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ABSTRACT

Recently, deep neural networks on manifold-valued representations have garnered
significant attention in various machine learning applications. Several studies have
attempted to generalize traditional Euclidean transformation layers, such as Fully
Connected (FC) and convolutional layers, to non-Euclidean geometries. However,
the previous approaches typically focus on a few selected manifolds and rely on
the specific properties of the target manifold. In this work, we propose a theoretical
framework for constructing Riemannian FC and convolutional layers over general
geometries, providing broader applicability. Utilizing this framework, we design
convolutional networks across five distinct geometries of the Symmetric Positive
Definite (SPD) manifold, as well as networks under two Grassmannian perspectives.
Extensive experiments demonstrate that the proposed Riemannian convolutional
networks significantly outperform existing SPD and Grassmannian networks.

1 INTRODUCTION

Recently, deep neural networks on Riemannian manifolds have achieved remarkable success across a
wide range of applications ( , ; , ; s ;

; , ). Commonly encountered manifold- Valued representatlons
mclude spherical, hyperbohc Symmetric Positive Definite (SPD), and Grassmannian manifolds, as
well as matrix Lie groups like special orthogonal groups, to name a few. Due to the closed-form
expressions of their Riemannian operators, such as geodesics, exponential and logarithmic maps,
and parallel transport (PP), various fundamental building blocks have been extended to dlfferent
manifolds, including normalization ( s ; s ;

s ), attention ( s ), re51dual
blocks ( , ), and Multlnomlal Loglstlc Regress1on (MLR) ( s ;
, ; , HO

Research problem. As transformation layers are fundamental building blocks in Euclidean deep
networks, several works have designed Riemannian counterparts on different geometries.

( ); ( ; ) developed ad hoc transformation layers for SPD,
special orthogonal groups, and Grassmannian manifolds, respectively. ( ) performed
hyperbolic transformations via the tangent space. However, these transformations do not fully
respect the underlying Riemannian geometries. To remedy this limitation, ( )
extended Fully Connected (FC) and convolutional layers into hyperbolic spaces based on latent
Poincaré geometries. Additionally, ( ) extended these layers to SPD manifolds
using gyro structures induced by three Riemannian metrics. Nonetheless, their methods strongly rely
on specific properties, such as hyperbolic geometries and gyro structures, restricting their applicability.
Furthermore, ( ) extended convolution by the weighted Fréchet mean. Although
the framework can be applied to various geometries, unlike traditional Euclidean convolution, it
cannot change the manifold’s dimensionality, limiting its flexibility. Therefore, a general and flexible
framework for building FC or convolutional layers over diverse geometries remains unsolved.

Proposed solution. We propose a framework for constructing Riemannian FC and convolutional
layers that naturally capture the underlying geometry. First, we introduce the Riemannian FC layer
by reformulating the Euclidean FC layer. Since convolution is an extension of the FC layer, we derive
the Riemannian convolution as a product of the proposed Riemannian FC layer. Unlike previous
FC layers tailored for specific manifolds, our Riemannian layers depend solely on Riemannian
operators, such as exponential and logarithmic maps, which have closed-form expressions across
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various manifolds. This allows our framework to enjoy broader applicability. Moreover, when
the latent geometry is reduced to Euclidean space, our Riemannian FC layer recovers the standard
Euclidean FC layer.

After presenting the general framework, we provide concrete manifestations of our Riemannian FC
and convolutional layers on SPD manifolds under five distinct Riemannian metrics, and Grassmannian
manifolds under the Projector Perspective (PP) and OrthoNormal Basis (ONB) perspective. Our SPD
FC layers also incorporate the previous three gyro SPD FC layers, the derivation of which requires
additional gyro structures. Besides, our framework offers an intrinsic geometrical interpretation to
understand the trick of generating manifold embeddings from the Euclidean feature as a Riemannian
FC layer. Finally, we compare the performance of our Riemannian convolutional networks against
existing manifold-specific networks on SPD and Grassmannian spaces, demonstrating that our net-
works significantly outperform current Riemannian networks. In summary, our main contributions
are as follows:

1. Generalization of convolution and FC layers to Riemannian manifolds. We introduce a
principled generalization of FC and convolutional layers to general Riemannian manifolds.
The proposed framework relies solely on Riemannian operators such as exponential and
logarithmic maps, faithfully respecting the underlying geometry.

2. Building five SPD and two Grassmannian neural networks. Empirically, we apply our
theoretical framework to five geometries of the SPD manifold and two perspectives of
the Grassmannian. Extensive experiments comparing our methods with existing SPD and
Grassmannian networks demonstrate the superiority of our approach.

3. Flexible latent geometry variations. Our method enables direct variation of the latent
geometry in neural networks without the need for specialized operations on a per-manifold
basis. This novel flexibility allows for direct comparison of different geometric representa-
tions within the same network architecture.

Main theoretical results: Thm. 4.2 presents the expression of our Riemannian FC layer under
general geometries. Prop. 4.4 indicates that our Riemannian FC layer is a natural generalization
of the Euclidean FC layer, as it recovers the Euclidean FC layer under the Euclidean geometry.
Sec. 4.2 discusses the Riemannian convolution based on the product of the Riemannian FC layer.
Sec. 4.3 discusses optimizing the parameters involved in the Riemannian FC and convolutional
layers. Thm. 5.1 showcases our framework on the SPD manifold under five Riemannian metrics,
while Thms. 6.1 and 6.2 introduce the Grassmannian FC layers under the ONB and PP perspective,
respectively. As shown in Tab. 1, the existing three gyro SPD FC layers are incorporated by our
SPD FC layers. Besides, Tab. 2 compares our Grassmannian FC layers against other Grassmannian
transformation layers, highlighting that our layers offer greater flexibility in altering dimensionality
across different perspectives. Prop. 7.1 explains the widely used manifold embedding trick as a
special instantiation of our Riemannian FC layer. Due to page limits, all proofs are placed in App. K.

2 PRELIMINARIES

Due to page limits, we provide only the essential background here. A review of relevant Riemannian
ingredients across different geometries can be found in App. B. For better readability, a table of
notations is presented in Tab. 5.

The SPD manifold. Let S%, be the set of 7 x n symmetric positive definite (SPD) matrices. As

shown by ( ), 8%, is an open submanifold of the Euclidean space S™ of symmetric
matrices. There are five kinds of popular Riemannian metrics on S , : Affine-Invariant Metric (AIM)
( s ), Log-Euclidean Metric (LEM) ( s ), Power-Euclidean Metrics
(PEM) ( , ), Log-Cholesky Metric (LCM) (Lin, ), and Bures-Wasserstein Metric
(BWM) ( , ). Various applications involves the SPD features ( , ;

5 k) s b} s ) s b} k)

) ; ) ; ) ; ; , ). As shown by
( ;C5); ( ), the optimal metric usually differs across different tasks.

The Grassmannian. The Grassmannian is the set of p-dimensional subspaces of an n-dimensional
vector space (Tu, , Problem 7.8). It has two common matrix representations ( s
): the Projector Perspective (PP), where each element is embedded as an n X n symmetric
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matrix, and the OrthoNormal Basis (ONB) perspective, which is the quotient of the Stiefel manifold
St(p, n). Formally, these two perspectives are defined as

Projector Perspective (PP): Gr(p, n) = {PcS8": P?= P rrank(P) = p}, W
ONB perspective: Gr(p,n) = {[U] : [U] := {U € St(p,n) | U = UR, R € O(p)}},

where S™ is the Euclidean space of symmetric matrices, and O(p) is the orthogonal group. By abuse
of notations, we use [U] and U interchangeably for the element of Gr(p, n). In many applications,
measurements lie in the Grassmannian ( , ; s ;
s ). Although the ONB and PP are d1ffeom0rph1c ( R ), their
effectiveness may vary depending on the specific tasks ( , ).
Remark 2.1. This work utilizes Riemannian operators such as the Riemannian exponential and
logarithmic maps. However, due to incompleteness and cut locus, these operators may not always
be globally well-defined, such as the exponential map on the SPD PEM and BWM geometries, and
the Grassmannian logarithmic map. Nevertheless, all constraints can be resolved numerically, as
discussed in App. B. Therefore, without loss of generality, we assume these operators are well-defined.

3 REVISITING MLR AND FC LAYERS

3.1 EUCLIDEAN SPACES: FROM MLR TO THE FC LAYER
Euclidean MLR. Given C classes, the Euclidean Multinomial Logistic Regression (MLR) computes

the multinomial probability of each class k& € {1, ..., C} for the input feature vector z € R™:
p(y =k | z) ocexp (vg(x)), withvg(x) = (ag, x) — b, b € R,ax, € R". 2)
( , Sec. 5) reformulated vy (x) by the margin distance to the hyperplane:
ply =k | x) o< exp (sign({ak, v — pr)llak||d(z, Hay ;) , )
Hay p, = {2 € R™ : (ar, x — px) = 0}, O]

where (ax, pr) = by, and H,, ,, is a hyperplane.

FC and convolutional layers. The affine transformation in the FC layer, y = Ax + b, can be
represented element-wise as y = {ap,x) — by, where x, a € R™ and b, € R. Additionally, the
convolution is composed of FC transformations, as the transformation in each receptive field is
essentially an FC transformation.

3.2 RIEMANNIAN MLR AND GYRO SPD & HYPERBOLIC FC LAYERS

According to Sec. 3.1, extending linear layers like FC and convolutional layers hinges on two key
steps: 1. extending MLR or v () to the manifold; 2. obtaining y; from vy, on the manifold. The first
step has been well-studied, while the second one is only solved over specific geometries. We will
first recap Riemannian MLR, and then discuss the existing FC layers on the hyperbolic and SPD
manifolds.

Riemannian MLR. As shown by ( ), Egs. (3) and (4) can be naturally extended into
the Riemannian manifold A/

ply =k | X) o< exp (sign({(Ar, Logp, (X)) p)l| Akl d(X, Ha, ) ®)

Ha, p, = {X € N : (Logp, (X), A)) p, = 0}, (6)

where X € N is the input manifold-valued feature, P, € N and Ay, € Tp, N are parameters, (-, ) p,

is the Riemannian metric at Py, and Log p, 18 the Riemannian logarithm at Py. Here, d(X, Hy, p,)
is the margin distance to the hyperplane. Based on this reformulation, several works have extended
the MLR into different geometries, such as Poincaré MLR on the hyperbolic space ( ,

, Thm. 5), gyro MLR on the SPD ( s , Thms. 2.23-2.25) and Symmetric
Positive Semi-Definite (SPSD) matrices ( , , Thm. 3.11), and flat SPD MLR on the
flat SPD geometries ( s , Thm. 3.8). However, all the above solutions rely on specific
properties. To address this limitation, ( , Thms. 3.2-3.3) recently offered general

expressions for the margin distance and the Riemannian MLR over general geometries solely based
on Riemannian properties. We recap their results in the following.
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Theorem 3.1 (Riemannian Margin Distance & MLR ( , ). Given X € N, the
Riemannian margin distance and MLR over the Riemannian manifold {N, gN tis

(Logr, (X), A o
| Akl P,
ply=Fk| X €N) ocexp (v (X; Ay, Pr)) , ®)
where P, € N, Ay, € Tp, N, and vy (X; Ay, Pr) = (Ag,Logp, (X)) p,

SPD and hyperbolic FC layers. The FC layer has been extended to both the hyperbolic and SPD
manifolds. ( ) proposed the Poincaré FC layer, which is based on the hyperbolic
MLR and reformulation of the FC layer using hyperbolic geometry. Besides, ( )
introduced three gyro SPD FC layers, based on the gyro SPD MLRs and the reformulation of the FC
layer via gyro structures. However, not all geometries admit gyro structures, such as BWM on the
SPD manifold. Moreover, even for manifolds that admit gyro structures, the formulation of the FC
layers needs to be addressed on a case-by-case basis. In contrast, this paper proposes a framework
that can be readily applied across different geometries.

d(X’ ErAk,Pk) =

4 RIEMANNIAN FULLY CONNECTED AND CONVOLUTIONAL LAYERS

Since convolution can be derived from the FC layer, we first extend the FC layer to general manifolds,
and then introduce the Riemannian convolution. Lastly, we address the manipulation of parameters.

4.1 RIEMANNIAN FULLY CONNECTED LAYERS

( , Sec. 3.2) interpreted the Euclidean FC layer as an operation that transforms the
input z via vy (), treating the output yy, as the signed distance from the hyperplane passing through
the origin and orthogonal to the k-th axis of the output space R™. We now extend this idea into
general manifolds.

The Riemannian v (-) can be obtained by Eq. (8), while the sign distance to a Riemannian hyperplane
can also be derived from Eq. (7). The rest is to generalize the hyperplane containing the origin and
orthogonal to the k-th axis. In the Euclidean space R™, this kind of hyperplane is formulated as

H., o={zeR™: (eg,x) =0},Vk e {L,--- ,m}, 9)

where ey, is a vector with its k-th element equal to 1 and all other elements equal to 0. The set
{er}}, is more generally characterized as the orthonormal bases over R™. Further considering
Log,(z) = x and ToR™ = R™, the counterparts of this kind of hyperplane on an m-dimensional
Riemannian manifold M can be defined as

Hp, p={SeM:(LogpS,By)p = 0},Vk € {1,--- ,m}, (10)

where E € M is the origin, and {Bj}}" , are orthonormal bases over {TgM, gr}. Essentially,
Eq. (10) characterizes the hyperplane containing the origin and orthogonal to the geodesic starting
from E with initial velocity By. Therefore, it naturally generalizes Eq. (9) into manifolds. With all
the above discussion, we define the Riemannian FC layer in the following.

Definition 4.1 (Riemannian FC layers). Given n-dimensional manifold A/ and m-dimensional
manifold M, the Riemannian FC layer F : N/ — M returns the output Y € M by solving the
following m equations w.r.t. the input X € N:

s dM(Y, H ) = o (X5 Ag, P), 1 < k< m, (11)

where EM € M is the origin, { By}, is an orthonormal basis over Tm M. Here, v over N/
and d™ over M are defined by Eq. (8) and Eq. (7), respectively. The sign for the margin distance is
s = sign (<L0g§4 (Y), OQ?) Here, each P, € N and Ay, € Tp, N are parameters.

The above definition has a general solution, which is presented in the following.

Theorem 4.2 (Riemannian FC Layers). [|] Given an n-dimensional Riemannian manifold {\ gN I8

an m-dimensional Riemannian manifold { M, g™}, and orthonormal bases {B;}"; over Ty M
with E € M as the origin, the Riemannian FC layer F(-) : N — M is

Y = Expy! (Zw(X)Bi) = Expy! (Z (Logy, (X »%&)) : (12)

i=1

4
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where X € N is the input feature, and P; € N and A € Tp. N are the parameters. Here, Expgl

is the Riemannian exponentiation over M, while Log p, and (-, >J}§C are Riemannian logarithm and
metric over N'. We denote the above equation as

Y=F(X;AP), (13)
withP = {P; e N'}." | and A = {A; € Tp,N'}" | as the FC parameters.
Remark 4.3. When the inner product gz on TrM is not the standard inner product, the familiar
{e;}™, might be orthonormal. Please refer to App. C for details on identifying an orthogonal basis.

Our Riemannian FC layer is a natural generalization of the Euclidean FC layer.
Proposition 4.4. [|] When M = R™ and N' = R" are the standard Euclidean spaces, the
Riemannian FC layer in Eq. (12) becomes the Euclidean FC layer.

As isometric Rlemanman metrics are frequently encountered across various geometries (
{oH , ), we also present a theorem in App. D to
facilitate constructlng Rlemanman FC layers under isometries.

4.2 RIEMANNIAN CONVOLUTIONAL LAYERS

Disentangling the Euclidean convolution. As mentioned in Sec. 3.1, the convolution can be viewed
as the product of the FC layer on each receptive field. Let us focus on a single receptive field. Given
a c-channel vector in a receptive field x = concat(z1,- -+ ,z.) € (R™)¢ with 2; € R™ as the feature
vector in the i-th channel, the Euclidean convolution within this receptive field can be expressed as

Conv(x) = concat (fl(x), e ,fk(x)) , with f1(-) : (R")® = R™ Vi=1,---k.  (14)
where f? is the affine (FC) transformation parameterized by the i-th convolutional kernel.

Riemannian convolution. Similarly, the Rie-

. . N N XieM Product Space F ey
mannian convolution is defined as the Rie- : (xi) ewr :

. . . . j i=1
mannian FC layer within each receptive field. e Foyien
Given a c-channel manifold-valued input X = The j-th Receptive Field FC Transformation within a Receptive Field

{X1,--+,X.} € M for a receptive field, the
Riemannian convolution Conv(-) : M¢ — N*
within this receptive field is

Figure 1: Conceptual illustration of Riemannian
convolution within a reception field.

Conv(X) = {FY(X), -, F*X)}, with Fi(:) : M® 5 N ,Vi=1,---k. (15)
The above process is illustrated in Fig. 1.
Remark 4.5. ( ) proposed a convolution operation for manifolds. However,

their convolution is based on the weighted Fréchet mean. Therefore, it is unable to alter the manifold
dimension, such as performing dimensionality reduction. In contrast, our framework provides greater
flexibility, as it allows for modifications in both the channel and manifold dimensions. Furthermore,
while ( ) introduced gyro SPD FC and convolutional layers via gyro structures
induced by LEM, AIM, and LCM, these gyro SPD transformation layers are special cases within our
framework, which will be discussed in Sec. 5.

4.3 PARAMETERS MANIPULATION

Lastly, let us discuss the parameters. As convolution takes the FC layer as the prototype, we focus
on the FC parameters A and P. Since P; varies during the training, A; € Tp, N cannot be directly
updated by the Euclidean optimizer. As shown by ( , Egs. (12)-(13)), 4; € Tp, N
can be determined from the tangent space at the origin EV € N/

f() i Ten N = Tp N, with f(Z;) = Ay, Z; € Ten N = R”, (16)

where f could be parallel transport along the geodesic or the differential map of Lie group trans-
lations'. Besides, as shown by ( , Sec. 3.1), P, might be overly parameterized,
as there are countless many py, in Eq. (4) satisfying (ax, px) = b. Therefore, following

( ), each P; in the Riemannian FC layer is parameterized as ExpglM (vi[Zi]), where v; € R
and [Z;] is the unit vector of Z;. In this way, all the FC parameters can be directly optimized by
the well-established Euclidean optimizer. Note that modeling manifold-valued parameters by the
exponential map is generally called trivialization, which has been well-studied by
( ,Sec. 4.1).

! As mentioned by ( , Sec. 3.2), f is flexible and could be other operations, such as vector
transport and the differential of gyro group translation.
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5 SPD FULLY CONNECTED AND CONVOLUTIONAL LAYERS

This section instantiates our theoretical FC layer in Thm. 4.2 over the SPD manifold, i.e., () :
8%, — ST, The SPD convolution can then be derived by the product of FC layers. We focus on
five popular Riemannian metrics, i.e., LEM, AIM, PEM, LCM, and BWM. As the 1dent1ty matrix is

the neutral element under various Lie and gyro group structures (

s ), we define the origin on the SPD manlfold as the

identity matrix. The followmg theorem presents our results.

Theorem 5.1 (SPD FC Layers). [|] Given an SPD matrix S € S, the SPD FC layers F(-) :

n
St — SV, under different Riemannian metrics are

% B(9) + il v (S), ifi=
LEM :Y = exp (VVB) VP = M;—UZEE(SL ifi> ] an
VEE, otherwise
\/1&11( )+/J’Zk 1vkk(S) le:]
AIM Y = exp (VAI) ,VZ?I \/%031(5), ifi>j (18)
Vj‘?I, otherwise
) JooEE(S) + S oEE(S), i =
PEM:Y = (I+V"8)" VP = § —=ufF(9), ifi>j (19)
VEE, otherwise
exp (v;i°(5)), ifi=
LCM Y = VEO(VIO) T VEC = folC(9), ifi>j (20)
0, otherwise
1 2 UEW(S)z le :j
BWM Y — (1+ 2vBW) VEW LB (s), i s @
%7 otherwise
Here, v;;(S) under different metrics are given as
LEM : (log(S) — log(Py;), Zi) ™", (22)
(e,8)
AIM - <10g ISP ), ”> : (23)
(e.8)
PEM : <S" — P2, Zy) (24)
1
Lou (1K) = L] + Dlog(RL; 1), 2] + 52:5) ) 25)
BWM - <(Pij5)5 +(SPy)? — 2Py, Lr, (L Z4 L)) (26)
The above notations are defined in the following.
e Fori,j=1,--- ,mandi > j, Z;; € T1S} | = 8" and P;; € 8" | are the parameters.

log(+) is the matrix logarithm. Dlog(+) is the diagonal element-wise logarithm. |-| is the
strictly lower part of a square matrix. Chol(-) is the Cholesky decomposition. V is a
diagonal matrix with diagonal elements of the square matrix V. Lp (V) is the solution to
the matrix linear system Lp[V]P + PLp[V] =V, known as the Lyapunov operator.

(-, '>(O"ﬁ) is the O(n)-invariant inner product defined in Eq. (34) and (-, ) is the Frobenius
matrix inner product.

p= (\/m f) K = Chol(S) and L;; = Chol(P;).

Due to the incompleteness of PEM and BWM, there are constraints for V' and VBW :
I+0VPE ¢ ST and I + %VBW € SY.,. Both constraints can be solved numerically,
such as the regularization of eigenvalues, as detailed in Rmk. F.2.
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The affine transformation y = Ax + b in the Euclidean FC layer incorporates the linear map y = Az,
the most natural map between linear spaces. As shown by ( , Sec. 4.4) and

( , Thm. 1), the SPD manifold admits two vector space structures w.r.t. LEM and LCM.
Similar to the Euclidean FC layer, our SPD FC layer also incorporates linear homomorphisms over
these vector structures. Denoting the element addition and scalar product as ®*F (@) and ©F
(®C), which is detailed in App. K.4, we have the following result.
Proposition 5.2. [|] The SPD FC layers under LEM and LCM incorporate the linear homomorphisms
over the vector spaces {S7 ,, ®"F, OVF} and {87, &, ©LC}, respectively.

Difference with gyro SPD FC layers. We acknowledge that ( , Props. 3.4-3.6)
introduced gyro SPD FC layers under the AIM, LEM, and LCM gyro structures. However, gyro
structures are not universally applicable across all Riemannian geometries. For example, BWM is
agnostic to gyro structures ( , , Rmk. 4.3). In contrast, our framework relies solely on
Riemannian structures, allowing it to handle a broader range of geometries. For the specific case of
SPD FC layers, our Thm. 5.1 incorporates all the gyro SPD FC layers as special cases, which are
detailed in App. E. Tab. 1 summarizes the comparison.

Table 1: Comparison with the Gyro SPD FC layers.

SPD FC Layers \ Geometries Requirements Incorporated by Ours
Gyro SPD FC layer | AIM, LEM & LCM on 87 Gyro structures (App. E)
Ours Riemannian manifolds Riemannian geometries N/A

Parameter manipulation and simplification. Following the discussion in Sec. 4.3, we model
each P;; € ST, by Riemannian exponential at the identity matrix, i.e., Exp;(v;;[Z;;]). Under this
trivialization, the SPD FC layer under LEM, AIM, LCM, and PEM can be further simplified. Please
refer to App. F for more details.

SPD convolution. As discussed in Sec. 4.2, the SPD convolution is defined as the product of the
SPD FC layers, i.e.,Conv(-) : (87,)¢ — (87, )k

Conv() = {F (), FF()}, with F'() : (ST,)° = ST Vi=1,-k, (27)
with F* as the SPD FC layer under a given metric.

6 GRASSMANNIAN FULLY CONNECTED AND CONVOLUTIONAL LAYERS

We first discuss the FC layers over the ONB Grassmannian in Sec. 6.1, followed by the cases under
the PP Grassmannian in Sec. 6.2. As the product of the FC layers, the convolutional layer can be
derived as before. Finally, Sec. 6.3 compares our Grassmannian convolution (GrConv) with existing
popular Grassmannian transformation layers, concluding that our GrConv enables more flexibility in
both dimensionality and perspective.

6.1 ONB GRASSMANNIAN TRANSFORMATION LAYERS

Under the ONB perspective, each Grassmannian point can be represented as a column-wise orthogonal

I

matrix. We denote I, ,, = o | € R™*P, with I, as the p x p identity matrix. As I, ,, is the

identity element of the gyro group on the ONB Grassmannian Gr(p, n) ( , ), we
define it as the origin. As discussed in Sec. 4.3, we model the FC parameters by parallel transport
and Riemannian exponential map at I}, ,,. Under this trivialization, the manifestation of Thm. 4.2 on
the ONB Grassmannian can be further simplified.

Theorem 6.1 (ONB Grassmannian FC Layers). [|] Given an ONB Grassmannian feature U &€
Gr(p,n), the ONB Grassmannian FC layer F(-) : Gr(p,n) — Gr(q,m) is

v — ( Rcos(Z)RT

Osin(S) AT ) with BONB *2 ORRT ¢ R(m—9)xq, (28)

Here, each (i, j) element of BONB € RU"~9%4 js defined as <L0g103}jB(U), Ti;Bz,; > with

_Rij SiIl(Zij)OT

o ij
Ti; ( Oij cos(X4;)05; + In—p — 03507, ) (29)
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where 7;;[Bz, ] 2 0i;%i;R}; is the SVD decomposition, and By, € R=P)XP gnd ~;; € R are
the FC parameters.

6.2 PP GRASSMANNIAN TRANSFORMATION LAYERS

Under the PP perspective, each Grassmannian point can be represented as a symmetric matrix. We
define the PP origin as I:m = < %’ g > € R™ ™ as it is the identity element of the gyro group
on the PP Grassmannian (Zr(p, n) ( , ). Similarly, we model the FC parameters by

parallel transport and Riemannian exponential map at I, ,,. Under this trivialization, Thm. 4.2 on
the PP Grassmannian can be further simplified. Besides, the Riemannian logarithm under the PP
Grassmannian can be calculated by the ONB logarithm to support the auto-differentiation (

s , Prop. 3.12). For more details, please refer to the proof of the following theorem.

Theorem 6.2 (PP Grassmannian FC Layers). [|] Given a PP Grassmannian feature X € Gr(p,n),
the PP Grassmannian FC layer F(-) : Gr(p,n) — Gr(q,m) is

Y =UU" withU = (exp(( B?)P _(ng)T ))) , (30)
1:q

where (-)1.q returns the first-q columns of the input square matrix. Here, each (i, j) element of
BPP € RM=9*4 is defined as % <7r*,,r(p) (Log%\gl:p (w‘l(X))) ,OijZijO;';>, with

Qij = exp (( Yij []gzij] _(%j[gZij])T )) ’ Gh

where m1(U) = UUT, and 7.y (V) = UV + VU is the differential map for all U € Gr(p,n)
andV € Ty Gr(p,n). The FC parameters are Bz, € RO=P)XP and ~v;; € Rfori=1,--- ,m —q
andj=1,--- q.

6.3 COMPARISON WITH THE EXISTING GRASSMANNIAN TRANSFORMATION LAYERS

Table 2: Comparison of our GrConv against the existing transformation layers. Unlike existing
transformation layers, our GrConv can transform subspace dimension p, the ambient dimension 7,
and the channel dimension c across both two perspectives, providing more flexibility.

Flexible dimensions

Methods ‘ Perspective ‘

| | Subspace p Ambientn  Channel
FRMap + ReOrth ( s , Egs. (2-4)) ONB X X
PP Scaling ( , , Sec. 4.2.2) PP X X X
ONB Scaling ( s , Sec. 3.2) ONB X X X
GrTrans ( ) , Sec. 2.3.2) ONB + PP X X X
GrConv | ONB +PP |

As discussed in Sec. 4.2, The product of the FC layers defines the ONB and PP Grassmannian
convolution. For example, the ONB Grassmannian, Conv(-) : (Gr(p,n))¢ — (Gr(q,m))*, is
defined as

Conv(-) = {F(-),---, F¥()}, with Fi(-) : (Gr(p,n))¢ — Gr(q,m),Vi=1,---k, (32)

with F* as the ONB Grassmannian FC layer. The following begins with a brief recap of several popu-
lar Grassmannian transformation layers, followed by a comparison with our proposed Grassmannian
Convolution (GrConv).

( ) proposed FRMap + ReOrth layers to perform the transformation over the ONB

Grassmannian via left matrix product (FRMap) and QR decomposition (ReOrth). ( )
proposed the matrix scaling for the PP Grassmannian by the tangent space at the identity.

( ) extended the matrix scaling into the ONB Grassmannian. Besides,
( ) used the gyro group left translation (GrTrans) as the transformation. These layers are briefly

recapped in App. H. However, all the previous layers lack flexibility regarding dimensions and
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perspectives. Given a c-channel Grassmannian Gr(p, n) (or Gr(p, n)) input, the existing layers can
modify only specific aspects of the three dimensions (c, p,n) or operate on a limited perspective.
In contrast, our GrConv layer can adjust all dimensions across both perspectives, enabling more
flexibility. Tab. 2 compares our GrConv with other Grassmannian transformation layers, highlighting
the advantages of our approach.

7 MANIFOLD EMBEDDING AND RIEMANNIAN FULLY CONNECTED LAYER

Embedding into non-Euclidean manrfolds often yrelds superior results compared to standard Eu-
clidean spaces ( s s ). A
common approach for embeddlng Euchdean features 1nt0 manifolds 1nv01ves mapping the Euclidean
vector to the tangent space at the origin via a linear layer, followed by applying the exponential map
at the origin. This method has been widely adopted in various embeddings, including hyperbolic
( s ), SPD ( R ), and Grassmannian spaces (

, Sec 3. 4 2). While this process appears extrinsic due to its dependence on the tangent
space, our framework offers a novel intrinsic interpretation. The following proposition shows that this
operation is, in essence, a Riemannian FC layer between the Euclidean space and the target manifold.
Proposition 7.1 (Manifold Embeddings & Riemannian FC layers). [|] The Riemannian FC layer from
a standard Euclidean space R™ to an m-dimensional target manifold M, namely F(-) : R™ — M,
takes the following form

F(x) =Expg(Az +b),
where A € R™"*™ and b € R™ are the transformation matrix and biasing vector, respectively.

(33)

8 EXPERIMENTS

We use the proposed Riemannian convolutional layers to construct Riemannian Convolutional Neural
Networks (RCNNs) on the SPD and Grassmannian manifolds, referred to as SPDConvNets and
GrConvNets, respectively. Following previous work ( ;

, ), we evaluate our method on radar signal class1ﬁcat10n and human actlon recognition
tasks. More details of the datasets and implementation are exposed in App. L.

Table 3: Comparison of the SPDConvNets under different metrics against other SPD networks on all
three datasets. The best three results are highlighted with red, blue, and cyan.

| Radar | HDMO5 | FPHA

Methods | Mean£STD ~ Max | MeantSTD  Max | Mean+STD  Max

SPDNet 9325+1.10 944 | 6457061 65.14 | 85.59+0.72 86
SPDNetBN 94.85+099 96.13 | 71.28+0.79 727 | 89.33+0.49 90.17
RResNet-AIM 9571 +0.37 964 | 64.95+0.82 66.19 | 86.63 +0.55 §87.33
RResNet-LEM 95.89+0.86 97.07 | 70.12+245 7192 | 85.07+0.99 86.17
SPDNetLieBN-AIM | 9547 +0.90 96.27 | 71.83+0.69 72.51 | 90.39 £ 0.66 92.17

SPDNetLieBN-LCM | 94.80 +0.71 95.73 | 71.78 £0.44 72.61 | 86.33 +0.43 87
SPDNetMLR 95.64+0.83 9733 | 6590+093 6698 | 85.67 +£0.69 86.33
SPDConvNet-LEM | 98.27 £0.48 98.93 | 81.16 +0.93 82.44 | 91.83+0.41 92.5
SPDConvNet-AIM 97.63+0.50 984 | 80.12+0.78 81.55 | 91.57+0.40 92.17
SPDConvNet-PEM 98.43 + 0.44 99.07 | 78.77 +0.45 79.19 | 90.33 £0.37 90.67
SPDConvNet-LCM 97.65+0.75 98.93 | 7542+095 76.74 | 91.33 +£0.24 91.67
SPDConvNet-BWM | 9640+ 091 97.87 | 7434 +0.86 75.85 | 90.03 £0.55 90.83

8.1

EXPERIMENTS ON SPD GEOMETRIES

Datasets. Following previous SPD methods (

), we use the Radar dataset ( )
( , ) and FPHA ( , ) datasets for human action recognition.
In line with ( ); ( ), we model each input feature as a multi-channel
SPD tensor of covariance matrices, shaped as [c, n, n].

) for radar classification, and the HDMO5

SPDConvNets. We construct SPDConvNets based on convolutional layers induced by five Rieman-
nian metrics, i.e.,, LEM, AIM, PEM, LCM, and BWM. We employ a single convolutional layer,
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followed by an SPD MLR ( , ). We denote SPDConvNet-[Metric] as the SPDConvNet
using convolution under the specified metric. For SPDConvNet-LEM, -PEM, and -LCM, the MLR is
based on the same metric as the convolution, i.e.,, LEM, PEM, and LCM, respectively. Since the MLR
for AIM and BWM is less efficient ( , ), we apply LEM MLR for SPDConvNet-AIM
and -BWM to facilitate training. Besides, we trivialize the SPD parameter in the MLR as Sec. 4.3,
which are detailed in App. G. Consequently, all parameters in the SPDConvNets can be directly
optimized using a Euclidean optimizer.

Results. We compare our SPDConvNets with various SPD baseline networks, including SPDNet
( s ), SPDNetBN ( s ), LieBN ( s ), RResNet
( , ), and MLR ( , ). The 5-fold average and maximum results
are shown in Tab. 3. For RResNet, due to significant fluctuations in its training dynamics on the
radar dataset, the test performance over the last several epochs varies by up to 20%. Therefore, we
select the maximum accuracy from the last 10 epochs as its final scoring metric. Our findings are as
follows. Firstly, our SPDConvNets consistently outperform other SPD-based models regarding both
average and maximum accuracy. Specifically, our SPDConvNets surpass the classic SPDNet by up
t0 5.02%, 16.59 %, and 6.24% on the Radar, HDMOS5, and FPHA datasets, respectively. Notably,
the best performance of our SPDConvNets on the Radar dataset even reaches 99.07%. These results
demonstrate the effectiveness of our framework. Additionally, the variation in optimal metrics across
datasets highlights the flexibility of our methods.

8.2 EXPERIMENTS ON GRASSMANNIAN GEOMETRIES

We compare our Grassmannian Con-
volutional (GrConv) layer against pre-  Table 4: Comparison of the ONB and PP GrConvNets under
vious transformation layers, such as  djfferent settings against other Grassmannian networks on

FRMap + ReOrth, GrTrans, and scal-  (he Radar dataset. The best three results are highlighted with
ing under the GrNet backbone. In our  yeqd, blue, and cyan.

experiments, we replace the vanilla

FRMap + ReOrth in the GrNgt back- Methods | Subspace dims | Ambient dims | Mean#Std ~ Max
bone with GrTrans, ONB scghng, and GrNet 1 2016 90432076 9173
our ONB & PP convolutional lay- GyroGr 4 20->20 90.64 £0.57 91.47
ers, respectively. Each model in- _ GyroGr-Scaling 4 20->20 88.88+1.52 91.07
cludes one transformation layer fol- ~ 20->16 93.92+0.74 9493
lowed by a classification layer. The  GrConvNetONB e 20->20 22.83+0.66 9373
ya yer. 4->8 20516 | 9477+ 081 96.13
corresponding models are denoted 4->6 20->16 95.23+0.96 96.67
as GyroGr, GyroGr-Scaling, GrCon- 4o 20->16 0435+042 948
vNetONB, and GrConvNetPP, respec- 20->20 94.56 £ 0.58  95.2
tively. As shown in Tab. 2, our Gr- GrConiNettp 4->8 20->16 | 94.11+0.58  95.07
) o 4->6 20->16 94.51+0.53 9547

Conv allows for more flexible manip-
ulation of dimensionality. Therefore,
we also perform ablation studies on different subspace and ambient dimension settings. The experi-
ments are conducted on the Radar dataset. Following ( ), we model each radar signal
as a multi-channel Grassmannian tensor, i.e., [c, n, p|] for the ONB and [c, n, n] for the PP. The 5-fold
average and maximum results are presented in Tab. 4, demonstrating that our GrConv significantly
outperforms other Grassmannian transformation layers. Furthermore, varying the subspace dimension
proves to be potentially beneficial, as our GrConv achieves the top two results under varying subspace
dimensions. These observations highlight the effectiveness and flexibility of our GrConv.

9 CONCLUSION

This paper extends basic transformation layers, such as FC and convolutional layers, to operate on
general manifolds. Our approach provides a natural, Riemannian-oriented generalization applicable
more broadly than previous manifold-specific transformation layers. Empirically, we demonstrate our
framework on five SPD geometries and two Grassmannian perspectives. Extensive experiments on
radar and human action recognition tasks highlight the effectiveness and flexibility of our approach.
We hope that our work will facilitate the development of deep networks for data with nontrivial
geometries in machine learning.

10
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A  GLOSSARY OF SYMBOLS

Tab. 5 summarizes all the notations in the main paper.

Table 5: Summary of notations.

Notation Explanation
(N, gV} Riemannian manifold AV with Riemannian metric g/
{M, gM} Riemannian manifold M with Riemannian metric g™*!
B Origin of the interested manifold
TpM Tangent space at P € M
gp(-,)or {-,-)p Riemannian metric at P
Il 1le The norm induced by (-, -) p on Tp.M
. Geodesic distance
Logp Riemannian logarithm at P
Expp Riemannian exponentiation at P
I'poq Parallel transportation from P to () along the geodesic
fep Differential map of the smooth map f at P € M
{B:}1™, Standard orthonormal bases over m-dimensional T M
St Space of n x n SPD matrices
S” Euclidean space of n X n symmetric matrices
L Euclidean space of n x n lower triangular matrices
(-, Standard Frobenius inner product
., Y(eh) O(n)-invariant Euclidean metric on 8" s.t. min(o, o« +n8) > 0
Ilg Frobenius Norm
log Matrix logarithm
exp Matrix exponentiation
p Matrix power for SPD matrix P
Lp[] Lyapunov operator by P € S,
Z Cholesky decomposition
Dlog Diagonal element-wise logarithm
[-] Strictly lower triangular part of a square matrix
D(-) A diagonal matrix with diagonal elements from a square matrix
Gr(p,n) Grassmannian under the ONB perspective
Gr(p,n) Grassmannian under the projector perspective
0]8)] Return an orthogonal matrix by QR decomposition
[, ] Matrix commutator
Ipn Grassmannian identity under the ONB perspective
Ipn Grassmannian identity under the projector perspective
I, n X n identity matrix
T Riemannian isometry from Gr(p, n) onto Gr(p,n)
() ()= Logy () with Log as the Riemannian logarithm on Gr(p, n)
0 Zero matrix with all the entities as zero
St(p,n) Stiefel manifold of n X p column-wise orthogonal matrices
GL(n) General linear group of n X n invertible matrices
O(n) Orthogonal group of n x n orthogonal matrices
R™ Euclidean space of n-dimensional vectors

B RIEMANNIAN OPERATORS ON THE SPD AND GRASSMANNIAN MANIFOLDS

B.1 RIEMANNIAN OPERATORS ON THE SPD MANIFOLD

Tabs. 6 and 7 summarizes the associated Riemannian operators and properties. Following Tab. 5,
we further make the following notations. Given any SPD points P, ) € S, and tangent vectors

V,W € TpS? ., we denote V= Chol, p(V), W= Chol, p(W), L = Chol P, and K = Chol Q.
The corresponding diagonal matrix with their diagonal elements are denoted as V, W, L, and K,
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respectively. For the parallel transport under the BWM, we only present the case where P, () are
commuting matrices, i.e, P = UXU " and Q = UAUT.

The O(n)-invariant Euclidean metric on 8™ ( , ) is
(V, WY @B = o(V, W) + Btr(V) tr(W),  with min(e, a 4+ nS) > 0. (34)
Remark B.1. We make the following remarks w.r.t. the geometries on the SPD manifold.

* PEM & EM. When the power equals 1, the associated PEM is reduced to the Euclidean

Metric (EM) ( , , Sec. 3.1).
* Incompleteness & Riemannian exponentiation. As PEM and BWM are incomplete, their
Riemannian exponential maps are locally defined. As shown by ( , , Prop.
9) and implied by ( ); ( ), the restricted domains
are
PEM: P’ + Py, p(V) € ST, (35)
BWM: ﬂp[V] + 1€ Si+
The above restriction can be solved numerically, such as ReFEig ( , ):
S = Umax(el,2)U T, (36)
where S Ei UXU is the Eigendecomposition.
Table 6: The Riemannian operators under LEM, AIM, and PEM on the SPD manifold.
Operators LEM AIM PEM
gp(V,W)  (log, p(V),log, p(W))(@H) (P=tv,wpty@p) 72 (Pos p(V), Pou,p(W)) (@5
LogpQ  (log. p) ' log(Q) ~log(P)]  Pilog (PtQP~4) P (Pp.p) 1 (Q7 = P?)
Trag(V)  (log, o) olog, p(V) (QP1):V(P'Q)= (Pos@) " 0 Poup(V)
Expp(V) exp (log(P) +log, p(V)) Pz exp (P’%VP’%> Pz (PP + Pg,ﬁp(V))é
. Lie group bi-invariance Lie group left-invariance . .
Invariance O(n)-invariance GL(n)-invariance O(n)-invariance
(2010)
References (2005) (2006) (2023)
(2023) (2019)
( )
Table 7: The Riemannian operators under BWM and LCM on the SPD manifold.
Operators LCM BWM
gp(V,W) (V) 7)) + (VL' WL™) 3(LpV] W)

LogpQ  (Chol ™). p[|[K]— L] +LDlog(L™'K)]  (PQ)* + (QP)% — 2P
Tpoo(V) (Chol™ %), x [WJ n Kﬂflﬂ U {, [25 [UTvU] 7} Ut
Expp(V)  Chol™ [LLJ + V] +L Dexp(L—lf/)] P+V + Lp[VIPLp[V]
Invariance Lie group bi-invariance O(n)-invariance
References ( ) ( () )

B.2 RIEMANNIAN OPERATORS ON THE GRASSMANNIAN

As the set of linear subspaces, the Grassmannian can naturally be represented by any of the or-
thonormal bases, which is called the OrthoNormal Basis (ONB) perspective. Under this perspec-
tive, the Grassmannian is the quotient of the Stiefel manifold ( s ), denoted as
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Table 8: Riemannian operators on the Grassmannian.

Operators Gr(p,n) (Tr(p, n)
gp(V. W) (V. w) 3 (V.W)
Oarctan(Z)RT 1
Logr @ (I, - PP)Q(PTQ)~' 2 OxRT 2llog (I = 2Q) (I —2P)), P]
—sin(X) T T
1o} _
tro) (72 OV ) )0+ U=000)V (@) PV rpl oot P
Logp(Q) *2 OSRT
cos(X) T
o} : )
ExppV (PR S\)llg sin(X) ) R exp([V, P])P exp(—[V, P])
V%= OLRT
( ) ( )
References ( ) ( )

Gr(p,n) = St(p,n)/O(p). Each point is an equivalence class:
Gr(p,n) = {[U]: [U] == {U € St(p.n) | U = UR, R € O(p)}}. (37)

By abuse of notations, we use [U] and U interchangeably for elements of Gr(p, n). Each tangent
space can be identified as a subspace of a corresponding tangent space on the Stiefel manifold,
which is called horizontal space. Therefore, every tangent vector can be identified with a tangent
vector in the horizontal space, called horizontal 1ift2. Under this identification, each tangent vector
V € TpGr(p,n) can be represented as

V = P, B, with B € R»~P)*xP, (38)
where P| € St(n — p,n) is the orthogonal complement of P.
Another perspective is called the Projector Perspective (PP). As shown by ( ), the
Grassmannian is an embedded submanifold of S™:
Gr(p,n) = {P € 8" : P?> = P,rank(P) = p}. (39)

Therefore, each point can be represented as an n x n symmetric matrix. Under this perspective, any
tangent vector V' € TpGr(p,n) at P € Gr(p, n) can be represented as

T
V=0 ( g % ) Q7. with B € R"—)x», (40)

where pr,nQT = P.

Supposing P and @ are the points on the Grassmannian Gr(p, n) ((A}}(p, n)), and V and W are

the tangent vectors over TpGr(p, n) (Tpérvlr(p7 n)), Tab. 8 summarizes the associated Riemannian
operators following the notations in Tab. 5.
Remark B.2. We make the following remarks w.r.t. the Riemannian operators over the Grassmannian.

* Cut locus & logarithm. The Grassmannian Riemannian logarithm does not exists for any
pair of P and Q. As shwon by ( , , Sec. 35), Log p(Q) exists only if P
and @ are not in each other’s cut locus. However, this can be numerically solved, such as
( , , Alg. 5.3) or using Moore—Penrose inverse for the inverse in the ONB
logarithm ( , ).

* PP & ONB logarithm. The matrix logarithm shown in the PP logarithm does not support
backpropagation, as it can not be calculated by the SVD like the SPD matrix. However, the
PP logarithm can be calculated via the ONB logarithm ( , , Prop. 3.12).
The latter can be backpropagated by the SVD. In this way, the PP logarithm can be integrated
into the Pytorch deep learning framework.

’In this paper, the tangent vector under the ONB perspective is always considered as the horizontal lift.
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C ADDITION DISCUSSIONS ON THE ORTHOGONAL BASIS

When the inner product gz on Tr M is the standard inner product we use familiar {e,; }", the
orthonormal basis. However, when g is not standard, {e;}?; might not be orthonormal. In this
case, we can always find one associated to {e;}/; by a hnear isometry. We rewrite the inner product

gE as
" gu(V.W) = (F(V), F(W)) = F(V)T FW). WV, W € TpM = R™, 1)

where f is the linear isometry that pulls back the standard inner product (-, -) to gg. Then, {B;}*, =
{f~%(e;)}™, is the standard orthonormal bases over {TpM, gr}.
D RIEMANNIAN FC LAYERS UNDER ISOMETRIES

The following theorem demonstrates that a Riemannian FC layer under isometric metrics can be
computed by the following procedure: mapping, applying the Riemannian FC layer, and remapping.

Theorem D.1 (Isometric FC Layers). Given n-dimensional Riemannian manifolds {./\N/' , gN } and
{N o } with a Riemannian isometry ¢V N = N, and m-dimensional Riemannian manifolds
{Mv, gM} and {M, gM} with ¢™M M — M as a Riemannian isometry mapping origin EM €
M into the origin E € M, the Riemannian FC layer F : N = M can be calculated byF: N —
M:

F(XPA) = ()" (F(6V(X)P,A)), “2)
where P = {ﬁ, S ./\7} and A = {/L € Tﬁ./\N/'} are the FC parameters off, while P =

i=1 =1

{(;SN(E)}:; and A = {qﬁi\/ﬁ (gl)}:il are the FC parameters of F.

47

Proof. First we show the correspondence between the standard orthonormal bases {El eM }and
{B; € M}. Obviously, { B; € M} is orthonormal iff { B; € M} is orthonormal. We only need to
show the standardness. The Riemannian metric g™ has the following:

M, w) D gt (62 (v), ()
- <fo¢*,1§(v)vf°¢f[§(v)>y

where f is the linear isomorphism that pulls back the standard Frobenius inner product to gg’l. Here,
(1) comes from the isometry. Therefore, for each i, we have the following

Bo= (fod™) (5
@ (m !
= (ert) (B,
where (1) comes from B; = f~1(E;),Vi=1,---,n

(43)

(44)

We now demonstrate the correspondence between the FC layers as follows:
Y = Expy' (Z ((Logf (%), A»%Bi))
i=1
(1) = ~
D (M (Expﬁﬂ ( Z ( Logy (X), A;)N Bi)
=1
(Z (Logh, (X »f-{&))) :

)
@ (qSM)fl (Expgt
=1

)

where B; = gZ)M (By), A; = qSN (N-), X = ¢N(X), and P, = ¢V (P,). The above derivation
comes from the followmg

(1) The isometry of ¢! and ¢V';
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(2) The linearity of qﬁi\%.

O
E RELATION WITH THE GYRO SPD FULLY CONNECTED LAYERS

We first review some related SPD gyro structures ( , ). Given P, Q in {S% , g}

with g as AIM, LEM or LCM, and ¢ € R, the gyro structures induced by g are defined as follows:
Gyro addition: P & Q = Expp (U7 p (Log; (Q))) (46)
Gyro scalar product: ¢t ® P = Exp; (tLog;(P)), 47)
Gyro inverse: © P = —1 ® P = Exp; (— Log;(P)), (48)
Gyro inner product: (P, Q),, = (Log;(P),Log;(Q));, (49)

where Log; and (-, -); is the Riemannian logarithm and metric at the identity matrix I. As shown by
( ), the gyro addition and scalar product under AIM, LEM, and LCM form gyrovector

spaces.
Based on these gyro structures, ( ) introduces the gyro SPD FC layers under AIM,
LEM, and LCM, respectively. We review their results in the following.
Theorem E.1 (Gyro SPD FC Layers ( , )). The gyro SPD FC layers under standard
LEM, AIM, and LCM are
vit(8),  ifi=j
LEM Y =exp (V'F) V2 = kv{;E(S), ifi>j (50)
Vf;E7 otherwise
A (S) +n Xy vk (S), ifi=
AIM Y =exp (VA) VAT = \%v;’él(S), ifi>j (51)
VJ‘?I, otherwise
exp (vi©(S)), ifi=]
v _ /LC(y/LC\T 1/LC _ J) . LC e
LCM Y = V=2 (VEY) L ViEs = ;5 (S), ifi>j (52)
0, otherwise

where n = * (\/141_75 — 1) and v“-q- = (6P; ® S, Wij>gr with g as LEM, AIM, or LCM. Here,

Py, Wi € ST, Vi > 4,1, =1,-
Proposition E.2. Our LEM ((« B) (1 0)), AIM ((o, B) = (1,8)), and LCM SPD FC layers
incorporate the LEM, AIM, and LCM gyro SPD FC layers respectively.

Proof. Comparing Thm. E.1 with our Thm. 5.1, we only need to show the equality of v;; in the gyro

and our framework. g
vlj = <9PZJ & S’ Wij)gr
1
2 <EXP1 (FPlj—ﬂ (LOgPij (S))) 7Wij>

gr

@ (53)
2 (T (Logp, ()  Logy (Wiy) )
®
2 (Logp, (5) . Tion, (Log; (W)
The above derivation comes from the following.
(1) ©P;® S = Exp; (T, -1 (Logp, (9))) ( 2024, Eq. (6));
(2) Eq. (49);
(3) Norm preservation of parallel transport ( s , Def. 3.1).
Setting A;; = I'r,p (Log;(Wy;)) € Tp,,S¥ . we recover Egs. (92), (93) and (95) for each metric.
O
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F TRIVIALIZED SPD FULLY CONNECTED LAYERS

Theorem F.1 (Trivialized SPD FC Layers). Trivializing each P;; in Thm. 5.1 as Exp;(7i;[Zi;]),
v;;(S) under different metrics can be further simplified:

LEM : (log(S), Zi)' ™" — 71| 24| " (54)
A (tog (exp (- 22(2,,)) S exp (- 7; 2)).2,) " 59)
PEM :(S° — (I + 07i3Z3;)) , 73", (56)
LCM:<LKJ+D10g(K)<%jHZ 1+ 5D ) 2] + 320y, 6D

where ||-||*?) is the norm induced by (-,-)'*® and D(-) returns a diagonal matrix with diagonal
elements from the input square matrix.

Proof. LEM:

() a,
(log(S) — log(Py;), Zi;) ™ = (log(8) — 7i;[Zi5], Ziy)' ™

@) (58)
= (log(9), Zz‘j>(a’ﬁ) — Vij ||Zij||(a’ﬁ) ;
The above comes from the following.
(1) Eq. (108);
Zis
Q) [Zy] = Tz,
AIM: This can be obtained by the following:
-1 Yij
exp (7i5[Zi5]) 7 = exp (*?][Zij]) : (59)
PEM: This can be obtained by Eq. (109).
LCM:
_ 1
(LK) = Lis) + Diog(KLG1), 124,] + 32) )
1
= (L] + Dlog(2) — (LLy + Diog(Ls,). 12:,] + 52 ) (60)
® 1
D (L) + Dlog(x0) — (511201 + 532D ) 2] + 524 ).
where (2) comes from Eq. (110). O]

Remark F.2. Due to the incompleteness of PEM and BWM, their exponential maps at I, Exp;(V),
are well-defined locally:

PEM: I+9V€S++,

(61)
BWM:I+§V€SSL_+
The above restriction can be solved numerically, such as ReEig ( s ):
S = U max(el,2)U T, (62)

b
where S := USU is the eigendecomposition.
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G TRIVIALIZED SPD MULTINOMIAL LOGISTIC REGRESSION

In our implementation, we trivialize the SPD parameters in the SPD MLR as Sec. 4.3. The SPD

MLRs proposed in ( ) under five geometries can be further simplified. For simplicity,

we do not involve the power deformation ( ).

Theorem G.1 (Trivialized SPD MLRs). [|] Given C classes and an SPD feature S, the SPD MLRs,
ply =k | S € SY,), are proportional to

LEM : exp [<1og(5), Z)@? ||Zk\|(”’5)} : (63)
| (@,6)
AIM : [exp <10g (exp (—%[Zk]) S exp (—%[Zﬂ)) 7Z;§> } , (64)
1 a,
PEM i3 exp [(S° = (I + 0mlZi)) . Z0)' ")} (65)
LCM - exp KL | + Dlog(K ( |+ %D([Zk])) A2 + ;Zk)>] . (66)
BWM: exp {1 <(Pk5)% + (SP;C)% — 2P, Lp, (Lk:Z]cL;)>:| ) (67)

where Zy, € T18ﬁ+\{0} is a symmetric matrix, L, = Chol(Py,) is the Cholesky factor of Py, with
Py = (I + 37vc[Z1))?. Here {Z), € S"}{_, and {~y, € R}{_, are the MLR parameters.

Proof. For each class k, the expression of vy in the SPD MLR ( s , Thm. 4.2) has
been reviewed in App. K.3. For MLR under each metric g, we parameterize the each parameter
Py, € ST, by Z; and ~y;, by

Py, = Expf ([ Zk]), (63)
with [Z}] as the unit vector of Zj. Under this parameterization, the MLRs under LEM, AIM, PEM,
and LCM can be further simplified, which has been implied by Thm. F.1. [

Remark G.2. Similar to the SPD FC layer, due to the incompleteness of PEM and BWM, the
associated parameterization should follow

PEM: I + 0~ Zy] € ST, (69)
1
BWM: I + 5’)% [Zk] € Sﬁ_,,_. (70)

H REVIEW OF PREVIOUS GRASSMANNIAN TRANSFORMATION LAYERS
This section briefly reviews several popular Grassmannian transformation layers.

FRMap + ReOrth. Given input Grassmannian X € Gr(p, q), ( ) first used Full
Rank Map (FRMap) to first transform the input orthonormal matrices of subspaces to new matrices
by a linear mapping function, and then applied QR decomposition to recover the orthogonality:

Y = Q(WX), (71)

where W € R™*" is a row-wisely orthogonal parameter, and Q(-) returns the orthogonal matrix in
the QR decomposition.

PP & ONB Scaling. ( ); ( ) proposed matrix scaling for the PP and

ONB Grassmannian, respectively. Given P = X X T € a}(p, n) with X € Gr(p,n), the operations
are defined as

0 W x B ~ 0 W x B
PP:Yexp<[ —(W*B)T g ])Ip,nexp<{(W*B)T (;k }), (72)

ONB:Y:expd W*B WS‘BDIW, (73)

where * denotes the Hadamard product and B € R("~P)*? is a Euclidean parameter. Here, X =

o[ e 5 ]) e
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GrTrans. ( ) adopted the Grassmannian Gyro group translation (GrTrans) to

transform the ONB and PP Grassmannian features. Given X € Gr(p,n) (or X € Gr(p,n)), the
operation is defined as

Y=Wao X, (74)
where & is the Grassmannian PP (ONB) gyro addition ( s , Sec. 2.3), and
W € Gr(p,n) (or W € Gr(p, n)) is a Grassmannian parameter.

I EXPERIMENTAL DETAILS

1.1 DETAILS OF THE EXPERIMENTS ON THE SPD MANIFOLD
1.1.1 DATASETS

Radar’ ( , ). It consists of 3,000 synthetic radar signals equally distributed in 3
classes.
HDMO05* ( , ). It consists of 2,273 skeleton-based motion capture sequences

executed by different actors. Each frame consists of 3D coordinates of 31 joints. We remove the
under-represented clips, trimming the dataset down to 2086 instances scattered throughout 117 classes.
We randomly select 50% of the samples from each category for training and the remaining 50% for
testing.

FPHA’ ( , ). It includes 1,175 skeleton-based first-person hand gesture
videos of 45 different categories with 600 clips for training and 575 for testing. Each frame contains
the 3D coordinates of 21 hand joints.

For the HDMO5 and FPHA datasets, we preprocess each sequence using the code® provided by
( ) to normalize body part lengths and ensure invariance to scale and view.

1.1.2 SPD MODELLING

For our SPDConvNets, we follow ( ); ( ) to model each sample
into a multi-channel SPD tensor. For the Radar dataset, we follow ( ) to use the
temporal convolution followed by a covariance pooling layer to obtain a multi-channel covariance
[¢, 20, 20] tensor. For the HDMO5 and FPHA datasets, we follow ( ,Sec. D.2.2) to

model each skeleton sequence into a multi-channel covariance tensor [c, n, n]. Specifically, we first
identify a closest left (right) neighbor of every joint based on their distance to the hip (wrist) joint,
and then combine the 3D coordinates of each joint and those of its left (right) neighbor to create a
feature vector for the joint. For a given frame ¢, we compute its Gaussian embedding ( ,

):

(det Et) |: Et + Ht (,ut) Mt (75)

(Nt) I

where p; and 3; are the mean vector and covariance matrix computed from the set of feature vectors
within the frame. The lower part of matrix log (Y;) is flattened to obtain a vector ;. All vectors ¥;
within a time window [t, t + ¢ — 1], where ¢ is determined from a temporal pyramid representation of
the sequence (the number of temporal pyramids is set to 2 in our experiments), are used to compute a
covariance matrix as

Zy = - Z (: —vy) (0 — 1), (76)

where 7; = ZHC ' %;. The resulting { Z } is the input covariance tensor. On the FPHA dataset, we
generate the covariance based on three sets of neighbors: left, right, and vertical (bottom) neighbors.

For other SPD baselines, such as SPDNet, SPDNetBN, LieBN, MLR, and RResNet each sequence
is represented bya global covariance representation ( ).
The sizes of the covariance matrices are 20 x 20, 93 x 93, and 63 x 63 for Radar HDMOS and
FPHA datasets, respectively.

3https ://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
4https ://resources.mpi-inf.mpg.de/HDMOS5/
Shttps://github.com/guiggh/hand_pose_action
*https://ravitejav.weebly.com/kbac.html
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1.2 IMPLEMENTATION DETAILS

Comparative methods. We follow the official Pytorch code of SPDNetBN’ to implement SPDNet
and SPDNetBN. For LieBN®, we focus on the instantiation under AIM and LCM, while for RResNet?,
we implement the ones induced by LEM and AIM. For SPD MLR'?, we use LCM on the HDMO05
datasets, and AIM for the rest two datasets.

SPDConvNets. The output dimensions of the SPD convolutional layer are 8 x 8, 34 x 34, and
22 x 22 for the Radar, HDMOS5, and FPHA datasets, respectively. We primarily use the AMSGrad
( , ) optimizer, except for SPDConvNet-LEM and SPDConvNet-AIM on the HDMO0S5
dataset, where SGD ( ) is employed. Weight decay is set to zero, except for
SPDConvNet-PEM on the FPHA dataset where it is 5e %, The matrix power in SPDConvNet-PEM is
set as 0.5, 0.25, and 0.25 for the three datasets. Since matrix power can deform the latent Riemannian
metric ( , , Fig. 1), we also apply matrix power (-)? before the convolutional layer in
SPDConvNet-AIM, -LCM, and -BWM to activate the latent geometries. The batch size is set to 30
with a training epoch of 150. Tab. 9 summarizes the training hyper-parameters.

Table 9: Training hyer-parameters in SPDConvNets

Dataset | Model | 6 Optimizer Learning Rate
SPDConvNet-LEM N/A AMSGrad 5e~3
SPDConvNet-AIM | 0.25 AMSGrad 5e~4

Radar SPDConvNet-PEM | N/A  AMSGrad le™2
SPDConvNet-LCM | 0.25 AMSGrad 5e~4
SPDConvNet-BWM | N/A  AMSGrad 5e~4
SPDConvNet-LEM | N/A SGD 5e=3
SPDConvNet-AIM N/A SGD 5e73

HDMO5 | SPDConvNet-PEM | N/A  AMSGrad le™3
SPDConvNet-LCM | N/A  AMSGrad le3
SPDConvNet-BWM | N/A  AMSGrad le3
SPDConvNet-LEM | N/A  AMSGrad le~?
SPDConvNet-AIM N/A  AMSGrad le—?

FPHA | SPDConvNet-PEM | N/A  AMSGrad le=3
SPDConvNet-LCM | -0.25 AMSGrad le—3
SPDConvNet-BWM | -0.25 AMSGrad le~?

1.3 DETAILS OF THE EXPERIMENTS ON THE GRASSMANNIAN

Grassmannian Modelllng As Grassmannian descriptors can be derived by the SVD of the covariance
s ), we map the multi-channel Radar covariance into a
[¢,n, p] ONB Grassmanman tensor via the SVD decomposition. The PP Grassmannian features can

be derived from the ONB Grassmannian features via the isometry 7(-) : Gr(p,n) — Gr(p,n):

©(U) =UU",VU € Gr(p,n). (77)

Implementation details. Since GrNet is officially implemented by Matlab, we carefully re-
implemented it using PyTorch. Additionally, as both GryroGr and GryroGr-Scahng do not release
official code, we re-implemented them based on the original papers (

). For all comparative methods, we use SGD with a learning rate of He™ 2 . For tra1n1ng our ONB
and PP GrConvNets, we use AMSGrad with a learning rate of 5e 3. The batch size is set to 30 with
a training epoch of 150.

1.4 TRAINING EFFICIENCY

"https://proceedings.neurips.cc/paper_files/paper/2019/file/
6e69ebbfad976d4637bb4b39de261bf7-Supplemental.zip

8https ://github.com/GitZH-Chen/LieBN

*https://github.com/CUAI/Riemannian-Residual-Neural-Networks

]Ohttps ://github.com/GitZH-Chen/SPDMLR
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Table 10: Training efficiency (second / epoch).

Method | Radar HDMO5 FPHA
SPDNet 0.66 0.50 0.28
SPDNetBN 1.25 0.94 0.58

SPDResNet-AIM 0.96 1.23 0.69
SPDResNet-LEM 0.77 0.55 0.25
SPDNetLieBN-AIM | 1.21 1.15 0.97
SPDNetLieBN-LCM | 1.10 .11 0.59
SPDNetMLR 0.96 5.46 6.36

SPDConvNet-LEM 0.86 0.74 0.74
SPDConvNet-AIM 5.09 101.80  51.14
SPDConvNet-PEM 1.09 7.10 1.57
SPDConvNet-LCM 0.65 0.59 0.53
SPDConvNet-BWM | 6.07 110.51  56.07

Tab. 10 presents the average training time per epoch of each SPD network. On the HDMO5 and FPHA
datasets, all baseline methods involve SVD on relatively large matrices, which are more efficiently
executed on a CPU. Consequently, these methods are run on a CPU, while all other cases are executed
on a single A6000 GPU. We have the following observations:

* The efficiency of SPDConvNet varies across metrics. The most efficient metric is LCM,
where our model even achieves comparable efficiency to the vanilla SPDNet. However, AIM
and BWM demonstrate significant computational burden, primarily due to their complex
Riemannian computations.

* Our trivialization improves efficiency. On the HDMO5 dataset, SPDNetMLR is imple-
mented under LCM. Similarly, our SPDNetMLR-LCM also employs LCM-based MLR.
However, SPDNetMLR-LCM achieves substantially lower training time. This improvement
can be attributed to our trivialization, which simplifies the final expression (App. G).

J APPLICATIONS TO HYPERBOLIC SPACES

Hyperbolic Neural Networks (HNNs) have recently shown success in different applications (Ganea
et al., 2018; Shimizu et al., 2020; Chami et al., 2019; Skopek et al., 2020; Bdeir et al., 2024; Fu et al.,
2024). This section applies our Riemannian FC (Thm. 4.2) into the hyperbolic space.

J.1 GEOMETRIES OF THE HYPERBOLIC SPACE

There are five models over the hyperbolic space (Cannon et al., 1997). We focus on the Poincaré ball
and hyperboloid models:

1
Poincaré ball: P} = {x eR™ | |z|* < _K} (78)
1
Hyperboloid: HY% = {x e R | ||z|% = K} ) (79)

where ||9c||2£ = Z?:Jr; x? — 27 is the Lorentz inner product, and ||-| is the standard Ly norm induced
by the standard inner product (-, -). Here, K < 0 is the constant sectional curvature.

As shown by Ungar (2022), the Poincaré ball model admits a gyrovector space structure, which is a

natural generalization of vector space in the manifold. The gyro addition, known as Mdbius addition,

is defined as

(1 —2K(z,y) — Klyl?) = + (1 + K|z[?) y
1= 2K (z,y)2 + K2[|lz[?[ly]]? ’

For parallel transport over the Poincaré ball, we further need the notion of gyration (Ungar, 2022):

gyrlz,ylz = Ok (x Bk y) Ok (x Bk (y Dk 2)),Vz,y, 2 € Pi. (81)

TBrY= (80)

All Riemannian operators on Poincaré ball and hyperboloid models are relatively simple and have
close-form expressions, which are summarized in Tab. 11.
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Table 11: Riemannian operators on the hyperbolic space (K < 0).

H? :{,.eRn+1 ,‘QZL}’
operors P = {a ek |l < -} k= feem |l =
with [zl = >705 @7 —ai
M2 (p,w n
g (v, W) )\Ig ;) < 2 ) (v,w), =3, +2 Viw; — VW1
(A+K]x]?)
Log, (y) 2 tanh ™ (/IK] -2 @ ) =228 G ee) - (y — K(a,y) o)
T [K|NE TT=e®ryll T@xyH sinh (cosh ™ (K (z,y)z)) &
)‘k K(y,v
Tomsy(v) e gyrly, —xlv v— 1+I<(y<;,>yﬂ>ﬁ (z+y)

A lw v i v
Exp, (v) T oK <tanh< Rl H) Mvﬁ) cosh (v/[K] ||v|\£)x+smh(\/m‘\v\|L) TR

Ganea et al. (2018)
References Skopek et al. (2020)
Ungar (2022)

Petersen (2006)
Skopek et al. (2020)

J.2  RIEMANNIAN FC LAYERS: MANIFESTATIONS IN HYPERBOLIC SPACES

As Riemannian computations over the hyperbolic space are much simpler than the matrix manifold,
Thm. 4.2 can manifest in a plug-in-manner. This subsection introduces the concrete formulations.

The origin of the Poincaré ball is defined as the zero vector 0, as it is the identity element in the
gyrovector space. Besides, due to the gyro structure of the Poincaré ball, Thm. 4.2 under this geometry
can be further simplified.
Theorem J.1 (RiemFC-P layer). [|] Given x € P, the Riemannian FC transformation F(-) :
Py — PR is

y == Expg (Z ((Logo(—p;i ©K ), 2i) 6i)> (82)

i=1

where p; = Expq(7ilzi]). Here, {v; € R}, and {z; € R"}™, are the FC parameters. Each

e; € R™ is a vector with its i-th element equal to 1 and all other elements equal to 0. The Riemannian
exponentiation and logarithm at O are

Expo(v) = tanh(y/[K]|[v])
\/|K ¢ I

Logy(y) = tanh™ \/ Nyl Yy € Pk. (84)

\/WH I

Theorem J.2 (RiemFC-H FC layer). [|] Following the notation of Thm. J.1, the Riemannian FC
transformation F(-) : HY, — HE for the input © € HY, is

y = Exp, ((0, vi(x), - ,vm(x))T> (85)

Vv € ToP, (83)

-
where ¢ = <\/1}(7|’0 70) ’ vl(x) = <L0gpi(l.)7]-—‘e~>pi(zi)>’ and pbi = Expe(%[((),z;r)—r])

Here, v; € R and z; € R™ are parameters fori =1,--- ,m.

J.3 EXPERIMENTS

We validate our hyperbolic FC layers on three graph datasets for the link prediction task, including
the Cora (Sen et al., 2008), Disease (Anderson & May, 1991), and Airport (Zhang & Chen, 2018)
datasets. We also compared our hyperbolic FC layer with the transformation layer in HNN (Ganea
etal, 2018, Sec. 3.2) and HNN++ (Shimizu et al., 2020, Sec. 3.2), named M&bius transformation
and the hyperbolic Poincaré FC layer, which are all based on the Poincaré model.

J.3.1 DATASETS

Cora. It is a citation network where nodes represent scientific papers in the area of machine learning,
edges are citations between them, and node labels are academic (sub)areas.

Disease. It represents a disease propagation tree, simulating the SIR disease transmission model,
with each node representing either an infection or a non-infection state.
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Airport. It is a transductive dataset where nodes represent airports and edges represent the airline
routes as from OpenFlights.org.

J.3.2 IMPLEMENTATION DETAILS

We follow the official implementations of HNN'!, and HNN++'? to conduct the experiments. We
follow the settings as HGCN'3 (Chami et al., 2019) for the link prediction task. Specifically, the
baseline encoder consists of two transformation layers: the first maps the input feature dimension to
16, and the second maps 16 to 16. The transformation layers could be our hyperbolic FC layer or the
ones in HNN and HNN++. We use the Adam optimizer (Kingma, 2014), with a learning rate of le 2.
We fine-tune each model w.r.t. dropout of transformation weight and weight decay.

J.3.3 RESULTS

Table 12: Comparison of different transformation layers on link prediction task. The graph hyperbol-
icity is denoted as ¢ (lower is more hyperbolic).

Disease Airport Cora
60=0 0=1 0=11

Mosbius Poincaré Ball | 75.1 0.3 | 90.8+£0.2 | 89.0+0.1
Poincaré FC | Poincaré Ball | 77.8 +1.4 | 94.0+0.4 | 88.1 +0.3

RiemFC-P | Poincaré Ball | 79.2+1.2 | 93.1+£0.7 | 89.2+0.6
RiemFC-H | Hyperboloid | 71.2+0.6 | 843+ 1.7 | 92.8 +0.4

Method Geometry

Tab. 12 presents the 5-fold average AUC results across three datasets, revealing the following key
insights:

 Effectiveness: Our RiemFC achieves either superior or comparable performance to the prior
Mobius and Poincaré transformations.

* Hyperbolicity & Riemannian transformation: On datasets with high hyperbolicity,
RiemFC, and Poincaré FC transformations consistently outperform Mé&bius transforma-
tions. Conversely, on the Cora dataset with the lowest hyperbolicity, all three Poincaré
transformations perform similarly. This suggests that for highly hyperbolic data, intrinsic
Riemannian transformations are more effective, as tangent Mobius transformations may
distort the geometry.

* Metric & representation power: On the dataset with the lowest hyperbolicity, hyperboloid-
based RiemFC outperforms other Poincaré-based layers, highlighting the importance of the
underlying metric in Riemannian networks. Unlike the prior Poincaré FC layer, which is
designed specifically for the Poincaré ball model, our Riemannian FC layer in Thm. 4.2
can adapt to various metrics in a plug-and-play manner. This adaptability enhances the
representation power of HNNs, making them more versatile for diverse applications.

K PROOFS
K.1 PROOF OF THM. 4.2

Proof. By Thm. 3.1, the Riemannian signed distance from a point ¥ € M to a Riemannian
hyperplane over M is

(Log'Y, Ayt

, (86)
| Al

Ad(Y,Hap) =

"nttps://github.com/dalab/hyperbolic_nn
Phttps://github.com/mil-tokyo/hyperbolic_nn_plusplus
Bhttps://github.com/HazyResearch/hgcn
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where H A,p is a Riemannian hyperplane parameterized by P € M and A € Tp. M. Therefore, the
signed distance from Y to Hp, g is

(Logy'(Y), B;) %!
(| Bl (87)
L (Log(Y), By

d(Y HB“ )=

—~

where (1) comes from the orthonormality of B;.

Setting Eq. (87) equal to v;(X), we have

(Logis! (V). Bi) ' = (LogR, (X), Ai) . (88)
The above equation indicates
Logi' (V) = D ({Logp (X), )Y Bi) - (89)
i=1
O

K.2 PROOF OF PROP. 4.4

Proof. Given the FC parameters {p; € R"}" , and {a; € R"} ,, and input vector x € R", Eq. (12)

becomes
) -
Y = Exp, (Z ((Logpi (x),ai)piei)>

i=1
m
(2) Z
: plﬂa’l 61)7

The above comes from the followmg.

(90)

(1) The standard orthonormal bases over the standard inner product space ToR"* = R™ are
{e;}™,, with the k—th element defined as

(.ei)k:{1 itk = 1)

0 otherwise.

(2) Expy(z) =, {-,)p, = (,-), and Log,, (z) = 2 — pi.

K.3 PROOF OF THM. 5.1

Proof. In the following proof, we first present the expressions of several operators under different
metrics, including v;;(S), standard orthonormal bases, and Riemannian exponentiation at the origin.
Then, we begin to prove the theorem. In this proof, we follow all the notations as the theorem.

v;;(5) under different metrics: The expressions are implied by ( , Thm. 4.2):
LEM : (log(S) — log(P;), Zij)*? (92)
11 (o, B)

AIM : <log(Pij ISP *), Zj,j> : (93)

1 0 0 (avﬁ)
PEM : (S =Pl Zij)y ", 94)

1

LCM : <|_KJ — |_L”J + DlOg(KL;l), LZ”J + QZij)> ) (95)

1 1 1
BWM :5 <(Pij5)2 (SP;;)? —2P;;,Lp,, (LijZijL;;')> . (96)
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Standard orthonormal bases: Next, we show the standard orthonormal bases over TISﬁ - under
different metrics. As indicated by Tabs. 6 and 7, the inner products for any V, W € T;S? | are

LEM, AIM, and PEM : (V, W)(®#) | (97)
1 1

LCM (| V| + 5V, (W] + 5W>, (98)

BWM &a/, W) (99)

The above comes from the following.
(1) Eq. (97) comes from log, ;(V) =V and Py, (V) = 0V
(2) Eq. (98) comes from Chol, ; (V) = |V ] + %V;
(3) Eq. (99) comes from £;[V] = V.

As shown by (2023, Thm.2.1), Fjag.va  4S™ ()Y = {8™, (-, )}
is the linear isometry pulling the standard inner product back to the O(n)-invariant one:
va+nf —J/a n
F\/m,\/a(X) = \/EX + % tI‘(X)In,VX e Ss". (100)

Given any Y € S", its inverse map is

-1 1 V1t ng -1 1
(Fyampyva) (V)=—=1Y - . tr(Y)I
\/a n 1 +nﬁ

«

101
L L R S P (101

Vel om0 it
1 1 1 1
=7 <\/5 - m) )

The standard orthonormal bases over the Euclidean spaces {S™, (-, -)} and {L™, (-, )} are

E;; ifi =3
MUY = e e ’
{8 ’<’ >}'U’Lj {E”\-‘}QE}@’ 1fl>] (102)
{Ena <'a >} : Uit;il = E137V7f Z j (103)
where i > j,i,j = 1,---,n, and {E;;}},_; are standard basis matrices, with the (k,[) element
defined as
1 ifk=dandl =7
Ei)., = ) ’ 104
(g {O otherwise. (104)
The standard orthonormal bases w.r.t. Egs. (97) to (99) are
1 1 ({1 1 e
o 7Eii_*(7— )I, ifi = j,
LEM, AIM, PEM (™9 @& { Yo ™t = n \Va = Vs nred (105)
7’\3/%“, ifi > j.
2F;;, ifi=j
LeM Uke @ 2 ’ 1
MU Ei;, ifi>j. (106)
BWM :U2Y = ’ , ’ 107
“ {\/E(Eij + Ej), ifi> . (107)
Here, 7 > j,4,7 = 1,--- ,n. The above comes from the following.

(1) U = (Fyamz.ya) (UD™), with Fjarg, /s = S — S™ as the linear isometry
pulling back the Frobenius inner product to the O(n)-invariant inner product;
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(2) fXO(V) = |V ]+ 3V : L" — L" is the linear isometry pulling the Frobenius inner product
to Eq. (98);

3) V() = %V : 8™ — 8™ is the linear isometry pulling the Frobenius inner product back
to Eq. (99);

Riemannian exponentiation: Next, we show Exp; under different metrics

LEM and AIM : Exp; (V) 2 exp(V), (108)

PEM : Exp, (V) 2 (I +6V)7 (109)

LCM : Exp, (V) & (LVJ + Dexp (;V» (m + Dexp (;V»T . (110)

1 1.\°
BWM:EXpI(V)@I+V+ZV2: <I+2V> : (111)

The above comes from the following.
(1) log, ;(V) =V andlogI = 0;
(2) Pou (V) =0V;
(3) Chol, ;(V) = [V] + 1V,

@ LiV]=1iv.
Now, we can prove the results metric by metric.
LEM:
EXpI Z U}}E (S) Ul(_ja’ﬁ)
t,j=1,1>j
(112)
= exp Z (log(S) —log(P;), Z¢j>(“’ﬂ)Ui(f’5))
6,j=1,1>j
AIM:
Exp; [ ) U{?I(S)Ui(]a’ﬂ)
ij=1,i>]
(113)
- — 1
D N (R )
1,j=1,1>j
PEM:
EXpI Z UZE(S)Uz(]a,ﬁ)
1,j=1,i>7
1
m 1 ﬂ ]
=\ 2 <9<59 P Zi) P U )> (114)
ij=1,i>j

6

,J

i ((SQ—PQ Z,j>(u,ﬂ)Ui(]9~ﬂ))
=1,i>j

1,]7 1,
2J
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LCM:
Exp; Z U%C(S)Ui];c
i,j=1,i2j (115)
LC lyLe LC 1oe)) '
= [ |[V**] + Dexp §V |[V+*] + Dexp §V ,
with .
VEC = N i Cs)ULe
R (116)
- | K| — | Lij] + Dlog(KL;;"), | Zi; | + Z”) Us©
J
i =1,i>j
BWM:
Exp; | Y. wEV(SUSY
i j=1,i>j (117)
1 2
(14 iyBW
( v ) ,
with VBW defined as
BW - 1 1 3 T BW
\% = Z §<(P”S) +(SP1]) Zj,ﬁp (L”ZZJL”)> Uij . (118)
ij=1,i>j
O

K.4 PROOF OF PROP. 5.2

We begin by recalling two vector structures on the SPD manifold. Next, we identify the expression
for the linear homomorphisms. Finally, we present our proof.

We define a map ¢(-) : ST, — L" as
¢(S) = [ L] + Dlog(L), (119)

where P = LL" is the Cholesky decomposition. For any P,Q € St and ¢ € R, the vector
structures over the SPD manifold are defined as

Pa' Q= exp(log(P) + log(Q)) (120)

t O P = exp(tlog(P)) = (121)

PaQ=0¢" 1(<25(P)+¢( )) (122)

toMC P =97 (tg(P)) = (123)

As shown by ( ); ( ) AST L, @tE oLEY and {81, oL

forms vector spaces. We further present the associated linear homomorphisms.
Lemma K.1 (SPD Homomorphisms). Given any homomorphisms

CLE() {S++7@LE OLE} {S:_n_‘_’@LE’@LE}’ (124)
¢HO) Sty @19 01 - (ST, 8¢ 04, (125)
they can be expressed as
¢YE = expog o log, (126)
(HC=9tofoo, (127)

where f : L — L™ and g : S — 8™ are linear homomorphisms over the Euclidean space L™
and S™, respectively.
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Proof. As shown by ( ) log(+) is the linear isomorphism from {S7 , &, ©LF} to
the Euclidean space S™ and ¢ is the linear isomorphism from {S7 ,, &, ®““} to the Euclidean
space L™. Therefore, any linear homomorphisms over these two linear spaces have the following
forms:

¢*F =log™! folog, (128)
HC=9"go0, (129)
where f : S — 8™ and g : L — L™ are linear homomorphisms over the Euclidean space S™ and
L", respectively. O

With all the above theoretical preparation, we begin to present our proof.

Proof. Given an SPD matrix S € 8%, , Eq. (128) can be rewritten as
W) - sym
CHES) Zexp | > (log(S), Aij) UY

m (130)
Doxp| 3 (og(s), Aiy) UL

@ FLB(s;A,T)

where A = {4;; € S"}" andI = {I,--- ,I}. The above comes from the following.

t,j=1,12]

(1) The linear map f can be represented by {4;; € S"}" under the bases

ij=1,i>j
Ssymiyn n symiym m.
(U 21>, over S™and {U™ 1y oo over 8™
symiym _ (1,0)\m .
@) {UG W= = U Wiz

(3) Exp; = exp under LEM.

Following the above logic, we have the following for {S% , , &, @M}

m

@ ri
ey =07t D0 (@8), Ay U
ij=1,i>j (131)
2 Flo(s;2,1),
where Aij e L™ fori,j = 1,--- ,m,i > j, Z = {Zij = Aij + ]D)(AU) € En}%:l,izj and
I={I,---,I}. The above comes from the following.

(1) The linear map g can be represented by {A;; }/";_; ;>3
(2) Egs. (20) and (25).

K.5 PROOF OF THM. 6.1
Before presenting our proof, we first discuss some basic facts about the ONB Grassmannian FC layer.

As implied by Eq. (38), any tangent vector V' € 17

p,n

V= ( 10 >BV - ( E?v ) , with By € R—P)xp, (132)

n—p

Gr(p, n) can be expressed as

According to Thm. 4.2 and Eq. (132), the ONB Grassmannian FC layer F(-) : Gr(p,n) — Gr(q,m)
has the following form:

o | ((Logp, (X). Ai)n,Uy) | (133)
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where {U;;} are the orthonormal bases over 77, ,, Gr(q,m). As discussed in Sec. 4.3, we model the
FC parameters by parallel transport and Riemannian exponential map:

Aij =Ty, . ~p,;(Zij), (134)
Py = Expy, , (7ij[Zij]), (135)
where Z;; = ( BO ) € Ty, ,Gr(p,n). Therefore, we can model each P;; and A;; by Bz, €

R(™=P)*P and v:; € R. With the above ingredient, we present the proof in the following.

Proof. The standard orthonormal basis: As the inner product over 77, , Gr(q,m) is the Frobe-
nius matrix inner product ( , , Eq. 3.2), the standard orthonormal basis over
Ty, . Gr(g,m)is

q,m

where { E;;} are standard basis matrices over R("~)x4

Ui»:< 0 >,1§i3m—qms]§q, (136)

The Riemannian exponential map at the origin: The SVD of V' € Ty, Gr(p,n) can be calculated

via the SVD of By :
V= 0 (0 SRT — 0
( By ) ( O ) ( OXRT )’ (137)

where By SYD OXRT". Therefore, the Riemannian exponential map at I, », can be simplified as
Exp; (V)= < % ) Rcos(Z)RT + < g > sin(2)RT

- (B

(138)

v;;(U) under the ONB perspective: The ONB parallel transport can be further simplified. Given
P € Gr(p,n), we have the following for the Riemannian logarithm

0 SVD 0
Log; .(P)= < Bp ) = ( OpSpR]} ), (139)

with Bp 5P OpSpR}. For P € Gr(p,n) and Z € Ty, ,Gr(p, n), the parallel transport can be
further simplified:

Ty,.,.-p(Z)

(oo (8)) (289 ) (&) (-

<_ ( L )Rpsin(zp) N ( 2 >cos(zp)> ( o >T+ ( v I, —Oopoli )) g
(G Yo om0+ (5 4, oo )7

(
f

0 Opcos(Xp)O}

0 —Rpsin(Xp)Of I, 0
o 1.,-0r08))?

_ p —Rp sin(Ep)O; VA
0 In,p +Op COS(EP)O; — OPO;
o Ip 7Rp SiH(EP)O; 0
"\ 0 I,,+O0pcos(Xp)O} — OpO}, Bz
_ —RP Sin(EP)O;Bz
- (Op COS(EP)O; + Infp - OPO;) BZ ’
Combining all the above results, one can directly obtain the results. O
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K.6 PROOF OF THM. 6.2
Proof. Firstly, v;;(X) over the Grassmannian Gr(p,n) takes the following form:

vi;(X) = <L0gP1j (X).T5  p, (Zij)>PA
* 140
w1 (140

= 5 <L0gpi]. (X)), Ffp,nﬁpz‘j (Zij)>

where (1) comes from Tab. 8. Here, each Z;; € T5 (/?\r/r(p, n)and P;; € (/}vr(p, n).

Riemannian logarithm. As shown by ( , Prop. 3.12), the PP Grassmannian
logarithm can be calculated by the ONB logarithm:
Logp" (X) = s x(p) (Log?ﬁ‘ﬂ%p) (r~H(X ))) : (141)

where 7(U) = UU T : Gr(p,n) — Gr(p,n) is the Riemannian isometry, and 7, (V) = UV T +
VU is the differential map for all U € Gr(p,n) and V € TyyGr(p,n).

Tangent vector and Riemannian exponential map at the identity. As implied by Eq. (40), any
tangent vector at the identity has the following form:

B 0

The Riemannian exponential at the identity can also be simplified:

Expy, (V) = exp([V, Iy Ipn exp(— [V, Ip.u))

:exp(< B0 ))fp’"exp« 5o ))T e
o)), (e (5 3))),)

with (+)1., as the first-p columns of the input square matrix.

T —
V:(O B )eﬁthmnmmBeN%mW. (142)

Parallel transport starting at the identity. The parallel transport along geodesic from fpn to
P € Gr(p, n) can also be simplified. For any V' € T; Gr(p, n), denoting P = Log; (P), we
have the following: ’ ’

I‘fp‘n_)P(V) @ exp ([P I, D V exp (— [P,FI;JLD

S (2 ves(( 2 )

The above derivation comes from the followmg.

(1) Tab. 8;

5 0 BL
(4 )

Trivialization and simplification Combining Eqgs. (140) and (142) to (144), we model each P;; such

that -
_ 0 -BY \\~ 0 -B%L
rrmen (g, ) i (e, 0

. BT
where Bpij = Yij [BZij] with Zij = ( 0 gij ) and BZij S R(=p)xp,

(144)

BT
Denoting O;; = exp (( BO %P i )), v;;(X) can be simplified as
P,
1 —1 T
vi;(X) = 3 <7T*,7r(P) (LOg( U)lp(ﬂ (X))) aOijZijOij> (146)
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Orthonormal bases. Finally, let us deal with the orthonormal bases over TF CTr(q, m). For any

tangent vector V1,V € T a}(q, m), we have the following:

1
<V1,V2>fm =3 (V1, Vo)

_1 0 B 0 By (147)
2 BV1 0 ’ BV2 0
= <BV1 ’ BV2>

Therefore, the orthonormal bases are
0 El . .
- ij —1.... _ —-1....
U; ( B 0 ) ,Vi=1, ,m—qAj=1, ,q (148)

where E;; € R(m~9)%4 ig the standard basis matrix.

Combining Egs. (143), (146) and (148), one can readily obtain the results. O

K.7 PROOF OF Prop. 7.1
Proof. By Thm. 4.2, we have the following

) (149)

The above comes from the following,
(1) pi,a; € R™, and {B;} are the orthonormal bases over {TgM, gg};

(2) The Euclidean logarithm and metric become the familiar vector operation:

Log,"“(z) = x — p;
Euc n n.
<v,w>p = (v,w),Vp € R",Vv,w € T,R";

(3) f is the linear isomorphism pulling the standard inner product back to gg; {e;} are the
standard orthonormal bases over the standard inner product;

(4) Linearity of f~!;

(5) Yo% (x — ps, a;)e; has the form of affine transformation;

(6) As f~! has matrix representation, f~*(z) = Az, we have
L (Az+0b)=A(Az+b

f ( ) ~ (_ N,) (150)

= AAx + Ab.

Setting A = AAand b= fll_), one can obtain the result.
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K.8 PROOF OF THM. J.1

We first prove a useful lemma.
Lemma K.2. We assume that the manifold M admits a gyrogroup (Nguyen, 2022a, Def. 2.2) defined
byl4

z @y =Exp, (lewss (Log, (y))), VP, q € M, (151)
where e € M is the origin of the manifold. Then, we have the following

(Log, (), a>p = (Log.(Gp® x),T'pse(a)),, Va,pe MandVa € TyM. (152)

Proof. Credit of the proof: Eq. (151) comes from Nguyen & Yang (2023, Eq. (1)), who demon-
strated that several geometries admit gyrogroups based on this definition. The prototype of Eq. (152)
comes from App. I by Nguyen et al. (2024), which only deals with SPD matrices. Here, we further
extend the result into general gyrogroups.

Denoting ©p as the gyro inverse of p (6p & p = e), we have

o) @
z=p®(op®w) = Exp, (Tessy (Log, (Sp @ 7)))

3
D Log,(z) = Ty (Log, (Op @ ).

The above comes from the following,

(153)

(1) Left cancellation law of the gyrogroup (Ungar, 2022, Thms. 1.13).
(2) Definition of gyro addition.
(3) Applying both sides with Log,,(-).
By the last equation, we have
(Log,(x),a) = (Tessp (Log, (Ep @ @), a),

:) (Loge (@p ¥ Z) 7FP—>€(G‘)>6 ’

(154)

—

where (1) comes from
e Parallel transport preserving the norm (Do Carmo & Flaherty Francis, 1992, Sec. 3.1)
eIy eoleyp(v) =0v,YveT.M.

Now we begin to prove Thm. J.1.

Proof of Thm. J.1. The Riemannian metric at the identity element is
(v,w)y =4 (v,w),Yv,w € ToPy. (155)
Obviously, {{e;}7, is an orthonormal basis.

By Lem. K.2, we have

1 1
<L0gpi(x)»ai> “€i = <L0g0(_pi Sr x)vrpiﬁo(ai»o Zei

pi 4
2 (Logo(—pi ®x x),I'p,o0(a:)) e (156)
(3)
= (Logo(—pi ®Kk x),2i)) €.
The above comes from the following,
(1) Lem. K.2 and 6xp = —pVp € P.
(2) Eq. (155).
(3) a; = Tosp, (24)-
O

“We assume all the involved Riemannian operators are well-defined.
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K.9 PROOF OF THM. J.2

Proof. We only need to show the origin, the tangent space at the origin, and the inner product and an

orthonormal basis over the tangent space at the origin.

The hyperboloid is isometric to the Poincaré ball by the following diffeomorphism (Iee, 2006):

.
1 1-K|z|? 22T
ey iy () = 27 2
VIK| 1+ K[z]|?" 1+ K|z

The origin of hyperboloid is therefore defined as

T
1
e = WP%HH"K(O): (m’o 70) .

The Riemannian metric and tangent space at e are
THy = {(OaUT)T|U € R"},
(0,07, 0,w™) e = (v,w), Y(0,0)",(0,w")" € T.HY.

Therefore, {(0,e; )"}, is an orthonormal basis of 7, H?, with e; € R".

Putting the above with Tab. 11, we can manifest Thm. 4.2 in the hyperboloid geometry.
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