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Abstract

Do the rich representations of multi-modal diffusion trans-001
formers (DiTs) exhibit unique properties that enhance their002
interpretability? We introduce CONCEPTATTENTION, a003
novel method that leverages the expressive power of DiT004
attention layers to generate high-quality saliency maps that005
precisely locate textual concepts within images. Without re-006
quiring additional training, CONCEPTATTENTION repur-007
poses the parameters of DiT attention layers to produce008
highly contextualized concept embeddings, contributing the009
major discovery that performing linear projections in the010
output space of DiT attention layers yields significantly011
sharper saliency maps compared to commonly used cross-012
attention mechanisms. Remarkably, CONCEPTATTEN-013
TION even achieves state-of-the-art performance on zero-014
shot image segmentation benchmarks, outperforming 15015
other zero-shot interpretability methods on the ImageNet-016
Segmentation dataset and on a single-class subset of Pas-017
calVOC. Our work contributes the first evidence that the018
representations of multi-modal DiT models like Flux are019
highly transferable to vision tasks like segmentation, even020
outperforming multi-modal foundation models like CLIP.021

1. Introduction022

Diffusion models have recently gained widespread popular-023
ity, emerging as the state-of-the-art approach for a variety of024
generative tasks, particularly text-to-image synthesis [21].025
These models transform random noise into photorealistic026
images guided by textual descriptions, achieving unprece-027
dented fidelity and detail. Despite the impressive generative028
capabilities of diffusion models, our understanding of their029
internal mechanisms remains limited. Diffusion models op-030
erate as black boxes, where the relationships between input031
prompts and generated outputs are visible, but the decision-032
making processes that connect them are hidden from human033
understanding.034

Existing work on interpreting T2I models has predomi-035
nantly focused on UNet-based architectures [19, 21], which036
utilize shallow cross-attention mechanisms between prompt037
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Figure 1. CONCEPTATTENTION interprets the representations
of multi-modal diffusion transformers by producing high-
quality saliency maps of textual concepts. We compare to the
activations of the cross attention mechanisms of the DiT.

embeddings and image patch representations. UNet cross 038
attention maps can produce high-fidelity saliency maps 039
that predict the location of textual concepts [27] and have 040
found numerous applications in tasks like image editing 041
[5, 12]. However, the interpretability of more recent 042
multi-modal diffusion transformers (DiTs) remains under- 043
explored. DiT-based models have recently replaced UNets 044
[22] as the state-of-the-art architecture for image genera- 045
tion, with models such as Flux [13] and SD3 [8] achieving 046
breakthroughs in text-to-image generation. The rapid ad- 047
vancement and enhanced capabilities of DiT-based models 048
highlight the critical importance of methods that improve 049
their interpretability, transparency, and safety. 050

In this work, we propose CONCEPTATTENTION, a novel 051
method that leverages the representations of multi-modal 052
DiTs to produce high-fidelity saliency maps that localize 053
textual concepts within images. Our method provides in- 054
sight into the rich semantics of DiT representations. CON- 055
CEPTATTENTION is lightweight and requires no additional 056
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Figure 2. CONCEPTATTENTION augments multi-modal DiTs with a sequence of concept embeddings that can be used to produce
saliency maps. (Left) An unmodified multi-modal attention (MMATTN) layer processes both prompt and image tokens. (Right) CON-
CEPTATTENTION augments these layers without impacting the image appearance to create a set of contextualized concept tokens.

training, instead it repurposes the existing parameters of057
DiT attention layers. CONCEPTATTENTION works by pro-058
ducing a set of rich contextualized text embeddings each059
corresponding to visual concepts (e.g. “dragon”, “sun”). By060
linearly projecting these concept embeddings and the im-061
age we can produce rich saliency maps that are even higher062
quality than commonly used cross attention maps.063

We evaluate the efficacy of CONCEPTATTENTION in a064
zero-shot semantic segmentation task on real world images.065
We compare our interpretative maps against annotated seg-066
mentations to measure the accuracy and relevance of the067
attributions generated by our method. Our experiments and068
extensive comparisons demonstrate that CONCEPTATTEN-069
TION provides valuable insights into the inner workings of070
these otherwise complex black-box models. By explaining071
the meaning of the representations of generative models our072
method paves the way for advancements in interpretability,073
controllability, and trust in generative AI systems.074

In summary, we contribute:075

• CONCEPTATTENTION, a method for interpreting076
text-to-image diffusion transformers. Our method re-077
quires no additional training, by leveraging the repre-078
sentations of multi-modal DiTs to generate highly inter-079
pretable saliency maps that depict the presence of arbi-080
trary textual concepts (e.g. “dragon”, “sky”, etc.) in im-081
ages (as shown in Figure 1).082

• The novel discovery that the output vectors of atten-083
tion operations produce higher-quality saliency maps084
than cross attentions. CONCEPTATTENTION repurposes085
the parameters of DiT attention layers to produce a set of086
rich textual embeddings corresponding to different con-087
cepts, something that is uniquely enabled by multi-modal088
DiT architectures. By performing linear projections be-089
tween these concept embeddings and image patch repre-090
sentations in the attention output space we can produce091
high quality saliency maps.092

• CONCEPTATTENTION generalizes to achieve state- 093
of-the-art performance in zero-shot segmentation on 094
benchmarks like ImageNet Segmentation and Pascal 095
VOC. We achieve superior performance to a diverse set of 096
zero-shot interpretability methods based on various foun- 097
dation models like CLIP, DINO, and UNet-based diffu- 098
sion models; this highlights the potential for the repre- 099
sentations of DiTs to transfer to important downstream 100
vision tasks like segmentation. 101

2. Preliminaries 102

2.1. The Anatomy of a Multi-modal DiT Layer 103

Multi-modal DiTs like Flux and Stable Diffusion 3 lever- 104
age multi-modal attention layers (MMATTN) that process a 105
combination of textual tokens and image patches. There are 106
two key classes of layers: one that keeps separate residual 107
streams for each modality and one that uses a single stream. 108
In this work, we take advantage of the properties of these 109
dual stream layers, which we refer to as multi-modal atten- 110
tion layers (MMATTNs). 111

The input to a given layer is a sequence of image patch 112
representations x ∈ Rh×w×d and prompt token embeddings 113
p ∈ Rl×d. The initial prompt embeddings at the beginning 114
of the network are formed by taking the T5 [20] embeddings 115
of the prompt tokens. 116

Following [18], each MMATTN layer leverages a set of 117
adaptive layer norm modulation layers [28], conditioned on 118
the time-step and global CLIP vector. An adaptive layer- 119
norm operation is applied to the input image and text em- 120
beddings. The final modulated outputs are then residually 121
added back to the original input. Notably, the image and 122
text modalities are kept in separate residual streams. The 123
exact details of this operation are omitted for brevity. 124

The key workhorse in MMATTN layers is the familiar 125
multi-head self attention operation. The prompt and im- 126
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Figure 3. CONCEPTATTENTION generates saliency maps for multiple concepts simultaneously, even concepts not in the prompt.

age embeddings have separate learned key, value, and query127
projection matrices which we refer to as Kx, Qx, Vx for im-128
ages and Kp, Qp, Vp for text. The keys, queries, and values129
for both modalities are collectively denoted qxp, kxp, and130
vxp, where for example kxp = [Kxx1, . . . ,Kpp1 . . . ]. A131
self attention operation is then performed132

ox, op = softmax(qxpk
T
xp)vxp (1)133

Here we refer to ox and op as the attention output vectors.134
Another linear layer is then applied to these outputs and135
added to a separate residual streams weighted according to136
the output of the modulation layer. This gives us updated137
embeddings xL+1 and pL+1 which are given as input to the138
next layer.139

3. Proposed Method: CONCEPTATTENTION140

We introduce CONCEPTATTENTION, a method for gener-141
ating high quality saliency maps depicting the location of142
textual concepts in images. CONCEPTATTENTION works143
by creating a set of contextualized concept embeddings for144
simple textual concepts (e.g. “cat”, “sky”, etc.). These145
concept embeddings are sequentially updated alongside the146
text and image embeddings, so they match the structure147
that each MMATTN layer expects. However, unlike the148
text prompt, concept embeddings do not impact the appear-149
ance of the image. We can produce high-fidelity saliency150
maps by projecting image patch representations onto the151
concept embeddings. CONCEPTATTENTION requires no152
additional training and has minimal impact on model la-153
tency and memory footprint. A high level depiction of our154
methodology is shown in Figure 2.155

Using CONCEPTATTENTION. The user specifies a set156
of r single token concepts, like “cat”, “sky”, etc. which157
are passed through a T5 encoder to produce an initial em-158
bedding c0 for each concept. For each MMATTN layer (in-159
dexed by L) we layer-normalize the input concept embed-160
dings cL and repurpose the text prompt’s projection matri-161
ces (i.e. Kp, Qp, Vp), to produce a set of keys, values, and162
queries (i.e. kc = [Kpc1, . . .Kpck]).163

One-directional Attention Operation. We would like164
to update our concept embeddings so they are compatible165
with subsequent layers, but also prevent them from impact-166
ing the image tokens. Let kx and vx be the keys and values167
of the image patches x respectively. We can concatenate the168
image and concept keys to get169

kxc = [Kxx1 . . . ,Kxxn,Kpc1 . . . ,Kpcr] (2)170

and the image and concept values to get 171

vxc = [Vxx1 . . . , Vxxn, Vpc1 . . . , Vpcr] (3) 172

We can then perform the following attention operation 173

oc = softmax(qck
T
xc)vxc (4) 174

which produces a set of concept output embeddings. 175
Notice, that instead of just performing a cross attention 176

(i.e. softmax(qck
T
x )vx) our approach leverages both cross 177

attention from the image patches to the concepts and self 178
attention among the concepts. We found that performing 179
both operations improves performance on downstream eval- 180
uation tasks like segmentation (See Table 5). We hypoth- 181
esize this is because it allows the concept embeddings to 182
repel from each other, avoiding redundancy between con- 183
cepts. Meanwhile, the image patch and prompt tokens ig- 184
nore the concept tokens and attend only to each other as in 185

ox, op = softmax(qxpk
T
xp)vxp. (5) 186

A diagram of these operations is shown in Fig. 9 (b) in the 187
Appendix. 188

A Concept Residual Stream. The above operations cre- 189
ate a residual stream of concept embeddings distinct from 190
the image and patch embeddings. Following the pretrained 191
transformer’s design, after the MMATTN we apply another 192
projection matrix P and MLP, adding the result residually 193
to cL. We apply an adaptive layernorm at the end of the 194
attention operation which outputs several values: a scale γ, 195
shift β, and some gating values α1 and α2. The residual 196
stream is then updated as 197

cL+1 ← cL + α1(Poc) (6) 198

cL+1 ← cL+1 + α2 MLP

(
(1 + γ) lnorm(cL+1) + β

)
(7)

199

where← denotes assignment. The parameters from each of 200
our modulation, projection, and MLP layers are the same as 201
those used to process the text prompt. 202

Saliency Maps in the Attention Output Space. These 203
concept embeddings can be combined with the image patch 204
embeddings to produce saliency maps for each layer L. 205
Specifically, we found that taking a simple dot-product sim- 206
ilarity between the image output vectors ox and concept out- 207
put vectors oc produces high-quality saliency maps 208
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ImageNet-Seg PascalVOC
Method Acc mIoU mAP Acc mIoU mAP

CLIP SA [7] 67.84 46.37 80.24 68.51 44.81 83.63
TextSpan [10] 75.21 54.50 81.61 75.00 56.24 84.79
TransInterp [4] 79.70 61.95 86.03 76.90 57.08 86.74
CLIPasRNN [26] 74.05 58.80 84.80 61.76 41.48 76.57
DINOv2 SA [16] 77.39 63.12 84.19 79.65 57.61 87.26
DAAM [27] 78.47 64.56 88.79 72.76 55.95 88.34
Cross Attn (SD3.5) 77.80 63.67 83.50 80.22 61.46 86.97
Cross Attn (Flux) 74.92 59.90 87.23 80.37 54.77 89.08
Ours (SD3.5) 81.92 67.47 90.79 83.90 69.93 90.02
Ours (Flux) 83.07 71.04 90.45 87.85 76.45 90.19

Table 1. CONCEPTATTENTION outperforms a variety of Dif-
fusion, DINO, and CLIP interpretability methods on ImageNet-
Segmentation and PascalVOC (Single Class). An extended ver-
sion of this table with additional baselines is shown in Table 2 of
the Appendix.

ϕ(ox, oc) = softmax(oxo
T
c ). (8)209

This is in contrast to cross attention maps which are be-210
tween the image keys kx and prompt queries qp.211

We can aggregate the information from multiple layers212

by averaging them 1
|L|

∑|L|
L=1 ϕ(o

L
x , o

L
c ) where |L| denotes213

the number of MMATTN layers (Flux has |L| = 19). These214
attention output space maps are unique to MM-DiT models215
as they leverage concept embeddings corresponding to tex-216
tual concepts which fundamentally can not be produced by217
UNet-based models.218

4. Experiments219

We are interested in investigating (1) the efficacy of CON-220
CEPTATTENTION to generate highly localized and seman-221
tically meaningful saliency maps, and (2) understand the222
transferability of multi-modal DiT representations to impor-223
tant downstream vision tasks. Zero-shot image segmenta-224
tion is a natural choice for achieving these goals.225

Datasets. For our key evaluation we leverage two zero-226
shot-image segmentation datasets: ImageNet-Segmentation227
[11] which was introduced for this task in [4, 10]. The228
dataset contains 4,276 images from 455 classes. Each im-229
age depicts a single central object or subject, which makes230
it a good method for comparing to a variety of interpretabil-231
ity methods that only generate a single saliency map, not a232
class specific one. For the second dataset we leverage Pas-233
calVOC 2012 benchmark [9]. We investigate both a single234
class (930 images) and multi-class split (1,449 images) of235
this dataset. We also evaluate on a multi-class segmentation236
task in Appendix A.1.237

Experimental Details. For our first task we closely fol-238
low the established evaluation framework from [10] and239
[4]. We perform this evaluation setup on both ImageNet-240
Segmentation and a subset of 930 PascalVOC images con-241

taining only a single class. For each method we assume the 242
class present in the image is known and use simplified de- 243
scriptions of each ImageNet class (e.g. “Maltese dog” → 244
“dog) this allows the concepts to be captured by a single 245
token. We construct a concept vocabulary for each image 246
composed of this target class and a set of fixed background 247
concepts for all examples (e.g. “background”, “grass”, 248
“sky”). 249

Baselines. We compare our approach to a variety of 250
zero-shot interpretability methods which leverage several 251
different multi-modal foundation models. We omit numer- 252
ous models from Table 1 due to space constraints, but we 253
have an extended version with additional baselines in Ta- 254
ble 2 of the Appendix. We compare to numerous CLIP 255
interpretability methods [1, 2, 4, 7, 10, 24, 26], the self- 256
attentions of various DINO models [3, 6, 16], and ap- 257
proaches that leverage the cross attentions of UNet-based 258
diffusion models [14, 27], and the cross attention maps of 259
Flux and SD3.5 Turbo [23]. 260

Implementation Details. For our experiments we im- 261
plemented ConceptAttention for both the distilled Flux- 262
Schnell model and Stable Diffusion 3.5 Turbo [23] in Py- 263
Torch [17]. We encode real images with the DiT by first 264
mapping them to the VAE latent space and then adding 265
varying degrees of Gaussian noise before passing them 266
through the DiT. We then cache all of the concept output oc 267
and image output vectors ox from each MMATTN layer. At 268
the end of generation we then construct our concept saliency 269
maps for each layer and average them over all layers of in- 270
terest. In our experiments we leverage the activations from 271
the last 10 of the 19 MMATTN layers. 272

Quantitative Metrics. Each method produces a set 273
of scalar raw scores for each image patch which we then 274
threshold based on the mean value to produce a binary 275
segmentation prediction. We compare each method using 276
standard segmentation evaluation metrics, namely: mean 277
Intersection over Union (mIoU), patch/pixelwise accuracy 278
(Acc), and mean Average Precision (mAP). Accuracy alone 279
is an insufficient metric as our dataset is highly imbalanced, 280
mIoU is significantly better, and mAP captures threshold 281
agnostic segmentation capability. We found that CONCEP- 282
TATTENTION significantly out performs all of the baselines 283
we tested across all three metrics (Tab. 1). This is true for 284
diffusion, CLIP, and DINO based interpretability methods. 285

Qualitative Evaluation. We also show qualitative 286
results comparing the segmentation performance to each 287
baseline in Figures 1, 3 and in Appendix B. 288

Multi Object Image Segmentation. We also per- 289
formed a quantitative evaluation for images with multiple 290
objects, with details outlined in Appendix A.1. 291

Ablation Studies We performed various ar- 292
chitectural ablation studies shown in Appendix 293
A.2 294
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ImageNet-Segmentation PascalVOC (Single Class)
Method Architecture Acc ↑ mIoU↑ mAP↑ Acc ↑ mIoU↑ mAP↑

LRP [2] CLIP ViT 51.09 32.89 55.68 48.77 31.44 52.89
Partial-LRP [2] CLIP ViT 76.31 57.94 84.67 71.52 51.39 84.86
Rollout [1] CLIP ViT 73.54 55.42 84.76 69.81 51.26 85.34
ViT Attention [7] CLIP ViT 67.84 46.37 80.24 68.51 44.81 83.63
GradCAM [25] CLIP ViT 64.44 40.82 71.60 70.44 44.90 76.80
TextSpan [10] CLIP ViT 75.21 54.50 81.61 75.00 56.24 84.79
TransInterp [4] CLIP ViT 79.70 61.95 86.03 76.90 57.08 86.74
CLIPasRNN [26] CLIP ViT 74.05 58.80 84.80 61.76 41.48 76.57
OVAM [15] SDXL UNet 79.41 65.02 88.12 73.50 58.12 87.91
DINO SA [3] DINO ViT 81.97 69.44 86.12 80.71 64.33 88.90
DINOv2 SA [16] DINOv2 ViT 77.39 63.12 84.19 79.65 57.61 87.26
DINOv2 Reg SA [6] DINOv2 Reg 72.04 56.31 80.83 77.16 56.60 86.35
iBOT SA [30] iBOT ViT 76.34 61.73 82.04 74.96 55.80 85.26
DAAM [27] SDXL UNet 78.47 64.56 88.79 72.76 55.95 88.34
DAAM [27] SD2 UNet 64.52 47.62 78.01 64.28 45.01 83.04
Cross Attention Flux DiT 74.92 59.90 87.23 80.37 54.77 89.08
Cross Attention SD3.5 DiT 77.80 63.67 83.50 80.22 61.46 86.97
CONCEPTATTENTION SD3.5 DiT 81.92 67.47 90.79 83.90 69.93 90.02
CONCEPTATTENTION Flux DiT 83.07 71.04 90.45 87.85 76.45 90.19

Table 2. CONCEPTATTENTION outperforms a variety of Diffusion, DINO, and CLIP ViT interpretability methods on ImageNet-
Segmentation and PascalVOC (Single Class). An extended version of this table with additional baselines is shown in Appendix ??.

A. Additional Quantitative Results 426

A.1. Multi-object Semantic Segmentation 427

We also wanted to evaluate the capabilities of our method at differentiating between multiple classes in an image. However, 428
only a subset of methods produce distinct saliency maps for open ended classes. For this experiment we compare to DAAM 429
using a SDXL backbone, TextSpan using a CLIP backbone, and the raw cross attentions of Flux. Instead of binarizing the 430
image to produce segmentations, for each patch we predict the concept with the highest score. We used pixelwise accuracy 431
and mIoU as our evaluation metrics and found that our method significantly outperformed the baselines (See Table 3). We 432
also show qualitative results of our approach differentiating between multiple concepts in a single image in Figures 1, ?? and 433
we show more results in Appendix B. 434

A.2. Ablation Studies 435

We perform several ablation studies to investigate the impact of various architectural choices and hyperparameters on the 436
performance of CONCEPTATTENTION. 437

Impact of Layer Depth on Segmentation We hypothesized that deeper MMATTN layers in the DiT would have more 438
refined representations that better transfer to segmentation. This was confirmed by our evaluation (see Figure 4). We pull 439
features from each diffusion layer and evaluated the segmentation performance of these features on ImageNet Segmentation. 440
We also compare the performance of combining all layers simultaneously, which we found performs better than any individual 441
layer. 442

Impact of Diffusion Timestep on Segmentation We add Gaussian noise to encoded images before passing them to the 443
DiTs, this conforms with the expectations of the models. Intuitively one might expect the later timesteps (less noise) to have 444
much higher segmentation performance as less information about the original image is corrupted. However, we found that the 445
middle diffusion timesteps best (See ??). Throughout the rest of our experiments we use timestep 500 out of 1000 following 446
this result. 447
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Figure 4. (Left) Later MMATTN layers encode richer features for zero-shot segmentation. We investigated the impact of using
features from various MMATTN layers and found that deeper layers lead to better performance on segmentation metrics like pixelwise
accuracy, mIoU, and mAP. We also found that combining the information from all layers further improves performance. (Right) Optimal
segmentation performance requires some noise to be present in the image. We evaluated the performance of CONCEPTATTENTION

by encoding samples from a variety of timesteps (determines the amount of noise). Interestingly, we found that the optimal amount of
noise was not zero, but in the middle to later stages of the noise schedule.

Method Acc↑ mIoU↑

TextSpan 73.84 38.10
DAAM 62.89 10.97
Flux Cross Attention 79.52 27.04
CONCEPTATTENTION 86.99 51.39

Table 3. CONCEPTATTENTION outperforms alternative methods on images with multiple classes from PascalVOC. Notably, the
margin between CONCEPTATTENTION and other methods is even higher for this task than when a single class is in each image.

Space Softmax Acc↑ mIoU↑ mAP↑

CA 66.59 49.91 73.17
CA ✓ 74.92 59.90 87.23
Value 45.93 29.81 65.79
Value ✓ 45.78 29.68 39.61
Output 78.75 64.95 88.39
Output ✓ 83.07 71.04 90.45

Table 4. The output space of DiT attention layers produces more transferable representations than cross attentions. We explore
the transferability of several representation spaces of a DiT: the cross attentions (CA), the value space, and the output space. We per-
formed linear projections of the image patches and concept vectors in each of these spaces and evaluated their performance on ImageNet-
Segmentation.

Concept Attention Operation Ablations We compared the performance on the ImageNet Segmentation benchmark of448
performing (a) just cross attention from the image patches to the concept vectors, (b) just self attention, (c) no attention449
operations, and (d) both cross and self attention. Our results seen in Table 5 indicate that using a combination of both cross450
and self attention achieves the best performance.451

We also investigated the impact of applying a pixelwise softmax operation over our predicted segmentation coefficients.452
We found that it slightly improves segmentation performance in the attention output space and significantly improves perfor-453
mance for the cross attention maps (see Table 4.454

B. Additional Qualitative Results455

Here we show a variety of qualitative results for our method that we could not fit into the original paper.456
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CA SA Acc↑ mIoU↑ mAP↑

52.63 35.72 70.21
✓ 51.68 34.85 69.36

✓ 76.51 61.96 86.73
✓ ✓ 83.07 71.04 90.45

Table 5. CONCEPTATTENTION performs best when we utilize both cross and self attention. We tested the effectiveness of performing
just a cross attention operation between the concepts and image tokens, just a self attention among the concepts, both cross and self
attention, and neither. We found that doing both operations leads to the best results. Metrics are computed on the ImageNet Segmentation
benchmark.

Figure 5. A qualitative comparison between our method and several others.

C. Pseudo-code for the CONCEPTATTENTION Algorithm 457

We show pseudo-code depicting the difference between a vanilla multi-modal attention mechanism and a multi-modal atten- 458
tion mechanism with concept attention added to it. 459

D. Concept Attention on Video Generation Models 460
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Figure 6. A qualitative comparison between our method and several others.
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Figure 7. A qualitative comparison between our method and several others.
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Figure 8. Qualitative comparisons between numerous baselines on ImageNet Segmentation Images. We show the soft predictions for each
method and binarized segmentation predictions.
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Figure 9. (a) MMATTN combines cross and self attention operations between the prompt and image tokens. (b) Our CONCEPTATTENTION

allows the concept tokens to incorporate information from other concept tokens and the image tokens, but not the other way around.
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Figure 10. CONCEPTATTENTION produces higher fidelity raw scores and saliency maps than alternative methods, sometimes surpassing
in quality even the ground truth saliency map provided by the ImageNet-Segmentation task. Top row shows the soft predictions of each
method and the bottom shows the binarized predictions.

def multi_modal_attn(img, txt):


    img_k, img_q, img_v = img_projection(img)

    txt_k, txt_q, txt_v = txt_projection(txt)


    img_txt_k = concat([img_k, txt_k])

    img_txt_q = concat([img_q, txt_q])

    img_txt_v = concat([img_v, txt_v])


    attn_out = self_attention(img_txt_k, img_txt_q, img_txt_v)

    

img = attn_out[:img.shape[0]], attn_out[img.shape[0]:]




    







    return img, txt


    # Compute the keys, queries, and values


    

    # Concat the image and text keys, queries, and vals


    # Perform self attention on combined sequence


# Unpack the attention outputs

    

(b) Multi-modal Attention with Concept Attention
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(a) Multi-Modal Attention
def multi_modal_attn_with_concept_attn(img, txt, concepts):


    img_k, img_q, img_v = img_projection(img)

    txt_k, txt_q, txt_v = txt_projection(txt)

    concept_k, concept_q, concept_v = txt_projection(concepts)


    img_txt_k = concat([img_k, txt_k])

    img_txt_q = concat([img_q, txt_q])

    img_txt_v = concat([img_v, txt_v])


    attn_out = self_attention(img_txt_k, img_txt_q, img_txt_v)

    
    img, txt = attn_out[:img.shape[0]], attn_out[img.shape[0]:]

    
    img_concept_k = concat([img_k, concept_k])

    img_concept_v = concat([img_v, concept_v])

    

concept_attn_map = matmul(concept_q, img_concept_k.T)

concept_attn_map = softmax(concept_attn_map, axis=-1) * scale


    concepts = matmul(concept_attn_map, img_concept_v)

    

    return img, txt, concepts


    # Compute the keys, queries, and values


    # Concat the image and text keys, queries, and vals


    # Perform self attention on combined sequence


# Unpack the attention outputs


# Concatenate the image and concept keys and values


# Perform the concept attention 

    
    

Figure 11. Pseudo-code depicting the (a) multi-modal attention operation used by Flux DiTs and (b) our CONCEPTATTENTION
operation. We leverage the parameters of a multi-modal attention layer to construct a set of contextualized concept embeddings. The
concepts query the image tokens (cross-attention) and other concept tokens (self-attention) in an attention operation. The updated concept
embeddings are returned in addition to the image and text embeddings.

12



CVPR
#38

CVPR
#38

CVPR 2025 Submission #38. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Time

CONCEPT
ATTENTION

Cross
Attention

CONCEPT
ATTENTION

Cross
Attention

CONCEPT
ATTENTION

Cross
Attention

CONCEPT
ATTENTION

Cross
Attention

Saliency Maps for "car"

Saliency Maps for "sky"

Saliency Maps for "tree"

Saliency Maps for "dirt"

Figure 12. CONCEPTATTENTION generalizes seamlessly to video generation MMDiT models like CogVideoX. We apply CON-
CEPTATTENTION to a CogVideoX [29] video generation model. We take several frames from the video and compare the saliency maps
generated by CONCEPTATTENTION to the model’s internal cross attention maps.
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Figure 13. CONCEPTATTENTION generalizes seamlessly to video generation MMDiT models like CogVideoX. We apply CON-
CEPTATTENTION to a CogVideoX [29] video generation model. We take several frames from the video and compare the saliency maps
generated by CONCEPTATTENTION to the model’s internal cross attention maps.
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