-level MM-SHAP is a sample-level score
(cf. Fig. 1) based on the contribution of individual
image and text tokens. It thus enables fine-grained
analyses of the relevance of tokens from a single or
various modalities, for individual instances.

!Contributions can be positive (increase the model predic-
tion) or negative (decrease it) or zero (no effect), see §3.1.
2See App. A for details on the choice of masking.

Dataset and model level Sample-level MM-
SHAP scores can be averaged to yield dataset-level
multimodality scores, thanks to the additivity prop-
erty of Shapley values. We use MM-SHAP at
dataset level to analyse a given model on differ-
ent datasets or different models on a given dataset,
to gain insights about models, datasets and tasks.

Measuring fine-tuning effects An accuracy-
based multimodality score reaches its limits when
the model performance on a task is very low, and
the difference between model accuracy with correct
inputs vs. permuted inputs is small by default. In
such cases, the Perceptual Score (Gat et al., 2021)
will assign a low multimodal score, irrespective
of the relevance of multimodal inputs. Since MM-
SHAP is not based on task performance — measured
by comparing model prediction to the gold standard
(e.g., with accuracy) —, but on the actual model pre-
dictions, we can use MM-SHAP to measure mul-
timodal scores of models with low performance.
This allows us, e.g., to compare a pretrained model
to a fine-tuned version of it that may have lost gen-
eral abilities (of, e.g., image-sentence alignment)
after specialising on another task.

Future work could focus on applying MM-SHAP
on models accepting different or a wider range
of modalities, or on data cleaning by filtering out
samples with very unbalanced multimodal degree.

4 Multimodal Contributions across
Models and Datasets

We use MM-SHAP to study multimodal contribu-
tions i) for different model types, ii) on different
datasets and iii) tasks. In doing so we will re-evalu-
ate findings from prior research on visual vs. textual
modality collapse. We will also showcase MM-
SHAP’s abilities for interpreting predictions for
individual samples, to enable deeper error analysis.

We evaluate pretrained VL models with MM-
SHAP and complement this analysis with accuracy-
based assessments of model performance on multi-
ple tasks. Prior work has presented findings show-
ing models to be either consistently more visual
(Gatetal., 2021) or textual (Frank et al., 2021). But
assessing multimodal contributions can be mislead-
ing when evaluating models using performance-
oriented metrics. We thus use the performance-
agnostic MM-SHAP metric to analyse whether we
find such trends to be consistent across models and
tasks, or whether models differ with respect to the
modality they rely on the most.



To assess whether the multimodal degree of a
model tends towards the textual or the visual modal-
ity, we compare MM-SHAP to a 50% T-SHAP :
50% V—-SHAP baseline for image-sentence align-
ment, where we hypothesise that in average, V&L
should contribute equally when the model predicts
whether the contents of the modalities are aligned.

We investigate the setting where image and cap-
tion match, but also cases of discrepancy between
modalities. We break down our incongruity analy-
ses into high discrepancy cases, where image and
caption are in a complete mismatch (Table 1), and
cases of low discrepancy, where only a single word
or phrase incurs a mismatch (Table 2).

4.1 Tasks

Visual Question Answering A canonical task
where pretrained VL transformers have consistently
increased state-of-the-art performance through fine-
tuning is Visual Question Answering. We use the
VQA v2.0 (Goyal et al., 2017) and the GQA (Hud-
son and Manning, 2019) datasets for testing the
contribution of V&L in multimodal models.

Image-sentence alignment (ISA) VL models
are usually pretrained on predicting an image-
sentence alignment score. We are interested in
assessing the multimodal contributions in such VL
models when using them within their “comfort
zone”, by testing how well they predict the align-
ment of images and captions in contrast to mis-
alignment between images and random captions.
We test this on 1,500 samples from the validation
set of MSCOCO (Lin et al., 2014), and further eval-
uate ISA model performances on more uncommon
image-caption pairs composed from questions and
answers from the validation sets of the VQA and
GQA datasets (1,500 image-caption pairs each).

ISA on fine-grained visio-linguistic phenomena
In image-sentence alignment task settings models
are usually confronted with negative samples (non-
matching image—caption pairs) of high discrepancy.
To evaluate VL models in a more fine-grained man-
ner, we examine their multimodal contributions on
the VALSE VL benchmark (Parcalabescu et al.,
2022). It contains foiled captions targeting six lin-
guistic phenomena: existence, counting, plurality,
spatial relations, actions, coreference. Foiled cap-
tions were created by altering a word or phrase that
realises a specific linguistic phenomenon, such that
image and foiled caption do not match. For sake of

completeness, we also test on foiled noun phrases
in the FOIL it! dataset (Shekhar et al., 2017).

4.2 Models

LXMERT (Tan and Bansal, 2019) is a dual-
stream transformer model that combines V&L
through early fusion using cross-modal attention
layers between image and language encoders. Its
pretraining data consists of MSCOCO (Lin et al.,
2014) images and captions, and VQA v2.0 and
GQA images, questions and answers. Pretraining
objectives were (i) multimodal masked word and
object prediction, (ii) image-sentence alignment,
and (iii) question-answering. For experiments on
ISA, VQA and GQA, we use LXMERT’s? corre-
sponding heads and task-specific checkpoints.

CLIP (Radford et al., 2021b) processes image
and text with two separate transformer-based en-
coders. The resulting image and text representa-
tions are combined in late fusion by cross-product.
CLIP is trained on 400M image-text pairs to pre-
dict high scores for paired image-text examples
and low scores when image-text samples are not
paired in the dataset. With this simple contrastive
learning objective, CLIP is capable of zero-shot
capabilities in e.g. object classification, OCR, or
activity recognition (Radford et al., 2021b). For
our experiments, we use CLIP* for tests on image-
sentence-alignment and VALSE , where we use
the model’s image-text alignment score to assess
whether a higher image-text similarity is predicted
for correct pairs or for foiled image-caption pairs.

ALBEF (Lietal., 2021b) uses early and late fu-
sion to combine V&L. As in CLIP, the transformer-
based image and text encoders map the two modali-
ties to a common space. Subsequently, the represen-
tations are further combined through cross-modal
transformer layers with objectives of (i) multimodal
masked word prediction and (ii) image-sentence
alignment. ALBEF is pretrained on Conceptual
Captions (Sharma et al., 2018), SBU Captions (Or-
donez et al., 2011), MSCOCO (Lin et al., 2014)
and Visual Genome (Krishna et al., 2017).

To analyse to what extent the contribution of
modalities can be affected by fine-tuning on diverse
tasks and datasets, we compare four ALBEF> mod-
els fine-tuned on (1) image retrieval on MSCOCO,

3github.com/huggingface/transformers
*github.com/openai/CLIP
Sgithub.com/salesforce/ALBEF


github.com/huggingface/transformers
github.com/openai/CLIP
github.com/salesforce/ALBEF

(2) image retrieval on Flickr30k (Plummer et al.,
2015), (3) visual grounding on RefCOCO+ (Yu
etal.,, 2016) and (4) VQA (Goyal et al., 2017).

4.3 Metrics

We use two main categories of metrics: accuracy
to measure model performance on each task, and
MM-SHAP to assess the proportion to which the
different modalities contribute.

With MM-SHAP (as defined in Section 3.2),
we aim to analyse the multimodal contributions in
terms of visual degree V-SHAP and textual degree
T—-SHAP. Since these are complementary metrics
for — in our case — two modalities, V-SHAP =
100 — T-SHAP. We hence report only T-SHAP
(in %). We distinguish T-SHAP,. for the textual
degree in image-caption pairs and T-SHAP f for
image-foil pairs.

When evaluating VQA and GQA performance,
accuracy measures the proportion of correct ans-
wers given pairs of images and questions. For ISA,
we fan out the accuracy metric into three metrics:
caption accuracy acc, measures whether models
correctly predict images and captions to match; foil
accuracy accy quantifies whether models correctly
predict mismatching images and captions; pair-
wise accuracy acc, measures the proportion of
samples where the ISA score is higher for a correct
image-text pair compared to its foil. acc, is more
permissive than acc. and accy as it does not require
the ISA score to surpass a classification threshold,
but only that image-foil pairs are ranked lower for
ISA than their ground truth image-caption pairs.

4.4 Experimental Setting

We test all VL models as described in Section 4.2
without further tuning and assess both their task
accuracy and their MM-SHAP scores on VQA,
GQA and VALSE data.

For masking we ensure that text length and im-
age sequence lengths are similar, i.e., for longer
text, we have more smaller patches and vice versa.
For the majority of samples in our data, this results
in 16 image patches. See Appendix A for details.

4.5 Experiments and Results

We now report the results of our experiments for
different model types at dataset level, in three set-
tings: i) for the canonical VQA task on the VQA
and GQA datasets; for image-sentence alignment
ii) with high discrepancy between image and cap-
tion foils (on data from MSCOCO, VQA, GQA)

and iii) where the discrepancy between images and
caption foils is lower, on VALSE  data; finally iv)
we show sample-level analyses of MM-SHAP re-
sults. Results on VQA, GQA and ISA are presented
in Table 1; Table 2 shows results for VALSE

Note that individual MM-SHAP scores vary
from sample to sample. In Tables 1 and 2, we
report MM-SHAP mean values with a standard de-
viation of 11% to 13% across all our experiments.

High discrepancy ISA Unsurprisingly, acc,
scores for ISA on MSCOCO, VQA and GQA (Ta-
ble 1) are high for all models since they have been
pretrained for this task — ALBEF vqa being the odd
one out, as it has lost its ISA performance during
fine-tuning on VQA. LXMERT has highest acc,
for ISA on VQA and GQA, which is unsurpris-
ing, as its last 10 epochs contained data from the
training sets of these datasets.

For image-sentence alignment, we observe that
the models scatter around the hypothesised 50-50%
balance for T-SHAP, with CLIP being the most
balanced one, especially on MSCOCO. This is ex-
pected since CLIP is a two-branch model where the
two modalities communicate in late fusion, in other
words, CLIP keeps all information from the textual
and visual branches separate until the very end. By
contrast, LXMERT has a low textual degree of only
35.5%, while ALBEF models are more textual.

With highly diverging information in the two
modalities, we observe that differences are promi-
nent between T-SHAP. and T-SHAP ¢, especially
for LXMERT that moves from weak textual de-
gree (35.5%) to higher textual degree (62.8%) and
inversely for ALBEF mscoco (63.4% to 54.3%).

Canonical VL tasks Results on VQA and GQA
in Table 1 — with ALBEF fine-tuned for VQA
and LXMERT fine-tuned on VQA and GQA® —
show high model accuracy. The textual degrees
are higher for VQA than for ISA between image
and matching caption. This is interesting to note,
especially since LXMERT was more visually fo-
cused on ISA. It seems that fine-tuning on VQA
and LXMERT performing a VQA task increases
the impact of the textual to the detriment of visual
input modality. This aligns with earlier findings
that in VQA tasks, linguistic indicators (such as
“How many...?”") give away the most likely answer
(two) (Goyal et al., 2017).

®We do not test CLIP and the other ALBEF models on
VQA because they do not have corresponding VQA heads.



I tence ali
VQA GQA MSCOCO VQA GQA

Model acc T acc T acc. accy  accr Te Ty acce accy  accr Te Ty acce accy  accy Te Ty
Random 0.0 500 0.0 50.0 ‘ 500 500 500 500 500 500 50.0 50.0 50.0 500 500 500 500 500 500
LXMERT 725 515 603 578 | 71.8 99.1 993 355 628 666 959 952 457 575 418 965 899 475 59.8
CLIP - - - - - - 99.5 503 529 - - 940 484 476 - - 834 47.0 46.0
A mscoco - - - - 959 996 998 634 543 280 999 91.0 603 592 131 99.7 836 583 572
A flickr - - - - 973 994 997 611 566 424 992 918 61.3 602 234 995 841 587 581
A refcoco - - - - 923 993 997 566 589 498 99.1 90.0 57.8 586 250 984 856 582 593
Avqa 760 66.7 - - 99.9 0.0 334 641 628 1000 0.0 60.2 582 60.0 100.0 0.0 526 61.7 624

Table 1: Task accuracy and multimodality score on canonical tasks. T is T-SHAP (in %). V-SHAP = 100—T-SHAP.
acc, is pairwise ranking accuracy, counting predictions as correct if p(caption, img) > p(random,img). A stands
for ALBEEF fine-tuned for different tasks: image retrieval on MSCOCO and Flickr30k; visual grounding on
RefCOCO+ and VQA. Overall foil task performance is the mean of acc. and accy (equal nb. of samples, all pairs).

Metric Model Existence | Plurality ‘ Counting Sp.rel.f Action Coreference ‘ Foil-it! Avg.
quantifiers | number | bal.f  sns.} adv.f relations | repl.f actantswap | std.t clean nouns | =+ stdev.
Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0+0
CLIP 66.9 56.2 62.1 62.5 57.5 64.3 75.6 68.6 52.1 49.7 88.8 64.0+11
LXMERT 78.6 644 622 (692> (4260  60.2 54.8 458 468 442 871  59.6%15
ace A mscoco 78.6 80.1 71.8 743 68.9 74.6 79.8 62.6 622  59.6 97.0  73.6+11
" A flickr 80.6 78.9 71.0 736 643 733 824 55.5 599 577 96.6  72.1+£12
A refcoco 73.1 69.0 679 (707 (457 68.6 79.9 589 527 433 96.5  66.0+15
A vqa 40.8 63.3 49.0 492 232 61.9 51.7 52.0 55.9 433 67.2 50.74+12
LXMERT 41.6 68.0 50.9 50.0 61.5 73.1 35.8 36.8 81.2 80.8 72.3 59.3+17
A mscoco 18.4 93.2 26.7 23.7 34.6 95.9 66.2 64.9 87.0 894 96.1 63.34+32
acce A flickr 28.7 94.0 43.1 412 508 96.8 65.1 64.2 91.5 962 97.5  69.9+26
A refcoco 33.7 89.8 41.8 31.0 572 93.1 72.5 75.0 814 904 927  69.0+24
Avqa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0+0
LXMERT 70.1 422 53.0 60.8 37.3 28.4 66.4 60.2 18.4 17.3 69.3 47.64+20
A mscoco 91.5 27.1 82.0 87.2 80.9 9.2 61.7 423 16.1 12.5 52.1 51.1£32
accy A flickr 82.4 18.5 664 709 586 7.1 63.3 38.8 8.2 4.8 424 419428
A refcoco 713 19.4 620 729 418 10.5 532 29.7 18.4 8.7 61.19  40.8+25
Avqa 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0 100.0+0
CLIP 44.7 52.3 51.5 51.8 52.1 50.9 50.0 49.7 52.1 52.6 49.9 50.742
. LXMERT 517 371 465 (413) (464> 366 42.1 422 382 372 361 41945
Qg@ A mscoco 56.7 63.5 58.3 58.0 59.5 64.1 61.7 61.5 61.9 61.4 63.9 60.9+3
@ A flickr 59.5 61.7 596  59.8 595 61.6 59.8 58.9 609 619 63.5 60.6+1
& A refcoco 533 57.2 554 (55.1) (55.8) 57.0 54.5 54.4 579 589 56.8 56.04+2
Avqa 64.6 63.6 625 614 634 63.0 59.3 60.3 63.6  63.1 62.1 62.4+2
CLIP 45.2 53.0 50.8 51.7 51.1 51.0 48.3 48.2 524 52.1 50.0 50.34+2
s~ LXMERT 52.3 394 48.2 48.8 45.8 36.5 439 42.7 39.1 38.6 45.0 43.7+5
gg A mscoco 57.2 62.8 57.7 56.0 57.0 64.6 61.9 63.2 61.9 61.8 65.8 60.94+3
@ A flickr 56.1 61.9 57.8 57.8 58.5 62.5 59.3 61.9 61.1 621 61.7 60.14+2
& A refcoco 56.1 58.5 562 556 578 57.6 55.5 56.9 584 584 61.3 57.542
A vqa 64.0 64.7 619 609 612 63.2 59.9 60.1 634 624 62.2 62.242

Table 2: Performance and multimodal score of VL models on the instruments of the VALSE

benchmark. We

bold-face high accuracies and multimodally unbalanced models on tasks. acc, is the pairwise ranking accuracy,
considering predictions as correct if p(caption,img) > p(foil,img). Overall foil task performance is the mean of
acc. and accy (equal number of samples, all pairs). A stands for ALBEF models fine-tuned on different tasks and
datasets: image retrieval on MSCOCO and Flickr30k, visual grounding on RefCOCO+ and VQA. fbal. Counting
balanced. fsns. Counting small numbers. adv. Counting adversarial. repl. Action replacement. I Sp.rel. Spatial
relations. fstd. Coreference standard. We test CLIP in pairwise ranking mode only (CLIP works contrastively).

Low discrepancy ISA The tests on VALSE

(Table 2) are all based on ISA, where we expect a
50%-50% balance between V-SHAP and T—-SHAP.
We mark high deviations from this baseline in bold-
face (above 61% and below 40% T—-SHAP). Indeed,
we observe that the scores generally do not deviate
much from this baseline. CLIP is by far the mul-
timodally most balanced model, with an average
T-SHAP,. of 50.7% across all instruments, which
is expected, as argued for high discrepancy ISA
above. By contrast, LXMERT is skewed towards

the visual modality with an average T-SHAP, of
42%, while ALBEF is generally more focused on
text, its variants showing T—SHAP,. values of 57%
to 62%. These findings are consistent with our
results for high discrepancy ISA in Table 1.

We do not find notable differences between foils
and captions in terms of MM-SHAP, while we find
clear differences in accuracies. A notable exception
on VALSE is the difference between T-SHAP. and
T-SHAP for LXMERT and ALBEF refoco on
Foil-it! (underlined numbers in Table 2).



Accuracy vs. MM-SHAP Overall, accuracies do
not correlate with MM-SHAP (see Appendix A for
details). Hence, our experiments strongly suggest
that MM-SHAP is complementary to accuracy for
assessing multimodal contributions.

Comparing results per model across VALSE
instruments, we note that models are better with
some instruments (noun phrases, existence) as op-
posed to others (actions, coreference). While this
was already observed by Parcalabescu et al. (2022),
our work adds the multimodal score MM-SHAP as
a new dimension of analysis. Some models exhibit
pronounced differences in T-SHAP score across in-
struments: LXMERT is especially visually focused
for plurality, spatial relations and noun phrases,
while ALBEF’s general strong focus on text is es-
pecially concentrated on text on these phenomena.

Dataset bias  As for the relationship between acc-
uracy, MM-SHAP and dataset bias, we observe
different behaviour between ISA and VQA.

For ISA on VALSE , in Table 2, we see that
despite varying model accuracies (standard devi-
ation across phenomena ranges from 11 to 15%),
MM-SHAP is relatively stable across phenomena
(1 to 5% stdev.), even when the data distribution is
very different: For example, the adversarial piece
in the counting instrument contains foils of small
numbers from 0 to 3, while captions involve num-
bers higher than 4. The piece serves as a sanity
check against biased models that may prefer small
numbers, being more frequent in datasets. We note
for LXMERT and ALBEEF refcoco that acc, drops
for counting small numbers to counting adversar-
ial from 69.2% to 42.6% for LXMERT and 70.7%
to 45.7% for ALBEF, while T-SHAP, stays re-
markably constant (47.3% to 46.4% and 55.1% to
55.8%) — see encircled numbers in Table 2.

For VQA we have conducted further experi-
ments beyond those listed in Table 1 on the bal-
anced set of GQA, which controls the answer distri-
bution bias of questions in GQA balanced. While
LXMERT shows 57.8% T—-SHAP on GQA (cf. Ta-
ble 1), our experiments on GQA balanced show a
much more harmonic MM-SHAP score of 51.4%
(+6.4 points), which is much closer to LXMERT’s
51.5% T—-SHAP on VQA v.2 (cf. Table 1), demon-
strating that MM-SHAP can capture dataset biases.

Fine-tuning effects Comparing the four ALBEF
models fine-tuned on different tasks and datasets
on VALSE , we observe that the capacity of the

models to predict ISA is high for the ALBEF mod-
els fine-tuned for image retrieval (73.6% average
acc, for ALBEF mscoco) and lower for VQA (AL-
BEF vqa 50.7%) and referring expressions (AL-
BEF refcoco 66.0%). This is expected, since ISA
and image retrieval are very similar tasks, while
VQA and referring expressions differ more. In-
terestingly, not only accuracy, but also the multi-
modal score changes, making ALBEF for VQA
more focused on text (62.4% average T—SHAP,.
across VALSE) compared to referring expressions
(ALBEF refcoco 56.0%). Notably, MM-SHAP be-
ing accuracy-agnostic, we can compute indicative
scores even in cases where a fine-tuned model fails
the task completely, such as ALBEF vqa that al-
ways predicts the foil class on captions.

Sample-level analysis Fig. 1 shows ISA predic-
tions of CLIP, ALBEF mscoco and LXMERT and
their T-SHAP values for caption and foil. LX-
MERT correctly predicts high ISA between image
and caption (left), although the regions contribut-
ing most (in blue) are not all reasonable, since the
‘phone’ token is not correctly grounded. ALBEF
mscoco and CLIP also assign very high ISA scores,
while using well-justified image regions for thumb
and phone. On the foil (right), LXMERT’s con-
tributing tokens change, with the phone region in
the image mistakenly contributing to a high ISA.
Favourably for LXMERT and ALBEF, the ‘key-
board’ text token contributes towards raising the
ISA, unlike for CLIP, where the ‘keyboard’ token
lowers the ISA. For more examples see App. B.

5 Conclusions and Future Work

We presented MM-SHAP, a performance-agnostic
metric that measures the multimodal degree of VL
models at dataset and sample level. Our analy-
ses show that VL models vary in which modality
they rely on most: ALBEF is rather textual, CLIP
is balanced, LXMERT shows higher visual than
textual degree. This confirms findings in Gat et al.
(2021) and contradicts Frank et al. (2021). Using
MM-SHAP we are the first to quantify changes in
a model’s multimodal degree through fine-tuning.
Our experiments and analyses show that degrees of
multimodal contributions can be orthogonal to task
performance, supporting the need for performance-
agnostic metrics. MM-SHAP is applicable to fur-
ther modalities. It enables model-based data clean-
ing and bias removal. It can serve as a diagnostic
tool for improving multimodal fusion methods.



6 Ethical Considerations

This paper uses publicly available datasets and
models and therefore could carry on their potential
biases and imperfections. However, the method pre-
sented in this paper enables model and dataset inter-
pretation and can help future work locate harmful
biases.
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A Experimental Details

Masking VL models predict their outputs (such
as ISA) on full and uncorrupted image and text in-
puts. To compute Shapley values and with them the
MM-SHAP score, we create coalitions by masking
image and text tokens.

For masking, we aim for a balance between text
and image sequence length. Therefore we use the
text length to dynamically determine patch sizes:
For longer text, we use more and smaller patches
and for shorter text, less but bigger patches. In
the majority of our experiments, we have 16 image
patches. We illustrate the image tiling in the top
right of Figures 2 to 9.

This masking procedure has several advantages:
1) It adapts to variable caption lengths and variable
image sizes, and ii) it directly applies to different
types of VL model architectures, since some apply
transformers directly on the image (CLIP and AL-
BEF), while others compute image tokens with a
different CNN-based backbone (LXMERT).

Special tokens When computing token-wise con-
tributions, we do not take [SEP] and [CLS] tokens
into account (i.e. they are always assigned zero
contribution), since their functionality is to aggre-
gate cross-modal information, e.g. for classifica-
tion, and hence they cannot be attributed to one
modality exclusively.

Correlation between accuracy and MM-SHAP
For each model and instrument on VALSE |, we
computed the Spearman correlation coefficient be-
tween the sample’s accuracy and textual degree.
The correlations are very low, e.g., the correla-
tion between acc. and T-SHAP, is around 0.02
for most instruments and models, rising to 0.12 in
rare cases.

B Sample-level Analyses with MM-SHAP

SEE FIGURES ON FOLLOWING PAGES!

Figures 2 to 9 contain sample-level visualisa-
tions for each model for images and i) captions that
match and ii) foils / random captions that show low
/ high discrepancy mismatch with the images, as
introduced in Section 4.5:

¢ There is low discrepancy between images and
foils obtained from VALSE targeting spe-
cific linguistic phenomena, with only a phrase
differing between the caption and the foil. We
selected examples for different phenomena:
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Figure 2: Low discrepancy noun phrase foil: Image-
sentence-alignment score (ISA) of the six VL models
with their textual degree T-SHAP (in %). Each text
and image token (image patch) is colour-coded: Blue
tokens contribute to a high ISA, while red ones lower
the ISA. The visual degree is 100 — T-SHAP. Note that
the ISA of CLIP is an absolute score, while ALBEF and
LXMERT predict ISA probabilities. With «# we mark
correct ISA and highlight the correct / foil token that
contributes in the right direction for aligning the image
and the caption. With 4, we mark incorrect ISA and
wrong contribution directions.

Figure 2 (noun phrase), 3 (action replacement,
easy example), 4 (counting), 5 (positive ex-
istence), 6 (negative existence), 9 (action re-
placement, hard example).

e There is high discrepancy between
MSCOCO images and randomly chosen
captions in terms of low ISA between image
and random caption — Figures 7 (easier



example) and 8 (harder example).

In Figure 2 we reiterate Figure 1 from the main
paper with more detail:

* CLIP correctly predicts a foil in the pairwise
accuracy setting, since the ISA score for the
caption (30.3) is higher than for the foil (29.9),
but fails to identify that “keyboard” should not
contribute towards a high ISA. It successfully
predicts caption alignment, but seems to mis-
understand the meaning of the word “shines”
and its instantiation in the image.

* ALBEF mscoco is the only model to predict
ISA (99.4%) on the caption with coherent —
but mostly textual — indicators. It fails on foil
prediction, still relying on the same textual
indicators, and on the visual side focuses on
counter-evidence regions, erroneously taking
them as positive support for ISA.

LXMERT predicts correct ISA for the caption
(99.5% ISA), using few relevant textual tokens
as indicators, and possibly useful support-
ing visual tokens (focuses the fingers of the
two hands). It fails to detect the foil (99.4%
ISA which is higher than a 50% classification
threshold and just slightly below the ISA for
the caption): counterevidence from textual to-
kens is out-weighted by a single strong indica-
tor (thumb); visual tokens confirm ISA despite
focusing on counterevidence (the phone).

On the following pages we present Figures 4 to 9
with more samples and their analyses.

We sampled the instances based on the following
criteria: i) low / high discrepancys; ii) interesting
VALSE instruments; iii) easier (no cluttering, no
dark spots, no blur) and iv) harder examples (e.g.,
hard to recognise the statue as such in Figure 9).

Through Fig. 4 to 9, we observe some patterns:

Model performance does not tell much about the
multimodal degree. A correct ISA score (high
for the caption, low for the random caption/foil) is
not always accompanied by a sensible contribution
pattern in terms of Shapley values as seen for exam-
ple in Figures 2 and 4 for CLIP and LXMERT. The
Shapley values computed on the image and text
side deliver much better intuition about what was
successfully aligned and what was not grounded
correctly. Among all models, LXMERT seems to
be most affected by high discrepancy between per-
formance and image and text token contributions.
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Easy examples deliver more robust contribu-
tion patterns. On easy examples (Figures 3 and
4), where the model generally performs well, we
can see how in the low discrepancy cases where
caption and foil differ in only one word, the one
word difference does not change the contribution
patterns much. In contrast, low discrepancy hard
examples (Figures 8 — unusual bed and bedroom
arrangement and 9 — hard to recognise the goat as a
statue without world knowledge) deliver different
patterns on caption and foil, indicating confusion
from the models.

Positive existence is easier than negative exis-
tence. When comparing Figures 5 and 6 we get
some insight into how the models’ image-sentence-
alignment pretraining objective affects their be-
haviour:

For positive existence, where the caption indi-
cates that an object is present in the image — as
in Fig. 5: There are children. — is better handled by
the models, delivering more sensible patterns for
image-caption pairs. The contribution patterns on
the negated version of the existence sentence — the
foil There are no children. — show that some mod-
els handled the negation correctly (CLIP, LXMERT,
ALBEF mscoco and refcoco), while the rest do not.

Negative existence, where the caption indicates
that an object is not present in the image — as
seen in Fig. 6: There are no humans in the picture.
— seems more difficult to align, since the objects are
not present in the image and to assign a high ISA
for text mentions that cannot be located, the model
needs to understand the negation. The foil, chang-
ing the sentence to affirmative — There are humans
in the picture. — turns the instance into a much
simpler case of no image-sentence-alignment, as is
often seen during pretraining. Unsurprisingly, all
models correctly predict a low ISA in Figure 6.

Counting is hard. In Figure 4 for the counting
foils in VALSE , CLIP is the only model that as-
signs higher ISA for the image-caption pair and not
to the image-foil pair. Overall, the contribution pat-
terns look scattered: High visual contributions in
the image indicate that the models align the plane
object to its mention in the sentence, but we see
confused textual contributions from the mentioned
number of planes (0 or 4) in the text. This is unsur-
prising, given the low performance of VL models
in counting as highlighted by Parcalabescu et al.
(2021).



Figure 3: Low discrepancy (VALSE

action replacement): Image-sentence-alignment score (ISA) of the six VL

models with their textual degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue
tokens contribute to a high ISA, while red ones lower the ISA. The visual degree is 100 — T-SHAP. Note that the
ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA probabilities. With « we mark correct
ISA and an highlight the correct / foil token that contributes in the right direction for aligning the image and the
caption. With 4, we mark incorrect ISA and wrong contribution directions.

C Why not to use Attention for defining a
Multimodality Score

For defining a multimodality score that aims at
quantifying each modality’s contribution to any
model prediction, we need an interpretability
method that has crucial properties to do so. With
their properties of efficiency, symmetry, dummy
variable, additivity (see §3.1), Shapley values pro-
vide important ingredients for sample-based expla-
nations that can be aggregated in a straightforward
way into dataset-level explanations for machine
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learning methods (Covert et al., 2020). Other inter-
pretability methods lack the robustness and theoret-
ical foundation to produce a multimodality score
that is comparable to the one proposed in our work.

In particular, for attention — while being widely
used for generating visually appealing heat-maps
— it is questionable how much high/low attention
scores correlate with high/low contributions of in-
put features for system predictions (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019).7 While

" Arguably this may be the case when attention weights are



Figure 4: Low discrepancy (VALSE

counting): Image-sentence-alignment score (ISA) of the six VL models

with their textual degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue tokens
contribute to a high ISA, while red ones lower the ISA. The visual degree is 100 — T-SHAP. Note that the ISA of
CLIP is an absolute score, while ALBEF and LXMERT predict ISA probabilities. With « we mark correct ISA
and an highlight the correct / foil token that contributes in the right direction for aligning the image and the caption.
With 4, we mark incorrect ISA and wrong contribution directions.

attention does linearly combine input features and
determines how much of each token is mixed with
every other token, it does not necessarily mean that
a low attention value cannot have a large impact on
the decision of the model. In other words, a pinch
of salt is enough to make food taste good: Even if
the attention score for salt is low, its contribution to
the taste of the food (captured by Shapley values)
is high.

Attention is present in transformers in multiple
layers and to complicate the matter even further,

high, but it is clearly not the case when attention weights are
low.
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each attention layer contains multiple attention
heads. Hence, to visualize attention we need a
carefully designed interface, as proposed, e.g., by
Jaunet et al. (2021) https://visga.liris.
cnrs. fr/ to keep a reasonable overview of all
attention values. When integrating the multiple at-
tention values and propagating them back to the
input to assign relevancy values for image and text
tokens, research strives to generate simple expla-
nations that represent the most important tokens
and tend to inhibit the rest, as can be seen on the
progress from Chefer et al. (2021b) to Chefer et al.
(2021a) (cf. Figure 4 in Chefer et al. (2021a)). Fur-


https://visqa.liris.cnrs.fr/
https://visqa.liris.cnrs.fr/
https://visqa.liris.cnrs.fr/

Figure 5: Low discrepancy (VALSE

existence positive): Image-sentence-alignment score (ISA) of the six VL

models with their textual degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue
tokens contribute to a high ISA, while red ones lower the ISA. The visual degree is 100 — T-SHAP. Note that the
ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA probabilities. With « we mark correct
ISA and an highlight the correct / foil token that contributes in the right direction for aligning the image and the
caption. With £, we mark incorrect ISA and wrong contribution directions.

thermore, while Shapley values estimate both the
positive and the negative contributions of input to-
kens towards the model prediction, Chefer et al.
(2021a) allows for positive-only relevance assess-
ments.

In Figures 10 and 11, we have visualised CLIPs
attention-based relevancy for the image-caption
and foil examples shown in Figures 2 to 7 using
the method of Chefer et al. (2021a). On the image
side, we observe little to no changes in the atten-
tion visualisation, when comparing image-caption
to image-foil pairs (cf. Figure 10). Even more,
on the text side, both the correct and the foil word
carry relatively similar attention scores, with no
indication whether this contributes positively or
negatively towards the model prediction. Shapley
values however, are sensitive to foil words and we
can visualise whether the word contributes towards
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raising the ISA (high image-sentence match) or
lowering the ISA (e.g., Figure 3).

Besides the problematic interpretation of atten-
tion as feature contribution and the many ways of
aggregating and propagating the different attention
values to the input, another problem with attention
is that it is unclear how to disentangle and aggre-
gate the textual self-attention, visual self-attention,
text-to-image attention and image-to-text attention
into a single multimodality score that assesses the
degree to which a given modality contributes to-
wards the model prediction.

All things considered, we argue that attention
is not well-suited as a basis for a multimodality
score we aim for in this work, but that Shapley
values — as presented in this paper — are, thanks
to their theoretical properties (efficiency, symme-
try, dummy variable, additivity) and their property



Figure 6: Low discrepancy (VALSE

existence negative — harder phenomenon than positive existence): Image-

sentence-alignment score (ISA) of the six VL models with their textual degree T-SHAP (in %). Each text and image
token (image patch) is colour-coded: Blue tokens contribute to a high ISA, while red ones lower the ISA. The visual
degree is 100 — T-SHAP. Note that the ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA
probabilities. With « we mark correct ISA and an highlight the correct / foil token that contributes in the right
direction for aligning the image and the caption. With 4, we mark incorrect ISA and wrong contribution directions.

of being model-agnostic measurements of input
feature contributions.

D Compute footprint

Computing all possible coalitions between input to-
kens for Shapley Values is infeasible because their
number is exponential in the number of tokens (27).
Therefore we perform Monte Carlo approximation
by randomly sub-sampling 2p + 1 coalitions. This
results in approximate MM-SHAP scores per sam-
ple. We argue that as an alternative, one can simply
increase the number of sampled coalitions for more
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exact measurements (as we did for Fig. 1 and the
examples in Appendix B) — at the cost of increas-
ing the environmental footprint. But increasing the
number of samples is not necessary when estimat-
ing MM-SHAP at dataset level, because the num-
ber of coalitions has very little effect on a data-set
wide range — given that approximation fluctuations
average out.

MM-SHAP is computed while running models
in inference mode 2p + 1 times, where p is the
number of tokens to mask (around 30 in average
for MSCOCO-sized captions). On an NVIDIA Ti-



Figure 7: High discrepancy (MSCOCO): Image-sentence-alignment score (ISA) of the six VL models with their
textual degree T—SHAP (in %). Each text and image token (image patch) is colour-coded: Blue tokens contribute
to a high ISA, while red ones lower the ISA. The visual degree is 100 — T-SHAP. Note that the ISA of CLIP is
an absolute score, while ALBEF and LXMERT predict ISA probabilities. With « we mark correct ISA and an
highlight one important token that contributes in the right direction for aligning the image and the caption. With £,
we mark incorrect ISA and wrong contribution directions.

tan X GPU, computing MM-SHAP for one image-
caption pair can take 2 seconds for ALBEF, 3 sec-
onds for CLIP. LXMERT needing 15 seconds is
the most expensive, because it computes image
features with a CNN backbone for every masking
configuration.
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Figure 8: High discrepancy (MSCOCO) hard example where the models have trouble recognising the bed: Image-
sentence-alignment score (ISA) of the six VL models with their textual degree T—SHAP (in %). Each text and image
token (image patch) is colour-coded: Blue tokens contribute to a high ISA, while red ones lower the ISA. The visual
degree is 100 — T-SHAP. Note that the ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA
probabilities. With « we mark correct ISA and highlight one important token that contributes in the right direction
for aligning the image and the caption. With £, we mark incorrect ISA and wrong contribution directions.
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Figure 9: Low discrepancy (VALSE action replacement) — hard example where models and humans have trouble
recognising the goat as a statue): Image-sentence-alignment score (ISA) of the six VL models with their textual
degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue tokens contribute to a
high ISA, while red ones lower the ISA. The visual degree is 100 — T-SHAP. Note that the ISA of CLIP is an
absolute score, while ALBEF and LXMERT predict ISA probabilities. With « we mark correct ISA and highlight
the correct / foil token that contributes in the right direction for aligning the image and the caption. With 4, we
mark incorrect ISA and wrong contribution directions.
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Figure 10: Low discrepancy. CLIP results of attention-based relevance visualisation, using
the method of Chefer et al. (202la) https://huggingface.co/spaces/PaulHilders/
CLIPGroundingExplainability. Red means high relevancy, blue is zero relevancy and there is
no negative relevancy (while Shapley values do allow for positive and negative contributions). Note that the
heat-maps give the impression that the relevance irradiates from single spots. This is an artefact from the
visualisation since the model works with 32x32 pixel patches and it is these patches that each have a relevance
score. For reference: the images are around 500 pixels in height and width.
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https://huggingface.co/spaces/PaulHilders/CLIPGroundingExplainability

Figure 11: High discrepancy. CLIP results of attention-based relevance visualisation, using
the method of Chefer et al. (202la) https://huggingface.co/spaces/PaulHilders/
CLIPGroundingExplainability. Red means high relevancy, blue is zero relevancy and there is
no negative relevancy (while Shapley values do allow for positive and negative contributions). Note that the
heat-maps give the impression that the relevance irradiates from single spots. This is an artefact from the
visualisation since the model works with 32x32 pixel patches and it is these patches that each have a relevance
score. For reference: the images are around 500 pixels in height and width.

22


https://huggingface.co/spaces/PaulHilders/CLIPGroundingExplainability
https://huggingface.co/spaces/PaulHilders/CLIPGroundingExplainability

	Introduction
	Related Work
	Quantifying Multimodal Contributions
	Background on Shapley Values
	MM-SHAP
	Ways of using MM-SHAP

	Multimodal Contributions across Models and Datasets
	Tasks
	Models
	Metrics
	Experimental Setting
	Experiments and Results

	Conclusions and Future Work
	Ethical Considerations
	Experimental Details
	Sample-level Analyses with MM-SHAP
	Why not to use Attention for defining a Multimodality Score
	Compute footprint

