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Abstract

Cross-lingual learning, which can transfer001
knowledge from high-resource languages to002
low-resource languages, has been widely stud-003
ied. With the recent rise of large language004
models (LLMs), in-context learning (ICL) has005
shown remarkable performance, eliminating006
the need for fine-tuning parameters and reduc-007
ing the reliance on extensive labeled data. It008
sounds tempting to use cross-lingual ICL to009
solve cross-lingual tasks based on multilin-010
gual LLMs. However, the intricacies of cross-011
lingual ICL remain underexplored. Prior stud-012
ies on cross-lingual ICL overlooked the signifi-013
cance of language-specific nuances, neglecting014
not only the intrinsic linguistic properties of015
sentences but also the interlingual connections016
between sentences in different languages. In017
this paper, we propose a novel cross-lingual018
prompt structure: Language-Emphasized cross-019
lingual In-context learning (LEI). LEI imple-020
ments language alignment of demonstrations021
while introducing a third language (example022
language) as an example of language conver-023
sion to adapt LLMs to language conversion in024
cross-lingual tasks. Extensive experiments vali-025
date the state-of-the-art performance of LEI on026
42 cross-lingual tasks. 1027

1 Introduction028

Due to substantial disparities in the quantity of pub-029

licly available labeled datasets across different lan-030

guages, the ability to learn from the high-resource031

source context to solve tasks in low-resource tar-032

gets sounds enticing (Tanwar et al., 2023), which033

is known as cross-lingual learning. Traditional034

cross-lingual pre-trained language models with035

transformer structure, such as multilingual BERT036

(mBERT), have achieved effective cross-lingual037

transfer and performed surprisingly well on a large038

number of downstream tasks (Devlin et al., 2018).039

But those methods require language models to be040

1We will release our code when the paper is accepted.

fine-tuned on much supervised data for downstream 041

tasks to improve performance on low-resource lan- 042

guages (Ruder et al., 2019). With the popularity 043

of LLMs, cross-lingual learning can also be car- 044

ried out by fine-tuning multilingual LLMs. Yet for 045

multilingual LLMs with hundreds of millions of pa- 046

rameters, fine-tuning consumes a lot of computing 047

resources. 048

Large Language Models (LLMs) (Radford et al., 049

2019) (Chowdhery et al., 2023)have demonstrated 050

the ability to adapt to target tasks during inference 051

through few-shot demonstrations (Wei et al., 2022), 052

also referred to as in-context learning (ICL). In 053

ICL, LLMs require input-output pairs from training 054

data, often referred to as demonstrations (Brown 055

et al., 2020), with subsequent inputs for testing. 056

In this setup, LLMs predict the next token with- 057

out updating the model parameters. At the same 058

time, ICL relies on natural language instructions 059

that humans can understand (Dong et al., 2022), so 060

it provides a window for humans to explore the po- 061

tential of LLMs and has a wide range of application 062

prospects. The exploration of ICL using multilin- 063

gual LLMs in cross-lingual scenarios is currently 064

limited. There have been some notable advance- 065

ments in task alignment for cross-lingual tasks re- 066

cently (Tanwar et al., 2023). But the current ICL 067

structure produces near-random prediction results 068

when predicting certain languages, this situation oc- 069

curs in both multilingual and single-language ICLs 070

for some target languages (Tanwar et al., 2023) 071

(Webson and Pavlick, 2021) (Lin et al., 2021). In 072

addition, those prior studies on cross-lingual ICL 073

overlooked the significance of language-specific 074

nuances, neglecting not only the intrinsic linguistic 075

properties of sentences but also the interlingual con- 076

nections between sentences in different languages. 077

There is currently a need for an ICL structure that 078

focuses on cross-lingual tasks so that multilingual 079

LLMs can better solve cross-lingual tasks. Fig- 080

ure 1 shows the current difficulties encountered by 081

1



cross-lingual ICL.082

Figure 1: An illustration of cross-lingual in-context
learning with two demonstrations, making a prediction
between positive and negative in different languages.
The German ‘Heute ist es so schlimm. Schlecht’ in the
figure means ‘Today is so bad. Negative’. The Span-
ish ‘Ella lo está haciendo bien. Bueno’ in the figure
means ‘She is doing well. Positive’. The first and sec-
ond subfigures show that the traditional ICL format per-
forms well in single-lingual tasks, but performs poorly
in cross-lingual tasks. The third subfigure shows that
after introducing the example language (German) and
using the LEI structure, the LLM can achieve more ac-
curate inference.

In this paper, we propose LEI (Language-083

Emphasized cross-lingual In-context learning), a084

versatile cross-lingual ICL structure designed for085

adaptation to various language application scenar-086

ios. Specifically, we introduce a third language that087

is different from the source and target languages:088

the example language. Through the language con-089

version from the source language to the example090

language in the demonstration, we teach LLMs091

how to perform language conversion to complete092

the cross-lingual task from the source language to093

the target language. Then we add a new element094

‘Language’ to the ICL structure suitable for cross-095

lingual tasks, which serves as a good language096

aligner. At the same time, we also introduce our097

task language in the instruction of ICL to improve098

the adaptability of the LLMs. To adapt to our struc-099

ture, we modify task aligner (Tanwar et al., 2023)100

as a label aligner and apply it to our structure.101

We evaluate the LEI on two multilingual sen-102

timent analysis datasets. Our structure motivates 103

LLMs to demonstrate strong adaptability to cross- 104

lingual scenarios. LEI improves 35 of the 42 tasks 105

compared to baselines, with an average relative im- 106

provement of a staggering 16%. Additionally, LEI 107

effectively addresses the issue of random predic- 108

tion in some target languages and greatly improves 109

the reasoning capabilities of ICL. In summary, we 110

make the following contributions: 111

1)We are the first to introduce information about 112

the language itself and the associations between 113

languages to the cross-lingual ICL structure. And 114

we identify that cross-lingual ICL is not sensitive 115

to the number of demonstrations, but is greatly 116

affected by the selected source language. 117

2) We design a cross-lingual in-context learning 118

structure suitable for cross-lingual tasks by intro- 119

ducing a third language and emphasizing linguistic 120

information. 121

3) Experimental results verify the state-of-the- 122

art performance of LEI on two challenging datasets 123

in cross-lingual in-context learning settings. 124

2 Related Work 125

2.1 In-context Learning 126

Brown et al. (2020) introduced in-context few-shot 127

learning using the GPT-3 model. Many studies 128

showed that the performance of ICL is sensitive to 129

specific settings, including the prompting template, 130

the selection of in-context examples, and order of 131

examples, and so on (Zhao et al., 2021) (Lu et al., 132

2021). Dong et al. (2022) defined the formulation 133

of ICL. They considered the key idea of in-context 134

learning is to learn from analogy. Min et al. (2022a) 135

showed that ICL primarily derives its benefits from 136

the accurate distribution of inputs and labels, rather 137

than the correspondence between input and label. 138

2.2 Cross-lingual Learning. 139

Early cross-lingual works required training word 140

embeddings using multilingual datasets (Mikolov 141

et al., 2013). Multilingual pretrained models repre- 142

sented by mBERT (Devlin et al., 2018) were also 143

used to solve cross-language problems. Those lan- 144

guage models could improve multilingual capabil- 145

ity by augmenting data (Lin et al., 2022) or fine- 146

tuning models (Chen et al., 2021), but they required 147

more computing resources and labeled data. A few 148

previous works used ICL to solve cross-lingual 149

tasks. Zhang et al. (2021); Winata et al. (2021) 150

only used randomly selected text-label pairs to sim- 151
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ply explore cross-context learning. Tanwar et al.152

(2023) improved the cross-lingual demonstration153

in terms of the selection of examples and the align-154

ment of tasks. However, their work did not focus155

on adapting LLMs to language conversion, which156

is a key point in cross-lingual ICL. Thus, we focus157

on the design of ICL demonstrations with language158

emphasis. Inspired by the essence of ICL, i.e.,159

analogy, we use the analogy method to show the160

cross-lingual process to LLMs. Our experiments161

show that this approach inspires the cross-lingual162

capabilities of multilingual LLMs.163

3 Our Method: LEI164

In this section, we introduce LEI: Language-165

Emphasized cross-lingual In-context learning, a166

versatile cross-lingual in-context learning structure167

designed for adaptation to various language appli-168

cation scenarios. In Section 3.1, we introduce the169

selection strategy of demonstrations. Section 3.2170

describes the instruction based on the task and lan-171

guage. The implementation method of example172

language conversion is introduced in Section 3.3.173

Section 3.4 describes a language aligner for each174

input-output pair. In Section 3.5, we describe the175

label aligner and its application in our structure.176

Finally, we construct the ICL structure LEI and177

introduce the inference process in Section 3.6. The178

structure of each part of LEI is shown in Figure 2.179

3.1 Similarity example selection180

There is a source language s, an example language181

e, and a target language t. Let Ls = {(xis, yis)}i182

be a monolingual labeled dataset in language s,183

which is a collection of input example-label pairs.184

xis ∈ Xs and yis ∈ Ys. Similarly, there is Le =185

{(xie, yie)}i for language e and Lt = {xit}i for lan-186

guage t.Note that the example language is different187

from the source language and the target language188

that we introduce into the cross-lingual ICL, and189

we need to use the demonstration of the example190

language to adapt the LLMs to the language conver-191

sion. Its role is described in Section 3.3. Language192

s and language e are languages with more abundant193

labeled data, whose labeled datasets are very easy194

to obtain.195

Our goal is to select k demonstrations from196

sufficient annotated data and combine them with197

a small number of natural language prompts as198

demonstrations. Tanwar et al. (2023) prove k-NN199

cross-lingual demonstrations can be retrieved for200

multi-lingual ICL to strengthen source-target lan- 201

guage alignment. We improve their work and uti- 202

lize multilingual sentencetransformers (Reimers 203

and Gurevych, 2020) to extract the sentence em- 204

beddings of the test input xt ∈ Lt and the source 205

inputs Xs and Xe. Based on the cosine similar- 206

ity between the target input xjt and source input 207

xis ∈ Xs with xie ∈ Xe, we then extract the top k 208

demonstrations. The specific selection method is 209

as follows: Let ks = ⌈k/2⌉ be the demonstration 210

number of s, Let ke = k−ks be the demonstration 211

number of e. For one target language input ex- 212

ample xjt , by multilingual sentence encoder θ ,we 213

get all the embeddings mi
s and mi

e, m
i
s = θ(xis), 214

mi
e = θ(xie), and get mj

t = θ(xjt ). Then we calcu- 215

late the similarity score cis between mi
s and mj

t : 216

cis =
mj

t ·mi
s∥∥∥mj

t

∥∥∥
2
∥mi

s∥2
. (1) 217

The similarity score cie between mi
e and mj

t is: 218

cie =
mj

t ·mi
e∥∥∥mj

t

∥∥∥
2
∥mi

e∥2
. (2) 219

Then we select top ks sentences based on 220

cis: {x1s, ..., xkss }, top ke sentences based on 221

cie: {x1e, ..., xkee }. At the same time, we also 222

get their corresponding labels {y1s , ..., ykss } and 223

{y1e , ..., ykee }. We accomplish choosing k examples 224

for each input xjt . 225

3.2 Instruction 226

Dong et al. (2022) define the formulation of ICL: 227

C = {I, s(x1, y1), ...s(xk, yk)}. Task instruction 228

I often be used to indicate specific tasks. In a cross- 229

lingual task, we need to give instruction not only 230

to the task but also to the language to be used. We 231

create LI = {Is,e,t} for a given task and source 232

language s, example language e, target language 233

t. Our instruction has two parts: task introduc- 234

tion and language introduction. Task introduction 235

describes the task we will accomplish, language in- 236

troduction emphasizes what language will be used. 237

For example, when the source language is English, 238

the example language is Japanese and the target 239

language is German, and the task is emotional clas- 240

sification, “Sentiment classification of the rating 241

text, with the example language being English and 242

Japanese, and the last sentence in German.” will be 243

the Instruction. 244
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Figure 2: Explanation of LEI structure. In this figure, demonstration number k is 4. The source language is English,
the example language is Japanese, and the target language is German.

3.3 Example language conversion245

We believe that abrupt language conversions are an246

important constraint on multilingual LLMs. Like247

the essence of ICL: learn from analogy, we decide248

to use an analogy to adapt the LLM to example lan-249

guage conversion. So we choose an example lan-250

guage based on the source language. Labeled data251

is readily available in both languages. As we define252

in Section 3.1, we select ks and ke demonstrations253

from source language s and example language e,254

respectively, to form k demonstrations. The demon-255

strations are arranged in the following way: we put256

the demonstrations of the source language s in front257

of the demonstrations of the example language e.258

Target language input will be placed last. In this259

way, with the conversion example from source lan-260

guage to example language, the LLM can learn the261

language conversion from it, to better complete the262

final task of the target language.263

3.4 Language aligner264

Dong et al. (2022) have constructed the formulation265

of ICL. This structure has achieved good results in266

most of the tasks. However, in cross-lingual tasks,267

this structure often struggles to perform well. We268

add a new element ‘Language’ to the structure. It269

can explicitly linguistically align the demonstra-270

tions. Let Ll = {As,t′} be a language aligner set.271

It should be noted that language s is the source272

language we define in Section 3.1, but language t′273

depends on the language of the current input. For274

the same example, when the source language is275

English, the example language is Japanese and the276

target language is German, there will be three dif-277

ferent language aligners for three different inputs278

of language. For the source language English input, 279

our language aligner is As,s i.e. "Language: En- 280

glish". For the example language Japanese input, 281

our language aligner is As,e i.e. "Language: En- 282

glish". For the target language German input, our 283

language aligner is As,t i.e. "Language: German". 284

3.5 Label aligner 285

After completing the input language alignment, we 286

proceed to align the labels. We improve the de- 287

sign of Tanwar et al. (2023). We think the task 288

alignment in their article serves as a label align- 289

ment. We have modified it in conjunction with 290

our cross-lingual demonstration structure. We cre- 291

ate La = Bs,t′ as a collection of statements that 292

emphasizes the difference between the labels of 293

language s and language t′. Note that t′ depends 294

on the language of the next input when a language 295

conversion occurs for a demonstration. For the 296

same example, when the source language is En- 297

glish, the example language is Japanese and the 298

target language is German, there will be two differ- 299

ent label aligners for two different converts of the 300

demonstration language. When the language is con- 301

verted from source language s to example language 302

e, our label aligner is Bs,e: "In Japanese bad means 303

悪い and good means良い.", it maps the source 304

language label (bad and good) to the example lan- 305

guage label (悪い and良い) of the same meaning. 306

Similarly, when the language is converted from 307

source language s to target language t, our label 308

aligner is Bs,t: "In German bad means schlecht and 309

good means gut." (‘schlecht’ and ‘gut’ in German 310

mean ‘bad’ and ‘good’ in English.) 311
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3.6 Inference312

Based on the test input xt ∈ Lt, we define a demon-313

stration set C that can be adapted to cross-language314

tasks:315

C = {Is,e,t, (As,s, x
1
s, y

1
s), ..., (As,s, x

ks
s , ykss )

, Bs,e, (As,e, x
1
e, y

1
e), ..., (As,e, x

ke
e , ykee ), Bs,t}.

(3)
316

Then we also need to perform language alignment317

on the input of target language t for the test input318

xt:319

x′t = (As,t, xt). (4)320

Then we infer the label yt ∈ Yt, where Yt is a set321

of candidate answers in language t corresponding322

to the new test input x′t:323

ŷ = arg max
yt∈Yt

fM (yt|C, x′t), (5)324

where fM (·) is the score function of the whole325

input sequence with the LLM M .326

4 Experimental Setup327

4.1 Mutilingual LLM328

After many comparative experiments with other329

large models, we are consistent with experiments330

of Tanwar et al. (2023). We experiment with a mul-331

tilingual LLM XGLM (Lin et al., 2021) 7.5 billion332

variant. It shows better performance on multiple333

tasks than other large multi-language models.334

4.2 Datasets335

We experiment on two datasets: Multilingual Ama-336

zon Reviews Corpus (MARC) (Keung et al., 2020)337

and Cross-language sentiment classification (CLS)338

(Prettenhofer and Stein, 2010). Different from the339

setting of Tanwar et al. (2023), we do not choose340

another dataset with only two languages, because341

our experimental setup requires at least three lan-342

guages. At the same time, we reconstruct the two343

datasets we adopted. (We describe the two datasets344

in detail in Appendix A. The languages in the data345

set are introduced in Appendix B)346

4.3 Baselines347

There are two methods we use to compare with348

LEI. Random Prompting is the most classic method349

for constructing demonstrations. This method is350

also used by Tanwar et al. (2023) as a contrast.351

The demonstration examples used in ICL are all352

randomly selected. X-InSTA (Tanwar et al., 2023)353

proposed methods of semantic alignment and task 354

alignment. Semantic alignment is to find the k 355

sentences that are semantically closest to the target 356

language input within the source language data 357

set as demonstrations. Task alignment is the label 358

aligner we continue to use. 359

4.4 Implementation Details 360

Following the setting of X-InSTA (Tanwar et al., 361

2023), we set the demonstration number k to be 4, 362

and the maximum input length to be 1024 tokens. 363

See Appendix C for specific hyperparameter set- 364

tings. If the demonstration text is too long, we will 365

truncate the demonstration text. For each source- 366

target language task, we select unused languages in 367

the dataset as example languages one by one. We 368

calculate the result of this source-target language 369

task as the average of the results of all example lan- 370

guage situations. We calculate the Macro-F1 scores 371

of the source-target language task in the experimen- 372

tal tables as the average of the Macro-F1 scores of 373

all example language situations. For example, in 374

the dataset MARC, if we select English (es) as 375

the source language and German (de) as the target 376

language, then we will take turns selecting other 377

languages in the data set (Spanish (es), French (fr), 378

Japanese (ja), Mandarin (zh)) as the example lan- 379

guage. They are used as four subtasks, and the 380

average Macro-F1 scores of these four subtasks 381

are used as the result of the task of English as the 382

source language and German as the target language. 383

Complete results are presented in the Appendix D. 384

We construct the data set into 10 language-task 385

pairs, 42 source-target language cross-lingual set- 386

tings, and set up a total of 144 specific subtasks 387

based on different example languages e. 388

5 Results and Analysis 389

5.1 Main results 390

Results of LEI on two datasets are reported in Ta- 391

ble 1 and 2. (See Appendix D for complete ex- 392

perimental results.) Note that for the sake of fair- 393

ness, the baseline results are reproduced in our 394

environment according to the setting of Tanwar 395

et al. (2023). On the MARC dataset, the macro F1 396

scores of different tasks increased by an average of 397

14.6%. On the CLS dataset, the macro F1 scores 398

of different tasks increased by an average of 19%. 399

It is worth noting that in the context where the 400

target language is German, LEI stimulates the ex- 401

tremely strong reasoning ability of LLM. The ran- 402
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dom prediction of LLM is avoided. In tasks with403

German as the target language, the F1 score im-404

provements reached 94.7% and 62.4% respectively.405

However, the performance of LEI in certain lan-406

guages (such as Mandarin) is still unsatisfactory.407

It may be that the large language model is still408

lacking in capabilities in this language and cannot409

complete these language tasks in a cross-lingual410

ICL manner. This issue has also been raised by411

previous works (Tanwar et al., 2023).412

SRC
TAR de en es fr ja zh

Random Prompting
de - 0.446 0.517 0.547 0.454 0.413
en 0.380 - 0.761 0.663 0.526 0.362
es 0.339 0.696 - 0.563 0.519 0.445
fr 0.340 0.692 0.864 - 0.479 0.410
ja 0.333 0.701 0.678 0.612 - 0.678
zh 0.333 0.632 0.836 0.402 0.521 -

AVG 0.345 0.633 0.731 0.557 0.499 0.462
X-InSTA(2023)

de - 0.721 0.666 0.865 0.718 0.337
en 0.397 - 0.886 0.790 0.783 0.341
es 0.348 0.857 - 0.892 0.835 0.339
fr 0.354 0.849 0.900 - 0.779 0.350
ja 0.333 0.817 0.890 0.808 - 0.372
zh 0.333 0.713 0.890 0.750 0.797 -

AVG 0.353 0.791 0.847 0.821 0.782 0.348
LEI(Ours)

de - 0.804 0.866 0.866 0.867 0.356
en 0.809 - 0.871 0.883 0.859 0.36
es 0.644 0.888 - 0.906 0.897 0.343
fr 0.699 0.862 0.902 - 0.889 0.377
ja 0.599 0.892 0.848 0.809 - 0.409
zh 0.685 0.769 0.893 0.824 0.902 -

AVG 0.687 0.843 0.876 0.858 0.883 0.369

Table 1: Comparison of Macro-F1 scores between two
ICL methods on MARC. ‘SRC’ means source language,
and ‘TAR’ means target language. The same meaning
is represented in the table that follows.

Different demonstration number. To verify413

the generality of our method, we conduct experi-414

ments on different numbers of demonstrations k in415

two datasets (k = 2, 3, 4). The result is reported in416

Table 3 and 4. In most experimental settings, LEI417

is overall ahead of the baseline. We enable LLM418

to make accurate inferences using only two demon-419

strations. This also proves the effectiveness of our420

method. A very important finding is that the value421

of demonstration number k has little impact on the422

reasoning ability of LLM, which is different from423

the experimental conclusion of (Min et al., 2022b).424

We believe that for text in the target language, too425

many demonstrations in other languages will cause426

LLMs to become dependent on this language. This427

affects LLM’s cross-lingual reasoning capabilities.428

SRC
TAR de en fr ja

Random Prompting
de - 0.517 0.597 0.618
en 0.682 - 0.412 0.609
fr 0.545 0.694 - 0.666
ja 0.344 0.595 0.475 -

AVG 0.524 0.621 0.543 0.697
X-InSTA(2023)

de - 0.622 0.788 0.779
en 0.588 - 0.778 0.794
fr 0.524 0.821 - 0.834
ja 0.339 0.701 0.705 -

AVG 0.483 0.715 0.757 0.802
LEI(Ours)

de - 0.736 0.868 0.828
en 0.806 - 0.902 0.818
fr 0.793 0.845 - 0.862
ja 0.757 0.883 0.751 -

AVG 0.785 0.821 0.84 0.836

Table 2: Comparison of Macro-F1 scores between two
ICL methods on CLS.

Method
TAR de en es fr ja zh

k = 2
X-InSTA 36.3 81.7 86.9 83.9 80.7 34.0

LEI 71.8 86.6 87.1 84.9 84.0 45.5
k = 3

X-InSTA 33.2 81.1 86.9 84.6 80.9 33.9
LEI 72.8 85.5 86.8 85.3 85.5 41.5

k = 4
X-InSTA 35.3 79.1 84.7 82.1 78.2 34.8

LEI 68.7 84.3 87.6 85.8 88.3 36.9

Table 3: Comparison of Macro-F1 scores (%) between
two ICL methods in different settings of k on MARC.
The results in the table are the average of all experimen-
tal results for a target language.

Method
TAR de en fr ja

k = 2
X-InSTA 51.5 75.6 75.4 78.9

LEI 78.9 84.7 83.0 79.7
k = 3

X-InSTA 50.5 73.2 75.9 80.3
LEI 78.6 83.8 84.0 81.3

k = 4
X-InSTA 48.3 71.5 75.7 80.2

LEI 78.5 82.1 84.0 83.6

Table 4: Comparison of Macro-F1 scores (%) between
two ICL methods in different settings of k on CLS.
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Setting
TAR MARC CLS

de en es fr ja zh de en fr ja
LEI 0.687 0.843 0.876 0.858 0.883 0.369 0.785 0.821 0.840 0.836

w/o e-l-c 0.426 0.842 0.885 0.845 0.821 0.370 0.575 0.760 0.836 0.820
w/o l-a 0.655 0.769 0.874 0.848 0.856 0.361 0.762 0.749 0.829 0.794

w/o instruction 0.684 0.816 0.855 0.833 0.875 0.362 0.769 0.790 0.756 0.827

Table 5: Ablation study on the contribution of different parts of the LEI structure under two datasets. Mean macro-F1
scores are reported for every target language. (w/o means without, e-l-c means example language conversion, l-a
means language aligner, inst- means instruction.)

5.2 Ablation Study and Analysis429

Function of different parts. To investigate the430

effect of the proposed methods, we perform the431

ablation study as shown in Table 5. We find that432

in most cases when we independently removed433

certain components of the LEI, the performance434

dropped significantly. This suggests that all three435

language emphasis components contribute to the436

overall structure. And, using three language empha-437

sis strategies at the same time can further improve438

performance, which shows that the three language439

emphasis strategies are complementary.440

Figure 3: Line chart of changes in macro-F1 scores
with ke under different source language and example
language settings, e.g., en-fr represents that the source
language is English and the example language is French.
The dataset we used is CLS.

Effect of Example Language Conversion. It441

can be seen from ablation experiments that example442

language conversion can significantly improve the443

reasoning capabilities of LLM in certain target lan-444

guage tasks. To evaluate the impact of introducing445

an example language on LLM’s cross-lingual ICL446

capabilities, we take German as the target language447

as an example. While keeping the total number of448

demonstrations k = 4 unchanged, we use differ-449

ent example language demonstration numbers ke450

on the two datasets to construct LEI. The result is451

Figure 4: Line chart of changes in macro-F1 scores
with ke under different source language and example
language settings, e.g., en-fr represents that the source
language is English and the example language is French.
The dataset we used is MARC.

shown in the figure 3 and 4. ke = 0 means that 452

the demonstration of the example language is not 453

used. ke = 4 means that the k demonstrations used 454

are all in example language. We can observe that 455

when German is used as the target language, the 456

introduction of an example language (ke = 1, 2, 3) 457

can greatly improve the reasoning ability of LLMs. 458

This situation is seen in other languages as well. 459

We infer that LLM learns from language conver- 460

sion of demonstrations to reason across language 461

contexts. 462

SRC
TAR de en es fr ja zh

de - 0.804 0.866 0.866 0.867 0.356
en 0.809 - 0.871 0.883 0.859 0.36
es 0.644 0.888 - 0.906 0.897 0.343
fr 0.699 0.862 0.902 - 0.889 0.377
ja 0.599 0.892 0.848 0.809 - 0.409
zh 0.685 0.769 0.893 0.824 0.902 -

AVG 0.687 0.843 0.876 0.858 0.883 0.369

Table 6: Macro-F1 scores when used LEI on MARC.
Bold refers to the result of the source language perform-
ing the best in this target language task.
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Source Language Selection. Cross-lingual463

tasks are usually oriented to a language with less la-464

beled data. However, there may be more languages465

that have a large amount of labeled data. How to466

choose a suitable language as a source language as467

an example of cross-lingual ICL is also worth study-468

ing. We focus on source languages that belong to469

the same language family as the target language. A470

comparison table of languages and language fami-471

lies can be found in the appendix B. Among them,472

although Japanese and Mandarin do not belong to473

the same language family, the characters of the two474

languages are relatively similar, so we also regard475

them as languages similar to the same language476

family. In Tabel 6, we find that LLMs have the477

best inference effect when using a language in the478

same language family as the target language as the479

source language. (German and English belong to480

the same language family, Spanish and French be-481

long to the same language family.) The exception482

is English as the target language. The reason is that483

multilingual LLMs use much more English data484

than other languages when training. Therefore, we485

emphasize that when choosing a source language,486

you need to choose a language family that belongs487

to the same language family as the target language488

or has a relatively similar script.489

The more demonstrations, the worse the ef-490

fect? Section 5.1 shows the performance of LEI un-491

der different numbers of demonstrations k, which492

displays a counter-intuitive phenomenon. The in-493

crease in the number of demonstrations does not im-494

prove the reasoning ability of LLMs. We conduct495

comparative experiments on the MARC dataset be-496

tween single-lingual tasks and cross-lingual tasks497

under the two methods, whose result is shown in498

the figure 5. In order to ensure the universality of499

the results, we remove languages similar to Chi-500

nese that would cause LLMs to generate random501

guesses during the experiment. Experimental re-502

sults show that single-language tasks are very sen-503

sitive to the value of k, while the opposite is true504

for cross-language tasks. The value of k has little505

impact on it. Even when k is larger, it will affect506

the reasoning ability of LLMs. While the LEI is507

better than X-InSTA (Tanwar et al., 2023) in terms508

of performance, it can also make better use of the509

increased demonstrations, avoiding the negative510

impact of these different language demonstrations511

on the inference of the LLM.512

Figure 5: Line chart of changes in macro-F1 scores
with k under different method and setting. Where X-
InSTA is the method in the baselines. No-cross denotes
a single language task. That is, the source language and
the target language are the same language. The value of
each point in the graph is the average of the results of
all target language subtasks.

6 Conclusion 513

In this work, we explore the problem of LLM 514

language conversion adaptation in cross-lingual 515

ICL. For the first time, we find that introducing a 516

third example language can improve cross-lingual 517

ICL capabilities, which perform extremely well 518

in some languages (improved from random pre- 519

diction to a certain degree of accuracy). At the 520

same time, adding a language aligner component 521

to cross-lingual ICL can also realize the language 522

alignment function and improve cross-lingual capa- 523

bilities. Based on the above findings, we designed 524

a cross-lingual ICL structure based on language en- 525

hancement: LEI. LEI has achieved great improve- 526

ments over traditional cross-lingual ICL methods 527

in various cross-lingual tasks. We examine the char- 528

acteristics of cross-lingual ICL and find that cross- 529

lingual ICL is not sensitive to the number of demon- 530

strations, while the language family has a greater 531

impact on the performance of cross-lingual ICL. 532

These provide guidance for future cross-lingual 533

ICL research directions. 534
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Limitation535

Poor performance in specific languages: As536

shown in the experimental results, LEI performs537

very poorly in Chinese. There are also many stud-538

ies that have found this problem, that is, certain539

languages perform poorly in cross-lingual environ-540

ments. The reason is that the segmentation of Chi-541

nese in tokenization is quite different from that of542

other languages, and the training during the pre-543

training process is insufficient. This is also one of544

the problems that multilingual LLMs need to solve.545

Input length: Texts such as human comments546

are often very long, so in some situations, prompts547

may exceed the limit of 1024 tokens. However,548

summarizing long texts in multiple languages is549

likely to lead to a lack of semantics and thus af-550

fect the performance of cross-lingual ICL. At the551

same time, it also makes the operation too compli-552

cated, which is contrary to the original intention of553

ICL’s simple demonstration. We can only truncate554

demonstration text that is too long. We are also con-555

tinuing to work on synopsis summary structures556

for multiple languages.557

Beyond classification: Our work only targets558

cross-lingual classification tasks, and cross-lingual559

generation tasks have not yet been explored. Our560

future work will also focus on cross-lingual natural561

language generation tasks.562

Larger LLMs: Due to limitations of computing563

resources, we did not verify our experiments in564

LLMs with larger parameter scales.565
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A Datasets671

Multilingual Amazon Reviews Corpus:672

MARC (Keung et al., 2020) is a large-scale673

multilingual corpus of Amazon reviews of674

customers. There are six languages in this dataset:675

English, Spanish, German, French, Japanese, and676

Mandarin. Each language possesses a training677

dataset comprising 200K instances utilized for678

selecting our demonstrations, along with a test set679

consisting of 40,000 reviews categorized as either680

positive or negative.681

Cross-language sentiment classification:682

CLS (Prettenhofer and Stein, 2010) is a multilin-683

gual corpus of four languages – German, English,684

French, and Japanese. The dataset comprises685

reviews on DVDs, music, and books, featuring a686

training set and a test set, each containing 2,000687

sentences for every language, categorized as either688

negative or positive.689

B Language description690

The language used in the experiment and related691

information are shown in Table 7.692

Language Language Family ISO 639-1 code

GERMAN IE: GERMANIC DE
ENGLISH IE: GERMANIC EN
FRENCH IE: ITALIC FR
SPANISH IE: ITALIC ES

JAPANESE JAPANIC JA
MANDARIN SINO-TIBETAN ZH

Table 7: list of languages along with their corresponding
ISO codes utilized in our experiments.

C Hyperparameters693

All codes were written in PyTorch. We utilized694

the Huggingface repository to load the LLM and695

used the sentence transformer to extract semantic696

similarity. Sklearn was used to calculate the F1697

score. Table 8 shows the experimental environment698

and hyperparameter settings.699

D Complete Result700

The complete experimental data in the main ex-701

periment (including the different values of k and702

all the selected example languages) are shown in703

Tables 9, 10, 11, 12, 13, 14.704

Hyperparameter Value
Model XGLM-7.5B
GPU NVIDIA RTX 4090

Batch Size 2
Max length 1024

k 2,3,4,8,16

Table 8: Hyperparameters in experiments.

TAR de en es fr ja zh
SRC EXA
de en - - 0.863 0.836 0.813 0.336
de es - 0.871 - 0.864 0.855 0.334
de fr - 0.871 0.897 - 0.820 0.338
de ja - 0.760 0.820 0.837 - 0.617
de zh - 0.852 0.876 0.811 0.858 -
en de - - 0.876 0.895 0.837 0.346
en es 0.890 - - 0.864 0.843 0.370
en fr 0.885 - 0.881 - 0.822 0.402
en ja 0.902 - 0.859 0.860 - 0.652
en zh 0.747 - 0.887 0.895 0.859 -
es de - 0.891 - 0.877 0.824 0.334
es en 0.874 - - 0.892 0.862 0.341
es fr 0.832 0.874 - - 0.851 0.342
es ja 0.638 0.886 - 0.872 - 0.602
es zh 0.401 0.879 - 0.836 0.824 -
fr de - 0.885 0.884 - 0.827 0.342
fr en 0.891 - 0.894 - 0.833 0.402
fr es 0.850 0.904 - - 0.870 0.360
fr ja 0.662 0.888 0.860 - - 0.672
fr zh 0.477 0.868 0.876 - 0.812 -
ja de - 0.901 0.899 0.862 - 0.599
ja en 0.639 - 0.874 0.871 - 0.555
ja es 0.755 0.874 - 0.872 - 0.586
ja fr 0.823 0.888 0.894 - - 0.574
ja zh 0.369 0.869 0.867 0.835 - -
zh de - 0.788 0.833 0.787 0.807 -
zh en 0.766 - 0.887 0.844 0.846 -
zh es 0.740 0.843 - 0.771 0.866 -
zh fr 0.848 0.810 0.882 - 0.835 -
zh ja 0.367 0.822 0.854 0.828 - -

Table 9: Macro-F1 scores of LEI on MARC. EXA in
the table is the example language. Among k = 2.

TAR de en fr ja
SRC EXA
de en - - 0.819 0.799
de fr - 0.795 - 0.793
de ja - 0.768 0.842 -
en de - - 0.844 0.785
en fr 0.778 - - 0.780
en ja 0.877 - 0.86 -
fr de - 0.871 - 0.805
fr en 0.839 - - 0.822
fr ja 0.760 0.868 - -
ja de - 0.881 0.825 -
ja en 0.741 - 0.787 -
ja fr 0.837 0.896 - -

Table 10: Macro-F1 scores of LEI on CLS. EXA in the
table is the example language. Among k = 2.
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TAR de en es fr ja zh
SRC EXA
de en - - 0.856 0.854 0.831 0.333
de es - 0.819 - 0.855 0.848 0.333
de fr - 0.841 0.896 - 0.814 0.334
de ja - 0.800 0.746 0.852 - 0.505
de zh - 0.829 0.872 0.821 0.868 -
en de - - 0.849 0.898 0.845 0.334
en es 0.903 - - 0.875 0.855 0.335
en fr 0.866 - 0.881 - 0.823 0.350
en ja 0.918 - 0.831 0.888 - 0.560
en zh 0.792 - 0.889 0.844 0.875 -
es de - 0.893 - 0.884 0.856 0.334
es en 0.863 - - 0.899 0.863 0.335
es fr 0.830 0.883 - - 0.867 0.335
es ja 0.657 0.898 - 0.898 - 0.535
es zh 0.409 0.882 - 0.833 0.831 -
fr de - 0.878 0.887 - 0.832 0.334
fr en 0.886 - 0.905 - 0.849 0.339
fr es 0.877 0.876 - - 0.863 0.339
fr ja 0.730 0.877 0.887 - - 0.562
fr zh 0.562 0.865 0.897 - 0.882 -
ja de - 0.896 0.897 0.849 - 0.516
ja en 0.661 - 0.845 0.824 - 0.498
ja es 0.748 0.877 - 0.877 - 0.539
ja fr 0.788 0.888 0.865 - - 0.555
ja zh 0.377 0.856 0.859 0.815 - -
zh de - 0.771 0.850 0.810 0.871 -
zh en 0.762 - 0.887 0.864 0.854 -
zh es 0.724 0.813 - 0.764 0.895 -
zh fr 0.843 0.877 0.895 - 0.869 -
zh ja 0.364 0.782 0.859 0.855 - -

Table 11: Macro-F1 scores of LEI on MARC. EXA in
the table is the example language. Among k = 3.

TAR de en fr ja
SRC EXA
de en - - 0.883 0.809
de fr - 0.768 - 0.793
de ja - 0.734 0.842 -
en de - - 0.889 0.821
en fr 0.780 - - 0.800
en ja 0.896 - 0.862 -
fr de - 0.876 - 0.820
fr en 0.825 - - 0.830
fr ja 0.825 0.863 - -
ja de - 0.894 0.800 -
ja en 0.642 - 0.762 -
ja fr 0.749 0.888 - -

Table 12: Macro-F1 scores of LEI on CLS. EXA in the
table is the example language. Among k = 3.

TAR de en es fr ja zh
SRC EXA
de en - - 0.867 0.873 0.875 0.333
de es - 0.800 - 0.850 0.859 0.333
de fr - 0.812 0.912 - 0.828 0.333
de ja - 0.782 0.784 0.875 - 0.423
de zh - 0.823 0.902 0.866 0.906 -
en de - - 0.834 0.913 0.853 0.333
en es 0.902 - - 0.847 0.853 0.333
en fr 0.859 - 0.892 - 0.832 0.337
en ja 0.908 - 0.846 0.900 - 0.438
en zh 0.566 - 0.910 0.872 0.897 -
es de - 0.900 - 0.918 0.909 0.333
es en 0.855 - - 0.917 0.913 0.333
es fr 0.844 0.870 - - 0.896 0.333
es ja 0.534 0.880 - 0.915 - 0.374
es zh 0.342 0.900 - 0.875 0.871 -
fr de - 0.872 0.903 - 0.888 0.333
fr en 0.857 - 0.910 - 0.893 0.333
fr es 0.875 0.857 - - 0.866 0.334
fr ja 0.655 0.845 0.895 - - 0.507
fr zh 0.407 0.875 0.898 - 0.907 -
ja de - 0.912 0.887 0.722 - 0.416
ja en 0.604 - 0.864 0.801 - 0.392
ja es 0.675 0.897 - 0.898 - 0.413
ja fr 0.770 0.901 0.863 - - 0.416
ja zh 0.345 0.857 0.777 0.813 - -
zh de - 0.746 0.855 0.852 0.901 -
zh en 0.827 - 0.910 0.878 0.904 -
zh es 0.679 0.800 - 0.694 0.904 -
zh fr 0.874 0.764 0.912 - 0.898 -
zh ja 0.36 0.765 0.894 0.873 - -

Table 13: Macro-F1 scores of LEI on MARC. EXA in
the table is the example language. Among k = 4.

TAR de en fr ja
SRC EXA
de en - - 0.868 0.835
de fr - 0.761 - 0.820
de ja - 0.710 0.867 -
en de - - 0.904 0.804
en fr 0.744 - - 0.832
en ja 0.867 - 0.899 -
fr de - 0.857 - 0.862
fr en 0.769 - - 0.862
fr ja 0.817 0.832 - -
ja de - 0.876 0.607 -
ja en 0.756 - 0.831 -
ja fr 0.757 0.890 - -

Table 14: Macro-F1 scores of LEI on CLS. EXA in the
table is the example language. Among k = 4.
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