
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RIEMANNIAN TRANSFORMATION LAYERS FOR GEN-
ERAL GEOMETRIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, deep neural networks on manifold-valued representations have garnered
significant attention in various machine learning applications. Several studies have
attempted to generalize traditional Euclidean transformation layers, such as Fully
Connected (FC) and convolutional layers, to non-Euclidean geometries. However,
the previous approaches typically focus on a few selected manifolds and rely on
the specific properties of the target manifold. In this work, we propose a theoretical
framework for constructing Riemannian FC and convolutional layers over general
geometries, providing broader applicability. Utilizing this framework, we design
convolutional networks across five distinct geometries of the Symmetric Positive
Definite (SPD) manifold, as well as networks under two Grassmannian perspectives.
Extensive experiments demonstrate that the proposed Riemannian convolutional
networks significantly outperform existing SPD and Grassmannian networks.

1 INTRODUCTION

Recently, deep neural networks on Riemannian manifolds have achieved remarkable success across a
wide range of applications (Huang et al., 2017; Huang & Van Gool, 2017; Huang et al., 2018; Ganea
et al., 2018; López et al., 2021; Huang et al., 2022; Nguyen, 2022a; Shimizu et al., 2020; Kobler et al.,
2022; Wang et al., 2024b; Ju et al., 2024). Commonly encountered manifold-valued representations
include spherical, hyperbolic, Symmetric Positive Definite (SPD), and Grassmannian manifolds, as
well as matrix Lie groups like special orthogonal groups, to name a few. Due to the closed-form
expressions of their Riemannian operators, such as geodesics, exponential and logarithmic maps,
and parallel transport (PP), various fundamental building blocks have been extended to different
manifolds, including normalization (Chakraborty, 2020; Brooks et al., 2019; Kobler et al., 2022;
Chen et al., 2024b), attention (Gulcehre et al., 2019; Pan et al., 2022; Wang et al., 2024a), residual
blocks (Katsman et al., 2024), and Multinomial Logistic Regression (MLR) (Ganea et al., 2018;
Nguyen & Yang, 2023; Chen et al., 2024a;c).

Research problem. As transformation layers are fundamental building blocks in Euclidean deep
networks, several works have designed Riemannian counterparts on different geometries. Huang
& Van Gool (2017); Huang et al. (2017; 2018) developed ad hoc transformation layers for SPD,
special orthogonal groups, and Grassmannian manifolds, respectively. Ganea et al. (2018) performed
hyperbolic transformations via the tangent space. However, these transformations do not fully
respect the underlying Riemannian geometries. To remedy this limitation, Shimizu et al. (2020)
extended Fully Connected (FC) and convolutional layers into hyperbolic spaces based on latent
Poincaré geometries. Additionally, Nguyen et al. (2024) extended these layers to SPD manifolds
using gyro structures induced by three Riemannian metrics. Nonetheless, their methods strongly rely
on specific properties, such as hyperbolic geometries and gyro structures, restricting their applicability.
Furthermore, Chakraborty et al. (2020) extended convolution by the weighted Fréchet mean. Although
the framework can be applied to various geometries, unlike traditional Euclidean convolution, it
cannot change the manifold’s dimensionality, limiting its flexibility. Therefore, a general and flexible
framework for building FC or convolutional layers over diverse geometries remains unsolved.

Proposed solution. We propose a framework for constructing Riemannian FC and convolutional
layers that naturally capture the underlying geometry. First, we introduce the Riemannian FC layer
by reformulating the Euclidean FC layer. Since convolution is an extension of the FC layer, we derive
the Riemannian convolution as a product of the proposed Riemannian FC layer. Unlike previous
FC layers tailored for specific manifolds, our Riemannian layers depend solely on Riemannian
operators, such as exponential and logarithmic maps, which have closed-form expressions across

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

various manifolds. This allows our framework to enjoy broader applicability. Moreover, when
the latent geometry is reduced to Euclidean space, our Riemannian FC layer recovers the standard
Euclidean FC layer.

After presenting the general framework, we provide concrete manifestations of our Riemannian FC
and convolutional layers on SPD manifolds under five distinct Riemannian metrics, and Grassmannian
manifolds under the Projector Perspective (PP) and OrthoNormal Basis (ONB) perspective. Our SPD
FC layers also incorporate the previous three gyro SPD FC layers, the derivation of which requires
additional gyro structures. Besides, our framework offers an intrinsic geometrical interpretation to
understand the trick of generating manifold embeddings from the Euclidean feature as a Riemannian
FC layer. Finally, we compare the performance of our Riemannian convolutional networks against
existing manifold-specific networks on SPD and Grassmannian spaces, demonstrating that our net-
works significantly outperform current Riemannian networks. In summary, our main contributions
are as follows:

1. Generalization of convolution and FC layers to Riemannian manifolds. We introduce a
principled generalization of FC and convolutional layers to general Riemannian manifolds.
The proposed framework relies solely on Riemannian operators such as exponential and
logarithmic maps, faithfully respecting the underlying geometry.

2. Building five SPD and two Grassmannian neural networks. Empirically, we apply our
theoretical framework to five geometries of the SPD manifold and two perspectives of
the Grassmannian. Extensive experiments comparing our methods with existing SPD and
Grassmannian networks demonstrate the superiority of our approach.

3. Flexible latent geometry variations. Our method enables direct variation of the latent
geometry in neural networks without the need for specialized operations on a per-manifold
basis. This novel flexibility allows for direct comparison of different geometric representa-
tions within the same network architecture.

Main theoretical results: Thm. 4.2 presents the expression of our Riemannian FC layer under
general geometries. Prop. 4.4 indicates that our Riemannian FC layer is a natural generalization
of the Euclidean FC layer, as it recovers the Euclidean FC layer under the Euclidean geometry.
Sec. 4.2 discusses the Riemannian convolution based on the product of the Riemannian FC layer.
Sec. 4.3 discusses optimizing the parameters involved in the Riemannian FC and convolutional
layers. Thm. 5.1 showcases our framework on the SPD manifold under five Riemannian metrics,
while Thms. 6.1 and 6.2 introduce the Grassmannian FC layers under the ONB and PP perspective,
respectively. As shown in Tab. 1, the existing three gyro SPD FC layers are incorporated by our
SPD FC layers. Besides, Tab. 2 compares our Grassmannian FC layers against other Grassmannian
transformation layers, highlighting that our layers offer greater flexibility in altering dimensionality
across different perspectives. Prop. 7.1 explains the widely used manifold embedding trick as a
special instantiation of our Riemannian FC layer. Due to page limits, all proofs are placed in App. K.

2 PRELIMINARIES

Due to page limits, we provide only the essential background here. A review of relevant Riemannian
ingredients across different geometries can be found in App. B. For better readability, a table of
notations is presented in Tab. 5.

The SPD manifold. Let Sn
++ be the set of n× n symmetric positive definite (SPD) matrices. As

shown by Arsigny et al. (2005), Sn
++ is an open submanifold of the Euclidean space Sn of symmetric

matrices. There are five kinds of popular Riemannian metrics on Sn
++: Affine-Invariant Metric (AIM)

(Pennec et al., 2006), Log-Euclidean Metric (LEM) (Arsigny et al., 2005), Power-Euclidean Metrics
(PEM) (Dryden et al., 2010), Log-Cholesky Metric (LCM) (Lin, 2019), and Bures-Wasserstein Metric
(BWM) (Bhatia et al., 2019). Various applications involves the SPD features (Huang et al., 2017;
Brooks et al., 2019; Wang et al., 2020; López et al., 2021; Nguyen, 2021; 2022b; Kobler et al., 2022;
Pan et al., 2022; Bonet et al., 2023; Chen et al., 2021; 2023; Wang et al., 2024b). As shown by Chen
et al. (2024b;c;a); Nguyen et al. (2024), the optimal metric usually differs across different tasks.

The Grassmannian. The Grassmannian is the set of p-dimensional subspaces of an n-dimensional
vector space (Tu, 2011, Problem 7.8). It has two common matrix representations (Bendokat et al.,
2024): the Projector Perspective (PP), where each element is embedded as an n × n symmetric

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

matrix, and the OrthoNormal Basis (ONB) perspective, which is the quotient of the Stiefel manifold
St(p, n). Formally, these two perspectives are defined as

Projector Perspective (PP): G̃r(p, n) = {P ∈ Sn : P 2 = P, rank(P) = p},
ONB perspective: Gr(p, n) = {[U] : [U] := {Ũ ∈ St(p, n) | Ũ = UR,R ∈ O(p)}},

(1)

where Sn is the Euclidean space of symmetric matrices, and O(p) is the orthogonal group. By abuse
of notations, we use [U] and U interchangeably for the element of Gr(p, n). In many applications,
measurements lie in the Grassmannian (Edelman et al., 1998; Huang et al., 2018; Nguyen et al., 2024;
Wang et al., 2024a). Although the ONB and PP are diffeomorphic (Helmke & Moore, 2012), their
effectiveness may vary depending on the specific tasks (Nguyen, 2022a).
Remark 2.1. This work utilizes Riemannian operators such as the Riemannian exponential and
logarithmic maps. However, due to incompleteness and cut locus, these operators may not always
be globally well-defined, such as the exponential map on the SPD PEM and BWM geometries, and
the Grassmannian logarithmic map. Nevertheless, all constraints can be resolved numerically, as
discussed in App. B. Therefore, without loss of generality, we assume these operators are well-defined.

3 REVISITING MLR AND FC LAYERS

3.1 EUCLIDEAN SPACES: FROM MLR TO THE FC LAYER

Euclidean MLR. Given C classes, the Euclidean Multinomial Logistic Regression (MLR) computes
the multinomial probability of each class k ∈ {1, . . . , C} for the input feature vector x ∈ Rn:

p(y = k | x) ∝ exp (vk(x)) , with vk(x) = ⟨ak, x⟩ − bk, bk ∈ R, ak ∈ Rn. (2)

Lebanon & Lafferty (2004, Sec. 5) reformulated vk(x) by the margin distance to the hyperplane:

p(y = k | x) ∝ exp (sign(⟨ak, x− pk⟩)∥ak∥d(x,Hak,pk
)) , (3)

Hak,pk
= {x ∈ Rn : ⟨ak, x− pk⟩ = 0}, (4)

where ⟨ak, pk⟩ = bk, and Hak,pk
is a hyperplane.

FC and convolutional layers. The affine transformation in the FC layer, y = Ax + b, can be
represented element-wise as yk = ⟨ak, x⟩ − bk, where x, ak ∈ Rn and bk ∈ R. Additionally, the
convolution is composed of FC transformations, as the transformation in each receptive field is
essentially an FC transformation.

3.2 RIEMANNIAN MLR AND GYRO SPD & HYPERBOLIC FC LAYERS

According to Sec. 3.1, extending linear layers like FC and convolutional layers hinges on two key
steps: 1. extending MLR or vk(·) to the manifold; 2. obtaining yk from vk on the manifold. The first
step has been well-studied, while the second one is only solved over specific geometries. We will
first recap Riemannian MLR, and then discuss the existing FC layers on the hyperbolic and SPD
manifolds.

Riemannian MLR. As shown by Chen et al. (2024c), Eqs. (3) and (4) can be naturally extended into
the Riemannian manifold N

p(y = k | X) ∝ exp
(
sign(⟨Ak,LogPk

(X)⟩Pk
)∥Ak∥Pk

d(X, H̃Ak,Pk
)
)
, (5)

H̃Ak,Pk
= {X ∈ N : ⟨LogPk

(X), Ak)⟩Pk
= 0}, (6)

where X ∈ N is the input manifold-valued feature, Pk ∈ N and Ak ∈ TPk
N are parameters, ⟨·, ·⟩Pk

is the Riemannian metric at Pk, and LogPk
is the Riemannian logarithm at Pk. Here, d(X, H̃Ak,Pk

)
is the margin distance to the hyperplane. Based on this reformulation, several works have extended
the MLR into different geometries, such as Poincaré MLR on the hyperbolic space (Ganea et al.,
2018, Thm. 5), gyro MLR on the SPD (Nguyen & Yang, 2023, Thms. 2.23-2.25) and Symmetric
Positive Semi-Definite (SPSD) matrices (Nguyen et al., 2024, Thm. 3.11), and flat SPD MLR on the
flat SPD geometries (Chen et al., 2024a, Thm. 3.8). However, all the above solutions rely on specific
properties. To address this limitation, Chen et al. (2024c, Thms. 3.2-3.3) recently offered general
expressions for the margin distance and the Riemannian MLR over general geometries solely based
on Riemannian properties. We recap their results in the following.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 3.1 (Riemannian Margin Distance & MLR (Chen et al., 2024c)). Given X ∈ N , the
Riemannian margin distance and MLR over the Riemannian manifold {N , gN } is

d(X, H̃Ak,Pk
) =

|⟨LogPk
(X), Ak⟩P |

∥Ak∥Pk

, (7)

p(y = k | X ∈ N) ∝ exp (vk(X;Ak, Pk)) , (8)

where Pk ∈ N , Ak ∈ TPk
N , and vk(X;Ak, Pk) = ⟨Ak,LogPk

(X)⟩Pk

SPD and hyperbolic FC layers. The FC layer has been extended to both the hyperbolic and SPD
manifolds. Shimizu et al. (2020) proposed the Poincaré FC layer, which is based on the hyperbolic
MLR and reformulation of the FC layer using hyperbolic geometry. Besides, Nguyen et al. (2024)
introduced three gyro SPD FC layers, based on the gyro SPD MLRs and the reformulation of the FC
layer via gyro structures. However, not all geometries admit gyro structures, such as BWM on the
SPD manifold. Moreover, even for manifolds that admit gyro structures, the formulation of the FC
layers needs to be addressed on a case-by-case basis. In contrast, this paper proposes a framework
that can be readily applied across different geometries.

4 RIEMANNIAN FULLY CONNECTED AND CONVOLUTIONAL LAYERS

Since convolution can be derived from the FC layer, we first extend the FC layer to general manifolds,
and then introduce the Riemannian convolution. Lastly, we address the manipulation of parameters.

4.1 RIEMANNIAN FULLY CONNECTED LAYERS

Shimizu et al. (2020, Sec. 3.2) interpreted the Euclidean FC layer as an operation that transforms the
input x via vk(x), treating the output yk as the signed distance from the hyperplane passing through
the origin and orthogonal to the k-th axis of the output space Rm. We now extend this idea into
general manifolds.

The Riemannian vk(·) can be obtained by Eq. (8), while the sign distance to a Riemannian hyperplane
can also be derived from Eq. (7). The rest is to generalize the hyperplane containing the origin and
orthogonal to the k-th axis. In the Euclidean space Rm, this kind of hyperplane is formulated as

Hek,0 = {x ∈ Rm : ⟨ek, x⟩ = 0},∀k ∈ {1, · · · ,m}, (9)

where ek is a vector with its k-th element equal to 1 and all other elements equal to 0. The set
{ek}mk=1 is more generally characterized as the orthonormal bases over Rm. Further considering
Log0(x) = x and T0Rm ∼= Rm, the counterparts of this kind of hyperplane on an m-dimensional
Riemannian manifold M can be defined as

H̃Bk,E = {S ∈ M : ⟨LogE S,Bk⟩E = 0},∀k ∈ {1, · · · ,m}, (10)

where E ∈ M is the origin, and {Bk}mk=1 are orthonormal bases over {TEM, gE}. Essentially,
Eq. (10) characterizes the hyperplane containing the origin and orthogonal to the geodesic starting
from E with initial velocity Bk. Therefore, it naturally generalizes Eq. (9) into manifolds. With all
the above discussion, we define the Riemannian FC layer in the following.
Definition 4.1 (Riemannian FC layers). Given n-dimensional manifold N and m-dimensional
manifold M, the Riemannian FC layer F : N → M returns the output Y ∈ M by solving the
following m equations w.r.t. the input X ∈ N :

sk d
M(Y,HM

Bk,EM) = vNk (X;Ak, Pk), 1 ≤ k ≤ m, (11)

where EM ∈ M is the origin, {Bk}mk=1 is an orthonormal basis over TEMM. Here, vNk over N
and dM over M are defined by Eq. (8) and Eq. (7), respectively. The sign for the margin distance is
sk = sign

(〈
LogME (Y), Ok

〉M
E

)
. Here, each Pk ∈ N and Ak ∈ TPk

N are parameters.

The above definition has a general solution, which is presented in the following.
Theorem 4.2 (Riemannian FC Layers). [↓] Given an n-dimensional Riemannian manifold {N , gN },
an m-dimensional Riemannian manifold {M, gM}, and orthonormal bases {Bi}mi=1 over TEM
with E ∈ M as the origin, the Riemannian FC layer F(·) : N → M is

Y = ExpME

(
m∑

i=1

vi(X)Bi

)
= ExpME

(
m∑

i=1

(
⟨LogNPi

(X), Ai⟩NPi
Bi

)
)
, (12)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where X ∈ N is the input feature, and Pi ∈ N and Ai ∈ TPi
N are the parameters. Here, ExpME

is the Riemannian exponentiation over M, while LogNPi
and ⟨·, ·⟩NPi

are Riemannian logarithm and
metric over N . We denote the above equation as

Y = F (X;A,P) , (13)
with P = {Pi ∈ N}mi=1 and A = {Ai ∈ TPi

N}mi=1 as the FC parameters.
Remark 4.3. When the inner product gE on TEM is not the standard inner product, the familiar
{ei}mi=1 might be orthonormal. Please refer to App. C for details on identifying an orthogonal basis.

Our Riemannian FC layer is a natural generalization of the Euclidean FC layer.
Proposition 4.4. [↓] When M = Rm and N = Rn are the standard Euclidean spaces, the
Riemannian FC layer in Eq. (12) becomes the Euclidean FC layer.

As isometric Riemannian metrics are frequently encountered across various geometries (Thanwerdas
& Pennec, 2022; Chen et al., 2024d;c; Bendokat et al., 2024), we also present a theorem in App. D to
facilitate constructing Riemannian FC layers under isometries.

4.2 RIEMANNIAN CONVOLUTIONAL LAYERS

Disentangling the Euclidean convolution. As mentioned in Sec. 3.1, the convolution can be viewed
as the product of the FC layer on each receptive field. Let us focus on a single receptive field. Given
a c-channel vector in a receptive field x = concat(x1, · · · , xc) ∈ (Rn)c with xi ∈ Rn as the feature
vector in the i-th channel, the Euclidean convolution within this receptive field can be expressed as

Conv(x) = concat
(
f1(x), · · · , fk(x)

)
, with f i(·) : (Rn)c → Rm,∀i = 1, · · · k. (14)

where f i is the affine (FC) transformation parameterized by the i-th convolutional kernel.

FC Transformation within a Receptive Field

{
Xj

i

}c

i=1
∈ (M)

c

Y j
1 ∈ NF1

Fk

Xj
1 ∈ M

Xj
c ∈ M

… …

The 𝒋-th Receptive Field

Product Space

Y j
k ∈ N

…

Figure 1: Conceptual illustration of Riemannian
convolution within a reception field.

Riemannian convolution. Similarly, the Rie-
mannian convolution is defined as the Rie-
mannian FC layer within each receptive field.
Given a c-channel manifold-valued input X =
{X1, · · · , Xc} ∈ Mc for a receptive field, the
Riemannian convolution Conv(·) : Mc → N k

within this receptive field is

Conv(X) = {F1(X), · · · ,Fk(X)}, with F i(·) : Mc → N ,∀i = 1, · · · k. (15)
The above process is illustrated in Fig. 1.
Remark 4.5. Chakraborty et al. (2020) proposed a convolution operation for manifolds. However,
their convolution is based on the weighted Fréchet mean. Therefore, it is unable to alter the manifold
dimension, such as performing dimensionality reduction. In contrast, our framework provides greater
flexibility, as it allows for modifications in both the channel and manifold dimensions. Furthermore,
while Nguyen et al. (2024) introduced gyro SPD FC and convolutional layers via gyro structures
induced by LEM, AIM, and LCM, these gyro SPD transformation layers are special cases within our
framework, which will be discussed in Sec. 5.

4.3 PARAMETERS MANIPULATION

Lastly, let us discuss the parameters. As convolution takes the FC layer as the prototype, we focus
on the FC parameters A and P. Since Pi varies during the training, Ai ∈ TPi

N cannot be directly
updated by the Euclidean optimizer. As shown by Chen et al. (2024c, Eqs. (12)-(13)), Ai ∈ TPi

N
can be determined from the tangent space at the origin EN ∈ N

f(·) : TENN → TPi
N , with f(Zi) = Ai, Zi ∈ TENN ∼= Rn, (16)

where f could be parallel transport along the geodesic or the differential map of Lie group trans-
lations1. Besides, as shown by Shimizu et al. (2020, Sec. 3.1), Pk might be overly parameterized,
as there are countless many pk in Eq. (4) satisfying ⟨ak, pk⟩ = bk. Therefore, following Shimizu
et al. (2020), each Pi in the Riemannian FC layer is parameterized as ExpMEM(γi[Zi]), where γi ∈ R
and [Zi] is the unit vector of Zi. In this way, all the FC parameters can be directly optimized by
the well-established Euclidean optimizer. Note that modeling manifold-valued parameters by the
exponential map is generally called trivialization, which has been well-studied by Lezcano Casado
(2019, Sec. 4.1).

1As mentioned by Chen et al. (2024c, Sec. 3.2), f is flexible and could be other operations, such as vector
transport and the differential of gyro group translation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 SPD FULLY CONNECTED AND CONVOLUTIONAL LAYERS

This section instantiates our theoretical FC layer in Thm. 4.2 over the SPD manifold, i.e.,F(·) :
Sn
++ → Sm

++. The SPD convolution can then be derived by the product of FC layers. We focus on
five popular Riemannian metrics, i.e.,LEM, AIM, PEM, LCM, and BWM. As the identity matrix is
the neutral element under various Lie and gyro group structures (Arsigny et al., 2005; Lin, 2019;
Thanwerdas & Pennec, 2022; Nguyen, 2022a), we define the origin on the SPD manifold as the
identity matrix. The following theorem presents our results.
Theorem 5.1 (SPD FC Layers). [↓] Given an SPD matrix S ∈ Sn

++, the SPD FC layers F(·) :
Sn
++ → Sm

++ under different Riemannian metrics are

LEM :Y = exp
(
V LE

)
, V LE

ij =

1√
α
vLEii (S) + µ

∑m
k=1 v

LE
kk (S), if i = j

1√
2α

vLEij (S), if i > j

V LE
ji , otherwise

(17)

AIM :Y = exp
(
V AI

)
, V AI

ij =

1√
α
vAI
ii (S) + µ

∑m
k=1 v

AI
kk(S), if i = j

1√
2α

vAI
ij (S), if i > j

V AI
ji , otherwise

(18)

PEM :Y =
(
I + V PE

) 1
θ , V PE

ij =

1√
α
vPE
ii (S) + µ

∑m
k=1 v

PE
kk (S), if i = j

1√
2α

vPE
ij (S), if i > j

V PE
ji , otherwise

(19)

LCM :Y = V LC(V LC)⊤, V LC
ij =

exp
(
vLCii (S)

)
, if i = j

vLCij (S), if i > j

0, otherwise
(20)

BWM :Y =

(
I +

1

2
V BW

)2

, V BW
ij =

vBW
ii (S), if i = j
1√
2
vBW
ij (S), if i > j

V BW
ji , otherwise

(21)

Here, vij(S) under different metrics are given as

LEM : ⟨log(S)− log(Pij), Zij⟩(α,β) , (22)

AIM :
〈
log(P

− 1
2

ij SP
− 1

2
ij), Zij

〉(α,β)
, (23)

PEM :
〈
Sθ − P θ

ij , Zij

〉(α,β)
, (24)

LCM :

〈
⌊K⌋ − ⌊Lij⌋+Dlog(KL−1

ij), ⌊Zij⌋+
1

2
Zij)

〉
, (25)

BWM :
〈
(PijS)

1
2 + (SPij)

1
2 − 2Pij ,LPij

(LijZijL
⊤
ij)
〉
, (26)

The above notations are defined in the following.

• For i, j = 1, · · · ,m and i ≥ j, Zij ∈ TISn
++

∼= Sn and Pij ∈ Sn
++ are the parameters.

• log(·) is the matrix logarithm. Dlog(·) is the diagonal element-wise logarithm. ⌊·⌋ is the
strictly lower part of a square matrix. Chol(·) is the Cholesky decomposition. V is a
diagonal matrix with diagonal elements of the square matrix V . LP (V) is the solution to
the matrix linear system LP [V]P + PLP [V] = V , known as the Lyapunov operator.

• ⟨·, ·⟩(α,β) is the O(n)-invariant inner product defined in Eq. (34) and ⟨·, ·⟩ is the Frobenius
matrix inner product.

• µ = 1
n

(
1√

α+nβ
− 1√

α

)
, K = Chol(S) and Lij = Chol(Pij).

• Due to the incompleteness of PEM and BWM, there are constraints for V PE and V BW:
I + θV PE ∈ Sm

++ and I + 1
2V

BW ∈ Sn
++. Both constraints can be solved numerically,

such as the regularization of eigenvalues, as detailed in Rmk. F.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The affine transformation y = Ax+ b in the Euclidean FC layer incorporates the linear map y = Ax,
the most natural map between linear spaces. As shown by Arsigny et al. (2005, Sec. 4.4) and Chen
et al. (2024d, Thm. 1), the SPD manifold admits two vector space structures w.r.t. LEM and LCM.
Similar to the Euclidean FC layer, our SPD FC layer also incorporates linear homomorphisms over
these vector structures. Denoting the element addition and scalar product as ⊕LE (⊕LC) and ⊙LE

(⊙LC), which is detailed in App. K.4, we have the following result.
Proposition 5.2. [↓] The SPD FC layers under LEM and LCM incorporate the linear homomorphisms
over the vector spaces {Sn

++,⊕LE,⊙LE} and {Sn
++,⊕LC,⊙LC}, respectively.

Difference with gyro SPD FC layers. We acknowledge that Nguyen et al. (2024, Props. 3.4-3.6)
introduced gyro SPD FC layers under the AIM, LEM, and LCM gyro structures. However, gyro
structures are not universally applicable across all Riemannian geometries. For example, BWM is
agnostic to gyro structures (Chen et al., 2024c, Rmk. 4.3). In contrast, our framework relies solely on
Riemannian structures, allowing it to handle a broader range of geometries. For the specific case of
SPD FC layers, our Thm. 5.1 incorporates all the gyro SPD FC layers as special cases, which are
detailed in App. E. Tab. 1 summarizes the comparison.

Table 1: Comparison with the Gyro SPD FC layers.

SPD FC Layers Geometries Requirements Incorporated by Ours

Gyro SPD FC layer AIM, LEM & LCM on Sn
++ Gyro structures ✓(App. E)

Ours Riemannian manifolds Riemannian geometries N/A

Parameter manipulation and simplification. Following the discussion in Sec. 4.3, we model
each Pij ∈ Sn

++ by Riemannian exponential at the identity matrix, i.e.,ExpI(γij [Zij]). Under this
trivialization, the SPD FC layer under LEM, AIM, LCM, and PEM can be further simplified. Please
refer to App. F for more details.

SPD convolution. As discussed in Sec. 4.2, the SPD convolution is defined as the product of the
SPD FC layers, i.e.,Conv(·) : (Sn

++)
c → (Sm

++)
k

Conv(·) = {F1(·), · · · ,Fk(·)}, with F i(·) : (Sn
++)

c → Sm
++,∀i = 1, · · · k, (27)

with F i as the SPD FC layer under a given metric.

6 GRASSMANNIAN FULLY CONNECTED AND CONVOLUTIONAL LAYERS

We first discuss the FC layers over the ONB Grassmannian in Sec. 6.1, followed by the cases under
the PP Grassmannian in Sec. 6.2. As the product of the FC layers, the convolutional layer can be
derived as before. Finally, Sec. 6.3 compares our Grassmannian convolution (GrConv) with existing
popular Grassmannian transformation layers, concluding that our GrConv enables more flexibility in
both dimensionality and perspective.

6.1 ONB GRASSMANNIAN TRANSFORMATION LAYERS

Under the ONB perspective, each Grassmannian point can be represented as a column-wise orthogonal

matrix. We denote Ip,n =

(
Ip
0

)
∈ Rn×p, with Ip as the p × p identity matrix. As Ip,n is the

identity element of the gyro group on the ONB Grassmannian Gr(p, n) (Nguyen & Yang, 2023), we
define it as the origin. As discussed in Sec. 4.3, we model the FC parameters by parallel transport
and Riemannian exponential map at Ip,n. Under this trivialization, the manifestation of Thm. 4.2 on
the ONB Grassmannian can be further simplified.
Theorem 6.1 (ONB Grassmannian FC Layers). [↓] Given an ONB Grassmannian feature U ∈
Gr(p, n), the ONB Grassmannian FC layer F(·) : Gr(p, n) → Gr(q,m) is

Y =

(
R cos(Σ)R⊤

O sin(Σ)R⊤

)
with BONB SVD

:= OΣR⊤ ∈ R(m−q)×q. (28)

Here, each (i, j) element of BONB ∈ R(m−q)×q is defined as
〈
LogONB

Pij
(U), TijBZij

〉
, with

Tij =

(−Rij sin(Σij)O
⊤
ij

Oij cos(Σij)O
⊤
ij + In−p −OijO

⊤
ij

)
(29)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where γij [BZij
]

SVD
:= OijΣijR

⊤
ij is the SVD decomposition, and BZij

∈ R(n−p)×p and γij ∈ R are
the FC parameters.

6.2 PP GRASSMANNIAN TRANSFORMATION LAYERS

Under the PP perspective, each Grassmannian point can be represented as a symmetric matrix. We

define the PP origin as Ĩp,n =

(
Ip 0
0 0

)
∈ Rn×n, as it is the identity element of the gyro group

on the PP Grassmannian G̃r(p, n) (Nguyen, 2022a). Similarly, we model the FC parameters by
parallel transport and Riemannian exponential map at Ĩp,n. Under this trivialization, Thm. 4.2 on
the PP Grassmannian can be further simplified. Besides, the Riemannian logarithm under the PP
Grassmannian can be calculated by the ONB logarithm to support the auto-differentiation (Nguyen
et al., 2024, Prop. 3.12). For more details, please refer to the proof of the following theorem.
Theorem 6.2 (PP Grassmannian FC Layers). [↓] Given a PP Grassmannian feature X ∈ G̃r(p, n),
the PP Grassmannian FC layer F(·) : G̃r(p, n) → G̃r(q,m) is

Y = Ũ Ũ⊤ with Ũ =

(
exp

((
0 −(BPP)T

BPP 0

)))

1:q

, (30)

where (·)1:q returns the first-q columns of the input square matrix. Here, each (i, j) element of

BPP ∈ R(m−q)×q is defined as 1
2

〈
π∗,π(P)

(
LogONB

(Oij)1:p(π
−1(X))

)
, OijZijO

⊤
ij

〉
, with

Oij = exp

((
0 −(γij [BZij])

T

γij [BZij
] 0

))
, (31)

where π(U) = UU⊤, and π∗,U (V) = UV ⊤ + V U⊤ is the differential map for all U ∈ Gr(p, n)

and V ∈ TUGr(p, n). The FC parameters are BZij
∈ R(n−p)×p and γij ∈ R for i = 1, · · · ,m− q

and j = 1, · · · , q.

6.3 COMPARISON WITH THE EXISTING GRASSMANNIAN TRANSFORMATION LAYERS

Table 2: Comparison of our GrConv against the existing transformation layers. Unlike existing
transformation layers, our GrConv can transform subspace dimension p, the ambient dimension n,
and the channel dimension c across both two perspectives, providing more flexibility.

Methods Perspective Flexible dimensions

Subspace p Ambient n Channel

FRMap + ReOrth (Huang et al., 2018, Eqs. (2-4)) ONB ✗ ✓ ✗
PP Scaling (Nguyen, 2022a, Sec. 4.2.2) PP ✗ ✗ ✗

ONB Scaling (Nguyen & Yang, 2023, Sec. 3.2) ONB ✗ ✗ ✗
GrTrans (Nguyen & Yang, 2023, Sec. 2.3.2) ONB + PP ✗ ✗ ✗

GrConv ONB + PP ✓ ✓ ✓

As discussed in Sec. 4.2, The product of the FC layers defines the ONB and PP Grassmannian
convolution. For example, the ONB Grassmannian, Conv(·) : (Gr(p, n))c → (Gr(q,m))k, is
defined as

Conv(·) = {F1(·), · · · ,Fk(·)}, with F i(·) : (Gr(p, n))c → Gr(q,m),∀i = 1, · · · k, (32)

with F i as the ONB Grassmannian FC layer. The following begins with a brief recap of several popu-
lar Grassmannian transformation layers, followed by a comparison with our proposed Grassmannian
Convolution (GrConv).

Huang et al. (2018) proposed FRMap + ReOrth layers to perform the transformation over the ONB
Grassmannian via left matrix product (FRMap) and QR decomposition (ReOrth). Nguyen (2022a)
proposed the matrix scaling for the PP Grassmannian by the tangent space at the identity. Nguyen
& Yang (2023) extended the matrix scaling into the ONB Grassmannian. Besides, Nguyen & Yang
(2023) used the gyro group left translation (GrTrans) as the transformation. These layers are briefly
recapped in App. H. However, all the previous layers lack flexibility regarding dimensions and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

perspectives. Given a c-channel Grassmannian Gr(p, n) (or G̃r(p, n)) input, the existing layers can
modify only specific aspects of the three dimensions (c, p, n) or operate on a limited perspective.
In contrast, our GrConv layer can adjust all dimensions across both perspectives, enabling more
flexibility. Tab. 2 compares our GrConv with other Grassmannian transformation layers, highlighting
the advantages of our approach.

7 MANIFOLD EMBEDDING AND RIEMANNIAN FULLY CONNECTED LAYER

Embedding into non-Euclidean manifolds often yields superior results compared to standard Eu-
clidean spaces (Chami et al., 2019; López et al., 2021; Zhao et al., 2023; Nguyen et al., 2024). A
common approach for embedding Euclidean features into manifolds involves mapping the Euclidean
vector to the tangent space at the origin via a linear layer, followed by applying the exponential map
at the origin. This method has been widely adopted in various embeddings, including hyperbolic
(Chami et al., 2019; Fu et al., 2024), SPD (Zhao et al., 2023), and Grassmannian spaces (Nguyen
et al., 2024, Sec. 3.4.2). While this process appears extrinsic due to its dependence on the tangent
space, our framework offers a novel intrinsic interpretation. The following proposition shows that this
operation is, in essence, a Riemannian FC layer between the Euclidean space and the target manifold.
Proposition 7.1 (Manifold Embeddings & Riemannian FC layers). [↓] The Riemannian FC layer from
a standard Euclidean space Rn to an m-dimensional target manifold M, namely F(·) : Rn → M,
takes the following form

F(x) = ExpE(Ax+ b), (33)
where A ∈ Rn×m and b ∈ Rm are the transformation matrix and biasing vector, respectively.

8 EXPERIMENTS

We use the proposed Riemannian convolutional layers to construct Riemannian Convolutional Neural
Networks (RCNNs) on the SPD and Grassmannian manifolds, referred to as SPDConvNets and
GrConvNets, respectively. Following previous work (Huang et al., 2017; Brooks et al., 2019; Wang
et al., 2024a), we evaluate our method on radar signal classification and human action recognition
tasks. More details of the datasets and implementation are exposed in App. I.

Table 3: Comparison of the SPDConvNets under different metrics against other SPD networks on all
three datasets. The best three results are highlighted with red, blue, and cyan.

Methods
Radar HDM05 FPHA

Mean±STD Max Mean±STD Max Mean±STD Max

SPDNet 93.25 ± 1.10 94.4 64.57 ± 0.61 65.14 85.59 ± 0.72 86
SPDNetBN 94.85 ± 0.99 96.13 71.28 ± 0.79 72.7 89.33 ± 0.49 90.17

RResNet-AIM 95.71 ± 0.37 96.4 64.95 ± 0.82 66.19 86.63 ± 0.55 87.33
RResNet-LEM 95.89 ± 0.86 97.07 70.12 ± 2.45 71.92 85.07 ± 0.99 86.17

SPDNetLieBN-AIM 95.47 ± 0.90 96.27 71.83 ± 0.69 72.51 90.39 ± 0.66 92.17
SPDNetLieBN-LCM 94.80 ± 0.71 95.73 71.78 ± 0.44 72.61 86.33 ± 0.43 87

SPDNetMLR 95.64 ± 0.83 97.33 65.90 ± 0.93 66.98 85.67 ± 0.69 86.33

SPDConvNet-LEM 98.27 ± 0.48 98.93 81.16 ± 0.93 82.44 91.83 ± 0.41 92.5
SPDConvNet-AIM 97.63 ± 0.50 98.4 80.12 ± 0.78 81.55 91.57 ± 0.40 92.17
SPDConvNet-PEM 98.43 ± 0.44 99.07 78.77 ± 0.45 79.19 90.33 ± 0.37 90.67
SPDConvNet-LCM 97.65 ± 0.75 98.93 75.42 ± 0.95 76.74 91.33 ± 0.24 91.67
SPDConvNet-BWM 96.40 ± 0.91 97.87 74.34 ± 0.86 75.85 90.03 ± 0.55 90.83

8.1 EXPERIMENTS ON SPD GEOMETRIES

Datasets. Following previous SPD methods (Huang et al., 2017; Brooks et al., 2019; Chen et al.,
2024b), we use the Radar dataset (Brooks et al., 2019) for radar classification, and the HDM05
(Müller et al., 2007) and FPHA (Garcia-Hernando et al., 2018) datasets for human action recognition.
In line with Wang et al. (2024a); Nguyen et al. (2024), we model each input feature as a multi-channel
SPD tensor of covariance matrices, shaped as [c, n, n].

SPDConvNets. We construct SPDConvNets based on convolutional layers induced by five Rieman-
nian metrics, i.e.,, LEM, AIM, PEM, LCM, and BWM. We employ a single convolutional layer,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

followed by an SPD MLR (Chen et al., 2024c). We denote SPDConvNet-[Metric] as the SPDConvNet
using convolution under the specified metric. For SPDConvNet-LEM, -PEM, and -LCM, the MLR is
based on the same metric as the convolution, i.e.,, LEM, PEM, and LCM, respectively. Since the MLR
for AIM and BWM is less efficient (Chen et al., 2024c), we apply LEM MLR for SPDConvNet-AIM
and -BWM to facilitate training. Besides, we trivialize the SPD parameter in the MLR as Sec. 4.3,
which are detailed in App. G. Consequently, all parameters in the SPDConvNets can be directly
optimized using a Euclidean optimizer.

Results. We compare our SPDConvNets with various SPD baseline networks, including SPDNet
(Huang et al., 2017), SPDNetBN (Brooks et al., 2019), LieBN (Chen et al., 2024b), RResNet
(Katsman et al., 2024), and MLR (Chen et al., 2024c). The 5-fold average and maximum results
are shown in Tab. 3. For RResNet, due to significant fluctuations in its training dynamics on the
radar dataset, the test performance over the last several epochs varies by up to 20%. Therefore, we
select the maximum accuracy from the last 10 epochs as its final scoring metric. Our findings are as
follows. Firstly, our SPDConvNets consistently outperform other SPD-based models regarding both
average and maximum accuracy. Specifically, our SPDConvNets surpass the classic SPDNet by up
to 5.02%, 16.59%, and 6.24% on the Radar, HDM05, and FPHA datasets, respectively. Notably,
the best performance of our SPDConvNets on the Radar dataset even reaches 99.07%. These results
demonstrate the effectiveness of our framework. Additionally, the variation in optimal metrics across
datasets highlights the flexibility of our methods.

8.2 EXPERIMENTS ON GRASSMANNIAN GEOMETRIES

Table 4: Comparison of the ONB and PP GrConvNets under
different settings against other Grassmannian networks on
the Radar dataset. The best three results are highlighted with
red, blue, and cyan.

Methods Subspace dims Ambient dims Mean±Std Max

GrNet 4 20–>16 90.48 ± 0.76 91.73
GyroGr 4 20–>20 90.64 ± 0.57 91.47

GyroGr-Scaling 4 20–>20 88.88 ± 1.52 91.07

GrConvNetONB
4–>4 20–>16 93.92 ± 0.74 94.93

20–>20 92.83 ± 0.66 93.73
4–>8 20–>16 94.77 ± 0.81 96.13
4–>6 20–>16 95.23 ± 0.96 96.67

GrConvNetPP
4–>4 20–>16 94.35 ± 0.42 94.8

20–>20 94.56 ± 0.58 95.2
4–>8 20–>16 94.11 ± 0.58 95.07
4–>6 20–>16 94.51 ± 0.53 95.47

We compare our Grassmannian Con-
volutional (GrConv) layer against pre-
vious transformation layers, such as
FRMap + ReOrth, GrTrans, and scal-
ing under the GrNet backbone. In our
experiments, we replace the vanilla
FRMap + ReOrth in the GrNet back-
bone with GrTrans, ONB scaling, and
our ONB & PP convolutional lay-
ers, respectively. Each model in-
cludes one transformation layer fol-
lowed by a classification layer. The
corresponding models are denoted
as GyroGr, GyroGr-Scaling, GrCon-
vNetONB, and GrConvNetPP, respec-
tively. As shown in Tab. 2, our Gr-
Conv allows for more flexible manip-
ulation of dimensionality. Therefore,
we also perform ablation studies on different subspace and ambient dimension settings. The experi-
ments are conducted on the Radar dataset. Following Wang et al. (2024a), we model each radar signal
as a multi-channel Grassmannian tensor, i.e., [c, n, p] for the ONB and [c, n, n] for the PP. The 5-fold
average and maximum results are presented in Tab. 4, demonstrating that our GrConv significantly
outperforms other Grassmannian transformation layers. Furthermore, varying the subspace dimension
proves to be potentially beneficial, as our GrConv achieves the top two results under varying subspace
dimensions. These observations highlight the effectiveness and flexibility of our GrConv.

9 CONCLUSION

This paper extends basic transformation layers, such as FC and convolutional layers, to operate on
general manifolds. Our approach provides a natural, Riemannian-oriented generalization applicable
more broadly than previous manifold-specific transformation layers. Empirically, we demonstrate our
framework on five SPD geometries and two Grassmannian perspectives. Extensive experiments on
radar and human action recognition tasks highlight the effectiveness and flexibility of our approach.
We hope that our work will facilitate the development of deep networks for data with nontrivial
geometries in machine learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Roy M Anderson and Robert M May. Infectious diseases of humans: dynamics and control. Oxford
University Press, 1991.

Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and simple computations
on tensors with log-Euclidean metrics. PhD thesis, INRIA, 2005.

Ekkehard Batzies, Knut Hüper, Luis Machado, and F Silva Leite. Geometric mean and geodesic
regression on Grassmannians. Linear Algebra and its Applications, 2015.

Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural
networks for computer vision. In ICLR, 2024.

Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A Grassmann manifold handbook: Basic
geometry and computational aspects. Advances in Computational Mathematics, 2024.

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures-Wasserstein distance between positive
definite matrices. Expositiones Mathematicae, 37(2):165–191, 2019.

Clément Bonet, Benoıt Malézieux, Alain Rakotomamonjy, Lucas Drumetz, Thomas Moreau, Matthieu
Kowalski, and Nicolas Courty. Sliced-Wasserstein on symmetric positive definite matrices for
M/EEG signals. In ICLR, 2023.

Daniel Brooks, Olivier Schwander, Frédéric Barbaresco, Jean-Yves Schneider, and Matthieu Cord.
Riemannian batch normalization for SPD neural networks. In NeurIPS, 2019.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry.
Flavors of geometry, 31(59-115):2, 1997.

Rudrasis Chakraborty. ManifoldNorm: Extending normalizations on Riemannian manifolds. arXiv
preprint arXiv:2003.13869, 2020.

Rudrasis Chakraborty, Jose Bouza, Jonathan H Manton, and Baba C Vemuri. Manifoldnet: A deep
neural network for manifold-valued data with applications. IEEE TPAMI, 2020.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. In NeurIPS, 2019.

Ziheng Chen, Tianyang Xu, Xiao-Jun Wu, Rui Wang, and Josef Kittler. Hybrid Riemannian graph-
embedding metric learning for image set classification. IEEE TBD, 2021.

Ziheng Chen, Tianyang Xu, Xiao-Jun Wu, Rui Wang, Zhiwu Huang, and Josef Kittler. Riemannian
local mechanism for SPD neural networks. In AAAI, 2023.

Ziheng Chen, Yue Song, Gaowen Liu, Ramana Rao Kompella, Xiaojun Wu, and Nicu Sebe. Rieman-
nian multinomial logistics regression for SPD neural networks. In CVPR, 2024a.

Ziheng Chen, Yue Song, Yunmei Liu, and Nicu Sebe. A Lie group approach to Riemannian batch
normalization. In ICLR, 2024b.

Ziheng Chen, Yue Song, Xiaojun, and Nicu Sebe. RMLR: Extending multinomial logistic regression
into general geometries. arXiv preprint arXiv:2409.19433, 2024c.

Ziheng Chen, Yue Song, Tianyang Xu, Zhiwu Huang, Xiao-Jun Wu, and Nicu Sebe. Adaptive
Log-Euclidean metrics for SPD matrix learning. IEEE TIP, 2024d.

Manfredo Perdigao Do Carmo and J Flaherty Francis. Riemannian Geometry, volume 6. Springer,
1992.

Ian L Dryden, Xavier Pennec, and Jean-Marc Peyrat. Power Euclidean metrics for covariance
matrices with application to diffusion tensor imaging. arXiv preprint arXiv:1009.3045, 2010.

Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality
constraints. SIAM Journal on Matrix Analysis and Applications, 1998.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xingcheng Fu, Yisen Gao, Yuecen Wei, Qingyun Sun, Hao Peng, Jianxin Li, and Xianxian Li.
Hyperbolic geometric latent diffusion model for graph generation. In ICML, 2024.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In NeurIPS,
2018.

Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek, and Tae-Kyun Kim. First-person hand
action benchmark with RGB-D videos and 3D hand pose annotations. In CVPR, 2018.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas.
Hyperbolic attention networks. In ICLR, 2019.

Uwe Helmke and John B Moore. Optimization and dynamical systems. Springer Science & Business
Media, 2012.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C Courville.
Riemannian diffusion models. NeurIPS, 2022.

Zhiwu Huang and Luc Van Gool. A Riemannian network for SPD matrix learning. In AAAI, 2017.

Zhiwu Huang, Chengde Wan, Thomas Probst, and Luc Van Gool. Deep learning on Lie groups for
skeleton-based action recognition. In CVPR, 2017.

Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on Grassmann manifolds. In
AAAI, 2018.

Ce Ju, Reinmar J Kobler, Liyao Tang, Cuntai Guan, and Motoaki Kawanabe. Deep geodesic canonical
correlation analysis for covariance-based neuroimaging data. In ICLR, 2024.

Isay Katsman, Eric Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser Nam Lim, and Christo-
pher M De Sa. Riemannian residual neural networks. In NeurIPS, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Reinmar Kobler, Jun-ichiro Hirayama, Qibin Zhao, and Motoaki Kawanabe. SPD domain-specific
batch normalization to crack interpretable unsupervised domain adaptation in EEG. In NeurIPS,
2022.

Guy Lebanon and John Lafferty. Hyperplane margin classifiers on the multinomial manifold. In
Proceedings of the twenty-first ICML, 2004.

John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science &
Business Media, 2006.

Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. In NeurIPS,
2019.

Zhenhua Lin. Riemannian geometry of symmetric positive definite matrices via Cholesky decompo-
sition. SIAM Journal on Matrix Analysis and Applications, 40(4):1353–1370, 2019.

Federico López, Beatrice Pozzetti, Steve Trettel, Michael Strube, and Anna Wienhard. Vector-valued
distance and Gyrocalculus on the space of symmetric positive definite matrices. In NeurIPS, 2021.

Miroslav Lovrić, Maung Min-Oo, and Ernst A Ruh. Multivariate normal distributions parametrized
as a riemannian symmetric space. Journal of Multivariate Analysis, 74(1):36–48, 2000.

Luigi Malagò, Luigi Montrucchio, and Giovanni Pistone. Wasserstein Riemannian geometry of
Gaussian densities. Information Geometry, 2018.

Meinard Müller, Tido Röder, Michael Clausen, Bernhard Eberhardt, Björn Krüger, and Andreas
Weber. Documentation mocap database HDM05. Technical report, Universität Bonn, 2007.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xuan Son Nguyen. Geomnet: A neural network based on Riemannian geometries of SPD matrix
space and Cholesky space for 3D skeleton-based interaction recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 13379–13389, 2021.

Xuan Son Nguyen. The Gyro-structure of some matrix manifolds. In NeurIPS, 2022a.

Xuan Son Nguyen. A Gyrovector space approach for symmetric positive semi-definite matrix learning.
In ECCV, 2022b.

Xuan Son Nguyen and Shuo Yang. Building neural networks on matrix manifolds: A Gyrovector
space approach. In ICML, 2023.

Xuan Son Nguyen, Shuo Yang, and Aymeric Histace. Matrix manifold neural networks++. In ICLR,
2024.

Yue-Ting Pan, Jing-Lun Chou, and Chun-Shu Wei. MAtt: A manifold attention network for EEG
decoding. In NeurIPS, 2022.

Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor computing.
IJCV, 2006.

Peter Petersen. Riemannian geometry. Springer, 2006.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv preprint
arXiv:2006.08210, 2020.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoen-
coders. In ICLR, 2020.

Yann Thanwerdas and Xavier Pennec. Is affine-invariance well defined on SPD matrices? a principled
continuum of metrics. In Geometric Science of Information: 4th International Conference, 2019.

Yann Thanwerdas and Xavier Pennec. Theoretically and computationally convenient geometries
on full-rank correlation matrices. SIAM Journal on Matrix Analysis and Applications, 43(4):
1851–1872, 2022.

Yann Thanwerdas and Xavier Pennec. O (n)-invariant Riemannian metrics on SPD matrices. Linear
Algebra and its Applications, 661:163–201, 2023.

Loring W.. Tu. An introduction to manifolds. Springer, 2011.

Abraham Ungar. A gyrovector space approach to hyperbolic geometry. Springer Nature, 2022.

Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition by representing
3D skeletons as points in a Lie group. In CVPR, 2014.

Qilong Wang, Jiangtao Xie, Wangmeng Zuo, Lei Zhang, and Peihua Li. Deep CNNs meet global
covariance pooling: better representation and generalization. IEEE TPAMI, 2020.

Rui Wang, Chen Hu, Ziheng Chen, Xiao-Jun Wu, and Xiaoning Song. A Grassmannian manifold
self-attention network for signal classification. In IJCAI, 2024a.

Rui Wang, Xiao-Jun Wu, Ziheng Chen, Cong Hu, and Josef Kittler. SPD manifold deep metric
learning for image set classification. IEEE TNNLS, 2024b.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS,
volume 31, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wei Zhao, Federico Lopez, J Maxwell Riestenberg, Michael Strube, Diaaeldin Taha, and Steve
Trettel. Modeling graphs beyond hyperbolic: Graph neural networks in symmetric positive definite
matrices. In ECML PKDD, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX CONTENTS

A Glossary of symbols 17

B Riemannian operators on the SPD and Grassmannian manifolds 17

B.1 Riemannian operators on the SPD manifold . 17

B.2 Riemannian operators on the Grassmannian . 18

C Addition discussions on the orthogonal basis 20

D Riemannian FC layers under isometries 20

E Relation with the gyro SPD fully connected layers 21

F Trivialized SPD fully connected layers 22

G Trivialized SPD Multinomial Logistic Regression 23

H Review of previous Grassmannian transformation layers 23

I Experimental details 24

I.1 Details of the experiments on the SPD manifold 24

I.1.1 Datasets . 24

I.1.2 SPD modelling . 24

I.2 Implementation details . 25

I.3 Details of the experiments on the Grassmannian 25

I.4 Training efficiency . 25

J Applications to hyperbolic spaces 26

J.1 Geometries of the hyperbolic space . 26

J.2 Riemannian FC layers: manifestations in hyperbolic spaces 27

J.3 Experiments . 27

J.3.1 Datasets . 27

J.3.2 Implementation details . 28

J.3.3 Results . 28

K Proofs 28

K.1 Proof of Thm. 4.2 . 28

K.2 Proof of Prop. 4.4 . 29

K.3 Proof of Thm. 5.1 . 29

K.4 Proof of Prop. 5.2 . 32

K.5 Proof of Thm. 6.1 . 33

K.6 Proof of Thm. 6.2 . 35

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

K.7 Proof of Prop. 7.1 . 36

K.8 Proof of Thm. J.1 . 37

K.9 Proof of Thm. J.2 . 38

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A GLOSSARY OF SYMBOLS

Tab. 5 summarizes all the notations in the main paper.

Table 5: Summary of notations.

Notation Explanation

{N , gN } Riemannian manifold N with Riemannian metric gN

{M, gM} Riemannian manifold M with Riemannian metric gM

E Origin of the interested manifold
TPM Tangent space at P ∈ M

gp(·, ·) or ⟨·, ·⟩P Riemannian metric at P
∥ · ∥P The norm induced by ⟨·, ·⟩P on TPM
d(·, ·) Geodesic distance
LogP Riemannian logarithm at P
ExpP Riemannian exponentiation at P
ΓP→Q Parallel transportation from P to Q along the geodesic
f∗,P Differential map of the smooth map f at P ∈ M

{Bi}mi=1 Standard orthonormal bases over m-dimensional TEM
Sn
++ Space of n× n SPD matrices
Sn Euclidean space of n× n symmetric matrices
Ln Euclidean space of n× n lower triangular matrices
⟨·, ·⟩ Standard Frobenius inner product

⟨·, ·⟩(α,β) O(n)-invariant Euclidean metric on Sn s.t. min(α, α+ nβ) > 0
∥·∥F Frobenius Norm
log Matrix logarithm
exp Matrix exponentiation
P θ Matrix power for SPD matrix P
LP [·] Lyapunov operator by P ∈ Sn

++
L Cholesky decomposition
Dlog Diagonal element-wise logarithm
⌊·⌋ Strictly lower triangular part of a square matrix
D(·) A diagonal matrix with diagonal elements from a square matrix

Gr(p, n) Grassmannian under the ONB perspective
G̃r(p, n) Grassmannian under the projector perspective
Q(·) Return an orthogonal matrix by QR decomposition
[·, ·] Matrix commutator
Ip,n Grassmannian identity under the ONB perspective
Ĩp,n Grassmannian identity under the projector perspective
In n× n identity matrix
π Riemannian isometry from Gr(p, n) onto G̃r(p, n)

(·) (·) = L̃ogĨp,n(·) with L̃og as the Riemannian logarithm on G̃r(p, n)

0 Zero matrix with all the entities as zero

St(p, n) Stiefel manifold of n× p column-wise orthogonal matrices
GL(n) General linear group of n× n invertible matrices
O(n) Orthogonal group of n× n orthogonal matrices
Rn Euclidean space of n-dimensional vectors

B RIEMANNIAN OPERATORS ON THE SPD AND GRASSMANNIAN MANIFOLDS

B.1 RIEMANNIAN OPERATORS ON THE SPD MANIFOLD

Tabs. 6 and 7 summarizes the associated Riemannian operators and properties. Following Tab. 5,
we further make the following notations. Given any SPD points P,Q ∈ Sn

++ and tangent vectors
V,W ∈ TPSn

++, we denote Ṽ = Chol∗,P (V), W̃ = Chol∗,P (W), L = CholP , and K = CholQ.
The corresponding diagonal matrix with their diagonal elements are denoted as Ṽ, W̃,L, and K,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

respectively. For the parallel transport under the BWM, we only present the case where P,Q are
commuting matrices, i.e.,P = UΣU⊤ and Q = U∆U⊤.

The O(n)-invariant Euclidean metric on Sn (Thanwerdas & Pennec, 2023) is

⟨V,W ⟩(α,β) = α⟨V,W ⟩+ β tr(V) tr(W), with min(α, α+ nβ) > 0. (34)

Remark B.1. We make the following remarks w.r.t. the geometries on the SPD manifold.

• PEM & EM. When the power equals 1, the associated PEM is reduced to the Euclidean
Metric (EM) (Thanwerdas & Pennec, 2023, Sec. 3.1).

• Incompleteness & Riemannian exponentiation. As PEM and BWM are incomplete, their
Riemannian exponential maps are locally defined. As shown by (Malagò et al., 2018, Prop.
9) and implied by Chen et al. (2024c); Thanwerdas & Pennec (2023), the restricted domains
are

PEM: P θ + Pθ∗,P (V) ∈ Sn
++,

BWM: LP [V] + I ∈ Sn
++.

(35)

The above restriction can be solved numerically, such as ReEig (Huang et al., 2017):

S̃ = U max(ϵI,Σ)U⊤, (36)

where S
Eig
:= UΣU⊤ is the Eigendecomposition.

Table 6: The Riemannian operators under LEM, AIM, and PEM on the SPD manifold.

Operators LEM AIM PEM

gP (V,W) ⟨log∗,P (V), log∗,P (W)⟩(α,β) ⟨P−1V,WP−1⟩(α,β) 1
θ2 ⟨Pθ∗,P (V),Pθ∗,P (W)⟩(α,β)

LogP Q (log∗,P)
−1 [log(Q)− log(P)] P

1
2 log

(
P− 1

2QP− 1
2

)
P

1
2 (Pθ∗,P)

−1
(
Qθ − P θ

)

ΓP→Q(V) (log∗,Q)
−1 ◦ log∗,P (V) (QP−1)

1
2V (P−1Q)

1
2 (Pθ∗,Q)

−1 ◦ Pθ∗,P (V)

ExpP (V) exp
(
log(P) + log∗,P (V)

)
P

1
2 exp

(
P− 1

2V P− 1
2

)
P

1
2

(
P θ + Pθ∗,P (V)

) 1
θ

Invariance Lie group bi-invariance
O(n)-invariance

Lie group left-invariance
GL(n)-invariance O(n)-invariance

References Arsigny et al. (2005)
Thanwerdas & Pennec (2023)

Pennec et al. (2006)
Thanwerdas & Pennec (2019)

Dryden et al. (2010)
Thanwerdas & Pennec (2023)

Chen et al. (2024c)

Table 7: The Riemannian operators under BWM and LCM on the SPD manifold.

Operators LCM BWM

gP (V,W) ⟨⌊Ṽ ⌋, ⌊W̃ ⌋⟩+ ⟨ṼL̃−1, W̃L̃−1⟩ 1
2 ⟨LP [V],W ⟩

LogP Q (Chol−1)∗,L
[
⌊K⌋ − ⌊L⌋+ LDlog(L−1K)

]
(PQ)

1
2 + (QP)

1
2 − 2P

ΓP→Q(V) (Chol−1)∗,K

[
⌊Ṽ ⌋+KL−1Ṽ

]
U
[√

δi+δj
σi+σj

[
U⊤V U

]
ij

]
U⊤

ExpP (V) Chol−1
[
⌊L⌋+ ⌊Ṽ ⌋+ LDexp(L−1Ṽ)

]
P + V + LP [V]PLP [V]

Invariance Lie group bi-invariance O(n)-invariance

References Lin (2019) Bhatia et al. (2019)
Thanwerdas & Pennec (2023)

B.2 RIEMANNIAN OPERATORS ON THE GRASSMANNIAN

As the set of linear subspaces, the Grassmannian can naturally be represented by any of the or-
thonormal bases, which is called the OrthoNormal Basis (ONB) perspective. Under this perspec-
tive, the Grassmannian is the quotient of the Stiefel manifold (Bendokat et al., 2024), denoted as

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Riemannian operators on the Grassmannian.

Operators Gr(p, n) G̃r(p, n)

gP (V,W) ⟨V,W ⟩ 1
2 ⟨V,W ⟩

LogP Q
O arctan(Σ)R⊤

(In − PP⊤)Q(P⊤Q)−1 SVD
:= OΣR⊤

1
2 [log ((In − 2Q) (In − 2P)) , P]

ΓP→Q(V)

(
(PR O)

(
− sin(Σ)
cos(Σ)

)
OT +

(
I −OOT

))
V

LogP (Q)
SVD
:= OΣR⊤

exp([logP (Q), P])V exp(−[logP (Q), P])

ExpP V
(PR O)

(
cos(Σ)
sin(Σ)

)
R⊤

V
SVD
:= OΣR⊤

exp([V, P])P exp(−[V, P])

References Edelman et al. (1998)
Bendokat et al. (2024)

Batzies et al. (2015)
Bendokat et al. (2024)

Gr(p, n) ∼= St(p, n)/O(p). Each point is an equivalence class:

Gr(p, n) = {[U] : [U] := {Ũ ∈ St(p, n) | Ũ = UR,R ∈ O(p)}}. (37)

By abuse of notations, we use [U] and U interchangeably for elements of Gr(p, n). Each tangent
space can be identified as a subspace of a corresponding tangent space on the Stiefel manifold,
which is called horizontal space. Therefore, every tangent vector can be identified with a tangent
vector in the horizontal space, called horizontal lift2. Under this identification, each tangent vector
V ∈ TPGr(p, n) can be represented as

V = P⊥B, with B ∈ R(n−p)×p, (38)

where P⊥ ∈ St(n− p, n) is the orthogonal complement of P .

Another perspective is called the Projector Perspective (PP). As shown by Bendokat et al. (2024), the
Grassmannian is an embedded submanifold of Sn:

G̃r(p, n) = {P ∈ Sn : P 2 = P, rank(P) = p}. (39)

Therefore, each point can be represented as an n× n symmetric matrix. Under this perspective, any
tangent vector V ∈ TP G̃r(p, n) at P ∈ G̃r(p, n) can be represented as

V = Q

(
0 BT

B 0

)
QT , with B ∈ R(n−p)×p, (40)

where QĨp,nQ
⊤ = P .

Supposing P and Q are the points on the Grassmannian Gr(p, n) (G̃r(p, n)), and V and W are
the tangent vectors over TPGr(p, n) (TP G̃r(p, n)), Tab. 8 summarizes the associated Riemannian
operators following the notations in Tab. 5.
Remark B.2. We make the following remarks w.r.t. the Riemannian operators over the Grassmannian.

• Cut locus & logarithm. The Grassmannian Riemannian logarithm does not exists for any
pair of P and Q. As shwon by (Bendokat et al., 2024, Sec. 5), LogP (Q) exists only if P
and Q are not in each other’s cut locus. However, this can be numerically solved, such as
(Bendokat et al., 2024, Alg. 5.3) or using Moore–Penrose inverse for the inverse in the ONB
logarithm (Nguyen, 2022a).

• PP & ONB logarithm. The matrix logarithm shown in the PP logarithm does not support
backpropagation, as it can not be calculated by the SVD like the SPD matrix. However, the
PP logarithm can be calculated via the ONB logarithm (Nguyen et al., 2024, Prop. 3.12).
The latter can be backpropagated by the SVD. In this way, the PP logarithm can be integrated
into the Pytorch deep learning framework.

2In this paper, the tangent vector under the ONB perspective is always considered as the horizontal lift.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C ADDITION DISCUSSIONS ON THE ORTHOGONAL BASIS

When the inner product gE on TEM is the standard inner product, we use familiar {ei}mi=1 the
orthonormal basis. However, when gE is not standard, {ei}mi=1 might not be orthonormal. In this
case, we can always find one associated to {ei}mi=1 by a linear isometry. We rewrite the inner product
gE as

gE(V,W) = ⟨f(V), f(W)⟩ = f(V)⊤f(W),∀V,W ∈ TEM ∼= Rm, (41)
where f is the linear isometry that pulls back the standard inner product ⟨·, ·⟩ to gE . Then, {Bi}mi=1 =
{f−1(ei)}mi=1 is the standard orthonormal bases over {TEM, gE}.

D RIEMANNIAN FC LAYERS UNDER ISOMETRIES

The following theorem demonstrates that a Riemannian FC layer under isometric metrics can be
computed by the following procedure: mapping, applying the Riemannian FC layer, and remapping.
Theorem D.1 (Isometric FC Layers). Given n-dimensional Riemannian manifolds

{
Ñ , gÑ

}
and

{
N , gN

}
with a Riemannian isometry ϕN : Ñ → N , and m-dimensional Riemannian manifolds{

M̃, gM̃
}

and
{
M, gM

}
with ϕM : M̃ → M as a Riemannian isometry mapping origin EM̃ ∈

M̃ into the origin E ∈ M, the Riemannian FC layer F̃ : Ñ → M̃ can be calculated by F : N →
M:

F̃
(
X̃; P̃, Ã

)
=
(
ϕM)−1

(
F
(
ϕN (X̃);P,A

))
, (42)

where P̃ =
{
P̃i ∈ Ñ

}m

i=1
and Ã =

{
Ãi ∈ TP̃i

Ñ
}m

i=1
are the FC parameters of F̃ , while P =

{
ϕN (P̃i)

}m

i=1
and A =

{
ϕN
∗,P̃i

(Ãi)
}m

i=1
are the FC parameters of F .

Proof. First we show the correspondence between the standard orthonormal bases {B̃i ∈ M̃} and
{Bi ∈ M}. Obviously, {B̃i ∈ M̃} is orthonormal iff {Bi ∈ M} is orthonormal. We only need to
show the standardness. The Riemannian metric gM̃ has the following:

gM̃
Ẽ

(V,W)
(1)
= gME

(
ϕM
∗,Ẽ(V), ϕM

∗,Ẽ(V)
)

=
〈
f ◦ ϕM

∗,Ẽ(V), f ◦ ϕM
∗,Ẽ(V)

〉
,

(43)

where f is the linear isomorphism that pulls back the standard Frobenius inner product to gME . Here,
(1) comes from the isometry. Therefore, for each i, we have the following

B̃i = (f ◦ ϕM
∗,Ẽ)

−1(Ei)

(1)
=
(
ϕM
∗,Ẽ

)−1

(Bi),
(44)

where (1) comes from Bi = f−1(Ei),∀i = 1, · · · , n.

We now demonstrate the correspondence between the FC layers as follows:

Y = ExpM̃
Ẽ

(
m∑

i=1

(
⟨LogÑ

P̃i
(X̃), Ãi⟩ÑP̃i

B̃i

))

(1)
=
(
ϕM)−1

(
ExpME

(
ϕM
∗,Ẽ

[
m∑

i=1

(
⟨LogNPi

(X), Ai⟩NPi
B̃i

)]))

(2)
=
(
ϕM)−1

(
ExpME

(
m∑

i=1

(
⟨LogNPi

(X), Ai⟩NPi
Bi

)
))

,

(45)

where Bi = ϕM
∗,Ẽ

(B̃i), Ai = ϕN
∗,P̃i

(Ãi), X = ϕN (X̃), and Pi = ϕN (P̃i). The above derivation
comes from the following.

(1) The isometry of ϕM and ϕN ;

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(2) The linearity of ϕM
∗,Ẽ

.

E RELATION WITH THE GYRO SPD FULLY CONNECTED LAYERS

We first review some related SPD gyro structures (Nguyen & Yang, 2023). Given P , Q in {Sn
++, g}

with g as AIM, LEM or LCM, and t ∈ R, the gyro structures induced by g are defined as follows:

Gyro addition: P ⊕Q = ExpP (ΓI→P (LogI(Q))) , (46)
Gyro scalar product: t⊗ P = ExpI (tLogI(P)) , (47)

Gyro inverse: ⊖ P = −1⊗ P = ExpI (−LogI(P)) , (48)
Gyro inner product: ⟨P,Q⟩gr = ⟨LogI(P),LogI(Q)⟩I , (49)

where LogI and ⟨·, ·⟩I is the Riemannian logarithm and metric at the identity matrix I . As shown by
Nguyen (2022a), the gyro addition and scalar product under AIM, LEM, and LCM form gyrovector
spaces.

Based on these gyro structures, Nguyen et al. (2024) introduces the gyro SPD FC layers under AIM,
LEM, and LCM, respectively. We review their results in the following.
Theorem E.1 (Gyro SPD FC Layers (Nguyen et al., 2024)). The gyro SPD FC layers under standard
LEM, AIM, and LCM are

LEM :Y = exp
(
V LE

)
, V LE

ij =

vLEii (S), if i = j
1√
2
vLEij (S), if i > j

V LE
ji , otherwise

(50)

AIM :Y = exp
(
V AI

)
, V AI

ij =

vAI
ii (S) + η

∑m
k=1 v

AI
kk(S), if i = j

1√
2
vAI
ij (S), if i > j

V AI
ji , otherwise

(51)

LCM :Y = V LC(V LC)⊤, V LC
ij =

exp
(
vLCii (S)

)
, if i = j

vLCij (S), if i > j

0, otherwise
(52)

where η = 1
n

(
1√

1+nβ
− 1
)

, and vgij = ⟨⊖Pij ⊕ S,Wij⟩gr with g as LEM, AIM, or LCM. Here,
Pij ,Wij ∈ Sn

++,∀i ≥ j, i, j = 1, · · · ,m.
Proposition E.2. Our LEM ((α, β) = (1, 0)), AIM ((α, β) = (1, β)), and LCM SPD FC layers
incorporate the LEM, AIM, and LCM gyro SPD FC layers, respectively.

Proof. Comparing Thm. E.1 with our Thm. 5.1, we only need to show the equality of vij in the gyro
and our framework.

vgij = ⟨⊖Pij ⊕ S,Wij⟩gr
(1)
=
〈
ExpI

(
ΓPij→I

(
LogPij

(S)
))

,Wij

〉
gr

(2)
=
〈
ΓPij→I

(
LogPij

(S)
)
,LogI(Wij)

〉
I

(3)
=
〈
LogPij

(S) ,ΓI→Pij
(LogI(Wij))

〉
Pij

(53)

The above derivation comes from the following.

(1) ⊖Pij ⊕ S = ExpI

(
ΓPij→I

(
LogPij

(S)
))

(Nguyen et al., 2024, Eq. (6));

(2) Eq. (49);

(3) Norm preservation of parallel transport (Do Carmo & Flaherty Francis, 1992, Def. 3.1).

Setting Aij = ΓI→P (LogI(Wij)) ∈ TPij
Sn
++, we recover Eqs. (92), (93) and (95) for each metric.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F TRIVIALIZED SPD FULLY CONNECTED LAYERS

Theorem F.1 (Trivialized SPD FC Layers). Trivializing each Pij in Thm. 5.1 as ExpI(γij [Zij]),
vij(S) under different metrics can be further simplified:

LEM : ⟨log(S), Zij⟩(α,β) − γij ∥Zij∥(α,β) , (54)

AIM :
〈
log
(
exp

(
−γij

2
[Zij]

)
S exp

(
−γij

2
[Zij]

))
, Zij

〉(α,β)
, (55)

PEM :
〈
Sθ − (I + θγij [Zij]) , Zij

〉(α,β)
, (56)

LCM :

〈
⌊K⌋+Dlog(K)−

(
γij⌊[Zij]⌋+

1

2
γijD([Zij])

)
, ⌊Zij⌋+

1

2
Zij)

〉
, (57)

where ∥·∥(α,β) is the norm induced by ⟨·, ·⟩(α,β), and D(·) returns a diagonal matrix with diagonal
elements from the input square matrix.

Proof. LEM:

⟨log(S)− log(Pij), Zij⟩(α,β)
(1)
= ⟨log(S)− γij [Zij], Zij⟩(α,β)
(2)
= ⟨log(S), Zij⟩(α,β) − γij ∥Zij∥(α,β) ,

(58)

The above comes from the following.

(1) Eq. (108);

(2) [Zij] =
Zij

∥Zij∥(α,β) .

AIM: This can be obtained by the following:

exp (γij [Zij])
− 1

2 = exp
(
−γij

2
[Zij]

)
. (59)

PEM: This can be obtained by Eq. (109).

LCM: 〈
⌊K⌋ − ⌊Lij⌋+Dlog(KL−1

ij), ⌊Zij⌋+
1

2
Zij)

〉

=

〈
⌊K⌋+Dlog(K)− (⌊Lij⌋+Dlog(Lij)) , ⌊Zij⌋+

1

2
Zij)

〉

(1)
=

〈
⌊K⌋+Dlog(K)−

(
γij⌊[Zij]⌋+

1

2
γijD([Zij])

)
, ⌊Zij⌋+

1

2
Zij)

〉
,

(60)

where (2) comes from Eq. (110).

Remark F.2. Due to the incompleteness of PEM and BWM, their exponential maps at I , ExpI(V),
are well-defined locally:

PEM: I + θV ∈ Sn
++,

BWM: I +
1

2
V ∈ Sn

++.
(61)

The above restriction can be solved numerically, such as ReEig (Huang et al., 2017):

S̃ = U max(ϵI,Σ)U⊤, (62)

where S
Eig
:= UΣU⊤ is the eigendecomposition.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G TRIVIALIZED SPD MULTINOMIAL LOGISTIC REGRESSION

In our implementation, we trivialize the SPD parameters in the SPD MLR as Sec. 4.3. The SPD
MLRs proposed in Chen et al. (2024c) under five geometries can be further simplified. For simplicity,
we do not involve the power deformation (Chen et al., 2024c).
Theorem G.1 (Trivialized SPD MLRs). [↓] Given C classes and an SPD feature S, the SPD MLRs,
p(y = k | S ∈ Sn

++), are proportional to

LEM : exp
[
⟨log(S), Zk⟩(α,β) − γk ∥Zk∥(α,β)

]
, (63)

AIM :

[
exp

〈
log
(
exp

(
−γk

2
[Zk]

)
S exp

(
−γk

2
[Zk]

))
, Zk

〉(α,β)]
, (64)

PEM :
1

θ
exp

[〈
Sθ − (I + θγk[Zk]) , Zk

〉(α,β)]
, (65)

LCM : exp

[〈
⌊K⌋+Dlog(K)−

(
γk⌊[Zk]⌋+

1

2
γkD([Zk])

)
, ⌊Zk⌋+

1

2
Zk)

〉]
, (66)

BWM: exp

[
1

2

〈
(PkS)

1
2 + (SPk)

1
2 − 2Pk,LPk

(LkZkL
⊤
k)
〉]

, (67)

where Zk ∈ TISn
++\{0} is a symmetric matrix, Lk = Chol(Pk) is the Cholesky factor of Pk with

Pk = (I + 1
2γk[Zk])

2. Here {Zk ∈ Sn}Ck=1 and {γk ∈ R}Ck=1 are the MLR parameters.

Proof. For each class k, the expression of vk in the SPD MLR (Chen et al., 2024c, Thm. 4.2) has
been reviewed in App. K.3. For MLR under each metric g, we parameterize the each parameter
Pk ∈ Sn

++ by Zk and γk by
Pk = ExpgI(γk[Zk]), (68)

with [Zk] as the unit vector of Zk. Under this parameterization, the MLRs under LEM, AIM, PEM,
and LCM can be further simplified, which has been implied by Thm. F.1.

Remark G.2. Similar to the SPD FC layer, due to the incompleteness of PEM and BWM, the
associated parameterization should follow

PEM: I + θγk[Zk] ∈ Sn
++, (69)

BWM: I +
1

2
γk[Zk] ∈ Sn

++. (70)

H REVIEW OF PREVIOUS GRASSMANNIAN TRANSFORMATION LAYERS

This section briefly reviews several popular Grassmannian transformation layers.

FRMap + ReOrth. Given input Grassmannian X ∈ Gr(p, q), Huang et al. (2018) first used Full
Rank Map (FRMap) to first transform the input orthonormal matrices of subspaces to new matrices
by a linear mapping function, and then applied QR decomposition to recover the orthogonality:

Y = Q(WX), (71)

where W ∈ Rm×n is a row-wisely orthogonal parameter, and Q(·) returns the orthogonal matrix in
the QR decomposition.

PP & ONB Scaling. Nguyen (2022a); Nguyen & Yang (2023) proposed matrix scaling for the PP and
ONB Grassmannian, respectively. Given P = XX⊤ ∈ G̃r(p, n) with X ∈ Gr(p, n), the operations
are defined as

PP: Y = exp

([
0 W ∗B

−(W ∗B)T 0

])
Ĩp,n exp

(
−
[

0 W ∗B
−(W ∗B)T 0

])
, (72)

ONB: Y = exp

([
0 W ∗B

−(W ∗B)T 0

])
Ip,n, (73)

where ∗ denotes the Hadamard product and B ∈ R(n−p)×p is a Euclidean parameter. Here, X =

exp

([
0 B

−BT 0

])
Ip,n.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

GrTrans. Nguyen & Yang (2023) adopted the Grassmannian Gyro group translation (GrTrans) to
transform the ONB and PP Grassmannian features. Given X ∈ G̃r(p, n) (or X ∈ Gr(p, n)), the
operation is defined as

Y = W ⊕X, (74)

where ⊕ is the Grassmannian PP (ONB) gyro addition (Nguyen & Yang, 2023, Sec. 2.3), and
W ∈ G̃r(p, n) (or W ∈ Gr(p, n)) is a Grassmannian parameter.

I EXPERIMENTAL DETAILS

I.1 DETAILS OF THE EXPERIMENTS ON THE SPD MANIFOLD

I.1.1 DATASETS

Radar3 (Brooks et al., 2019). It consists of 3,000 synthetic radar signals equally distributed in 3
classes.

HDM054 (Müller et al., 2007). It consists of 2,273 skeleton-based motion capture sequences
executed by different actors. Each frame consists of 3D coordinates of 31 joints. We remove the
under-represented clips, trimming the dataset down to 2086 instances scattered throughout 117 classes.
We randomly select 50% of the samples from each category for training and the remaining 50% for
testing.

FPHA5 (Garcia-Hernando et al., 2018). It includes 1,175 skeleton-based first-person hand gesture
videos of 45 different categories with 600 clips for training and 575 for testing. Each frame contains
the 3D coordinates of 21 hand joints.

For the HDM05 and FPHA datasets, we preprocess each sequence using the code6 provided by
Vemulapalli et al. (2014) to normalize body part lengths and ensure invariance to scale and view.

I.1.2 SPD MODELLING

For our SPDConvNets, we follow Wang et al. (2024a); Nguyen et al. (2024) to model each sample
into a multi-channel SPD tensor. For the Radar dataset, we follow Wang et al. (2024a) to use the
temporal convolution followed by a covariance pooling layer to obtain a multi-channel covariance
[c, 20, 20] tensor. For the HDM05 and FPHA datasets, we follow Nguyen et al. (2024, Sec. D.2.2) to
model each skeleton sequence into a multi-channel covariance tensor [c, n, n]. Specifically, we first
identify a closest left (right) neighbor of every joint based on their distance to the hip (wrist) joint,
and then combine the 3D coordinates of each joint and those of its left (right) neighbor to create a
feature vector for the joint. For a given frame t, we compute its Gaussian embedding (Lovrić et al.,
2000):

Yt = (detΣt)
− 1

n+1

[
Σt + µt (µt)

T
µt

(µt)
T

1

]
, (75)

where µt and Σt are the mean vector and covariance matrix computed from the set of feature vectors
within the frame. The lower part of matrix log (Yt) is flattened to obtain a vector ṽt. All vectors ṽt
within a time window [t, t+ c− 1], where c is determined from a temporal pyramid representation of
the sequence (the number of temporal pyramids is set to 2 in our experiments), are used to compute a
covariance matrix as

Zt =
1

c

t+c−1∑

i=t

(ṽi − vt) (ṽi − vt)
T
, (76)

where vt = 1
c

∑t+c−1
i=t ṽi. The resulting {Zt} is the input covariance tensor. On the FPHA dataset, we

generate the covariance based on three sets of neighbors: left, right, and vertical (bottom) neighbors.

For other SPD baselines, such as SPDNet, SPDNetBN, LieBN, MLR, and RResNet, each sequence
is represented by a global covariance representation (Huang & Van Gool, 2017; Brooks et al., 2019).
The sizes of the covariance matrices are 20 × 20, 93 × 93, and 63 × 63 for Radar, HDM05, and
FPHA datasets, respectively.

3https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
4https://resources.mpi-inf.mpg.de/HDM05/
5https://github.com/guiggh/hand_pose_action
6https://ravitejav.weebly.com/kbac.html

24

https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
https://resources.mpi-inf.mpg.de/HDM05/
https://github.com/guiggh/hand_pose_action
https://ravitejav.weebly.com/kbac.html

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

I.2 IMPLEMENTATION DETAILS

Comparative methods. We follow the official Pytorch code of SPDNetBN7 to implement SPDNet
and SPDNetBN. For LieBN8, we focus on the instantiation under AIM and LCM, while for RResNet9,
we implement the ones induced by LEM and AIM. For SPD MLR10, we use LCM on the HDM05
datasets, and AIM for the rest two datasets.

SPDConvNets. The output dimensions of the SPD convolutional layer are 8 × 8, 34 × 34, and
22× 22 for the Radar, HDM05, and FPHA datasets, respectively. We primarily use the AMSGrad
(Reddi et al., 2019) optimizer, except for SPDConvNet-LEM and SPDConvNet-AIM on the HDM05
dataset, where SGD (Robbins & Monro, 1951) is employed. Weight decay is set to zero, except for
SPDConvNet-PEM on the FPHA dataset, where it is 5e−4. The matrix power in SPDConvNet-PEM is
set as 0.5, 0.25, and 0.25 for the three datasets. Since matrix power can deform the latent Riemannian
metric (Chen et al., 2024c, Fig. 1), we also apply matrix power (·)θ before the convolutional layer in
SPDConvNet-AIM, -LCM, and -BWM to activate the latent geometries. The batch size is set to 30
with a training epoch of 150. Tab. 9 summarizes the training hyper-parameters.

Table 9: Training hyer-parameters in SPDConvNets

Dataset Model θ Optimizer Learning Rate

Radar

SPDConvNet-LEM N/A AMSGrad 5e−3

SPDConvNet-AIM 0.25 AMSGrad 5e−4

SPDConvNet-PEM N/A AMSGrad 1e−2

SPDConvNet-LCM 0.25 AMSGrad 5e−4

SPDConvNet-BWM N/A AMSGrad 5e−4

HDM05

SPDConvNet-LEM N/A SGD 5e−3

SPDConvNet-AIM N/A SGD 5e−3

SPDConvNet-PEM N/A AMSGrad 1e−3

SPDConvNet-LCM N/A AMSGrad 1e−3

SPDConvNet-BWM N/A AMSGrad 1e−3

FPHA

SPDConvNet-LEM N/A AMSGrad 1e−4

SPDConvNet-AIM N/A AMSGrad 1e−4

SPDConvNet-PEM N/A AMSGrad 1e−3

SPDConvNet-LCM -0.25 AMSGrad 1e−3

SPDConvNet-BWM -0.25 AMSGrad 1e−4

I.3 DETAILS OF THE EXPERIMENTS ON THE GRASSMANNIAN

Grassmannian Modelling. As Grassmannian descriptors can be derived by the SVD of the covariance
(Huang et al., 2018; Nguyen & Yang, 2023), we map the multi-channel Radar covariance into a
[c, n, p] ONB Grassmannian tensor via the SVD decomposition. The PP Grassmannian features can
be derived from the ONB Grassmannian features via the isometry π(·) : Gr(p, n) → G̃r(p, n):

π(U) = UU⊤,∀U ∈ Gr(p, n). (77)

Implementation details. Since GrNet is officially implemented by Matlab, we carefully re-
implemented it using PyTorch. Additionally, as both GryroGr and GryroGr-Scaling do not release
official code, we re-implemented them based on the original papers (Nguyen, 2022a; Nguyen & Yang,
2023). For all comparative methods, we use SGD with a learning rate of 5e−2. For training our ONB
and PP GrConvNets, we use AMSGrad with a learning rate of 5e−3. The batch size is set to 30 with
a training epoch of 150.

I.4 TRAINING EFFICIENCY
7https://proceedings.neurips.cc/paper_files/paper/2019/file/

6e69ebbfad976d4637bb4b39de261bf7-Supplemental.zip
8https://github.com/GitZH-Chen/LieBN
9https://github.com/CUAI/Riemannian-Residual-Neural-Networks

10https://github.com/GitZH-Chen/SPDMLR

25

https://proceedings.neurips.cc/paper_files/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-Supplemental.zip
https://proceedings.neurips.cc/paper_files/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-Supplemental.zip
https://github.com/GitZH-Chen/LieBN
https://github.com/CUAI/Riemannian-Residual-Neural-Networks
https://github.com/GitZH-Chen/SPDMLR

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 10: Training efficiency (second / epoch).

Method Radar HDM05 FPHA

SPDNet 0.66 0.50 0.28
SPDNetBN 1.25 0.94 0.58

SPDResNet-AIM 0.96 1.23 0.69
SPDResNet-LEM 0.77 0.55 0.25

SPDNetLieBN-AIM 1.21 1.15 0.97
SPDNetLieBN-LCM 1.10 1.11 0.59

SPDNetMLR 0.96 5.46 6.36

SPDConvNet-LEM 0.86 0.74 0.74
SPDConvNet-AIM 5.09 101.80 51.14
SPDConvNet-PEM 1.09 7.10 1.57
SPDConvNet-LCM 0.65 0.59 0.53
SPDConvNet-BWM 6.07 110.51 56.07

Tab. 10 presents the average training time per epoch of each SPD network. On the HDM05 and FPHA
datasets, all baseline methods involve SVD on relatively large matrices, which are more efficiently
executed on a CPU. Consequently, these methods are run on a CPU, while all other cases are executed
on a single A6000 GPU. We have the following observations:

• The efficiency of SPDConvNet varies across metrics. The most efficient metric is LCM,
where our model even achieves comparable efficiency to the vanilla SPDNet. However, AIM
and BWM demonstrate significant computational burden, primarily due to their complex
Riemannian computations.

• Our trivialization improves efficiency. On the HDM05 dataset, SPDNetMLR is imple-
mented under LCM. Similarly, our SPDNetMLR-LCM also employs LCM-based MLR.
However, SPDNetMLR-LCM achieves substantially lower training time. This improvement
can be attributed to our trivialization, which simplifies the final expression (App. G).

J APPLICATIONS TO HYPERBOLIC SPACES

Hyperbolic Neural Networks (HNNs) have recently shown success in different applications (Ganea
et al., 2018; Shimizu et al., 2020; Chami et al., 2019; Skopek et al., 2020; Bdeir et al., 2024; Fu et al.,
2024). This section applies our Riemannian FC (Thm. 4.2) into the hyperbolic space.

J.1 GEOMETRIES OF THE HYPERBOLIC SPACE

There are five models over the hyperbolic space (Cannon et al., 1997). We focus on the Poincaré ball
and hyperboloid models:

Poincaré ball: Pn
K =

{
x ∈ Rn | ∥x∥2 < − 1

K

}
(78)

Hyperboloid: Hn
K =

{
x ∈ Rn+1 | ∥x∥2L =

1

K

}
, (79)

where ∥x∥2L =
∑n+1

i=2 x2
i − x2

1 is the Lorentz inner product, and ∥·∥ is the standard L2 norm induced
by the standard inner product ⟨·, ·⟩. Here, K < 0 is the constant sectional curvature.

As shown by Ungar (2022), the Poincaré ball model admits a gyrovector space structure, which is a
natural generalization of vector space in the manifold. The gyro addition, known as Möbius addition,
is defined as

x⊕K y =

(
1− 2K⟨x, y⟩ −K∥y∥2

)
x+

(
1 +K∥x∥2

)
y

1− 2K⟨x, y⟩2 +K2∥x∥2∥y∥2 , (80)

For parallel transport over the Poincaré ball, we further need the notion of gyration (Ungar, 2022):
gyr[x, y]z = ⊖K (x⊕K y)⊕K (x⊕K (y ⊕K z)) ,∀x, y, z ∈ Pn

K . (81)

All Riemannian operators on Poincaré ball and hyperboloid models are relatively simple and have
close-form expressions, which are summarized in Tab. 11.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 11: Riemannian operators on the hyperbolic space (K < 0).

Operators Pn
K =

{
x ∈ Rn | ∥x∥2 < − 1

K

} Hn
K =

{
x ∈ Rn+1 | ∥x∥2L = 1

K

}
,

with ∥x∥2L =
∑n+1

i=2 x2
i − x2

1

gx(v, w)
(λK

x)2 ⟨v, w⟩
λK
x = 2

(1+K∥x∥2)
⟨v, w⟩L =

∑n+1
i=2 viwi − v1w1

Logx(y)
2√

|K|λK
x

tanh−1
(√

|K| ∥−x⊕K y∥
)

−x⊕Ky
∥−x⊕Ky∥

cosh−1(K⟨x,y⟩L)

sinh(cosh−1(K⟨x,y⟩L))
(y −K⟨x, y⟩Lx)

Γx→y(v)
λK
x

λK
y
gyr[y,−x]v v − K⟨y,v⟩L

1+K⟨x,y⟩L (x+ y)

Expx(v) x⊕K

(
tanh

(√
|K|λ

K
x ∥v∥
2

)
v√

|K|∥v∥

)
cosh

(√
|K| ∥v∥L

)
x+ sinh

(√
|K| ∥v∥L

)
v√

|K|∥v∥L

References
Ganea et al. (2018)
Skopek et al. (2020)

Ungar (2022)

Petersen (2006)
Skopek et al. (2020)

J.2 RIEMANNIAN FC LAYERS: MANIFESTATIONS IN HYPERBOLIC SPACES

As Riemannian computations over the hyperbolic space are much simpler than the matrix manifold,
Thm. 4.2 can manifest in a plug-in-manner. This subsection introduces the concrete formulations.

The origin of the Poincaré ball is defined as the zero vector 0, as it is the identity element in the
gyrovector space. Besides, due to the gyro structure of the Poincaré ball, Thm. 4.2 under this geometry
can be further simplified.
Theorem J.1 (RiemFC-P layer). [↓] Given x ∈ Pn

K , the Riemannian FC transformation F(·) :
Pn
K → Pm

K is

y == Exp0

(
m∑

i=1

(⟨Log0(−pi ⊕K x), zi⟩ ei)
)

(82)

where pi = Exp0(γi[zi]). Here, {γi ∈ R}mi=1 and {zi ∈ Rn}mi=1 are the FC parameters. Each
ei ∈ Rm is a vector with its i-th element equal to 1 and all other elements equal to 0. The Riemannian
exponentiation and logarithm at 0 are

Exp0(v) = tanh(
√
|K|∥v∥) v√

|K|∥v∥
, ∀v ∈ T0Pn

K , (83)

Log0(y) = tanh−1(
√
|K|∥y∥) y√

|K|∥y∥
, ∀y ∈ Pn

K . (84)

Theorem J.2 (RiemFC-H FC layer). [↓] Following the notation of Thm. J.1, the Riemannian FC
transformation F(·) : Hn

K → Hm
K for the input x ∈ Hn

K is

y = Expe

(
(0, v1(x), · · · , vm(x))

⊤
)

(85)

where e =

(
1√
|K|

, 0 · · · , 0
)⊤

, vi(x) =
〈
Logpi

(x),Γe→pi(zi)
〉
, and pi = Expe(γi[(0, z

⊤
i)⊤]).

Here, γi ∈ R and zi ∈ Rn are parameters for i = 1, · · · ,m.

J.3 EXPERIMENTS

We validate our hyperbolic FC layers on three graph datasets for the link prediction task, including
the Cora (Sen et al., 2008), Disease (Anderson & May, 1991), and Airport (Zhang & Chen, 2018)
datasets. We also compared our hyperbolic FC layer with the transformation layer in HNN (Ganea
et al., 2018, Sec. 3.2) and HNN++ (Shimizu et al., 2020, Sec. 3.2), named Möbius transformation
and the hyperbolic Poincaré FC layer, which are all based on the Poincaré model.

J.3.1 DATASETS

Cora. It is a citation network where nodes represent scientific papers in the area of machine learning,
edges are citations between them, and node labels are academic (sub)areas.

Disease. It represents a disease propagation tree, simulating the SIR disease transmission model,
with each node representing either an infection or a non-infection state.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Airport. It is a transductive dataset where nodes represent airports and edges represent the airline
routes as from OpenFlights.org.

J.3.2 IMPLEMENTATION DETAILS

We follow the official implementations of HNN11, and HNN++12 to conduct the experiments. We
follow the settings as HGCN13 (Chami et al., 2019) for the link prediction task. Specifically, the
baseline encoder consists of two transformation layers: the first maps the input feature dimension to
16, and the second maps 16 to 16. The transformation layers could be our hyperbolic FC layer or the
ones in HNN and HNN++. We use the Adam optimizer (Kingma, 2014), with a learning rate of 1e−2.
We fine-tune each model w.r.t. dropout of transformation weight and weight decay.

J.3.3 RESULTS

Table 12: Comparison of different transformation layers on link prediction task. The graph hyperbol-
icity is denoted as δ (lower is more hyperbolic).

Method Geometry Disease
δ = 0

Airport
δ = 1

Cora
δ = 11

Möbius Poincaré Ball 75.1 ± 0.3 90.8 ± 0.2 89.0 ± 0.1
Poincaré FC Poincaré Ball 77.8 ± 1.4 94.0 ± 0.4 88.1 ± 0.3

RiemFC-P Poincaré Ball 79.2 ± 1.2 93.1 ± 0.7 89.2 ± 0.6
RiemFC-H Hyperboloid 71.2 ± 0.6 84.3 ± 1.7 92.8 ± 0.4

Tab. 12 presents the 5-fold average AUC results across three datasets, revealing the following key
insights:

• Effectiveness: Our RiemFC achieves either superior or comparable performance to the prior
Möbius and Poincaré transformations.

• Hyperbolicity & Riemannian transformation: On datasets with high hyperbolicity,
RiemFC, and Poincaré FC transformations consistently outperform Möbius transforma-
tions. Conversely, on the Cora dataset with the lowest hyperbolicity, all three Poincaré
transformations perform similarly. This suggests that for highly hyperbolic data, intrinsic
Riemannian transformations are more effective, as tangent Möbius transformations may
distort the geometry.

• Metric & representation power: On the dataset with the lowest hyperbolicity, hyperboloid-
based RiemFC outperforms other Poincaré-based layers, highlighting the importance of the
underlying metric in Riemannian networks. Unlike the prior Poincaré FC layer, which is
designed specifically for the Poincaré ball model, our Riemannian FC layer in Thm. 4.2
can adapt to various metrics in a plug-and-play manner. This adaptability enhances the
representation power of HNNs, making them more versatile for diverse applications.

K PROOFS

K.1 PROOF OF THM. 4.2

Proof. By Thm. 3.1, the Riemannian signed distance from a point Y ∈ M to a Riemannian
hyperplane over M is

d̄(Y, H̃A,P) =
⟨LogMP Y,A⟩MP

∥A∥MP
, (86)

11https://github.com/dalab/hyperbolic_nn
12https://github.com/mil-tokyo/hyperbolic_nn_plusplus
13https://github.com/HazyResearch/hgcn

28

https://github.com/dalab/hyperbolic_nn
https://github.com/mil-tokyo/hyperbolic_nn_plusplus
https://github.com/HazyResearch/hgcn

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where H̃A,P is a Riemannian hyperplane parameterized by P ∈ M and A ∈ TPM. Therefore, the
signed distance from Y to H̃Bi,E is

d̃(Y, H̃Bi,E) =
⟨LogME (Y), Bi⟩ME

∥Bi∥ME
(1)
= ⟨LogME (Y), Bi⟩ME

(87)

where (1) comes from the orthonormality of Bi.

Setting Eq. (87) equal to vi(X), we have

⟨LogME (Y), Bi⟩ME = ⟨LogNPi
(X), Ai⟩NPi

. (88)

The above equation indicates

LogME (Y) =

m∑

i=1

(
⟨LogNPi

(X), Ai⟩NPi
Bi

)
. (89)

K.2 PROOF OF PROP. 4.4

Proof. Given the FC parameters {pi ∈ Rn}mi=1 and {ai ∈ Rn}mi=1, and input vector x ∈ Rn, Eq. (12)
becomes

Y
(1)
= Exp0

(
m∑

i=1

(
⟨Logpi

(x), ai⟩pi
ei
)
)

(2)
=

m∑

i=1

(⟨x− pi, ai⟩ei) ,
(90)

The above comes from the following.

(1) The standard orthonormal bases over the standard inner product space T0Rm ∼= Rm are
{ei}mi=1, with the k−th element defined as

(ei)k =

{
1 if k = i

0 otherwise.
(91)

(2) Exp0(x) = x, ⟨·, ·⟩pi = ⟨·, ·⟩, and Logpi
(x) = x− pi.

K.3 PROOF OF THM. 5.1
Proof. In the following proof, we first present the expressions of several operators under different
metrics, including vij(S), standard orthonormal bases, and Riemannian exponentiation at the origin.
Then, we begin to prove the theorem. In this proof, we follow all the notations as the theorem.

vij(S) under different metrics: The expressions are implied by Chen et al. (2024c, Thm. 4.2):

LEM : ⟨log(S)− log(Pij), Zij⟩(α,β) , (92)

AIM :
〈
log(P

− 1
2

ij SP
− 1

2
ij), Zij

〉(α,β)
, (93)

PEM :
1

θ

〈
Sθ − P θ

ij , Zij

〉(α,β)
, (94)

LCM :

〈
⌊K⌋ − ⌊Lij⌋+Dlog(KL−1

ij), ⌊Zij⌋+
1

2
Zij)

〉
, (95)

BWM :
1

2

〈
(PijS)

1
2 + (SPij)

1
2 − 2Pij ,LPij

(LijZijL
⊤
ij)
〉
. (96)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Standard orthonormal bases: Next, we show the standard orthonormal bases over TISn
++ under

different metrics. As indicated by Tabs. 6 and 7, the inner products for any V,W ∈ TISn
++ are

LEM, AIM, and PEM : ⟨V,W ⟩(α,β) , (97)

LCM :⟨⌊V ⌋+ 1

2
V, ⌊W ⌋+ 1

2
W⟩, (98)

BWM :
1

4
⟨V,W ⟩ (99)

The above comes from the following.

(1) Eq. (97) comes from log∗,I(V) = V and Pθ∗,I(V) = θV ;

(2) Eq. (98) comes from Chol∗,I(V) = ⌊V ⌋+ 1
2V;

(3) Eq. (99) comes from LI [V] = 1
2V .

As shown by Thanwerdas & Pennec (2023, Thm.2.1), F√
α+nβ,

√
α : {Sn, ⟨·, ·⟩(α,β)} → {Sn, ⟨·, ·⟩}

is the linear isometry pulling the standard inner product back to the O(n)-invariant one:

F√
α+nβ,

√
α(X) =

√
αX +

√
α+ nβ −√

α

n
tr(X)In,∀X ∈ Sn. (100)

Given any Y ∈ Sn, its inverse map is

(
F√

α+nβ,
√
α

)−1
(Y) =

1√
α

Y −

√
1 + nβ

α − 1

n

1√
1 + nβ

α

 tr(Y)I

=
1√
α

Y − 1

n

1− 1√

1 + nβ
α

 tr(Y)I

=
1√
α
Y − 1

n

(
1√
α
− 1√

α+ nβ

)
tr(Y)I.

(101)

The standard orthonormal bases over the Euclidean spaces {Sn, ⟨·, ·⟩} and {Ln, ⟨·, ·⟩} are

{Sn, ⟨·, ·⟩} : U sym
ij =

{
Eii, if i = j,
Eij+Eji√

2
, if i > j.

(102)

{Ln, ⟨·, ·⟩} : U tril
ij = Eij ,∀i ≥ j (103)

where i ≥ j, i, j = 1, · · · , n, and {Eij}ni,j=1 are standard basis matrices, with the (k, l) element
defined as

(Eij)kl =

{
1 if k = i and l = j,

0 otherwise.
(104)

The standard orthonormal bases w.r.t. Eqs. (97) to (99) are

LEM, AIM, PEM :U
(α,β)
ij

(1)
=

{
1√
α
Eii − 1

n

(
1√
α
− 1√

α+nβ

)
I, if i = j,

Eij+Eji√
2α

, if i > j.
(105)

LCM :ULC
ij

(2)
=

{
2Eii, if i = j,

Eij , if i > j.
(106)

BWM :UBW
ij

(3)
=

{
2Eii, if i = j,√
2(Eij + Eji), if i > j.

(107)

Here, i ≥ j, i, j = 1, · · · , n. The above comes from the following.

(1) U
(α,β)
ij =

(
F√

α+nβ,
√
α

)−1 (
U sym
ij

)
, with F√

α+nβ,
√
α : Sn → Sn as the linear isometry

pulling back the Frobenius inner product to the O(n)-invariant inner product;

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(2) fLC(V) = ⌊V ⌋+ 1
2V : Ln → Ln is the linear isometry pulling the Frobenius inner product

to Eq. (98);

(3) fBW(V) = 1
2V : Sn → Sn is the linear isometry pulling the Frobenius inner product back

to Eq. (99);

Riemannian exponentiation: Next, we show ExpI under different metrics

LEM and AIM : ExpI(V)
(1)
= exp(V), (108)

PEM : ExpI(V)
(2)
= (I + θV)

1
θ , (109)

LCM : ExpI(V)
(3)
=

(
⌊V ⌋+Dexp

(
1

2
V
))(

⌊V ⌋+Dexp

(
1

2
V
))⊤

, (110)

BWM : ExpI(V)
(4)
= I + V +

1

4
V 2 =

(
I +

1

2
V

)2

, (111)

The above comes from the following.

(1) log∗,I(V) = V and log I = 0;

(2) Pθ∗,I(V) = θV ;

(3) Chol∗,I(V) = ⌊V ⌋+ 1
2V;

(4) LI [V] = 1
2V .

Now, we can prove the results metric by metric.

LEM:

ExpI

m∑

i,j=1,i≥j

vLEij (S)U
(α,β)
ij

= exp

m∑

i,j=1,i≥j

(
log(S)− log(Pij), Zij⟩(α,β)U (α,β)

ij

)

 .

(112)

AIM:

ExpI

m∑

i,j=1,i≥j

vAI
ij (S)U

(α,β)
ij

= exp

m∑

i,j=1,i≥j

(
⟨log(P− 1

2
ij SP

− 1
2

ij), Zij⟩(α,β)U (α,β)
ij

)

 .

(113)

PEM:

ExpI

m∑

i,j=1,i≥j

vPE
ij (S)U

(α,β)
ij

=

I + θ

m∑

i,j=1,i≥j

(
1

θ
⟨Sθ − P θ

ij , Zij⟩(α,β)U (α,β)
ij

)

1
θ

=

I +

m∑

i,j=1,i≥j

(
⟨Sθ − P θ

ij , Zij⟩(α,β)U (α,β)
ij

)

1
θ

.

(114)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

LCM:

ExpI

m∑

i,j=1,i≥j

vLCij (S)ULC
ij

=

(
⌊V LC⌋+Dexp

(
1

2
VLC

))(
⌊V LC⌋+Dexp

(
1

2
VLC

))⊤

,

(115)

with

V LC =

m∑

i,j=1,i≥j

vLCij (S)ULC
ij

=

m∑

i,j=1,i≥j

(〈
⌊K⌋ − ⌊Lij⌋+Dlog(KL−1

ij), ⌊Zij⌋+
1

2
Zij)

〉)
ULC
ij

(116)

BWM:

ExpI

m∑

i,j=1,i≥j

vBW
ij (S)UBW

ij

=

(
I +

1

2
V BW

)2

,

(117)

with V BW defined as

V BW =

m∑

i,j=1,i≥j

{
1

2

〈
(PijS)

1
2 + (SPij)

1
2 − 2Pij ,LPij (LijZijL

⊤
ij)
〉
UBW
ij

}
. (118)

K.4 PROOF OF PROP. 5.2
We begin by recalling two vector structures on the SPD manifold. Next, we identify the expression
for the linear homomorphisms. Finally, we present our proof.

We define a map ϕ(·) : Sn
++ → Ln as

ϕ(S) = ⌊L⌋+Dlog(L), (119)

where P = LL⊤ is the Cholesky decomposition. For any P,Q ∈ Sn
++ and t ∈ R, the vector

structures over the SPD manifold are defined as

P ⊕LE Q = exp(log(P) + log(Q)) (120)

t⊙LE P = exp(t log(P)) = P t (121)

P ⊕LC Q = ϕ−1(ϕ(P) + ϕ(Q)) (122)

t⊙LC P = ϕ−1(tϕ(P)) = P t (123)

As shown by Arsigny et al. (2005); Chen et al. (2024d), {Sn
++,⊕LE,⊙LE} and {Sn

++,⊕LC,⊙LC}
forms vector spaces. We further present the associated linear homomorphisms.
Lemma K.1 (SPD Homomorphisms). Given any homomorphisms

ζLE(·) : {Sn
++,⊕LE,⊙LE} → {Sm

++,⊕LE,⊙LE}, (124)

ζLC(·) : {Sn
++,⊕LC,⊙LC} → {Sm

++,⊕LC,⊙LC}, (125)

they can be expressed as

ζLE = exp ◦g ◦ log, (126)

ζLC = ϕ−1 ◦ f ◦ ϕ, (127)

where f : Ln → Lm and g : Sn → Sm are linear homomorphisms over the Euclidean space Ln

and Sn, respectively.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Proof. As shown by Chen et al. (2024d), log(·) is the linear isomorphism from {Sn
++,⊕LE,⊙LE} to

the Euclidean space Sn and ϕ is the linear isomorphism from {Sn
++,⊕LC,⊙LC} to the Euclidean

space Ln. Therefore, any linear homomorphisms over these two linear spaces have the following
forms:

ζLE = log−1 f ◦ log, (128)

ζLC = ϕ−1g ◦ ϕ, (129)
where f : Sn → Sm and g : Ln → Lm are linear homomorphisms over the Euclidean space Sn and
Ln, respectively.

With all the above theoretical preparation, we begin to present our proof.

Proof. Given an SPD matrix S ∈ Sn
++, Eq. (128) can be rewritten as

ζLE(S)
(1)
= exp

m∑

i,j=1,i≥j

⟨log(S), Aij⟩U sym
ij

(2)
= exp

m∑

i,j=1,i≥j

⟨log(S), Aij⟩U (1,0)
ij

(3)
= FLE(S;A, I)

(130)

where A = {Aij ∈ Sn}mi,j=1,i≥j and I = {I, · · · , I}. The above comes from the following.

(1) The linear map f can be represented by {Aij ∈ Sn}mi,j=1,i≥j under the bases
{U sym

ij }ni,j=1,i≥j over Sn and {U sym
ij }mi,j=1,i≥j over Sm;

(2) {U sym
ij }mi,j=1,i≥j = {U (1,0)

ij }mi,j=1,i≥j ;

(3) ExpI = exp under LEM.

Following the above logic, we have the following for {Sn
++,⊕LC,⊙LC}:

ζLC(S)
(1)
= ϕ−1

m∑

i,j=1,i≥j

⟨ϕ(S), Aij⟩U tril
ij

(2)
= FLC(S;Z, I),

(131)

where Aij ∈ Ln for i, j = 1, · · · ,m, i ≥ j, Z = {Zij = Aij + D(Aij) ∈ Ln}mi,j=1,i≥j and
I = {I, · · · , I}. The above comes from the following.

(1) The linear map g can be represented by {Aij}mi,j=1,i≥j ;

(2) Eqs. (20) and (25).

K.5 PROOF OF THM. 6.1
Before presenting our proof, we first discuss some basic facts about the ONB Grassmannian FC layer.

As implied by Eq. (38), any tangent vector V ∈ TIp,nGr(p, n) can be expressed as

V =

(
0

In−p

)
BV =

(
0
BV

)
, with BV ∈ R(n−p)×p. (132)

According to Thm. 4.2 and Eq. (132), the ONB Grassmannian FC layer F(·) : Gr(p, n) → Gr(q,m)
has the following form:

Y = ExpIq,m

∑

i=1,··· ,m−q
j=1,··· ,m

(
⟨LogPij

(X), Aij⟩Pij
Uij

)

 , (133)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

where {Uij} are the orthonormal bases over TIq,mGr(q,m). As discussed in Sec. 4.3, we model the
FC parameters by parallel transport and Riemannian exponential map:

Aij = ΓIp,n→Pij
(Zij), (134)

Pij = ExpIp,n(γij [Zij]), (135)

where Zij =

(
0

BZij

)
∈ TIp,nGr(p, n). Therefore, we can model each Pij and Aij by BZij ∈

R(n−p)×p and γij ∈ R. With the above ingredient, we present the proof in the following.

Proof. The standard orthonormal basis: As the inner product over TIq,mGr(q,m) is the Frobe-
nius matrix inner product (Bendokat et al., 2024, Eq. 3.2), the standard orthonormal basis over
TIq,mGr(q,m) is

Uij =

(
0
Eij

)
, 1 ≤ i ≤ m− q ∧ 1 ≤ j ≤ q, (136)

where {Eij} are standard basis matrices over R(m−q)×q

The Riemannian exponential map at the origin: The SVD of V ∈ TIp,nGr(p, n) can be calculated
via the SVD of BV :

V =

(
0
BV

)
=

(
0
O

)
ΣR⊤ =

(
0

OΣR⊤

)
, (137)

where BV
SVD
:= OΣR⊤. Therefore, the Riemannian exponential map at Ip,n can be simplified as

ExpIp,n(V) =

(
Ip
0

)
R cos(Σ)RT +

(
0
O

)
sin(Σ)RT

=

(
R cos(Σ)RT

O sin(Σ)RT

) (138)

vij(U) under the ONB perspective: The ONB parallel transport can be further simplified. Given
P ∈ Gr(p, n), we have the following for the Riemannian logarithm

LogIp,n(P) =

(
0
BP

)
SVD
:=

(
0

OPΣPR
⊤
P

)
, (139)

with BP
SVD
:= OPΣPR

⊤
P . For P ∈ Gr(p, n) and Z ∈ TIp,nGr(p, n), the parallel transport can be

further simplified:
ΓIp,n→P (Z)

=

((
Ip,nRP

(
0
OP

))(
− sin(ΣP)
cos(ΣP)

)(
0
OP

)T

+

(
I −

(
0
OP

)(
0
OP

)T
))

Z

=

((
−
(

Ip
0

)
RP sin(ΣP) +

(
0
OP

)
cos(ΣP)

)(
0
OP

)T

+

(
Ip 0
0 In−p −OPO

⊤
P

))
Z

=

((
−RP sin(ΣP)
OP cos(ΣP)

)(
0 O⊤

P

)
+

(
Ip 0
0 In−p −OPO

⊤
P

))
Z

=

((
0 −RP sin(ΣP)O

⊤
P

0 OP cos(ΣP)O
⊤
P

)
+

(
Ip 0
0 In−p −OPO

⊤
P

))
Z

=

(
Ip −RP sin(ΣP)O

⊤
P

0 In−p +OP cos(ΣP)O
⊤
P −OPO

⊤
P

)
Z

=

(
Ip −RP sin(ΣP)O

⊤
P

0 In−p +OP cos(ΣP)O
⊤
P −OPO

⊤
P

)(
0
BZ

)

=

(
−RP sin(ΣP)O

⊤
PBZ(

OP cos(ΣP)O
⊤
P + In−p −OPO

⊤
P

)
BZ

)
.

Combining all the above results, one can directly obtain the results.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

K.6 PROOF OF THM. 6.2

Proof. Firstly, vij(X) over the Grassmannian G̃r(p, n) takes the following form:

vij(X) =
〈
LogPij

(X),ΓĨp,n→Pij
(Zij)

〉
Pij

(1)
=

1

2

〈
LogPij

(X),ΓĨp,n→Pij
(Zij)

〉 (140)

where (1) comes from Tab. 8. Here, each Zij ∈ TĨp,n
G̃r(p, n) and Pij ∈ G̃r(p, n).

Riemannian logarithm. As shown by Nguyen et al. (2024, Prop. 3.12), the PP Grassmannian
logarithm can be calculated by the ONB logarithm:

LogPP
P (X) = π∗,π(P)

(
LogONB

π−1(P)(π
−1(X))

)
, (141)

where π(U) = UU⊤ : Gr(p, n) → G̃r(p, n) is the Riemannian isometry, and π∗,U (V) = UV ⊤ +
V U⊤ is the differential map for all U ∈ Gr(p, n) and V ∈ TUGr(p, n).

Tangent vector and Riemannian exponential map at the identity. As implied by Eq. (40), any
tangent vector at the identity has the following form:

V =

(
0 BT

B 0

)
∈ TĨp,n

G̃r(p, n) with B ∈ R(n−p)×p. (142)

The Riemannian exponential at the identity can also be simplified:

ExpĨp,n(V) = exp([V, Ĩp,n])Ĩp,n exp(−[V, Ĩp,n])

= exp

((
0 −BT

B 0

))
Ĩp,n exp

((
0 −BT

B 0

))⊤

=

(
exp

((
0 −BT

B 0

)))

1:p

((
exp

((
0 −BT

B 0

)))

1:p

)⊤
(143)

with (·)1:p as the first-p columns of the input square matrix.

Parallel transport starting at the identity. The parallel transport along geodesic from Ĩp,n to
P ∈ G̃r(p, n) can also be simplified. For any V ∈ TĨp,n

G̃r(p, n), denoting P̄ = LogĨp,n(P), we
have the following:

ΓĨp,n→P (V)
(1)
= exp

([
P̄ , Ĩp,n

])
V exp

(
−
[
P̄ , Ĩp,n

])

(2)
= exp

((
0 −BT

P
BP 0

))
V exp

((
0 −BT

P
BP 0

))⊤ (144)

The above derivation comes from the following.

(1) Tab. 8;

(2) P̄ =

(
0 BT

P
BP 0

)

Trivialization and simplification Combining Eqs. (140) and (142) to (144), we model each Pij such
that

Pij = exp

((
0 −BT

Pij

BPij
0

))
Ĩp,n exp

((
0 −BT

Pij

BPij
0

))⊤

(145)

where BPij = γij [BZij] with Zij =

(
0 BT

Zij

BZij
0

)
and BZij ∈ R(n−p)×p.

Denoting Oij = exp

((
0 −BT

Pij

BPij
0

))
, vij(X) can be simplified as

vij(X) =
1

2

〈
π∗,π(P)

(
LogONB

(Oij)1:p(π
−1(X))

)
, OijZijO

⊤
ij

〉
(146)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Orthonormal bases. Finally, let us deal with the orthonormal bases over TĨq,m
G̃r(q,m). For any

tangent vector V1, V2 ∈ TĨq,m
G̃r(q,m), we have the following:

⟨V1, V2⟩Ĩp,n =
1

2
⟨V1, V2⟩

=
1

2

〈(
0 BT

V1

BV1 0

)
,

(
0 BT

V2

BV2 0

)〉

= ⟨BV1
, BV2

⟩

(147)

Therefore, the orthonormal bases are

Uij =

(
0 E⊤

ij

Eij 0

)
,∀i = 1, · · · ,m− q ∧ j = 1, · · · , q (148)

where Eij ∈ R(m−q)×q is the standard basis matrix.

Combining Eqs. (143), (146) and (148), one can readily obtain the results.

K.7 PROOF OF PROP. 7.1

Proof. By Thm. 4.2, we have the following

Y
(1)
= ExpME

(
m∑

i=1

(
⟨LogEuc

pi
(x), ai⟩Euc

pi
Bi

)
)
,

(2)
= ExpME

(
m∑

i=1

(⟨x− pi, ai⟩Bi)

)
,

(3)
= ExpME

(
m∑

i=1

(
⟨x− pi, ai⟩f−1(ei)

)
)
,

(4)
= ExpME

(
f−1

(
m∑

i=1

⟨x− pi, ai⟩ei
))

,

(5)
= ExpME

(
f−1

(
Āx+ b̄

))
,

(6)
= ExpME (Ax+ b) .

(149)

The above comes from the following,

(1) pi, ai ∈ Rn, and {Bi} are the orthonormal bases over {TEM, gE};

(2) The Euclidean logarithm and metric become the familiar vector operation:

LogEuc
pi

(x) = x− pi

⟨v, w⟩Euc
p = ⟨v, w⟩ ,∀p ∈ Rn,∀v, w ∈ TpRn;

(3) f is the linear isomorphism pulling the standard inner product back to gE ; {ei} are the
standard orthonormal bases over the standard inner product;

(4) Linearity of f−1;

(5)
∑m

i=1⟨x− pi, ai⟩ei has the form of affine transformation;

(6) As f−1 has matrix representation, f−1(x) = Ãx, we have

f−1
(
Āx+ b̄

)
= Ã

(
Āx+ b̄

)

= ÃĀx+ Ãb̄.
(150)

Setting A = ÃĀ and b = Ãb̄, one can obtain the result.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

K.8 PROOF OF THM. J.1
We first prove a useful lemma.
Lemma K.2. We assume that the manifold M admits a gyrogroup (Nguyen, 2022a, Def. 2.2) defined
by14

x⊕ y = Expx (Γe→x (Loge (y))) ,∀p, q ∈ M, (151)
where e ∈ M is the origin of the manifold. Then, we have the following〈

Logp(x), a
〉
p
= ⟨Loge(⊖p⊕ x),Γp→e(a)⟩e , ∀x, p ∈ M and ∀a ∈ TpM. (152)

Proof. Credit of the proof: Eq. (151) comes from Nguyen & Yang (2023, Eq. (1)), who demon-
strated that several geometries admit gyrogroups based on this definition. The prototype of Eq. (152)
comes from App. I by Nguyen et al. (2024), which only deals with SPD matrices. Here, we further
extend the result into general gyrogroups.

Denoting ⊖p as the gyro inverse of p (⊖p⊕ p = e), we have

x
(1)
= p⊕ (⊖p⊕ x)

(2)
= Expp (Γe→p (Loge (⊖p⊕ x)))

(3)⇒Logp(x) = Γe→p (Loge (⊖p⊕ x)) .
(153)

The above comes from the following,

(1) Left cancellation law of the gyrogroup (Ungar, 2022, Thms. 1.13).

(2) Definition of gyro addition.

(3) Applying both sides with Logp(·).
By the last equation, we have

〈
Logp(x), a

〉
p
= ⟨Γe→p (Loge (⊖p⊕ x)) , a⟩p
(1)
= ⟨Loge (⊖p⊕ x) ,Γp→e(a)⟩e ,

(154)

where (1) comes from

• Parallel transport preserving the norm (Do Carmo & Flaherty Francis, 1992, Sec. 3.1)

• Γp→e ◦ Γe→p(v) = v,∀v ∈ TeM.

Now we begin to prove Thm. J.1.

Proof of Thm. J.1. The Riemannian metric at the identity element is

⟨v, w⟩0 = 4 ⟨v, w⟩ ,∀v, w ∈ T0Pm
K . (155)

Obviously, { 1
4ei}mi=1 is an orthonormal basis.

By Lem. K.2, we have
〈
Logpi

(x), ai
〉
pi

1

4
ei

(1)
= ⟨Log0(−pi ⊕K x),Γpi→0(ai)⟩0

1

4
ei

(2)
= ⟨Log0(−pi ⊕K x),Γpi→0(ai)⟩ ei
(3)
= ⟨Log0(−pi ⊕K x), zi)⟩ ei.

(156)

The above comes from the following,

(1) Lem. K.2 and ⊖Kp = −p∀p ∈ Pn
K .

(2) Eq. (155).

(3) ai = Γ0→pi(zi).

14We assume all the involved Riemannian operators are well-defined.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

K.9 PROOF OF THM. J.2

Proof. We only need to show the origin, the tangent space at the origin, and the inner product and an
orthonormal basis over the tangent space at the origin.

The hyperboloid is isometric to the Poincaré ball by the following diffeomorphism (Lee, 2006):

πPn
K→Hn

K
(x) =

(
1√
|K|

1−K∥x∥2
1 +K∥x∥2 ;

2xT

1 +K∥x∥2

)⊤

. (157)

The origin of hyperboloid is therefore defined as

e := πPn
K→Hn

K
(0) =

(
1√
|K|

, 0 · · · , 0
)⊤

. (158)

The Riemannian metric and tangent space at e are

TeHn
K = {(0, v⊤)⊤|v ∈ Rn}, (159)

⟨(0, v⊤)⊤, (0, w⊤)⊤⟩e = ⟨v, w⟩, ∀(0, v⊤)⊤, (0, w⊤)⊤ ∈ TeHn
K . (160)

Therefore, {(0, e⊤i)⊤}mi=1 is an orthonormal basis of TeHn
K with ei ∈ Rn.

Putting the above with Tab. 11, we can manifest Thm. 4.2 in the hyperboloid geometry.

38

	Introduction
	Preliminaries
	Revisiting MLR and FC layers
	Euclidean spaces: from MLR to the FC layer
	Riemannian MLR and gyro SPD & hyperbolic FC layers

	Riemannian fully connected and convolutional Layers
	Riemannian fully connected layers
	Riemannian convolutional layers
	Parameters manipulation

	SPD fully connected and convolutional layers
	Grassmannian fully connected and convolutional layers
	ONB Grassmannian transformation layers
	PP Grassmannian transformation layers
	Comparison with the existing Grassmannian transformation layers

	Manifold embedding and Riemannian fully connected layer
	Experiments
	Experiments on SPD geometries
	Experiments on Grassmannian geometries

	Conclusion
	Glossary of symbols
	Riemannian operators on the SPD and Grassmannian manifolds
	Riemannian operators on the SPD manifold
	Riemannian operators on the Grassmannian

	Addition discussions on the orthogonal basis
	Riemannian FC layers under isometries
	Relation with the gyro SPD fully connected layers
	Trivialized SPD fully connected layers
	Trivialized SPD Multinomial Logistic Regression
	Review of previous Grassmannian transformation layers
	Experimental details
	Details of the experiments on the SPD manifold
	Datasets
	SPD modelling

	Implementation details
	Details of the experiments on the Grassmannian
	Training efficiency

	Applications to hyperbolic spaces
	Geometries of the hyperbolic space
	Riemannian FC layers: manifestations in hyperbolic spaces
	Experiments
	Datasets
	Implementation details
	Results

	Proofs
	Proof of Thm. 4.2
	Proof of Prop. 4.4
	Proof of Thm. 5.1
	Proof of Prop. 5.2
	Proof of Thm. 6.1
	Proof of Thm. 6.2
	Proof of Prop. 7.1
	Proof of Thm. J.1
	Proof of Thm. J.2

