
Schema Lineage Extraction at Scale: Multilingual
Pipelines, Composite Evaluation, and Language-Model

Benchmarks

Jiaqi Yin
Microsoft

Redmond, WA
Jackie.Yin@microsoft.com

Yi-Wei Chen
Microsoft

Redmond, WA
yiweichen@microsoft.com

Meng-Lung Lee
Antra. Inc.
Seattle, WA

leemenglung1012@gmail.com

Xiya Liu
Microsoft

Redmond, WA
Xiya.Liu@microsoft.com

Abstract

Enterprise data pipelines, characterized by complex transformations across multiple
programming languages, often cause a semantic disconnect between original meta-
data and downstream data. This "semantic drift" compromises data reproducibility
and governance, and impairs the utility of services like retrieval-augmented gen-
eration (RAG) and text-to-SQL systems. To address this, a novel framework is
proposed for the automated extraction of fine-grained schema lineage from multi-
lingual enterprise pipeline scripts. This method identifies four key components:
source schemas, source tables, transformation logic, and aggregation operations,
creating a standardized representation of data transformations. For the rigorous
evaluation of lineage quality, this paper introduces the Schema Lineage Composite
Evaluation (SLiCE), a metric that assesses both structural correctness and semantic
fidelity. A new benchmark is also presented, comprising 1,700 manually annotated
lineages from real-world industrial scripts. Experiments were conducted with
12 language models, from 1.3B to 32B small language models (SLMs) to large
language models (LLMs) like GPT-4o and GPT-4.1. The results demonstrate
that the performance of schema lineage extraction scales with model size and
the sophistication of prompting techniques. Specially, a 32B open-source model,
using a single reasoning trace, can achieve performance comparable to the GPT
series under standard prompting. This finding suggests a scalable and economical
approach for deploying schema-aware agents in practical applications.

1 Introduction

Enterprise databases are foundational repositories powering critical business activities, with data
scientists and analysts relying extensively on these systems to extract actionable insights. Typically,
comprehensive metadata documentation is created alongside initial datasets, providing valuable
context for interpretation and utilization. However, this metadata rapidly becomes outdated as data
undergoes complex transformations through multi-stage processing pipelines employing heterogeneous
programming languages such as SQL, Python, and C#. These transformations fundamentally alter
original data schemas, creating substantial semantic gaps between initial metadata and derived datasets
used for analytics and machine learning.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Deep Learning for Code
in the Agentic Era.

This disconnect introduces severe documentation challenges known as "semantic drift"[1, 2]. The
semantic gap also impairs the utility of services like retrieval-augmented generation (RAG) and text-
to-SQL systems, which rely on accurate semantic understanding to function effectively. Consequently,
organizations face substantial difficulties in data governance and rely heavily on a limited number of
technical specialists familiar with transformation logic, severely constraining scalable data-driven
decision-making. While large language models (LLMs) pretrained on general corpora show promise
for automating metadata documentation tasks [3], they face significant limitations in enterprise
environments due to privacy constraints and lack of domain-specific context [4]. Even when deployed
internally, general-purpose LLMs struggle to capture nuanced semantics of transformed schemas
without task-specific fine-tuning [5, 6].

We address these challenges by introducing a formal framework for schema lineage extraction from
enterprise data pipeline code. We define schema lineage as a structured representation capturing
four essential components: source schemas, source tables, transformation logic, and aggregation
operations. This compact yet expressive format captures the complete semantic path from data origins
to final outputs across complex, multi-language transformation scripts.

To support benchmarking, we manually annotated 1,700 schema lineages across 50 real-world
enterprise pipeline scripts written in SQL, Python, and C#. We introduce SLiCE (Schema Lineage
Composite Evaluation), a comprehensive metric that combines structural validity and semantic
correctness into a unified score. Our extensive experiments across 12 language models using three
prompting strategies reveal key trends on how model scale, prompt design, and script complexity affect
extraction quality. Specially, we demonstrate that a 32B open-source model with chain-of-thought
prompting achieves performance comparable to GPT-series models, offering cost-effective deployment
paths for enterprise adoption.

In summary, we make four key contributions: (1) a formal definition of schema lineage tailored to
multi-language enterprise pipelines, capturing source-to-output semantics across transformation logic
and aggregation; (2) a high-quality benchmark of 1,700 manually annotated schema lineages from 50
real-world scripts; (3) the SLiCE metric, a comprehensive evaluation framework that enables fine-
grained assessment of extraction quality; and (4) extensive experiments across 12 language models,
demonstrating how model scale, prompting strategy, and script complexity influence extraction
performance.

2 Dataset and Schema Lineage Definition

2.1 Enterprise Data Pipeline Collection

Industries routinely employ sophisticated, multi-stage, and multi-language transformation pipelines to
support diverse analytical workflows. These pipelines typically begin with large-scale preprocessing
using frameworks like PySpark and Scope [7] and transition to downstream metric computation in
SQL or Python, reflecting the heterogeneity of real-world data engineering environments.

To capture these complexities, we curated a comprehensive dataset comprising 50 representative
enterprise data pipeline scripts. These scripts span multiple programming languages, including SQL,
C#, and Python (including PySpark). Each script, actively deployed within Microsoft, serves distinct
analytical purposes, ranging from business metrics computation to marketing analytics, product
insights, and user experience optimization.

We categorized scripts into three difficulty levels (easy, medium, hard) based on quantitative criteria
detailed in Appendix A.1. Our dataset includes 19 easy scripts (averaging 26 schemas and 921
tokens per script), 22 medium scripts (averaging 28 schemas and 1,806 tokens per script), and 9 hard
scripts (averaging 67 schemas and 4,687 tokens per script), collectively amounting to 1,700 schema
annotations (Table 1).

While the full dataset is based on real, production-level scripts, we simulate a hard example in
Appendix A.2 to illustrate their structural and logical characteristics. These examples preserve the
multi-stage, multi-language complexity of the original pipelines while changing sensitive business
logic.

2

Table 1: Overview of enterprise data pipeline scripts categorized by complexity level, detailing token
count and schema statistics

Difficulty Scripts Token Count Schema Count
Avg. Min Max Total Avg. Min Max

All 50 1,988.52 139 17,447 1,700 34.00 5 391

Easy 19 921.26 139 2,153 488 25.68 5 118
Medium 22 1,806.23 274 6,882 610 27.73 6 109
Hard 9 4,687.22 751 17,447 602 66.89 10 391

Figure 1: A visual illustration of schema lineage definition and annotation, based on the formal
structure introduced in Section 2.2. The example demonstrates how raw data pipeline scripts combined
with Python and SQL code is analyzed to extract the four core components (source schemas, source
tables, transformation logic, and aggregation operations) of schema lineage for TotalAmountSpent.
The resulting structured lineage represents a human-labeled gold annotation used for model evaluation
and training.

2.2 Schema Lineage Definition and Annotation

We formally define schema lineage as a structured representation capturing the semantics of data
transformations within enterprise data pipelines. A typical pipeline script reads from one or more
source tables and produces one output table as a result of transformation logic. The output table
consists of multiple schemas, corresponding to the columns or fields. For each schema in an output
table, we extract a distinct schema lineage that traces its derivation from the original data sources. We
conceptualize schema lineage as a structured mapping comprising four essential components:
1. Source Schemas: The original schema elements from which lineage originates, indicating the
foundational data fields contributing to the resultant schema. Multiple source schemas, if applicable,
are comma-separated;
2. Source Tables: The initial data tables containing source schemas, acting as primary data origins;
3. Transformation: The explicit code snippet or operational logic applied to transform source
schemas into the resultant schema. A sequence of transformations is delimited using the <CODEEND>
separator;
4. Aggregation: Aggregation operations applied throughout transformation, such as GROUP BY, SUM,
COUNT, MAX, or MIN, alongside their grouping keys. A sequence of aggregations is similarly separated
using the <CODEEND> delimiter.
Those components are essential because schema lineage serves as the connective tissue between
raw data and downstream outputs. Without understanding how each schema element was derived, it
becomes impossible to reconstruct the full context of a dataset, explain business metrics, or enable
AI agents to operate reliably. For instance, tracing the lineage of a metric like TotalAmountSpent
showed in Figure 1 requires more than matching column names. It demands precise reconstruction of
how those values were computed, transformed, and aggregated from their original tables.

Our dataset includes schema lineages manually annotated by human experts, following strict
consistency guidelines to ensure reliable experimental evaluation. Through meticulous annotation,
we have produced 1,700 high-quality schema lineages covering diverse complexity levels and

3

transformation patterns, creating a robust gold standard for evaluating language models. Moreover,
detailed reasoning traces were generated for each script to support varied prompting strategies during
evaluation. These traces strengthen our assessment framework, ensuring comprehensive and rigorous
evaluations of automated schema lineage extraction.

3 Schema Lineage Composite Evaluation (SLiCE)

Schema lineage requires accurately identifying the original source columns, tracing transformation
logic, and capturing aggregation operations, even when they are distributed across multiple abstraction
layers or languages. To meet these requirements, we propose a novel evaluation metrics called, SLiCE,
specifically designed for Schema Lineage Composite Evaluation. Our approach recognizes that
successful lineage extraction must satisfy multiple criteria simultaneously: structural correctness,
semantic accuracy, and practical utility for enterprise applications.

3.1 Problem Statement

Given an enterprise data pipeline script and a target schema from the output table, our objective is to
extract the corresponding schema lineage that traces the data transformation process from source to
target. Let S represent a data pipeline script of multiple programming languages (SQL, C#, Python),
and letσ denote a target schema in the output table generated byS . Our goal is to map the script-schema
pair to a structured schema lineage L. Each schema lineage L is defined as a structured dictionary
with four required keys: source_schema, source_table, transformation, aggregation.
This key-value format is essential for both evaluation and downstream parsing.

To streamline our mathematical formulation, we denote the value corresponding to each key using
the following symbols: C for source_schema representing the set of source columns, T for
source_table denoting the set of tables, F for transformation, the transformation logic, and
A for aggregation, the final aggregation expression. We thus represent the schema lineage as a
structured mapping:
L = {source_schema : C, source_table : T , transformation : F , aggregation : A} (1)

During evaluation, we consider a predicted lineage L̂ generated by a language model and a gold
standard lineage L⋆ annotated by experts. This dictionary-based representation ensures alignment
with both the model’s output structure and the evaluation interface.

3.2 SLiCE Definition

The SLiCE integrates structural validity [8] and semantic correctness [9] into a single value
SLiCE(L̂, L⋆) ∈ [0, 1], while still exposing component-level diagnostics (format, source, tables,
transformation, aggregation).

Format Correctness. Schema lineage extraction requires strict adherence to both the dictionary
structure and the output scaffolding imposed by the prompting strategy. Depending on whether the
model is prompted with or without intermediate reasoning, the response must conform to one of the
following formats: with reasoning trace: the response must contain both reasoning and answer
blocks:

<think> ... reasoning trace ... </think>
<answer> ... schema lineage dictionary ... </answer>;

without reasoning trace: the response must contain only the answer block: <answer> ... schema
lineage dictionary ... </answer>. In both cases, the lineage content inside the <answer>
</answer> tag must follow a strict key-value dictionary format, containing exactly four keys:
source_schema, source_table, transformation, and aggregation. The format correctness
score enforces all these format constraints jointly:

Mfmt(L̂) =

{
1 if L̂ satisfies all <tag> structure and dictionary key requirements
0 otherwise

. (2)

Any deviation, such as malformed tags, incorrect key names, or missing fields , results in immediate
failure. This reflects the importance of strict structural adherence in automated parsing systems.

4

Source Schema Evaluation. Source schemas represent the foundational elements of lineage
extraction, specifying which original columns contribute to the target schema. We compute a binary
match based on exact set equality:

Msrc(L̂, L
⋆) =

{
1 if Ĉ = C⋆

0 otherwise
. (3)

This metric enforces strict case-sensitive, order-insensitive matching of column names.

Source Table Evaluation. There are variations in source table naming conventions and hierarchies
(e.g., database.schema.table vs. table), a simple exact-match metric is insufficient. Mtbl is proposed
to combine a strict exact-match F1 score with a more flexible fuzzy similarity score Fu:

Mtbl(L̂, L
⋆) = wtbl

1 · F1(T̂ , T ⋆) + wtbl
2 · Fu(T̂ , T ⋆), (4)

where the weights wtbl
1 + wtbl

2 = 1. Fu is defined to provides partial credit for predictions that are
textually similar but not identical to the ground truth:

Fu(T̂ , T ⋆) =
1

2

 1

|T̂ |

∑
ti∈T̂

max
tj∈T ⋆

FuzzyMatch(ti, tj) +
1

|T ⋆|
∑

tj∈T ⋆

max
ti∈T̂

FuzzyMatch(ti, tj)

 .

(5)
The FuzzyMatch(ti, tj) function computes a normalized similarity ratio of table name based on the
Levenshtein distance [10]. The first term in Equation 5, Fuzzy precision, measures how well each
predicted table matches the best candidate in the ground-truth set, while the second term, Fuzzy recall,
measures how well each ground-truth table is represented by its best match in the predicted set. The
max operator ensures a table is only scored against its most similar counterpart. This hybrid approach
provides a more nuanced evaluation that rewards exactness while accommodating common naming
variations.

Transformation and Aggregation Evaluation. Transformation (F) and aggregation (A) fields
contain code snippets in various programming languages. These components are challenging to
evaluate due to the possibility of logical equivalence despite syntactic variation. We define a novel
Multi-AST similarity in Equation 6 that supports multilingual code comparison. First, we compute
language-aware AST similarity:

ASTmulti(x̂, x
⋆) =

∑
l∈L

wl · ASTl(x̂, x
⋆), (6)

where x ∈ {F ,A}, L is the set of candidate languages, and wl is the confidence that x belongs
to language l (with

∑
l wl = 1). The weight wl is computed as the normalized proportion of

language-specific keywords observed in x, serving as a proxy for language attribution.

Motivated by CodeBLEU [9], we define the component metrics for transformation and aggregation,
repectively, as a weighted average of standard BLEU [11], weighted BLEU (as introduced in
CodeBLEU), and a modified AST-based similarity:

Mtrf(L̂, L
⋆) = wtrf

1 · BLEU(F̂ ,F⋆) + wtrf
2 · BLEUweight(F̂ ,F⋆) + wtrf

3 · ASTmulti(F̂ ,F⋆), (7)

Magg(L̂, L
⋆) = wagg

1 · BLEU(Â,A⋆) + wagg
2 · BLEUweight(Â,A⋆) + wagg

3 · ASTmulti(Â,A⋆).
(8)

Each set of weights satisfies
∑3

i=1 w
trf
i = 1 and

∑3
i=1 w

agg
i = 1. While CodeBLEU includes AST

similarity for single-language code, our approach extends this term to support multi-language settings
by computing a language-aware aggregation over candidate AST parsers. We exclude the data-flow
matching term from CodeBLEU, as schema lineage transformations often consist of partial and
non-executable code snippets.

Composite Performance Score. The final evaluation metric is defined as:

SLiCE(L̂, L⋆) = Mfmt(L̂) · Msrc(L̂, L
⋆) · [ωtbl · Mtbl + ωtrf · Mtrf + ωagg · Magg] , (9)

5

where the weights are predefined and satisfy ωtbl + ωtrf + ωagg = 1. Other weights (wtbl
1 , wtbl

2)
in Mtbl, (wtrf

1 , wtrf
2 , wtrf

3) in Mtrf, (wagg
1 , wagg

2 , wagg
3) in Magg are also predefined. Note that Mfmt

and Msrc are binary values. Equation 9 ensures that violations in basic structural constraints (e.g.,
incorrect format or source columns) nullify downstream correctness, reflecting how such errors
propagate through real-world systems.

The proposed metric, SLiCE, offers a principled foundation for systematic performance analysis and
model diagnostics. The fine-grained, component-wise scoring enables detailed benchmarking of
language model capabilities across distinct aspects of schema lineage extraction, as demonstrated
in our experiments. Importantly, the structured formulation of the SLiCE metric is not only useful
for evaluation but also well-suited to serve as a reward signal in future supervised fine-tuning or
reinforcement learning frameworks [8, 12].

To systematically investigate the level of contextual richness on performance of schema lineage
extraction, we design three hierarchical prompting categories: Base, Few-Shot, CoT. Their detailed
definition and prompt examples can be found in Appendix A.3. Note that we apply PagedAttention [13],
a key-value caching mechanism, for open source small language models. It virtualizes the key-value
cache memory to prevent fragmentation and optimize reuse. Since the constructed prompts, including
scripts, extraction instructions, and provided examples, remain invariant for different schema queries
within the same pipeline script, we compute and cache the model’s key-value pairs once per pipeline.
This optimization significantly reduces redundant computational efforts and accelerates the schema
lineage extraction process.

4 Related Work

Early schema lineage extraction relied on conventional code analysis techniques, including abstract
syntax tree (AST) parsing [14, 15], metadata mapping [16], and runtime analysis [17]. While reliable
in single-language, static environments, these methods struggle with multi-stage, multi-language
pipelines and evolving codebases.

Recent advances leverage large language models (LLMs) for automated lineage extraction [18, 19],
reframing it as a code understanding task. Chain-of-Thought prompting with examples [18] enables
high-quality lineage generation without fine-tuning, though existing approaches typically generate
table- and operation-level lineages separately. Fine-tuned solutions like LLiM [19] capture anomalous
patterns but may lack generalization for fundamental schema dependencies. Our work advances the
no-fine-tuning paradigm by simultaneously generating both lineage types in a single query, specifically
targeting data understanding rather than anomaly detection.

Open lineage datasets are rare due to sensitive business logic. While benchmarks like TPC-H [20] serve
as synthesis templates [18], they lack the complexity of real-world multi-language implementations.
Enterprise lineage graphs [21] better reflect real dependencies but aren’t tailored for LLM-based
extraction. Our dataset comprises real-world multi-language scripts, inheriting structural benefits
from lineage graphs while explicitly supporting retrieval augmentation generation (RAG) [22] and
Text-to-SQL applications [23].

Existing code generation metrics, execution-based pass@k [3] and semantic CodeBLEU [9] have
fundamental limitations for lineage extraction. The pass@k metric requires complete executable
programs, incompatible with partial transformation logic. CodeBLEU’s applicability is constrained
by heterogeneous multi-language transformations and incomplete code fragments that preclude
traditional AST and data-flow analyses. Our SLiCE metric preserves CodeBLEU’s foundations while
providing native support for partial, multilingual code evaluation and incorporating LLM fine-tuning
considerations [8].

5 Experiments

Our experimental evaluation is designed to investigate several key aspects of schema lineage extraction.
We compare the performance of state-of-the-art LLMs with specialized SLMs to understand their
relative capabilities on this task across data pipelines of varying difficulty. Methodologically, we
assess the impact of different prompting strategies on extraction accuracy and validate the effectiveness
of our proposed lineage metrics.

6

Table 2: Benchmark results of 12 language models evaluated on schema lineage extraction from 50
data pipeline scripts using three prompting strategies: base (zero-shot), one-shot, and chain-of-thought
with a single reasoning trace (CoT-1). Mean corpus-level SLiCE scores and standard deviations are
reported across six random seeds, ordered by model size.

Model Size Base One-Shot CoT-1
LLMs
GPT-4.1 [24] - 0.418 ± 0.005 0.673 ± 0.008 0.767 ± 0.007
GPT-4o [25] - 0.284 ± 0.003 0.654 ± 0.007 0.759 ± 0.008
SLMs
DeepSeek-Coder [26] 1.3B 0.000 ± 0.000 0.054 ± 0.015 0.038 ± 0.017
Qwen2.5-Coder [27] 1.5B 0.014 ± 0.002 0.309 ± 0.006 0.304 ± 0.017
Qwen2.5-Coder [27] 3B 0.100 ± 0.004 0.391 ± 0.015 0.445 ± 0.010
DeepSeek-Coder [26] 6.7B 0.003 ± 0.003 0.084 ± 0.018 0.509 ± 0.007
Mistral [28] 7B 0.026 ± 0.003 0.331 ± 0.005 0.227 ± 0.009
Qwen2.5-Coder [27] 7B 0.167 ± 0.005 0.487 ± 0.018 0.556 ± 0.009
Phi-4 [29] 14B 0.016 ± 0.003 0.511 ± 0.005 0.648 ± 0.005
Qwen2.5-Coder [27] 14B 0.286 ± 0.004 0.547 ± 0.005 0.646 ± 0.007
Codestral [30] 22B 0.126 ± 0.004 0.511 ± 0.005 0.662 ± 0.008
Qwen2.5-Coder [27] 32B 0.355 ± 0.004 0.623 ± 0.004 0.734 ± 0.007

5.1 Experimental Setup

Our evaluation involves 12 language models (two LLMs and 10 SLMs) across 50 data pipeline scripts.
Each SLM is deployed on a dedicated compute instance equipped with two NVIDIA H100 GPUs.
We implement three core prompting categories, resulting in seven distinct strategies that are scaled
according to script complexity. Detailed examples of these prompting strategies are provided in
Appendix A.3. The experimental framework includes six randomized trials resulting in over 70,000
individual extraction tasks across all the conditions. We report the mean and standard deviation
of corpus-level metric Mmod(Θ) as defined in Equation 11, which provides insights into metric
stability and variability of model performance. Complete experimental setup details are available in
Appendix B.

5.2 Results

Table 2 presents corpus-level performance across 12 language models, evaluated using three prompting
strategies: base (zero-shot), one-shot, and chain-of-thought with one reasoning trace (CoT-1). The
comprehensive results are in Table B.3 (Part 1-3). The consistently low standard deviation observed
across random seeds underscores the robustness and reliability of our evaluation metrics.

Several key patterns emerge from our results. First, base prompting consistently yields the lowest
performance across all models. Introducing a single output example (one-shot) substantially improves
extraction accuracy. For instance, GPT-4.1 improves its SLiCE score by 61%, and the SLM Qwen2.5-
Coder-32B sees a 75% increase. Interestingly, general-purpose language models such as GPT-4o,
Mistral, and Phi-4 exhibit even greater results with one-shot prompting, achieving improvements
exceeding 100%. Adding a reasoning trace (CoT-1) further enhances performance by over another
10% for models with size ≥ 3B, demonstrating the effectiveness of CoT reasoning in guiding
schema lineage extraction. Secondly, there is positive correlation between model size and extraction
performance. Within the same model families, holding the prompting strategy unchanged, larger
models consistently outperform smaller models, highlighting model size as a significant factor; as
seen in Figure B.2. Under CoT-1 prompting, Qwen2.5-Coder-32B achieves the highest SLiCE score
of 0.734, more than doubling the performance of its smallest variant (1.5B), which scores 0.304.

We observe that CoT prompting yields diminishing returns for models with fewer than 3B parameters.
For instance, DeepSeek-Coder-1.3B and Qwen2.5-Coder-1.5B exhibit decreased lineage extraction
performance when moving from one-shot to CoT-1 prompting. Two potential explanations account
for this trend. First, chain-of-thought reasoning is widely considered an emergent capability that
typically arises in larger models, aligning with prior findings by Wei et al. [31]. Second, the longer

7

1 2 3
Difficulty Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
of

 S
Li

C
E

Sc
or

es

Models
GPT-4o
Qwen2.5-Coder-32B
Phi-4
DeepSeek-Coder-6.7B

Prompt Types
CoT
One-Shot

(a) Average SLiCE scores across three script difficulty
levels (1: easy, 2: medium, 3: hard) for four models
under one-shot and CoT-1 prompting.

0 1 2 3
Number of Examples

0.0

0.2

0.4

0.6

0.8

M
ea

n
of

 S
Li

C
E

Sc
or

es

(b) Average SLiCE scores on hard scripts with increas-
ing numbers of examples (1–3) for few-shot and CoT
prompting strategies.

Figure 2: Schema lineage extraction performance comparison across prompting strategies and script
complexities for four models (GPT-4o, Qwen2.5-Coder-32B-Instruct, Phi-4-14B, and DeepSeek-
Coder-6.7B). Line styles denote prompting strategies; colors indicate model variants. (a) shows the
effect of script difficulty under different prompting strategies. (b) shows the effect of varying the
number of examples in both few-shot and CoT prompting for hard scripts.

prompt lengths inherent to CoT may overwhelm small models with limited context windows. This
degradation is consistent with observations by Liu et al. [32]. Comparatively, Qwen2.5-Coder-32B
achieves performance on par with GPT-4o and GPT-4.1: its base prompting accuracy surpasses
GPT-4o, while its one-shot and CoT-1 results are comparable to those of both proprietary LLMs.

To understand the impact of script complexity on extraction performance, we further stratify the
SLiCE scores and illustrate the trends in Figure 2a. We select four representative models with varying
scales: GPT-4o, Qwen2.5-Coder-32B, Phi-4, and DeepSeek-Coder-6.7B, using one-shot and CoT-1
prompting strategies across script difficulties. The rest of model performance is in Appendix C.

Figure 2a reveals that schema lineage extraction performance decreases as script complexity increases
across most scenarios which aligns with our design intuition. When transitioning from one-shot to
CoT-1 prompting, all models exhibit increased SLiCE scores, effectively mitigating the adverse effect
of higher script complexity. This result underscores the significant benefit of incorporating even a
single high-quality reasoning trace provided by a human expert into the prompt. For instance, Phi-4
(green color) achieves a SLiCE score of 0.660 on hard scripts using CoT-1 prompting (solid line),
markedly surpassing the 0.397 score achieved with one-shot prompting (dash line). Additionally, the
Qwen-2.5-Coder-32B under CoT-1 prompting (orange solid line) surpasses GPT-4o’s performance
under one-shot prompting (blue dash line) for scripts at all difficulty levels. This outcome is practically
significant as it demonstrates that a 32B model, which can be internally deployed, can achieve
performance comparable to the expensive GPT-4o.

We further investigate the effect of increasing the number of examples on schema lineage extraction
performance, by analyzing average SLiCE scores for the hard scripts across the four representative
models in Figure 2b. Increasing the number of examples consistently enhances the SLiCE scores across
all models, demonstrating a clear positive correlation between example quantity and performance
improvement. CoT prompting generally outperforms few-shot prompting across all configurations.
However, while CoT with 2-3 examples achieves superior performance, the magnitude of improvement
remains modest. For instance, the Qwen2.5-Coder-32B model experiences a substantial increase of
23% (from 0.531 to 0.653) from one-shot to two-shot prompting, whereas the improvement from
CoT-1 to CoT-2 is considerably smaller at only 6% (from 0.689 to 0.727). This pattern suggests
that schema lineage extraction benefits substantially from a single high-quality reasoning trace, with
additional reasoning traces yielding diminishing returns.

8

6 Discussion

Our experiments demonstrate that the proposed SLiCE metric effectively captures schema lineage
extraction performance across varying language models and prompting strategies. While proprietary
LLMs deliver strong extraction performance, each prompt must contain complete data pipeline scripts,
which can exceed hundreds of thousands of tokens, leading to cost escalation. Our work reveals that
open-source models at the 32B parameter scale, when augmented with chain-of-thought reasoning
traces, achieve extraction performance comparable to proprietary state-of-the-art LLMs such as
GPT-4o and GPT-4.1. Incorporating even a single high-quality reasoning trace remarkably enhances
performance.

A primary application enabled by accurate schema lineage extraction is the automated creation of
high-quality documentation alongside dynamic data pipeline scripts. This documentation subsequently
serves as a robust knowledge base for RAG systems. Take the schema lineage extraction in Figure 1 as
an example. The schema TotalAmountSpent originates from the database columns customer_id
and amount, with their definitions sourced from the database’s metadata. Schema lineage explicitly
traces transformations and aggregations, empowering the LLM to generate a precise and contextual
business statement: "TotalAmountSpent shows the total amount spent by each customer by aggregating
individual transaction amounts. ...<business impact provided by LLM knowledge>". Such detailed,
dynamic, and domain-specific documentation significantly enriches downstream AI applications.
Furthermore, accurate schema lineage substantially improves text-to-SQL tasks by providing precise
definitions and relevant business contexts, ultimately enhancing AI-driven analytical workflows from
human queries.

However, our approach faces several limitations. First, the requirement for human experts to provide
reasoning trace examples presents a scalability challenge in production environments with diverse,
unseen script patterns. Potential solutions include human-in-the-loop feedback mechanisms or
developing specialized models fine-tuned for industrial pipeline reasoning. Second, lengthy pipeline
scripts may exceed context windows of smaller language models, limiting their applicability despite
their cost advantages. Third, the SLiCE metric employs predefined weights that may not generalize
across all domains or reflect varying error criticality in specific business contexts. Future work could
explore adaptive weighting schemes based on downstream task performance.

7 Conclusion

In this paper, we proposed an innovative framework for automated schema lineage extraction tailored
to multi-language enterprise data pipelines. Recognizing the inherent semantic drift due to complex
data transformations, our approach systematically captures schema lineage details (source schemas,
tables, transformation logic, and aggregation operations) directly from pipeline scripts. We curated
a robust benchmark dataset consisting of 1,700 schema annotations stratified across varying script
complexities, representative of real-world industry scenarios. Central to our methodology is the SLiCE
score, a composite evaluation metric that combines structural correctness with semantic precision.
This metric enables granular diagnosis for the lineage of real-world applications. mportantly, provides
a well-structured reward signal that can be leveraged for fine-tuning language models in future work,
offering a direct path toward improving model alignment with schema lineage extraction tasks.

Our experimental analysis examined multiple state-of-the-art language models under diverse prompting
strategies. Key findings revealed that the performance of schema lineage extraction significantly
improves with increasing model size and contextual richness in prompts. Specifically, chain-of-
thought reasoning significantly enhance extraction performance. We observed that 32B SLM achieves
performance levels comparable to proprietary LLMs, highlighting their viability for enterprise
deployment.

The proposed method directly facilitates high-quality dynamic documentation, significantly enhancing
downstream applications such as RAG and text-to-SQL systems. By providing accurate, contextually-
rich schema documentation, our approach empowers enterprises to maintain rigorous data governance
and analytical reproducibility, effectively bridging the semantic gap in enterprise data transformation
processes.

9

Acknowledgments and Disclosure of Funding

This work is supported by our manager Cheng Wu. We thank Lili Che and Naga Sai Kiran
Kambhampati for curating the high-quality data pipeline scripts and annotating the schema lineage.

References
[1] J. P. Müller and T. Stein. A framework for measuring semantic drift in ontologies. In Joint

Proceedings of the Workshops on the Semantic Web: Semantics, Analytics, and Visualisation,
SAW, and Trends in the Semantic Web, SemAW, volume 1695, pages 31–38. CEUR-WS, 2016.
URL https://ceur-ws.org/Vol-1695/paper42.pdf.

[2] Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations. VLDB, 12
(1):41–58, May 2003. doi: 10.1007/s00778-002-0083-8. URL https://doi.org/10.1007/
s00778-002-0083-8.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, et al. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374.

[4] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney
von Arx, et al. On the opportunities and risks of foundation models, 2022. URL https:
//arxiv.org/abs/2108.07258.

[5] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL
https://arxiv.org/abs/2005.11401.

[6] Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu, Zach Brannelly, and Mohamed Abdel-
razek. Seven failure points when engineering a retrieval augmented generation system, 2024.
URL https://arxiv.org/abs/2401.05856.

[7] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie Chaiken, and Darren
Shakib. SCOPE: parallel databases meet MapReduce. VLDB Journal, 21(5):611–636, 2012.
doi: 10.1007/s00778-011-0231-0.

[8] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

[9] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, et al. Codebleu: a method for
automatic evaluation of code synthesis, 2020. URL https://arxiv.org/abs/2009.10297.

[10] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710, 1966.

[11] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proc. Association for Computational Linguistics (ACL),
pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. doi: 10.3115/1073083.1073135.
URL https://aclanthology.org/P02-1040/.

[12] Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code
generation using deep reinforcement learning, 2023. URL https://arxiv.org/abs/2301.
13816.

[13] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, et al.
Efficient memory management for large language model serving with pagedattention, 2023.
URL https://arxiv.org/abs/2309.06180.

[14] Andi Albrecht, Victor Uriarte, Jesús Leganés-Combarro, Jon Dufresne, Adam Greenhall, Simon
Heisterkamp, et al. sqlparse: a non-validating sql parser for python. Python package (PyPI,
Read the Docs), 2025. URL https://pypi.org/project/sqlparse/. Online; accessed
2025-07-30.

10

https://ceur-ws.org/Vol-1695/paper42.pdf
https://doi.org/10.1007/s00778-002-0083-8
https://doi.org/10.1007/s00778-002-0083-8
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2401.05856
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2009.10297
https://aclanthology.org/P02-1040/
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2309.06180
https://pypi.org/project/sqlparse/

[15] Sqlfluff: The sql linter for humans. Open source project (sqlfluff.com, GitHub), 2025. URL
https://sqlfluff.com/. Online; accessed 2025-07-30.

[16] Microsoft. Data lineage in classic data catalog. Microsoft Learn, Jul 2025. URL
https://learn.microsoft.com/en-us/purview/data-gov-classic-lineage. On-
line; accessed 2025-07-30.

[17] Foundational, Inc. Automated data lineage tool. Product description (foundational.io), 2025. URL
https://www.foundational.io/product/data-lineage. Online; accessed 2025-07-30.

[18] Zhangti Li, Wenbin Guo, Yabing Gao, Di Yang, and Lin Kang. A large language model-based
approach for data lineage parsing. Electronics, 14(9):1762, April 2025. doi: 10.3390/
electronics14091762. URL https://www.mdpi.com/2079-9292/14/9/1762.

[19] Volodymyr Kuznetsov. Introducing the Large Lineage Model (LLiM): Our Path to Securing the
Future of Data. Cyberhaven Engineering Blog, March 2025. URL https://www.cyberhaven.
com/engineering-blog/large-lineage-model-llim-our-path-securing-data/.
Online; accessed 2025-07-30.

[20] The Apache Doris Project. Tpc-h benchmark – apache doris documentation. https://doris.
apache.org/docs/benchmark/tpch/. Accessed: 2025-07-30.

[21] Yunpeng Chen, Ying Zhao, Xuanjing Li, Jiang Zhang, Jiang Long, and Fangfang Zhou. An
open dataset of data lineage graphs for data governance research. Visual Informatics, 8(1):1–5,
2024. URL http://dblp.uni-trier.de/db/journals/vi/vi8.html#ChenZLZLZ24.

[22] Jerry Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

[23] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, et al. Spider: A
large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql
task, 2019. URL https://arxiv.org/abs/1809.08887.

[24] OpenAI. Gpt-4.1, 2025. URL https://openai.com/index/gpt-4-1/. Accessed: 2025-
07-30.

[25] OpenAI. Hello gpt-4o, May 2024. URL https://openai.com/index/hello-gpt-4o/.

[26] DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, et al. Deepseek-
coder-v2: Breaking the barrier of closed-source models in code intelligence, 2024. URL
https://arxiv.org/abs/2406.11931.

[27] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, et al. Qwen2.5-coder
technical report, 2024. URL https://arxiv.org/abs/2409.12186.

[28] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, et al. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

[29] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, et al. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.
08905.

[30] Mistral AI. Codestral, 2024. URL https://mistral.ai/news/codestral/.

[31] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, et al.
Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https:
//arxiv.org/abs/2201.11903.

[32] Nelson F. Liu, Kevin Dabrol, John Bradshaw, Bryan McMahan, William Fedus, Noam Shazeer,
Kuang-Huei Li, and Adams Wei Yu. Lost in the middle: How language models use long
contexts. Transactions of the Association for Computational Linguistics, 12:157–173, 2024.
doi: 10.1162/tacl_a_00638. URL https://aclanthology.org/2024.tacl-1.9.

11

https://sqlfluff.com/
https://learn.microsoft.com/en-us/purview/data-gov-classic-lineage
https://www.foundational.io/product/data-lineage
https://www.mdpi.com/2079-9292/14/9/1762
https://www.cyberhaven.com/engineering-blog/large-lineage-model-llim-our-path-securing-data/
https://www.cyberhaven.com/engineering-blog/large-lineage-model-llim-our-path-securing-data/
https://doris.apache.org/docs/benchmark/tpch/
https://doris.apache.org/docs/benchmark/tpch/
http://dblp.uni-trier.de/db/journals/vi/vi8.html#ChenZLZLZ24
https://github.com/jerryjliu/llama_index
https://arxiv.org/abs/1809.08887
https://openai.com/index/gpt-4-1/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://mistral.ai/news/codestral/
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://aclanthology.org/2024.tacl-1.9

[33] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
et al. Code llama: Open foundation models for code, 2024. URL https://arxiv.org/abs/
2308.12950.

[34] Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong Chen, Yen-Chun Chen, Mei Gao, et al.
Phi-4-mini-reasoning: Exploring the limits of small reasoning language models in math, 2025.
URL https://arxiv.org/abs/2504.21233.

[35] Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl,
Lingjiao Chen, et al. Phi-4-reasoning technical report, 2025. URL https://arxiv.org/abs/
2504.21318.

[36] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

12

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2504.21233
https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2406.00515

A Data Gallery

A.1 Script Difficulty

To quantify the complexity of data pipeline scripts, we introduce a scoring framework that evaluates
each script based on its structural and operational features. Scripts are scored from 0 to 3 across three
independent dimensions: data sources, transformations, and aggregations. A point is awarded for
each dimension that demonstrates a higher level of complexity, as detailed below:

• Data Sources:
– 0 points for scripts accessing one or two distinct data sources.
– +1 point for scripts accessing three or more distinct data sources.

• Transformation:
– 0 points for scripts with only basic transformations (e.g., column renaming, type

casting).
– +1 point for scripts that include a transformation chain, where the output of one operation

serves as the input to another.
• Aggregation:

– 0 points for scripts with no aggregation or pivot operations.
– +1 point for scripts containing any aggregation function (e.g., SUM, COUNT, PIVOT).

The total complexity score for a script is the sum of the points from each dimension:
Total Score = Points(Data Sources) + Points(Transformation) + Points(Aggregation)

The final score determines the script’s difficulty level, as defined in Table A.1.

Table A.1: Difficulty levels for script data based on scoring criteria.
Difficulty Level Score Description

Level 1: Easy 0 or 1
Scripts with minimal complexity, exhibiting at most
one complexity factor (e.g., multiple data sources,
a transformation chain, or an aggregation).

Level 2: Medium 2
Scripts incorporating two of the three complexity
factors, such as multiple sources with a transforma-
tion chain but no aggregation.

Level 3: Hard 3
Scripts featuring all three complexity factors: mul-
tiple data sources (geq3), chained transformations,
and at least one aggregation or pivot operation.

A.2 Scripts

To trace schema lineage from real-world scripts that frequently incorporate multiple programming
languages, we developed a custom parsing strategy capable of handling multi-language code
environments. Modern data processing workflows typically employ different programming languages
optimized for specific computational tasks. Data engineers commonly utilize Python with specialized
libraries such as PySpark, an interface for Apache Spark that enables distributed processing of large
datasets across cluster computing environments. This approach facilitates efficient large-scale data
cleaning and transformation operations. Subsequently, analysts and business users employ SQL for
analytics and reporting tasks on the processed data. Listing 1 presents a synthetic script demonstrating
the integration of Python and SQL components with level of difficulty as hard. We employ the
delimiter >>>>> to denote programming language transitions during the parsing process. Our schema
lineage tracing algorithm operates using a bottom-up traversal approach, initiating from a pre-specified
target column and propagating upward through the computational graph. All transformation and
aggregation operations that influence the target column are captured and recorded according to our
standardized schema lineage representation format. One complete example of schema lineage is
showed in Table A.2.

13

Listing 1: Python Code + SQL
1 import pyspark.sql.functions as F
2 from pyspark.sql import SparkSession
3 from pyspark.sql.types import StructType, StructField, IntegerType, StringType,

DateType, TimestampType, DecimalType, DoubleType
4 from datetime import datetime, timedelta
5

6 def clean_customers(df):
7 email_cleaned = df.withColumn(
8 "email_address",
9 F.when(

10 F.col("email_address").isNull() |
11 F.lower(F.col("email_address")).isin("", "invalid-email", "none"),
12 F.lit("invalid_format@example.com")
13).otherwise(F.col("email_address"))
14)
15

16 names_formatted = email_cleaned \
17 .withColumn("first_name", F.initcap("first_name")) \
18 .withColumn("last_name", F.initcap("last_name"))
19

20 gender_normalized = names_formatted.withColumn(
21 "gender",
22 F.when(
23 F.lower("gender").isin("none", "prefer not to say"),
24 F.lit("Prefer Not To Say")
25).otherwise(F.initcap("gender"))
26)
27

28 location_normalized = gender_normalized.withColumn(
29 "state_province", F.upper("state_province")
30)
31

32 phone_cleaned = location_normalized.withColumn(
33 "phone_number", F.regexp_replace("phone_number", "[^0-9]", "")
34)
35

36 registration_parsed = phone_cleaned.withColumn(
37 "registration_date", F.to_timestamp("registration_date")
38).filter(F.col("registration_date").isNotNull())
39

40 premium_flagged = registration_parsed.withColumn(
41 "is_premium_member",
42 F.when(F.lower("is_premium_member").isin("true", "1", "yes"), F.lit(True))
43 .otherwise(F.lit(False))
44)
45

46 deduplicated = premium_flagged.dropDuplicates(["customer_id"])
47

48 return deduplicated
49

50 def clean_accounts(df):
51 balance_casted = df.withColumn("balance", F.col("balance").cast(DecimalType(18,

2)))
52

53 balance_cleaned = balance_casted.withColumn(
54 "balance",
55 F.when(F.col("balance").isNull() | (F.col("balance") < 0), F.lit(0.00))
56 .otherwise(F.col("balance"))
57)
58

59 account_type_cleaned = balance_cleaned.withColumn(
60 "account_type",

14

61 F.when(F.lower("account_type").isin("none", "unspecified"), F.lit("
Unspecified"))

62 .otherwise(F.initcap("account_type"))
63)
64

65 status_formatted = account_type_cleaned.withColumn("status", F.initcap("status")
)

66

67 opening_date_parsed = status_formatted.withColumn(
68 "opening_date", F.to_date("opening_date")
69).filter(F.col("opening_date").isNotNull())
70

71 interest_casted = opening_date_parsed.withColumn(
72 "interest_rate", F.col("interest_rate").cast(DoubleType())
73)
74

75 credit_limit_casted = interest_casted.withColumn(
76 "credit_limit", F.col("credit_limit").cast(DecimalType(18, 2))
77)
78

79 return credit_limit_casted.dropDuplicates(["account_id"])
80

81

82 def clean_transactions(df):
83 df = df.withColumn("transaction_timestamp", F.to_timestamp("

transaction_timestamp")) \
84 .filter(F.col("transaction_timestamp").isNotNull()) \
85 .withColumn(
86 "transaction_timestamp",
87 F.when(F.col("transaction_timestamp") > F.current_timestamp(), F.

current_timestamp())
88 .otherwise(F.col("transaction_timestamp"))
89) \
90 .withColumn("amount", F.col("amount").cast(DecimalType(18, 2))) \
91 .withColumn("amount", F.when(F.col("amount").isNull(), F.lit(0.00)).

otherwise(F.abs("amount"))) \
92 .withColumn(
93 "transaction_type",
94 F.when(F.lower("transaction_type").isin("unknown", "none"), F.lit("

Other"))
95 .otherwise(F.initcap("transaction_type"))
96) \
97 .withColumn("status", F.initcap("status"))
98

99 return df.dropDuplicates()
100

101 if __name__ == "__main__":
102 spark.conf.set("spark.storage.synapse.linkedServiceName",linked_service_name)
103 spark.conf.set("fs.azure.account.oauth.provider.type","com.bank.azure.synapse.

tokenlibrary.LinkedServiceBasedTokenProvider")
104

105 raw_customers_df = spark.read.load(’abfss://bank@efgh.dfs.core.windows.net/
raw_customers/customers.parquet’,format=’parquet’)

106 raw_accounts_df = spark.read.load(’abfss://bank@efgh.dfs.core.windows.net/
raw_accounts/accounts.parquet’,format=’parquet’)

107 raw_transactions_df = spark.read.load(’abfss://bank@efgh.dfs.core.windows.net/
raw_transactions/transactions.parquet’,format=’parquet’)

108

109 print("\n--- Applying Cleaning Transformations ---")
110 cleaned_customers_df = clean_customers(raw_customers_df)
111 cleaned_accounts_df = clean_accounts(raw_accounts_df)
112 cleaned_transactions_df = clean_transactions(raw_transactions_df)
113

114 OutputPath_customers=’abfss://bank@efgh.dfs.core.windows.net/customersprod/
customers.parquet’

15

115 OutputPath_accounts=’abfss://bank@efgh.dfs.core.windows.net/accountprod/accounts.
parquet’

116 OutputPath_transactions=’abfss://bank@efgh.dfs.core.windows.net/transactionsprod
/transactions.parquet’

117

118 cleaned_customers_df.write.mode(’overwrite’).parquet(OutputPath_customers)
119 cleaned_accounts_df.write.mode(’overwrite’).parquet(OutputPath_accounts)
120 cleaned_transactions_df.write.mode(’overwrite’).parquet(OutputPath_transactions)
121

122

123 >>>>>
124

125 SELECT
126 C.customer_id AS CustomerId,
127 C.first_name AS FirstName,
128 C.last_name AS LastName,
129 C.is_premium_member AS IsPremiumMember,
130 C.registration_date AS CustomerRegistrationDate,
131 A.account_type AS AccountType,
132 A.balance AS CurrentAccountBalance,
133 A.credit_limit AS AccountCreditLimit,
134 A.opening_date AS AccountOpeningDate,
135 SUM(T.amount) AS TotalAmountSpent,
136 COUNT(T.transaction_id) AS MonthlyTransactionCount,
137 AVG(T.amount) AS AverageMonthlyTransactionAmount
138 FROM
139 Customers AS C
140 INNER JOIN
141 Accounts AS A ON C.customer_id = A.customer_id
142 INNER JOIN
143 Transactions AS T ON A.account_id = T.account_id
144 WHERE
145 T.transaction_timestamp >= ’2025-05-01’ AND T.transaction_timestamp < ’

2025-06-01’
146 AND T.transaction_type IN (’Withdrawal’, ’Purchase’, ’Bill Payment’, ’Transfer-

Out’)
147 AND T.status = ’Completed’
148 GROUP BY
149 C.customer_id,
150 C.first_name,
151 C.last_name,
152 C.is_premium_member,
153 C.registration_date,
154 A.account_type,
155 A.balance,
156 A.credit_limit,
157 A.opening_date
158 ORDER BY
159 TotalAmountSpent DESC, C.customer_id, A.account_type;

16

Table A.2: Schema Lineage for the AverageMonthlyTransactionAmount column from Listing 1
Key Value

source_schema

amount, customer_id, first_name, last_name, is_premium_member,
registration_date, account_type, balance, credit_limit, opening_date,
transaction_timestamp, transaction_type, status

source_table

abfss://bank@efgh.dfs.core.windows.net/raw_customers/customers.parquet;
abfss://bank@efgh.dfs.core.windows.net/raw_accounts/accounts.parquet;
abfss://bank@efgh.dfs.core.windows.net/raw_transactions/transactions.
parquet

transformation

C.customer_id AS CustomerId <CODEEND> email_cleaned.withColumn("
first_name", F.initcap("first_name")) <CODEEND> C.first_name AS
FirstName <CODEEND> email_cleaned.withColumn("last_name", F.initcap("
last_name")) <CODEEND> C.last_name AS LastName <CODEEND>
registration_parsed.withColumn("is_premium_member", F.when(F.lower("
is_premium_member").isin("true", "1", "yes"), F.lit(True)).otherwise(F.
lit(False))) <CODEEND> C.is_premium_member AS IsPremiumMember <CODEEND>
phone_cleaned.withColumn("registration_date", F.to_timestamp("
registration_date")) <CODEEND> C.registration_date AS
CustomerRegistrationDate <CODEEND> balance_cleaned.withColumn("
account_type", F.when(F.lower("account_type").isin("none", "unspecified
"), F.lit("Unspecified")).otherwise(F.initcap("account_type"))) <CODEEND
> A.account_type AS AccountType <CODEEND> df.withColumn("balance", F.col
("balance").cast(DecimalType(18, 2))) <CODEEND> balance_casted.
withColumn("balance", F.when(F.col("balance").isNull() | (F.col("balance
") < 0), F.lit(0.00)).otherwise(F.col("balance"))) <CODEEND> A.balance
AS CurrentAccountBalance <CODEEND> interest_casted.withColumn("
credit_limit", F.col("credit_limit").cast(DecimalType(18, 2))) <CODEEND>
A.credit_limit AS AccountCreditLimit <CODEEND> status_formatted.
withColumn("opening_date", F.to_date("opening_date")) <CODEEND> A.
opening_date AS AccountOpeningDate <CODEEND> df.withColumn("amount", F.
when(F.col("amount").isNull(), F.lit(0.00)).otherwise(F.abs("amount")))
<CODEEND> df.withColumn("amount", F.col("amount").cast(DecimalType(18,
2))) <CODEEND> AVG(T.amount) AS AverageMonthlyTransactionAmount

aggregation

AVG() GROUP BY C.customer_id, C.first_name, C.last_name, C.
is_premium_member, C.registration_date, A.account_type, A.balance, A.
credit_limit, A.opening_date

A.3 Prompts

Our three hierarchical prompting categories:

• Base Prompting: This strategy provides only the essential pipeline script along with explicit
extraction instructions specifying target output formats and component definitions. It serves
as a baseline by representing the minimal necessary context required for schema lineage
extraction.

• Few-Shot Prompting: This strategy enhances the base prompting approach by integrating
concrete input-output example pairs directly into the prompt, providing tangible references
that guide the language model’s understanding of expected outputs. We scale the quantity of
these examples according to pipeline complexity, providing one example for easy pipelines,
up to two for medium-complexity pipelines, and up to three for hard pipelines.

• Chain-of-Thought (CoT): Building upon few-shot prompting, this advanced strategy
incorporates detailed human-generated reasoning traces that illustrate step-by-step derivations
of schema lineage from pipeline code. The inclusion of explicit reasoning processes aims to
guide the language model through logical inference steps.

17

We present the prompt templates designed for our schema lineage extraction task, structured around
three distinct prompting strategies: Base, Few-Shot, and Chain-of-Thought (CoT). Each template
incorporates placeholders for the data pipeline script, with examples included exclusively in the
Few-Shot and CoT configurations. The number of examples provided scales according to input script
complexity: one example for Easy cases, up to two for Medium complexity, and up to three for Hard
scenarios. All prompt templates direct the model to generate structured output conforming to a
specified JSON-like schema enclosed within <answer> </answer> tags. The CoT template uniquely
incorporates an intermediate reasoning step delimited by <think> </think> tags to facilitate explicit
reasoning processes.

Figure A.1: Comparison of prompting strategies for schema lineage extraction. Base prompting
provides only task instructions, few-shot prompting incorporates example outputs to demonstrate the
expected format, and Chain-of-Thought (CoT) prompting includes explicit reasoning traces that guide
the lineage process step-by-step.

Base Prompt Template
You are a data lineage analysis assistant. Your task is to analyze the provided data
generation script and trace the lineage of a specific column which is specified by
the user.

Your response must include <answer> </answer> part:
<answer> {
"source_schema": "...",
"source_table": "...",
"transformation": "...",
"aggregation": "..."
} </answer>.

... (additional instructions omitted for brevity) ...

Data Pipeline Script: YOUR PINELINE SCRIPT

Few-Shot Prompt Template (1, 2, or 3 examples)
You are a data lineage analysis assistant. Your task is to analyze the provided data
generation script and trace the lineage of a specific column which is specified by
the user.

Your response must include <answer> </answer> part:
<answer> {
"source_schema": "...",
"source_table": "...",
"transformation": "...",
"aggregation": "..."
} </answer>.

... (additional instructions omitted for brevity) ...

Data Pipeline Script: YOUR PIPELINE SCRIPT

Examples: YOUR OUTPUT EXAMPLE(S)

18

"""

Chain-of-Thought Prompt Template (1, 2, or 3 examples)
You are a data lineage analysis assistant. Your task is to analyze the provided data
generation script and trace the lineage of a specific column which is specified by
the user.

Your response must include two parts:
1. <think> ... </think>
2. <answer> {{
"source_schema": "...",
"source_table": "...",
"transformation": "...",
"aggregation": "..."
}} </answer>.

... (additional instructions omitted for brevity) ...

Data Pipeline Script: YOUR PIPELINE SCRIPT

Examples: YOUR OUTPUT EXAMPLE(S)
"""

19

B Experiment Setup

Initially, we evaluated a comprehensive set of language models, encompassing two LLMs (GPT-
4.1[24] and GPT-4o [25]), alongside 16 distinct SLMs. The SLM cohort included Qwen2.5-Coder
variants (1.5B, 3B, 7B, 14B, 32B) [27], Mistral-7B [28], Codestral-22B [30], CodeLlama variants
(7B, 13B, 34B) [33], DeepSeek-Coder variants (1.3B, 6.7B, 16B)) [26], and Phi-4 configurations
(mini [34], 14B [29], reasoning-14B [35]). The majority of these models underwent pretraining on
code corpora or subsequent alignment for coding tasks, establishing their reputation for robust coding
capabilities [36]. Mistral-7B [28] and Phi-4 [29] series represents general-purpose architectures to
assess the performance characteristics of domain-agnostic SLMs in coding contexts. After preliminary
assessments, we excluded six models due to either excessive inference time or consistently poor
performance, resulting in the final selection: Qwen2.5-Coder (1.5B, 3B, 7B, 14B, 32B), Mistral-7B,
Codestral-22B, DeepSeek-Coder (1.3B, 6.7B, and Phi-4 (14B).

We extract schema lineage across 50 data pipeline scripts using three categories of prompting
strategies detailed in Section A.3. Data experts crafted human reasoning traces to support the CoT
prompting strategy: one reasoning trace per easy script, two per medium script, and three per hard
script. Consequently, we implemented seven distinct prompting strategies: base, few-shot with one
example (one-shot), few-shot with two examples (two-shot), few-shot with three examples (three-shot),
CoT with one reasoning trace (CoT-1), CoT with two reasoning traces (CoT-2), and CoT with three
reasoning traces (CoT-3). This comprehensive design allows us to investigate how different prompting
strategies influence extraction accuracy across varying script complexities. We parse these outputs
and evaluate the predicted schema lineage (L̂) against expert-annotated ground truth (L⋆) using SLiCE
scores. The weights of SLiCE are assigned for the all experiments, wtbl

1 = 0.7, wtbl
2 = 0.3;wtrf

1 =
wagg

1 = 0.5, wtrf
2 = wagg

2 = 0.3, wtrf
3 = wagg

3 = 0.2;ωtbl = 0.4, ωtrf = 0.4, ωagg = 0.2.

Evaluation Protocol. For each language model Θ, model predictions are scored against expert
annotations using the SLiCE metric defined in Section 3.2. For each script si containing schemas σik,
we compute a script-level score by averaging schema-level scores:

Mscr(si,Θ) =
1

Ki

Ki∑
k=1

SLiCE
(
L̂ik, L

⋆
ik

)
, (10)

where L̂ik and L⋆
ik represent predicted and gold lineage, respectively. To derive a corpus-level

evaluation, we average across all scripts:

Mmod(Θ) =
1

I

I∑
i=1

Mscr(si,Θ) =
1

I

I∑
i=1

1

Ki

Ki∑
k=1

SLiCE
(
L̂ik, L

⋆
ik

)
. (11)

20

C Additional Results

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

DeepSeek-Coder-1.3B

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

Qwen2.5-Coder-1.5B

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

Qwen2.5-Coder-3B

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

Mistral-7B

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

Qwen2.5-Coder-7B

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

Qwen2.5-Coder-14B

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

Codestral-22B

1 2 3
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 S
cr

ip
t-l

ev
el

 S
co

re
s

GPT-4.1

Prompt: Base One-Shot CoT-1

Figure B.1: Performance comparison across models and prompt strategies by script difficulty.
Bar plots show mean script-level scores for eight language models across three prompting strategies:
base (no additional output examples), few-shot (one example), and CoT (one reasoning trace exmaple).
Scripts are grouped by difficulty level (1-3), with higher difficulty indicating more complex reasoning
requirements. Larger models consistently outperform smaller ones. CoT prompting provides moderate
improvements across most difficulty levels.

21

1.5 3.0 7.0 14.0 32.0
Parameter Size (B)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
of

 S
Li

C
E

Sc
or

es

Qwen2.5-Coder
DeepSeek-Coder

Figure B.2: Model performance scaling with parameter size for Chain-of-Thought prompting.
The plot shows how mean SLiCE vary with model parameter size (in billions) for Qwen2.5-Coder
(1.5B, 3B, 7B, 14B, 32B) and DeepSeek-Coder (1.3B, 6.7B) model families when having one human
reasoning trace in the prompt. Both model families demonstrate improved performance with increased
parameter size, with Qwen2.5-Coder models consistently outperforming DeepSeek-Coder models
across all parameter scales.

0 1 2 3
Number of Examples

0.0

0.2

0.4

0.6

0.8

M
ea

n
of

 S
Li

C
E

Sc
or

es

Models
DeepSeek-Coder-1.3B
Qwen2.5-Coder-1.5B
Qwen2.5-Coder-3B
Qwen2.5-Coder-7B
Mistral-7B
Qwen2.5-Coder-14B
Codestral-22B
GPT-4.1

Prompt Types
Cot
Few-Shot

Figure B.3: Average SLiCE across language models and prompting strategies for hard scripts.
Y-axis the average SLiCE for 8 language models (GPT-4.1, Codestral-22B, Qwen2.5-Coder (7B,
3B, 1.5B), Mistral-7B, and DeepSeek-Coder-1.5B) across different prompting strategies: base (no
additional output examples), few-shot (one example), and CoT (one reasoning trace example). The
results indicate that larger models generally perform better, with CoT prompting yielding higher
metrics than few-shot prompting.

22

Table B.3: Benchmark results of language models on schema lineage extraction (Part 1): Qwen2.5-
Coder variants. Mean corpus-level SLiCE scores and standard deviations across six random seeds
(Mean ± Standard Deviation).

Parameter Difficulty Qwen2.5-Coder
1.5B 3B 7B 14B 32B

Base

All 0.014 ± 0.002 0.100 ± 0.004 0.167 ± 0.005 0.286 ± 0.004 0.355 ± 0.004
Easy 0.027 ± 0.004 0.163 ± 0.004 0.271 ± 0.011 0.465 ± 0.010 0.578 ± 0.007
Medium 0.006 ± 0.002 0.074 ± 0.005 0.108 ± 0.006 0.179 ± 0.006 0.239 ± 0.004
Hard 0.004 ± 0.001 0.030 ± 0.006 0.091 ± 0.005 0.167 ± 0.009 0.171 ± 0.006

One-shot

All 0.054 ± 0.015 0.391 ± 0.015 0.487 ± 0.018 0.547 ± 0.005 0.623 ± 0.004
Easy 0.391 ± 0.009 0.517 ± 0.017 0.639 ± 0.013 0.635 ± 0.006 0.692 ± 0.004
Medium 0.274 ± 0.012 0.358 ± 0.021 0.436 ± 0.031 0.504 ± 0.009 0.601 ± 0.007
Hard 0.221 ± 0.006 0.207 ± 0.008 0.293 ± 0.029 0.465 ± 0.024 0.531 ± 0.010

Two-shot Medium 0.345 ± 0.007 0.467 ± 0.012 0.547 ± 0.020 0.586 ± 0.008 0.664 ± 0.009
Hard 0.285 ± 0.030 0.286 ± 0.025 0.421 ± 0.018 0.540 ± 0.009 0.653 ± 0.007

Three-shot Hard 0.365 ± 0.026 0.438 ± 0.027 0.586 ± 0.052 0.618 ± 0.016 0.749 ± 0.015

CoT-1

All 0.304 ± 0.017 0.445 ± 0.010 0.556 ± 0.009 0.646 ± 0.007 0.734 ± 0.007
Easy 0.377 ± 0.021 0.528 ± 0.003 0.664 ± 0.014 0.717 ± 0.014 0.777 ± 0.010
Medium 0.302 ± 0.014 0.418 ± 0.021 0.540 ± 0.013 0.616 ± 0.014 0.714 ± 0.010
Hard 0.154 ± 0.036 0.336 ± 0.009 0.365 ± 0.019 0.567 ± 0.012 0.689 ± 0.019

CoT-2 Medium 0.293 ± 0.015 0.437 ± 0.011 0.568 ± 0.015 0.685 ± 0.017 0.748 ± 0.014
Hard 0.273 ± 0.013 0.392 ± 0.011 0.486 ± 0.015 0.570 ± 0.012 0.727 ± 0.024

CoT-3 Hard 0.333 ± 0.010 0.461 ± 0.012 0.566 ± 0.029 0.617 ± 0.014 0.797 ± 0.019

23

Table B.3: Benchmark results of language models on schema lineage extraction (Part 2): DeepSeek-
Coder models. Mean corpus-level SLiCE scores and standard deviations across six random seeds
(Mean ± Standard Deviation).

Parameter Difficulty DeepSeek-Coder

1.3B 6.7B

Base

All 0.000 ± 0.000 0.003 ± 0.003
Easy 0.000 ± 0.000 0.006 ± 0.004
Medium 0.000 ± 0.000 0.000 ± 0.001
Hard 0.000 ± 0.000 0.005 ± 0.007

One-shot

All 0.054 ± 0.015 0.084 ± 0.018
Easy 0.085 ± 0.023 0.127 ± 0.024
Medium 0.042 ± 0.016 0.071 ± 0.025
Hard 0.011 ± 0.008 0.015 ± 0.011

Two-shot Medium 0.007 ± 0.006 0.143 ± 0.044
Hard 0.007 ± 0.005 0.133 ± 0.037

Three-shot Hard 0.000 ± 0.001 0.205 ± 0.051

CoT-1
All 0.038 ± 0.017 0.509 ± 0.007
Easy 0.070 ± 0.016 0.545 ± 0.010
Medium 0.019 ± 0.019 0.486 ± 0.013
Hard 0.013 ± 0.021 0.489 ± 0.018

CoT-2 Medium 0.043 ± 0.028 0.501 ± 0.009
Hard 0.075 ± 0.019 0.485 ± 0.008

CoT-3 Hard 0.025 ± 0.009 0.573 ± 0.023

Table B.3: Benchmark results of language models on schema lineage extraction (Part 3): GPT models
and other language models. Mean corpus-level SLiCE scores and standard deviations across six
random seeds (Mean ± Standard Deviation).

Parameter Difficulty GPT-4.1 GPT-4o Phi-4 Codestral-22B Mistral-7B

Base

All 0.418 ± 0.005 0.284 ± 0.003 0.016 ± 0.003 0.126 ± 0.004 0.026 ± 0.003
Easy 0.544 ± 0.006 0.379 ± 0.005 0.017 ± 0.005 0.230 ± 0.005 0.057 ± 0.004
Medium 0.373 ± 0.007 0.241 ± 0.004 0.018 ± 0.005 0.077 ± 0.009 0.008 ± 0.003
Hard 0.260 ± 0.007 0.186 ± 0.006 0.010 ± 0.005 0.028 ± 0.003 0.007 ± 0.001

One-shot

All 0.673 ± 0.008 0.654 ± 0.007 0.511 ± 0.005 0.511 ± 0.005 0.331 ± 0.005
Easy 0.734 ± 0.004 0.714 ± 0.003 0.617 ± 0.007 0.561 ± 0.005 0.416 ± 0.007
Medium 0.668 ± 0.016 0.653 ± 0.017 0.461 ± 0.006 0.503 ± 0.007 0.327 ± 0.009
Hard 0.558 ± 0.017 0.527 ± 0.007 0.397 ± 0.012 0.427 ± 0.003 0.163 ± 0.005

Two-shot Medium 0.751 ± 0.008 0.685 ± 0.010 0.548 ± 0.011 0.571 ± 0.008 0.427 ± 0.008
Hard 0.667 ± 0.007 0.645 ± 0.009 0.428 ± 0.038 0.534 ± 0.009 0.246 ± 0.012

Three-shot Hard 0.828 ± 0.008 0.768 ± 0.010 0.590 ± 0.029 0.658 ± 0.010 0.412 ± 0.010

CoT-1
All 0.767 ± 0.007 0.759 ± 0.008 0.648 ± 0.005 0.662 ± 0.008 0.227 ± 0.009
Easy 0.755 ± 0.006 0.795 ± 0.007 0.661 ± 0.002 0.716 ± 0.009 0.059 ± 0.011
Medium 0.778 ± 0.009 0.718 ± 0.009 0.632 ± 0.013 0.627 ± 0.017 0.319 ± 0.013
Hard 0.765 ± 0.015 0.782 ± 0.016 0.660 ± 0.027 0.634 ± 0.021 0.363 ± 0.017

CoT-2 Medium 0.844 ± 0.006 0.767 ± 0.009 0.670 ± 0.008 0.650 ± 0.014 0.361 ± 0.012
Hard 0.798 ± 0.011 0.841 ± 0.015 0.714 ± 0.012 0.685 ± 0.012 0.394 ± 0.034

CoT-3 Hard 0.851 ± 0.014 0.881 ± 0.010 0.689 ± 0.008 0.720 ± 0.020 0.413 ± 0.015

24

	Introduction
	Dataset and Schema Lineage Definition
	Enterprise Data Pipeline Collection
	Schema Lineage Definition and Annotation

	Schema Lineage Composite Evaluation (SLiCE)
	Problem Statement
	SLiCE Definition

	Related Work
	Experiments
	Experimental Setup
	Results

	Discussion
	Conclusion
	Data Gallery
	Script Difficulty
	Scripts
	Prompts

	Experiment Setup
	Additional Results

