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Abstract

Vision and language models (VL) are known to001
exploit unrobust indicators in individual modal-002
ities (e.g., introduced by distributional biases),003
instead of focusing on relevant information in004
each modality. A small drop in accuracy obtain-005
ed on a VL task with a unimodal model sug-006
gest that so-called unimodal collapse occurs.007
But how to quantify the amount of unimodal008
collapse, i.e., how multimodal are VL models009
really? We present MM-SHAP, a performance-010
agnostic multimodality score that quantifies the011
proportion by which a model uses individual012
modalities in multimodal tasks. MM-SHAP is013
based on Shapley values and will be applied014
in two ways: (1) we compare models for their015
degree of multimodality, and (2) measure the016
importance of individual modalities for a given017
task and dataset. Experiments with 6 VL mod-018
els – LXMERT, CLIP and four ALBEF variants019
– on four VL tasks – image-sentence-alignment,020
Visual Question Answering, GQA and the more021
fine-grained VALSE benchmark – highlight022
that unimodal collapse can occur to different023
degrees and in different directions, contradict-024
ing the wide-spread assumption that unimodal025
collapse is one-sided. We recommend MM-026
SHAP to complement accuracy metrics when027
analysing multimodal tasks, as this can help028
guide progress towards multimodal integration.029

1 Introduction030

Vision and language (VL) tasks are dominated by031

general-purpose pretrained transformer-based VL032

models (Lu et al., 2019; Tan and Bansal, 2019;033

Li et al., 2019; Chen et al., 2020; Li et al., 2020,034

2021a). But we are only starting to understand why035

these models work so well, and how they utilise036

and fuse the image and text modalities (Hessel and037

Lee, 2020; Cao et al., 2020). Even worse, these038

highly parametrised neural VL models, pretrained039

on large amounts of data, tend to exploit artefacts040

and statistical correlations in the data (Shekhar041

Figure 1: Image-sentence-alignment score (ISA) of
three VL models with their textual degree T-SHAP
(in %). Each text and image token (image patch) is
colour-coded: Blue tokens contribute to a high ISA,
while red ones lower the ISA. The visual degree is
100− T-SHAP%. Cf. §4.5 for more explanation, App.
B a more detailed analysis of this instance and for more
samples. Note that the ISA of CLIP is an absolute score,
while ALBEF and LXMERT predict ISA probabilities.

et al., 2019; Kafle et al., 2019), showing little 042

to no evidence of detailed linguistic or visual un- 043

derstanding (Milewski et al., 2022; Parcalabescu 044

et al., 2022; Thrush et al., 2022). Statistical bi- 045

ases towards indicators in one modality – to the 046

detriment of others – can cause unimodal collapse 047

(Parcalabescu et al., 2022), where seemingly mul- 048

timodal models exploit one modality exhibiting 049

biases, meaning that a multimodal system effec- 050
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tively reduces to a unimodal model (Madhyastha051

et al., 2018) – e.g., a model answers “How many...?”052

questions with “two”, the most frequent answer in053

the train set (Goyal et al., 2017). Unimodal collapse054

is severe, as it leads to loss of system reliability. It055

also shows that modality fusion is far from being056

solved. Hence the importance of measuring multi-057

modal degree – the degree to which modalities are058

used for model predictions – with reliable metrics.059

To test for unimodal collapse, research so far060

focuses on performance tests where a VL model is061

evaluated on a task – while one modality crucial for062

solving it correctly is missing, corrupted (Shekhar063

et al., 2017) or permuted (Gat et al., 2021).064

But we argue that an appropriate contribution065

of each modality is not necessarily reflected in a066

VL model’s measured performance. Clearly, accu-067

racy reflects whether a model prediction is correct068

– but we cannot use it to identify cases where the069

model’s prediction is wrong even though it con-070

siders relevant indicators in a given modality – or071

conversely, when a prediction is correct but derived072

on the grounds of inappropriate indicators. Fig. 1073

shows how model responses, with almost identical074

image-sentence alignment (ISA) scores (and hence075

ISA accuracy), are concentrated on very different076

image regions and text tokens that contribute to the077

final model output, as indicated by Shapley values.078

As an alternative to accuracy-based methods,079

we propose MM-SHAP as a performance-agnostic080

metric to quantify and interpret the contribution of081

individual modalities in VL models. MM-SHAP is082

based on Shapley values (Shapley, 1953), a theoret-083

ically well-founded interpretability method from084

cooperative game theory. They can be applied to085

measure the contribution of specific parts of the086

input towards a model prediction.087

Our main contributions are:088

i) We propose MM-SHAP, a performance-agno-089

stic metric to measure the contribution of each090

modality in VL models (but which is not lim-091

ited to V&L) to answer the question: How092

much do VL models use individual modali-093

ties? We combine MM-SHAP with model094

accuracy to analyse the degree to which each095

modality contributes to model predictions.096

ii) We make use of MM-SHAP to (1) compare097

models in terms of their focus on different098

modalities, (2) to compare the relevance of dif-099

ferent modalities for a given task and dataset,100

and to (3) zoom in at sample-level, to deter-101

mine the contribution of each modality and 102

each token in each modality for specific model 103

predictions (see Fig. 1). 104

iii) We conduct experiments with six VL models: 105

LXMERT (Tan and Bansal, 2019), CLIP (Rad- 106

ford et al., 2021a) and four ALBEF (Li et al., 107

2021a) variants – on four VL tasks: image- 108

sentence-alignment, VQA (Goyal et al., 2017), 109

GQA (Hudson and Manning, 2019) and on the 110

more fine-grained VALSE VL benchmark 111

(Parcalabescu et al., 2022). 112

iv) We identify VL models that are balanced in 113

their usage of two modalities (CLIP), models 114

that have a higher visual degree (LXMERT) 115

or a stronger textual degree (ALBEF). 116

v) We show that (i) fine-tuning a model can af- 117

fect its multimodal degree and that (ii) cur- 118

rent VL models do not all collapse towards 119

the same modality, as found by recent work 120

(Frank et al., 2021; Gat et al., 2021), but that 121

sides can differ from model to model. 122

2 Related Work 123

Testing for unimodal collapse Strong predic- 124

tion indicators in either modality can cause mul- 125

timodal models to ignore weaker indicators in an- 126

other modality. Prior work has proposed different 127

methods to identify and possibly remove such bi- 128

ases from the data (Goyal et al., 2017). 129

Foiling approaches introduce mistakes in image 130

descriptions and test whether VL models notice the 131

discrepancy between image and captions (Shekhar 132

et al., 2019; Parcalabescu et al., 2022), finding that 133

models are surprisingly insensitive to constructed 134

foils. Gat et al. (2021), in a similar line of work, 135

exchange the image with another image or the cap- 136

tion with a different caption. They assume that 137

with inputs containing misleading information in 138

one modality, model accuracy on the task decreases. 139

They measure the decrease in task accuracy to cal- 140

culate a perceptual score measuring the multimodal 141

degree of the models. Their findings suggest that 142

across the tested VL models, the textual input con- 143

sistently matters more than the visual input. 144

Ablation methods remove information from ei- 145

ther modality and test whether the model can still 146

solve the task. Here, Frank et al. (2021) find an a- 147

symmetry: VL models suffer from removed image 148

inputs when predicting masked text, but can predict 149

masked visual inputs when textual input is ablated. 150

Their findings contradict the conclusions of Gat 151
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et al. (2021), but note that their investigations have152

only a single model in common, namely LXMERT.153

We observe that the literature commonly agrees154

that VL models are not as cross-modal as expected155

– but we find considerable divergence in findings156

attributing models to rely more on the textual or on157

the visual side. In this work we argue that methods158

for measuring a model’s multimodal degree should159

not rely solely on accuracy. This is because in ro-160

bustness tests with ablated, permuted or corrupted161

inputs, accuracy-based methods can fail to capture162

cases where the model is right for the wrong rea-163

sons – or incorrect despite taking the right informa-164

tion into account. Moreover, accuracy-based meth-165

ods cannot properly assess the contribution of each166

modality in cases where model accuracy is gener-167

ally very low – as in out-of-domain or zero-shot set-168

tings. We therefore propose an accuracy-agnostic169

method for measuring the multimodal degree of VL170

models, using SHAP (Lundberg and Lee, 2017) as a171

theoretically well-founded interpretability method.172

Interpretability Methods for explaining predic-173

tions of neural models can be classified into two174

categories: White-box methods, which require ac-175

cess to specific components of neural architectures176

and black-box methods, which are model-agnostic,177

requiring only access to model inputs and outputs.178

Notable white-box methods are: Attention-based179

methods, which correlate high attention weights180

with high feature importance. However, the equiv-181

alence between importance score and attention is182

debated and has to be taken with care (Jain and183

Wallace, 2019; Wiegreffe and Pinter, 2019). Cf.184

Appendix C for a discussion on why not to use185

attention for defining a multimodal score. Layer-186

wise relevance propagation (Binder et al., 2016)187

and gradient-based methods like Grad-CAM (Sel-188

varaju et al., 2017) can also be used for determining189

the importance of inputs, but can be deceived by190

small changes in inputs (adversarial attacks).191

Notable black-box methods are: LIME (Ribeiro192

et al., 2016), which approximates the vicinity of193

the input with a linear function that is interpretable.194

But depending on the choice of the size of the vicin-195

ity, LIME can lead to very different results. Meth-196

ods like RISE (Petsiuk et al., 2018) and SHAP197

(Lundberg and Lee, 2017) compute importance198

scores by randomly masking parts of the input199

and determining the effect this has on the output.200

Among the latter two, SHAP exhibits great proper-201

ties for interpretability, as detailed in Section 3.1.202

3 Quantifying Multimodal Contributions 203

3.1 Background on Shapley Values 204

Shapley values were first introduced in a game 205

theoretical setting to estimate fair rewards among 206

cooperative players (Shapley, 1953). For machine 207

learning, the outcome of a game is the model’s pre- 208

diction, the players are parts of the input and are 209

assigned Shapley values that represent the impor- 210

tance of each player (Lundberg and Lee, 2017). 211

We compute Shapley values for pretrained trans- 212

former-based VL models at prediction time. Their 213

input consists of p input tokens (image and text 214

tokens alike). We create subsets S ⊆ {1, . . . , n} 215

of tokens, where tokens not being part of the subset 216

are masked, and all tokens contained in the sub- 217

set form a coalition towards the model prediction 218

val(S). val(∅) is the output of the model when all 219

tokens are masked. Then the Shapley value for a 220

token j is computed by formula (1): 221

ϕj =
∑

S⊆{1,...,n}\{j}

val(S ∪ {j})− val(S)

γ
(1) 222

Here, γ = |S|!(n−|S|−1|)!
p! is the normalising factor 223

accounting for all possible combinations of choos- 224

ing the subset S. When masking (or not masking) 225

p tokens, the coalition possibilities grow exponen- 226

tially, i.e. n = 2p. Therefore we use a Monte Carlo 227

approximation of the Shapley values by randomly 228

sub-sampling n = 2p+ 1 coalitions. 229

The Shapley value of a token measures its con- 230

tribution towards the model prediction (e.g., the 231

probability of image-sentence-alignment) and can 232

be positive (increases the model prediction) or neg- 233

ative (decreases it) or zero (no effect). Shapley val- 234

ues exhibit four defining properties of a fair payout, 235

which are all beneficial for model interpretability: 236

(1) Efficiency: the contributions of all players sum 237

up to the model outcome; (2) Symmetry: any two 238

players that contribute the same are assigned the 239

same payout; (3) Dummy: a non-contributing part 240

is assigned zero value and (4) Additivity, enabling 241

us to simply average the Shapley Values to deter- 242

mine the overall player contributions in a game 243

with combined payouts (e.g., the two halves of a 244

soccer match, or ensembling of decision trees). 245

Most importantly, Shapley values are not based 246

on the model’s accuracy or performance, but solely 247

on the model’s input and its prediction, such as the 248

probability for an image and a caption to match. 249

This is an important property for a multimodality 250
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score to have, since its objective is to quantify how251

much multimodal inputs of either modality matter252

for prediction – even if the cooperation between253

(multimodal) inputs is not sufficient to reach suc-254

cess (i.e., yielding the correct outcome).255

3.2 MM-SHAP256

For a pretrained VL transformer with nT text to-257

kens and nI image tokens, Eq. 2 defines the textual258

contribution ΦT and the image contribution ΦI to-259

wards a prediction as the sum of (absolute) Shapley260

Values (Eq. 1) of all textual resp. visual tokens:261

ΦT =

nT∑
j

|ϕj | ; ΦI =

nI∑
j

|ϕj | (2)262

We ignore the sign of the token contributions1 and263

consider their magnitude since we are interested264

in measuring whether a token is active within a265

modality – irrespective of the correctness of the266

ensuing prediction. In Eq. 3 we define MM-SHAP267

as a proportion of modality contributions, which268

allows us to determine a model’s textual degree269

T-SHAP and its visual degree V-SHAP:270

T-SHAP =
ΦT

ΦT +ΦI
;V-SHAP =

ΦI

ΦT +ΦI
(3)271

We can extend MM-SHAP to any number of moda-272

lities. Here we only use image and text.273

When generating coalitions, i.e., subsets of to-274

kens from which to compute Shapley Values, we do275

not differentiate between image and text tokens, be-276

cause the idea of MM-SHAP is to fairly distribute277

potential token contributions first, and to aggregate278

contributions modality-wise in a second step, using279

Eq. 2. For masking tokens, text tokens are re-280

placed with the [MASK] token,2 while for images,281

we mask out patches by image space, replacing282

pixel values with zero (see Section 4.4 for details).283

3.3 Ways of using MM-SHAP284

Sample-level MM-SHAP is a sample-level score285

(cf. Fig. 1) based on the contribution of individual286

image and text tokens. It thus enables fine-grained287

analyses of the relevance of tokens from a single or288

various modalities, for individual instances.289

1Contributions can be positive (increase the model predic-
tion) or negative (decrease it) or zero (no effect), see §3.1.

2See App. A for details on the choice of masking.

Dataset and model level Sample-level MM- 290

SHAP scores can be averaged to yield dataset-level 291

multimodality scores, thanks to the additivity prop- 292

erty of Shapley values. We use MM-SHAP at 293

dataset level to analyse a given model on differ- 294

ent datasets or different models on a given dataset, 295

to gain insights about models, datasets and tasks. 296

Measuring fine-tuning effects An accuracy- 297

based multimodality score reaches its limits when 298

the model performance on a task is very low, and 299

the difference between model accuracy with correct 300

inputs vs. permuted inputs is small by default. In 301

such cases, the Perceptual Score (Gat et al., 2021) 302

will assign a low multimodal score, irrespective 303

of the relevance of multimodal inputs. Since MM- 304

SHAP is not based on task performance – measured 305

by comparing model prediction to the gold standard 306

(e.g., with accuracy) –, but on the actual model pre- 307

dictions, we can use MM-SHAP to measure mul- 308

timodal scores of models with low performance. 309

This allows us, e.g., to compare a pretrained model 310

to a fine-tuned version of it that may have lost gen- 311

eral abilities (of, e.g., image-sentence alignment) 312

after specialising on another task. 313

Future work could focus on applying MM-SHAP 314

on models accepting different or a wider range 315

of modalities, or on data cleaning by filtering out 316

samples with very unbalanced multimodal degree. 317

4 Multimodal Contributions across 318

Models and Datasets 319

We use MM-SHAP to study multimodal contribu- 320

tions i) for different model types, ii) on different 321

datasets and iii) tasks. In doing so we will re-evalu- 322

ate findings from prior research on visual vs. textual 323

modality collapse. We will also showcase MM- 324

SHAP’s abilities for interpreting predictions for 325

individual samples, to enable deeper error analysis. 326

We evaluate pretrained VL models with MM- 327

SHAP and complement this analysis with accuracy- 328

based assessments of model performance on multi- 329

ple tasks. Prior work has presented findings show- 330

ing models to be either consistently more visual 331

(Gat et al., 2021) or textual (Frank et al., 2021). But 332

assessing multimodal contributions can be mislead- 333

ing when evaluating models using performance- 334

oriented metrics. We thus use the performance- 335

agnostic MM-SHAP metric to analyse whether we 336

find such trends to be consistent across models and 337

tasks, or whether models differ with respect to the 338

modality they rely on the most. 339
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To assess whether the multimodal degree of a340

model tends towards the textual or the visual modal-341

ity, we compare MM-SHAP to a 50% T-SHAP :342

50% V-SHAP baseline for image-sentence align-343

ment, where we hypothesise that in average, V&L344

should contribute equally when the model predicts345

whether the contents of the modalities are aligned.346

We investigate the setting where image and cap-347

tion match, but also cases of discrepancy between348

modalities. We break down our incongruity analy-349

ses into high discrepancy cases, where image and350

caption are in a complete mismatch (Table 1), and351

cases of low discrepancy, where only a single word352

or phrase incurs a mismatch (Table 2).353

4.1 Tasks354

Visual Question Answering A canonical task355

where pretrained VL transformers have consistently356

increased state-of-the-art performance through fine-357

tuning is Visual Question Answering. We use the358

VQA v2.0 (Goyal et al., 2017) and the GQA (Hud-359

son and Manning, 2019) datasets for testing the360

contribution of V&L in multimodal models.361

Image-sentence alignment (ISA) VL models362

are usually pretrained on predicting an image-363

sentence alignment score. We are interested in364

assessing the multimodal contributions in such VL365

models when using them within their “comfort366

zone”, by testing how well they predict the align-367

ment of images and captions in contrast to mis-368

alignment between images and random captions.369

We test this on 1,500 samples from the validation370

set of MSCOCO (Lin et al., 2014), and further eval-371

uate ISA model performances on more uncommon372

image-caption pairs composed from questions and373

answers from the validation sets of the VQA and374

GQA datasets (1,500 image-caption pairs each).375

ISA on fine-grained visio-linguistic phenomena376

In image-sentence alignment task settings models377

are usually confronted with negative samples (non-378

matching image–caption pairs) of high discrepancy.379

To evaluate VL models in a more fine-grained man-380

ner, we examine their multimodal contributions on381

the VALSE VL benchmark (Parcalabescu et al.,382

2022). It contains foiled captions targeting six lin-383

guistic phenomena: existence, counting, plurality,384

spatial relations, actions, coreference. Foiled cap-385

tions were created by altering a word or phrase that386

realises a specific linguistic phenomenon, such that387

image and foiled caption do not match. For sake of388

completeness, we also test on foiled noun phrases 389

in the FOIL it! dataset (Shekhar et al., 2017). 390

4.2 Models 391

LXMERT (Tan and Bansal, 2019) is a dual- 392

stream transformer model that combines V&L 393

through early fusion using cross-modal attention 394

layers between image and language encoders. Its 395

pretraining data consists of MSCOCO (Lin et al., 396

2014) images and captions, and VQA v2.0 and 397

GQA images, questions and answers. Pretraining 398

objectives were (i) multimodal masked word and 399

object prediction, (ii) image-sentence alignment, 400

and (iii) question-answering. For experiments on 401

ISA, VQA and GQA, we use LXMERT’s3 corre- 402

sponding heads and task-specific checkpoints. 403

CLIP (Radford et al., 2021b) processes image 404

and text with two separate transformer-based en- 405

coders. The resulting image and text representa- 406

tions are combined in late fusion by cross-product. 407

CLIP is trained on 400M image-text pairs to pre- 408

dict high scores for paired image-text examples 409

and low scores when image-text samples are not 410

paired in the dataset. With this simple contrastive 411

learning objective, CLIP is capable of zero-shot 412

capabilities in e.g. object classification, OCR, or 413

activity recognition (Radford et al., 2021b). For 414

our experiments, we use CLIP4 for tests on image- 415

sentence-alignment and VALSE , where we use 416

the model’s image-text alignment score to assess 417

whether a higher image-text similarity is predicted 418

for correct pairs or for foiled image-caption pairs. 419

ALBEF (Li et al., 2021b) uses early and late fu- 420

sion to combine V&L. As in CLIP, the transformer- 421

based image and text encoders map the two modali- 422

ties to a common space. Subsequently, the represen- 423

tations are further combined through cross-modal 424

transformer layers with objectives of (i) multimodal 425

masked word prediction and (ii) image-sentence 426

alignment. ALBEF is pretrained on Conceptual 427

Captions (Sharma et al., 2018), SBU Captions (Or- 428

donez et al., 2011), MSCOCO (Lin et al., 2014) 429

and Visual Genome (Krishna et al., 2017). 430

To analyse to what extent the contribution of 431

modalities can be affected by fine-tuning on diverse 432

tasks and datasets, we compare four ALBEF5 mod- 433

els fine-tuned on (1) image retrieval on MSCOCO, 434

3github.com/huggingface/transformers
4github.com/openai/CLIP
5github.com/salesforce/ALBEF

5

github.com/huggingface/transformers
github.com/openai/CLIP
github.com/salesforce/ALBEF


(2) image retrieval on Flickr30k (Plummer et al.,435

2015), (3) visual grounding on RefCOCO+ (Yu436

et al., 2016) and (4) VQA (Goyal et al., 2017).437

4.3 Metrics438

We use two main categories of metrics: accuracy439

to measure model performance on each task, and440

MM-SHAP to assess the proportion to which the441

different modalities contribute.442

With MM-SHAP (as defined in Section 3.2),443

we aim to analyse the multimodal contributions in444

terms of visual degree V-SHAP and textual degree445

T-SHAP. Since these are complementary metrics446

for – in our case – two modalities, V-SHAP =447

100 − T-SHAP. We hence report only T-SHAP448

(in %). We distinguish T-SHAPc for the textual449

degree in image-caption pairs and T-SHAPf for450

image-foil pairs.451

When evaluating VQA and GQA performance,452

accuracy measures the proportion of correct ans-453

wers given pairs of images and questions. For ISA,454

we fan out the accuracy metric into three metrics:455

caption accuracy accc measures whether models456

correctly predict images and captions to match; foil457

accuracy accf quantifies whether models correctly458

predict mismatching images and captions; pair-459

wise accuracy accr measures the proportion of460

samples where the ISA score is higher for a correct461

image-text pair compared to its foil. accr is more462

permissive than accc and accf as it does not require463

the ISA score to surpass a classification threshold,464

but only that image-foil pairs are ranked lower for465

ISA than their ground truth image-caption pairs.466

4.4 Experimental Setting467

We test all VL models as described in Section 4.2468

without further tuning and assess both their task469

accuracy and their MM-SHAP scores on VQA,470

GQA and VALSE data.471

For masking we ensure that text length and im-472

age sequence lengths are similar, i.e., for longer473

text, we have more smaller patches and vice versa.474

For the majority of samples in our data, this results475

in 16 image patches. See Appendix A for details.476

4.5 Experiments and Results477

We now report the results of our experiments for478

different model types at dataset level, in three set-479

tings: i) for the canonical VQA task on the VQA480

and GQA datasets; for image-sentence alignment481

ii) with high discrepancy between image and cap-482

tion foils (on data from MSCOCO, VQA, GQA)483

and iii) where the discrepancy between images and 484

caption foils is lower, on VALSE data; finally iv) 485

we show sample-level analyses of MM-SHAP re- 486

sults. Results on VQA, GQA and ISA are presented 487

in Table 1; Table 2 shows results for VALSE . 488

Note that individual MM-SHAP scores vary 489

from sample to sample. In Tables 1 and 2, we 490

report MM-SHAP mean values with a standard de- 491

viation of 11% to 13% across all our experiments. 492

High discrepancy ISA Unsurprisingly, accr 493

scores for ISA on MSCOCO, VQA and GQA (Ta- 494

ble 1) are high for all models since they have been 495

pretrained for this task – ALBEF vqa being the odd 496

one out, as it has lost its ISA performance during 497

fine-tuning on VQA. LXMERT has highest accr 498

for ISA on VQA and GQA, which is unsurpris- 499

ing, as its last 10 epochs contained data from the 500

training sets of these datasets. 501

For image-sentence alignment, we observe that 502

the models scatter around the hypothesised 50-50% 503

balance for T-SHAP, with CLIP being the most 504

balanced one, especially on MSCOCO. This is ex- 505

pected since CLIP is a two-branch model where the 506

two modalities communicate in late fusion, in other 507

words, CLIP keeps all information from the textual 508

and visual branches separate until the very end. By 509

contrast, LXMERT has a low textual degree of only 510

35.5%, while ALBEF models are more textual. 511

With highly diverging information in the two 512

modalities, we observe that differences are promi- 513

nent between T-SHAPc and T-SHAPf , especially 514

for LXMERT that moves from weak textual de- 515

gree (35.5%) to higher textual degree (62.8%) and 516

inversely for ALBEF mscoco (63.4% to 54.3%). 517

Canonical VL tasks Results on VQA and GQA 518

in Table 1 – with ALBEF fine-tuned for VQA 519

and LXMERT fine-tuned on VQA and GQA6 – 520

show high model accuracy. The textual degrees 521

are higher for VQA than for ISA between image 522

and matching caption. This is interesting to note, 523

especially since LXMERT was more visually fo- 524

cused on ISA. It seems that fine-tuning on VQA 525

and LXMERT performing a VQA task increases 526

the impact of the textual to the detriment of visual 527

input modality. This aligns with earlier findings 528

that in VQA tasks, linguistic indicators (such as 529

“How many...?”) give away the most likely answer 530

(two) (Goyal et al., 2017). 531

6We do not test CLIP and the other ALBEF models on
VQA because they do not have corresponding VQA heads.
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Image-sentence alignment
VQA GQA MSCOCO VQA GQA

Model acc T acc T accc accf accr Tc Tf accc accf accr Tc Tf accc accf accr Tc Tf

Random 0.0 50.0 0.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

LXMERT 72.5 51.5 60.3 57.8 71.8 99.1 99.3 35.5 62.8 66.6 95.9 95.2 45.7 57.5 41.8 96.5 89.9 47.5 59.8
CLIP - - - - - - 99.5 50.3 52.9 - - 94.0 48.4 47.6 - - 83.4 47.0 46.0

A mscoco - - - - 95.9 99.6 99.8 63.4 54.3 28.0 99.9 91.0 60.3 59.2 13.1 99.7 83.6 58.3 57.2
A flickr - - - - 97.3 99.4 99.7 61.1 56.6 42.4 99.2 91.8 61.3 60.2 23.4 99.5 84.1 58.7 58.1

A refcoco - - - - 92.3 99.3 99.7 56.6 58.9 49.8 99.1 90.0 57.8 58.6 25.0 98.4 85.6 58.2 59.3
A vqa 76.0 66.7 - - 99.9 0.0 33.4 64.1 62.8 100.0 0.0 60.2 58.2 60.0 100.0 0.0 52.6 61.7 62.4

Table 1: Task accuracy and multimodality score on canonical tasks. T is T-SHAP (in %). V-SHAP = 100−T-SHAP.
accr is pairwise ranking accuracy, counting predictions as correct if p(caption, img) > p(random, img). A stands
for ALBEF fine-tuned for different tasks: image retrieval on MSCOCO and Flickr30k; visual grounding on
RefCOCO+ and VQA. Overall foil task performance is the mean of accc and accf (equal nb. of samples, all pairs).

Metric Model Existence Plurality Counting Sp.rel.‡ Action Coreference Foil-it! Avg.
quantifiers number bal.† sns.† adv.† relations repl.† actant swap std.† clean nouns ± stdev.

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0±0

accr

CLIP 66.9 56.2 62.1 62.5 57.5 64.3 75.6 68.6 52.1 49.7 88.8 64.0±11
LXMERT 78.6 64.4 62.2 69.2 42.6 60.2 54.8 45.8 46.8 44.2 87.1 59.6±15
A mscoco 78.6 80.1 71.8 74.3 68.9 74.6 79.8 62.6 62.2 59.6 97.0 73.6±11

A flickr 80.6 78.9 71.0 73.6 64.3 73.3 82.4 55.5 59.9 57.7 96.6 72.1±12
A refcoco 73.1 69.0 67.9 70.7 45.7 68.6 79.9 58.9 52.7 43.3 96.5 66.0±15

A vqa 40.8 63.3 49.0 49.2 23.2 61.9 51.7 52.0 55.9 43.3 67.2 50.7±12

accc

LXMERT 41.6 68.0 50.9 50.0 61.5 73.1 35.8 36.8 81.2 80.8 72.3 59.3±17
A mscoco 18.4 93.2 26.7 23.7 34.6 95.9 66.2 64.9 87.0 89.4 96.1 63.3±32

A flickr 28.7 94.0 43.1 41.2 50.8 96.8 65.1 64.2 91.5 96.2 97.5 69.9±26
A refcoco 33.7 89.8 41.8 31.0 57.2 93.1 72.5 75.0 81.4 90.4 92.7 69.0±24

A vqa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0±0

accf

LXMERT 70.1 42.2 53.0 60.8 37.3 28.4 66.4 60.2 18.4 17.3 69.3 47.6±20
A mscoco 91.5 27.1 82.0 87.2 80.9 9.2 61.7 42.3 16.1 12.5 52.1 51.1±32

A flickr 82.4 18.5 66.4 70.9 58.6 7.1 63.3 38.8 8.2 4.8 42.4 41.9±28
A refcoco 71.3 19.4 62.0 72.9 41.8 10.5 53.2 29.7 18.4 8.7 61.19 40.8±25

A vqa 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0±0

T-
SH
AP

c

CLIP 44.7 52.3 51.5 51.8 52.1 50.9 50.0 49.7 52.1 52.6 49.9 50.7±2
LXMERT 51.7 37.1 46.5 47.3 46.4 36.6 42.1 42.2 38.2 37.2 36.1 41.9±5
A mscoco 56.7 63.5 58.3 58.0 59.5 64.1 61.7 61.5 61.9 61.4 63.9 60.9±3

A flickr 59.5 61.7 59.6 59.8 59.5 61.6 59.8 58.9 60.9 61.9 63.5 60.6±1
A refcoco 53.3 57.2 55.4 55.1 55.8 57.0 54.5 54.4 57.9 58.9 56.8 56.0±2

A vqa 64.6 63.6 62.5 61.4 63.4 63.0 59.3 60.3 63.6 63.1 62.1 62.4±2

T-
SH
AP

f

CLIP 45.2 53.0 50.8 51.7 51.1 51.0 48.3 48.2 52.4 52.1 50.0 50.3±2
LXMERT 52.3 39.4 48.2 48.8 45.8 36.5 43.9 42.7 39.1 38.6 45.0 43.7±5
A mscoco 57.2 62.8 57.7 56.0 57.0 64.6 61.9 63.2 61.9 61.8 65.8 60.9±3

A flickr 56.1 61.9 57.8 57.8 58.5 62.5 59.3 61.9 61.1 62.1 61.7 60.1±2
A refcoco 56.1 58.5 56.2 55.6 57.8 57.6 55.5 56.9 58.4 58.4 61.3 57.5±2

A vqa 64.0 64.7 61.9 60.9 61.2 63.2 59.9 60.1 63.4 62.4 62.2 62.2±2

Table 2: Performance and multimodal score of VL models on the instruments of the VALSE benchmark. We
bold-face high accuracies and multimodally unbalanced models on tasks. accr is the pairwise ranking accuracy,
considering predictions as correct if p(caption, img) > p(foil, img). Overall foil task performance is the mean of
accc and accf (equal number of samples, all pairs). A stands for ALBEF models fine-tuned on different tasks and
datasets: image retrieval on MSCOCO and Flickr30k, visual grounding on RefCOCO+ and VQA. †bal. Counting
balanced. †sns. Counting small numbers. adv. Counting adversarial. repl. Action replacement. ‡ Sp.rel. Spatial
relations. †std. Coreference standard. We test CLIP in pairwise ranking mode only (CLIP works contrastively).

Low discrepancy ISA The tests on VALSE532

(Table 2) are all based on ISA, where we expect a533

50%-50% balance between V-SHAP and T-SHAP.534

We mark high deviations from this baseline in bold-535

face (above 61% and below 40% T-SHAP). Indeed,536

we observe that the scores generally do not deviate537

much from this baseline. CLIP is by far the mul-538

timodally most balanced model, with an average539

T-SHAPc of 50.7% across all instruments, which540

is expected, as argued for high discrepancy ISA541

above. By contrast, LXMERT is skewed towards542

the visual modality with an average T-SHAPc of 543

42%, while ALBEF is generally more focused on 544

text, its variants showing T-SHAPc values of 57% 545

to 62%. These findings are consistent with our 546

results for high discrepancy ISA in Table 1. 547

We do not find notable differences between foils 548

and captions in terms of MM-SHAP, while we find 549

clear differences in accuracies. A notable exception 550

on VALSE is the difference between T-SHAPc and 551

T-SHAPf for LXMERT and ALBEF refoco on 552

Foil-it! (underlined numbers in Table 2). 553
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Accuracy vs. MM-SHAP Overall, accuracies do554

not correlate with MM-SHAP (see Appendix A for555

details). Hence, our experiments strongly suggest556

that MM-SHAP is complementary to accuracy for557

assessing multimodal contributions.558

Comparing results per model across VALSE559

instruments, we note that models are better with560

some instruments (noun phrases, existence) as op-561

posed to others (actions, coreference). While this562

was already observed by Parcalabescu et al. (2022),563

our work adds the multimodal score MM-SHAP as564

a new dimension of analysis. Some models exhibit565

pronounced differences in T-SHAP score across in-566

struments: LXMERT is especially visually focused567

for plurality, spatial relations and noun phrases,568

while ALBEF’s general strong focus on text is es-569

pecially concentrated on text on these phenomena.570

Dataset bias As for the relationship between acc-571

uracy, MM-SHAP and dataset bias, we observe572

different behaviour between ISA and VQA.573

For ISA on VALSE , in Table 2, we see that574

despite varying model accuracies (standard devi-575

ation across phenomena ranges from 11 to 15%),576

MM-SHAP is relatively stable across phenomena577

(1 to 5% stdev.), even when the data distribution is578

very different: For example, the adversarial piece579

in the counting instrument contains foils of small580

numbers from 0 to 3, while captions involve num-581

bers higher than 4. The piece serves as a sanity582

check against biased models that may prefer small583

numbers, being more frequent in datasets. We note584

for LXMERT and ALBEF refcoco that accr drops585

for counting small numbers to counting adversar-586

ial from 69.2% to 42.6% for LXMERT and 70.7%587

to 45.7% for ALBEF, while T-SHAPc stays re-588

markably constant (47.3% to 46.4% and 55.1% to589

55.8%) – see encircled numbers in Table 2.590

For VQA we have conducted further experi-591

ments beyond those listed in Table 1 on the bal-592

anced set of GQA, which controls the answer distri-593

bution bias of questions in GQA balanced. While594

LXMERT shows 57.8% T-SHAP on GQA (cf. Ta-595

ble 1), our experiments on GQA balanced show a596

much more harmonic MM-SHAP score of 51.4%597

(+6.4 points), which is much closer to LXMERT’s598

51.5% T-SHAP on VQA v.2 (cf. Table 1), demon-599

strating that MM-SHAP can capture dataset biases.600

Fine-tuning effects Comparing the four ALBEF601

models fine-tuned on different tasks and datasets602

on VALSE , we observe that the capacity of the603

models to predict ISA is high for the ALBEF mod- 604

els fine-tuned for image retrieval (73.6% average 605

accr for ALBEF mscoco) and lower for VQA (AL- 606

BEF vqa 50.7%) and referring expressions (AL- 607

BEF refcoco 66.0%). This is expected, since ISA 608

and image retrieval are very similar tasks, while 609

VQA and referring expressions differ more. In- 610

terestingly, not only accuracy, but also the multi- 611

modal score changes, making ALBEF for VQA 612

more focused on text (62.4% average T-SHAPc 613

across VALSE) compared to referring expressions 614

(ALBEF refcoco 56.0%). Notably, MM-SHAP be- 615

ing accuracy-agnostic, we can compute indicative 616

scores even in cases where a fine-tuned model fails 617

the task completely, such as ALBEF vqa that al- 618

ways predicts the foil class on captions. 619

Sample-level analysis Fig. 1 shows ISA predic- 620

tions of CLIP, ALBEF mscoco and LXMERT and 621

their T-SHAP values for caption and foil. LX- 622

MERT correctly predicts high ISA between image 623

and caption (left), although the regions contribut- 624

ing most (in blue) are not all reasonable, since the 625

‘phone’ token is not correctly grounded. ALBEF 626

mscoco and CLIP also assign very high ISA scores, 627

while using well-justified image regions for thumb 628

and phone. On the foil (right), LXMERT’s con- 629

tributing tokens change, with the phone region in 630

the image mistakenly contributing to a high ISA. 631

Favourably for LXMERT and ALBEF, the ‘key- 632

board’ text token contributes towards raising the 633

ISA, unlike for CLIP, where the ‘keyboard’ token 634

lowers the ISA. For more examples see App. B. 635

5 Conclusions and Future Work 636

We presented MM-SHAP, a performance-agnostic 637

metric that measures the multimodal degree of VL 638

models at dataset and sample level. Our analy- 639

ses show that VL models vary in which modality 640

they rely on most: ALBEF is rather textual, CLIP 641

is balanced, LXMERT shows higher visual than 642

textual degree. This confirms findings in Gat et al. 643

(2021) and contradicts Frank et al. (2021). Using 644

MM-SHAP we are the first to quantify changes in 645

a model’s multimodal degree through fine-tuning. 646

Our experiments and analyses show that degrees of 647

multimodal contributions can be orthogonal to task 648

performance, supporting the need for performance- 649

agnostic metrics. MM-SHAP is applicable to fur- 650

ther modalities. It enables model-based data clean- 651

ing and bias removal. It can serve as a diagnostic 652

tool for improving multimodal fusion methods. 653
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6 Ethical Considerations654

This paper uses publicly available datasets and655

models and therefore could carry on their potential656

biases and imperfections. However, the method pre-657

sented in this paper enables model and dataset inter-658

pretation and can help future work locate harmful659

biases.660
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A Experimental Details898

Masking VL models predict their outputs (such899

as ISA) on full and uncorrupted image and text in-900

puts. To compute Shapley values and with them the901

MM-SHAP score, we create coalitions by masking902

image and text tokens.903

For masking, we aim for a balance between text904

and image sequence length. Therefore we use the905

text length to dynamically determine patch sizes:906

For longer text, we use more and smaller patches907

and for shorter text, less but bigger patches. In908

the majority of our experiments, we have 16 image909

patches. We illustrate the image tiling in the top910

right of Figures 2 to 9.911

This masking procedure has several advantages:912

i) It adapts to variable caption lengths and variable913

image sizes, and ii) it directly applies to different914

types of VL model architectures, since some apply915

transformers directly on the image (CLIP and AL-916

BEF), while others compute image tokens with a917

different CNN-based backbone (LXMERT).918

Special tokens When computing token-wise con-919

tributions, we do not take [SEP] and [CLS] tokens920

into account (i.e. they are always assigned zero921

contribution), since their functionality is to aggre-922

gate cross-modal information, e.g. for classifica-923

tion, and hence they cannot be attributed to one924

modality exclusively.925

Correlation between accuracy and MM-SHAP926

For each model and instrument on VALSE , we927

computed the Spearman correlation coefficient be-928

tween the sample’s accuracy and textual degree.929

The correlations are very low, e.g., the correla-930

tion between accc and T-SHAPc is around 0.02931

for most instruments and models, rising to 0.12 in932

rare cases.933

B Sample-level Analyses with MM-SHAP934

SEE FIGURES ON FOLLOWING PAGES!935

Figures 2 to 9 contain sample-level visualisa-936

tions for each model for images and i) captions that937

match and ii) foils / random captions that show low938

/ high discrepancy mismatch with the images, as939

introduced in Section 4.5:940

• There is low discrepancy between images and941

foils obtained from VALSE targeting spe-942

cific linguistic phenomena, with only a phrase943

differing between the caption and the foil. We944

selected examples for different phenomena:945

Figure 2: Low discrepancy noun phrase foil: Image-
sentence-alignment score (ISA) of the six VL models
with their textual degree T-SHAP (in %). Each text
and image token (image patch) is colour-coded: Blue
tokens contribute to a high ISA, while red ones lower
the ISA. The visual degree is 100−T-SHAP. Note that
the ISA of CLIP is an absolute score, while ALBEF and
LXMERT predict ISA probabilities. With we mark
correct ISA and highlight the correct / foil token that
contributes in the right direction for aligning the image
and the caption. With , we mark incorrect ISA and
wrong contribution directions.

Figure 2 (noun phrase), 3 (action replacement, 946

easy example), 4 (counting), 5 (positive ex- 947

istence), 6 (negative existence), 9 (action re- 948

placement, hard example). 949

• There is high discrepancy between 950

MSCOCO images and randomly chosen 951

captions in terms of low ISA between image 952

and random caption – Figures 7 (easier 953
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example) and 8 (harder example).954

In Figure 2 we reiterate Figure 1 from the main955

paper with more detail:956

• CLIP correctly predicts a foil in the pairwise957

accuracy setting, since the ISA score for the958

caption (30.3) is higher than for the foil (29.9),959

but fails to identify that “keyboard” should not960

contribute towards a high ISA. It successfully961

predicts caption alignment, but seems to mis-962

understand the meaning of the word “shines”963

and its instantiation in the image.964

• ALBEF mscoco is the only model to predict965

ISA (99.4%) on the caption with coherent –966

but mostly textual – indicators. It fails on foil967

prediction, still relying on the same textual968

indicators, and on the visual side focuses on969

counter-evidence regions, erroneously taking970

them as positive support for ISA.971

• LXMERT predicts correct ISA for the caption972

(99.5% ISA), using few relevant textual tokens973

as indicators, and possibly useful support-974

ing visual tokens (focuses the fingers of the975

two hands). It fails to detect the foil (99.4%976

ISA which is higher than a 50% classification977

threshold and just slightly below the ISA for978

the caption): counterevidence from textual to-979

kens is out-weighted by a single strong indica-980

tor (thumb); visual tokens confirm ISA despite981

focusing on counterevidence (the phone).982

On the following pages we present Figures 4 to 9983

with more samples and their analyses.984

We sampled the instances based on the following985

criteria: i) low / high discrepancy; ii) interesting986

VALSE instruments; iii) easier (no cluttering, no987

dark spots, no blur) and iv) harder examples (e.g.,988

hard to recognise the statue as such in Figure 9).989

Through Fig. 4 to 9, we observe some patterns:990

Model performance does not tell much about the991

multimodal degree. A correct ISA score (high992

for the caption, low for the random caption/foil) is993

not always accompanied by a sensible contribution994

pattern in terms of Shapley values as seen for exam-995

ple in Figures 2 and 4 for CLIP and LXMERT. The996

Shapley values computed on the image and text997

side deliver much better intuition about what was998

successfully aligned and what was not grounded999

correctly. Among all models, LXMERT seems to1000

be most affected by high discrepancy between per-1001

formance and image and text token contributions.1002

Easy examples deliver more robust contribu- 1003

tion patterns. On easy examples (Figures 3 and 1004

4), where the model generally performs well, we 1005

can see how in the low discrepancy cases where 1006

caption and foil differ in only one word, the one 1007

word difference does not change the contribution 1008

patterns much. In contrast, low discrepancy hard 1009

examples (Figures 8 – unusual bed and bedroom 1010

arrangement and 9 – hard to recognise the goat as a 1011

statue without world knowledge) deliver different 1012

patterns on caption and foil, indicating confusion 1013

from the models. 1014

Positive existence is easier than negative exis- 1015

tence. When comparing Figures 5 and 6 we get 1016

some insight into how the models’ image-sentence- 1017

alignment pretraining objective affects their be- 1018

haviour: 1019

For positive existence, where the caption indi- 1020

cates that an object is present in the image – as 1021

in Fig. 5: There are children. – is better handled by 1022

the models, delivering more sensible patterns for 1023

image-caption pairs. The contribution patterns on 1024

the negated version of the existence sentence – the 1025

foil There are no children. – show that some mod- 1026

els handled the negation correctly (CLIP, LXMERT, 1027

ALBEF mscoco and refcoco), while the rest do not. 1028

Negative existence, where the caption indicates 1029

that an object is not present in the image – as 1030

seen in Fig. 6: There are no humans in the picture. 1031

– seems more difficult to align, since the objects are 1032

not present in the image and to assign a high ISA 1033

for text mentions that cannot be located, the model 1034

needs to understand the negation. The foil, chang- 1035

ing the sentence to affirmative – There are humans 1036

in the picture. – turns the instance into a much 1037

simpler case of no image-sentence-alignment, as is 1038

often seen during pretraining. Unsurprisingly, all 1039

models correctly predict a low ISA in Figure 6. 1040

Counting is hard. In Figure 4 for the counting 1041

foils in VALSE , CLIP is the only model that as- 1042

signs higher ISA for the image-caption pair and not 1043

to the image-foil pair. Overall, the contribution pat- 1044

terns look scattered: High visual contributions in 1045

the image indicate that the models align the plane 1046

object to its mention in the sentence, but we see 1047

confused textual contributions from the mentioned 1048

number of planes (0 or 4) in the text. This is unsur- 1049

prising, given the low performance of VL models 1050

in counting as highlighted by Parcalabescu et al. 1051

(2021). 1052
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Figure 3: Low discrepancy (VALSE action replacement): Image-sentence-alignment score (ISA) of the six VL
models with their textual degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue
tokens contribute to a high ISA, while red ones lower the ISA. The visual degree is 100− T-SHAP. Note that the
ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA probabilities. With we mark correct
ISA and an highlight the correct / foil token that contributes in the right direction for aligning the image and the
caption. With , we mark incorrect ISA and wrong contribution directions.

C Why not to use Attention for defining a1053

Multimodality Score1054

For defining a multimodality score that aims at1055

quantifying each modality’s contribution to any1056

model prediction, we need an interpretability1057

method that has crucial properties to do so. With1058

their properties of efficiency, symmetry, dummy1059

variable, additivity (see §3.1), Shapley values pro-1060

vide important ingredients for sample-based expla-1061

nations that can be aggregated in a straightforward1062

way into dataset-level explanations for machine1063

learning methods (Covert et al., 2020). Other inter- 1064

pretability methods lack the robustness and theoret- 1065

ical foundation to produce a multimodality score 1066

that is comparable to the one proposed in our work. 1067

In particular, for attention – while being widely 1068

used for generating visually appealing heat-maps 1069

– it is questionable how much high/low attention 1070

scores correlate with high/low contributions of in- 1071

put features for system predictions (Jain and Wal- 1072

lace, 2019; Wiegreffe and Pinter, 2019).7 While 1073

7Arguably this may be the case when attention weights are
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Figure 4: Low discrepancy (VALSE counting): Image-sentence-alignment score (ISA) of the six VL models
with their textual degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue tokens
contribute to a high ISA, while red ones lower the ISA. The visual degree is 100− T-SHAP. Note that the ISA of
CLIP is an absolute score, while ALBEF and LXMERT predict ISA probabilities. With we mark correct ISA
and an highlight the correct / foil token that contributes in the right direction for aligning the image and the caption.
With , we mark incorrect ISA and wrong contribution directions.

attention does linearly combine input features and1074

determines how much of each token is mixed with1075

every other token, it does not necessarily mean that1076

a low attention value cannot have a large impact on1077

the decision of the model. In other words, a pinch1078

of salt is enough to make food taste good: Even if1079

the attention score for salt is low, its contribution to1080

the taste of the food (captured by Shapley values)1081

is high.1082

Attention is present in transformers in multiple1083

layers and to complicate the matter even further,1084

high, but it is clearly not the case when attention weights are
low.

each attention layer contains multiple attention 1085

heads. Hence, to visualize attention we need a 1086

carefully designed interface, as proposed, e.g., by 1087

Jaunet et al. (2021) https://visqa.liris. 1088

cnrs.fr/ to keep a reasonable overview of all 1089

attention values. When integrating the multiple at- 1090

tention values and propagating them back to the 1091

input to assign relevancy values for image and text 1092

tokens, research strives to generate simple expla- 1093

nations that represent the most important tokens 1094

and tend to inhibit the rest, as can be seen on the 1095

progress from Chefer et al. (2021b) to Chefer et al. 1096

(2021a) (cf. Figure 4 in Chefer et al. (2021a)). Fur- 1097
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Figure 5: Low discrepancy (VALSE existence positive): Image-sentence-alignment score (ISA) of the six VL
models with their textual degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue
tokens contribute to a high ISA, while red ones lower the ISA. The visual degree is 100− T-SHAP. Note that the
ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA probabilities. With we mark correct
ISA and an highlight the correct / foil token that contributes in the right direction for aligning the image and the
caption. With , we mark incorrect ISA and wrong contribution directions.

thermore, while Shapley values estimate both the1098

positive and the negative contributions of input to-1099

kens towards the model prediction, Chefer et al.1100

(2021a) allows for positive-only relevance assess-1101

ments.1102

In Figures 10 and 11, we have visualised CLIPs1103

attention-based relevancy for the image-caption1104

and foil examples shown in Figures 2 to 7 using1105

the method of Chefer et al. (2021a). On the image1106

side, we observe little to no changes in the atten-1107

tion visualisation, when comparing image-caption1108

to image-foil pairs (cf. Figure 10). Even more,1109

on the text side, both the correct and the foil word1110

carry relatively similar attention scores, with no1111

indication whether this contributes positively or1112

negatively towards the model prediction. Shapley1113

values however, are sensitive to foil words and we1114

can visualise whether the word contributes towards1115

raising the ISA (high image-sentence match) or 1116

lowering the ISA (e.g., Figure 3). 1117

Besides the problematic interpretation of atten- 1118

tion as feature contribution and the many ways of 1119

aggregating and propagating the different attention 1120

values to the input, another problem with attention 1121

is that it is unclear how to disentangle and aggre- 1122

gate the textual self-attention, visual self-attention, 1123

text-to-image attention and image-to-text attention 1124

into a single multimodality score that assesses the 1125

degree to which a given modality contributes to- 1126

wards the model prediction. 1127

All things considered, we argue that attention 1128

is not well-suited as a basis for a multimodality 1129

score we aim for in this work, but that Shapley 1130

values – as presented in this paper – are, thanks 1131

to their theoretical properties (efficiency, symme- 1132

try, dummy variable, additivity) and their property 1133
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Figure 6: Low discrepancy (VALSE existence negative – harder phenomenon than positive existence): Image-
sentence-alignment score (ISA) of the six VL models with their textual degree T-SHAP (in %). Each text and image
token (image patch) is colour-coded: Blue tokens contribute to a high ISA, while red ones lower the ISA. The visual
degree is 100− T-SHAP. Note that the ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA
probabilities. With we mark correct ISA and an highlight the correct / foil token that contributes in the right
direction for aligning the image and the caption. With , we mark incorrect ISA and wrong contribution directions.

of being model-agnostic measurements of input1134

feature contributions.1135

D Compute footprint1136

Computing all possible coalitions between input to-1137

kens for Shapley Values is infeasible because their1138

number is exponential in the number of tokens (2p).1139

Therefore we perform Monte Carlo approximation1140

by randomly sub-sampling 2p+ 1 coalitions. This1141

results in approximate MM-SHAP scores per sam-1142

ple. We argue that as an alternative, one can simply1143

increase the number of sampled coalitions for more1144

exact measurements (as we did for Fig. 1 and the 1145

examples in Appendix B) – at the cost of increas- 1146

ing the environmental footprint. But increasing the 1147

number of samples is not necessary when estimat- 1148

ing MM-SHAP at dataset level, because the num- 1149

ber of coalitions has very little effect on a data-set 1150

wide range – given that approximation fluctuations 1151

average out. 1152

MM-SHAP is computed while running models 1153

in inference mode 2p + 1 times, where p is the 1154

number of tokens to mask (around 30 in average 1155

for MSCOCO-sized captions). On an NVIDIA Ti- 1156
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Figure 7: High discrepancy (MSCOCO): Image-sentence-alignment score (ISA) of the six VL models with their
textual degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue tokens contribute
to a high ISA, while red ones lower the ISA. The visual degree is 100− T-SHAP. Note that the ISA of CLIP is
an absolute score, while ALBEF and LXMERT predict ISA probabilities. With we mark correct ISA and an
highlight one important token that contributes in the right direction for aligning the image and the caption. With ,
we mark incorrect ISA and wrong contribution directions.

tan X GPU, computing MM-SHAP for one image-1157

caption pair can take 2 seconds for ALBEF, 3 sec-1158

onds for CLIP. LXMERT needing 15 seconds is1159

the most expensive, because it computes image1160

features with a CNN backbone for every masking1161

configuration.1162
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Figure 8: High discrepancy (MSCOCO) hard example where the models have trouble recognising the bed: Image-
sentence-alignment score (ISA) of the six VL models with their textual degree T-SHAP (in %). Each text and image
token (image patch) is colour-coded: Blue tokens contribute to a high ISA, while red ones lower the ISA. The visual
degree is 100− T-SHAP. Note that the ISA of CLIP is an absolute score, while ALBEF and LXMERT predict ISA
probabilities. With we mark correct ISA and highlight one important token that contributes in the right direction
for aligning the image and the caption. With , we mark incorrect ISA and wrong contribution directions.
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Figure 9: Low discrepancy (VALSE action replacement) – hard example where models and humans have trouble
recognising the goat as a statue): Image-sentence-alignment score (ISA) of the six VL models with their textual
degree T-SHAP (in %). Each text and image token (image patch) is colour-coded: Blue tokens contribute to a
high ISA, while red ones lower the ISA. The visual degree is 100 − T-SHAP. Note that the ISA of CLIP is an
absolute score, while ALBEF and LXMERT predict ISA probabilities. With we mark correct ISA and highlight
the correct / foil token that contributes in the right direction for aligning the image and the caption. With , we
mark incorrect ISA and wrong contribution directions.
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Figure 10: Low discrepancy. CLIP results of attention-based relevance visualisation, using
the method of Chefer et al. (2021a) https://huggingface.co/spaces/PaulHilders/
CLIPGroundingExplainability. Red means high relevancy, blue is zero relevancy and there is
no negative relevancy (while Shapley values do allow for positive and negative contributions). Note that the
heat-maps give the impression that the relevance irradiates from single spots. This is an artefact from the
visualisation since the model works with 32x32 pixel patches and it is these patches that each have a relevance
score. For reference: the images are around 500 pixels in height and width.
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Figure 11: High discrepancy. CLIP results of attention-based relevance visualisation, using
the method of Chefer et al. (2021a) https://huggingface.co/spaces/PaulHilders/
CLIPGroundingExplainability. Red means high relevancy, blue is zero relevancy and there is
no negative relevancy (while Shapley values do allow for positive and negative contributions). Note that the
heat-maps give the impression that the relevance irradiates from single spots. This is an artefact from the
visualisation since the model works with 32x32 pixel patches and it is these patches that each have a relevance
score. For reference: the images are around 500 pixels in height and width.
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