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Abstract

Approaches for teaching learning agents via hu-
man demonstrations have been widely studied and
successfully applied to multiple domains. How-
ever, the majority of imitation learning work uti-
lizes only behavioral information from the demon-
strator, i.e. which actions were taken, and ignores
other useful information. In particular, eye gaze
information can give valuable insight towards
where the demonstrator is allocating visual at-
tention, and holds the potential to improve agent
performance and generalization. In this work,
we propose Gaze Regularized Imitation Learning
(GRIL), a novel context-aware, imitation learning
architecture that learns concurrently from both hu-
man demonstrations and eye gaze to solve tasks
where visual attention provides important context.
We apply GRIL to a visual navigation task, in
which an unmanned quadrotor is trained to search
for and navigate to a target vehicle in a photo-
realistic simulated environment. We show that
GRIL outperforms several state-of-the-art gaze-
based imitation learning algorithms, simultane-
ously learns to predict human visual attention,
and generalizes to scenarios not present in the
training data. Supplemental videos and code can
be found athttps://sites.google.com/
view/gaze-reqgularized—-1l/.

1. Introduction

In the human-robot interaction field, imitation learning (IL),
also called learning from demonstration, is widely used
to rapidly train artificial agents to mimic the demonstra-
tor via supervised learning (Argall et al., [2009; Osa et al.,
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Figure 1. GRIL system diagram: The proposed multi-objective
learning architecture learns from human demonstrations consisting
of actions and eye gaze data to train an imitation learning policy.

2018). IL using human-generated data has been widely
studied and successfully applied to multiple domains such
as self-driving cars (Codevilla et al., 2019)), robot manipu-
lation (Rahmatizadeh et al., |2018)), and navigation (Silver|
et al.,2010). Yet, while IL is a simple and straightforward
approach for teaching intelligent behavior, it suffers from
sample complexity issues when learning an end-to-end be-
havior policy directly from images, e.g. mapping images
from a robot’s camera to actions.

One avenue to improving IL sample efficiency and general-
izability is to learn not only from the demonstrator’s actions,
but also from additional signals such eye gaze. While the ma-
jority of existing work on IL ignores physiological data (Ar{
gall et al., 2009), eye gaze is a rich signal that has been
shown to strongly correlate with visual attention (Doshi &
Trivedi, 2012)), guide our actions, and filter parts of the envi-
ronment perceived as relevant (Schiitz et al.,2011). Thus,
eye gaze may provide important contextual information
about a person’s thought process and provide an indication
of visual attention that can be leveraged when training Al
agents. For example, when people provide demonstrations
for tasks such as flying a quadrotor via a joystick, eye gaze
is often disregarded or ignored, even though it is necessary
to perform the task and can be easily collected via widely
available eye tracking hardware (Poole & Balll 20006) at
almost no additional burden to the demonstrator. In our
work, we leverage the demonstrator’s eye gaze, recorded
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with minimal cost during the demonstrations, as a measure
of attention in conjunction with human demonstrations to
perform imitation learning with less demonstrator data.

Several previous works have utilized eye gaze to improve
imitation learning (Zhang et al., 2018} Saran et al.| [2020;
Chen et al.| [2019). However, these methods may still re-
quire significant human demonstrator time. For instance, the
gaze-augmented Atari-HEAD dataset (Zhang et al.| [2020)
collects an average of 5.85 hours of gameplay data per Atari
game. Furthermore, the applications considered in these
works may be significantly simpler than the environment a
real-world robot might encounter. For instance, the Atari
setup inZhang et al.|(2018;2020);Saran et al.{(2020); Tham/{
mineni et al.|(2021)) is synchronous and does not resemble
the physical world, the simulated driving setup in |Chen
et al.|(2019) involves following a well-defined track, and the
drone task in Pfeiffer et al.[(2022)) involves following a ref-
erence trajectory (provided to the policy network) without
interacting with any objects in the environment.

We propose Gaze-Regularized Imitation Learning (GRIL), a
novel end-to-end algorithm for learning continuous control
from human demonstrations and eye gaze. GRIL jointly
learns to predict control commands and eye gaze, regulariz-
ing policy training via gaze prediction as shown in Figure[T}
This method has the potential to improve robust autonomy
and decrease the amount of demonstration data required to
learn reliable policies in visually complex environments.

We demonstrate GRIL in an autonomous quadrotor control
task in the AirSim (Shah et al.,[2018b) simulator, training a
visuomotor policy (i.e., combining perception and control)
to navigate a quadrotor to a target object. GRIL is trained
in supervised fashion via a dataset collected from human
demonstrators flying the quadrotor in the simulator, which
contains the RGB images, human demonstrator’s eye gaze
coordinates, and control commands at each timestep. The
proposed method jointly learns to predict gaze coordinates
and control commands. In the quadrotor navigation task,
we hypothesize that the gaze coordinates provide context
relevant to the target, identifying regions of interest in the
scene and acting as an attention mechanism to guide the
policy toward the target. Specifically, we contribute:

1. GRIL, an end-to-end, model-free algorithm with a
novel multi-objective architecture for learning from
images, demonstrator actions, and human eye gaze. To
our knowledge, GRIL is the first IL method to regular-
ize policy learning via a multi-objective architecture
that jointly predicts gaze and policy actions.

2. A demonstration of our gaze-based approach using
an asynchronous, realistic quadrotor navigation task
with high-dimensional state and action spaces and a
high-fidelity, photorealistic simulator. To our knowl-
edge, this is the most complex task considered in a

gaze-augmented imitation learning work, as it requires
continuous control in a photorealistic, outdoor envi-
ronment without clear markers such as roads denoting
where the agent should travel.

3. A quantitative evaluation showing that GRIL is able
to significantly outperform three baseline methods: a
standard behavior cloning model that does not use gaze
as well as two state-of-the-art gaze-augmented behav-
ior cloning models: AGIL (Zhang et al., [2018) and
CGL (Saran et al., [2020)

4. We show that after training with demonstrations in
which the quadrotor navigates to a stationary target,
GRIL generalizes to a novel “seek and follow” task
in which the quadrotor must navigate to and follow a
moving target.

5. We provide the first publicly-available gaze-augmented
demonstration dataset in a continuous control task.

2. Related work

Imitation Learning. Imitation learning (IL) is the prob-
lem of training a learning agent to act in an environment
given demonstrations. Behavioral cloning (Bratko et al.|
1995} [Torabi et al.| 2018)) is a popular IL. method that uses
supervised learning to predict demonstrator actions given
observations. Behavioral cloning is known to suffer from
covariate shift, in which a model gives poor predictions in
states not present in the training data (Ross et al.l |2011).
In recent years, a number of other IL approaches have
been proposed, for instance GAIL (Ho & Ermon, [2016)),
1Q-learn (Garg et al., |2021), SQIL (Reddy et al., [2019),
ValueDICE (Kostrikov et al.| 2019), Maximum Likelihood
IRL (Jain et al., 2019), EDM (Jarrett et al., [2020), and T-
REX (Brown et al.} 2019). We note that advancements in IL
are orthogonal to this work, since our gaze regularizer can
be paired with any IL. method.

Understanding Gaze Behavior. Recent works have pro-
posed a number of methods for estimating human eye gaze
from images (Li et al.,|2013; |Xia et al.} 2020; Wang & Sung,
2002 (Cazzato et al., [2020). For instance, | Xia et al.| (2020)
proposed a periphery-fovea multi-resolution model to pre-
dict gaze and show that it improves prediction accuracy in a
supervised learning task in a driving domain. While these
works focus on modeling gaze, our work leverages gaze to
improve performance in IL tasks.

Saran et al.|(2019) highlight the importance of understand-
ing gaze behavior for use in IL. For several goal-oriented
robot manipulation tasks, the authors show that users pri-
marily fixate on goal-related objects and that gaze can help
to resolve ambiguities in subtask classification. Meanwhile,
Guo et al.[(2021)) demonstrate that reinforcement learning
agents achieve better performance when they attend to simi-
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lar visual targets to humans, further indicating that human
eye gaze can be leveraged to guide policy learning.

Gaze-Augmented Imitation Learning. IL approaches
that augment demonstrations with the demonstrator’s eye
gaze have been shown to improve policy performance and
generalization compared to IL methods without gaze (Zhang
et al.l 2018;2020; Saran et al., [2019; 2020; Thammineni
et al.,[2021} |Liu et al., 20215 Kim et al.l 2020; 2021} 2022;
Pfeiffer et al., 2022; |Chen et al.,2019) in domains such as
Atari, simulated driving, and robot manipulation.

These works propose a range of approaches for leveraging
gaze in IL. Several methods use predicted or actual gaze
to modulate either the control policy network or its input.
For instance, some approaches that crop an image obser-
vation around a user’s gaze (Kim et al.| 2020} |2021};2022)
have shown promise in robot manipulation tasks requiring
precision. [Liu et al.| (2021) similarly propose to directly
modulate input images based on gaze. |Liu et al.|(2021) and
Chen et al.|(2019) consider using gaze to control dropout
rates in the policy network’s convolution layers. Evaluated
on a simulated driving task, |Liu et al.|(2021) show that both
the image modulation and dropout methods reduced gener-
alization error compared to IL without gaze, with dropout
outperforming the image modulation method. Meanwhile,
Saran et al.|(2019) also leverages gaze in robot manipulation
and proposes an inverse reinforcement learning approach
to learn rewards from demonstrations with gaze. However,
the method requires knowing the positions of all objects of
interest to which a human might attend, and thus does not
necessarily generalize across domains.

A number of works (Zhang et al.|[2018; Thammineni et al.}
2021} |Pfeiffer et al.| 2022; Xia et al.[2020) estimate gaze
from image observations and then leverage the gaze predic-
tions as a control policy input. Zhang et al.[(2018) develop
Attention Guided Imitation Learning (AGIL), which trains a
gaze prediction network modeled as a human-like foveation
system and then uses the gaze predictions to train a policy.
Evaluated in Atari domains, AGIL outperforms a baseline
without gaze. However, to eliminate the effect of human
reaction time and fatigue, eye gaze was collected in a syn-
chronous fashion in which the environment only advanced
to the next state once the human took an action, and game
time was limited to 15 minutes, followed by a 20-minute rest
period; this highlights the challenges of real-time human
data collection. [Thammineni et al.| (2021)) build on AGIL
by introducing a gating model that selectively passes gaze
information to the policy network when it predicts that gaze
will be useful. While this method is shown to outperform
AGIL, the contribution is orthogonal to ours, as such a gat-
ing module could be straightforwardly paired with GRIL.
Unlike these works, GRIL incorporates gaze as an auxiliary
loss, rather than as a policy input.

Saran et al.| (2020) propose a coverage-based gaze loss
(CGL) for IL. This auxiliary loss penalizes the policy net-
work for having low network activations in areas where the
human gaze is focused. CGL outperforms AGIL (Zhang
et al.l 2018)) and dropout-based modulation (Chen et al.,
2019) with the Atari-HEAD (Zhang et al., |2020) dataset.
While GRIL and CGL both regularize policy learning via
auxiliary losses, they are fundamentally different; whereas
CGL penalizes network activations, which requires setting
hyperparameters that transform the human gaze from coor-
dinates to a heatmap, GRIL utilizes gaze directly by training
a two-headed network to jointly predict actions and gaze.
Moreover, GRIL’s approach to utilizing gaze is distinct from
CGL and AGIL in that both baselines predict and utilize
a gaze heatmap, while GRIL does not utilize a heatmap.
Bypassing the need for a heatmap is desirable, since GRIL
does not need to specify a kernel hyperparameter and can
use an MSE loss to compare coordinates, which is simpler
than using a KL loss to compare distributions.

We believe that our work considers a more challenging
environment than these previous works on gaze-augmented
IL. Many works, including state-of-the-art approaches such
AGIL (Zhang et al.| [2018) and CGL (Saran et al., [2020),
are exclusively tested in Atari domains, which can easily
be stopped and started to synchronously align with human
input, are temporally discrete, have discrete action spaces,
and do not resemble the real world. In contrast, we consider
a quadrotor navigation application that requires continuous
control and complex scene understanding. Some works
consider car driving tasks (Chen et al., 2019} [Xia et al.|
2020), which also require continuous control; however, our
quadrotor control task is more complex than the driving
tasks in |Chen et al.| (2019); Xia et al. (2020), as their action
spaces have fewer degrees of freedom. While Pfeiffer et al.
(2022)) also consider drone control, they train the drone to
follow reference trajectories such as a figure-8, which does
not involve interacting with other objects in the scene. Also,
in addition to a gaze estimate, the policy network in |Pfeiffer
et al.| (2022) is given the reference trajectory and drone state
(rotation and linear and angular velocity) as inputs. GRIL
does not utilize such information.

Lastly, while the Atari-HEAD dataset (Zhang et al., [2020)
provides a set of gaze-augmented demonstrations in Atari
domains, we are not aware of a prior publicly-available
dataset of gaze-augmented demonstrations in a continuous
control setting.

3. Gaze-Regularized Imitation Learning

This work considers a gaze-augmented visual imitation
learning setting, in which a learning agent aims to imitate a
human demonstrator given the human’s visual observations,
actions, and eye gaze.
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Figure 2. GRIL learns to jointly predict gaze and control commands via a multi-headed convolutional neural network. Gaze prediction
provides context relevant to the visual scene and assists the model to predict well-performing control commands.

3.1. Problem Statement

We model the gaze-augmented visual imitation learn-
ing problem as an episodic partially-observable Markov
decision process without reward (POMDP\R), M =
(§,0,A, P, P.,1u,T), where S is the underlying state
space, O is the observation space, A is the action space, P :
S x Ax S — [0,1] yields the state transition probabilities,
P, : S x O — |0, 1] gives the observation emission prob-
abilities, u : S — [0, 1] gives the initial state probabilities,
and 7' is the time horizon. A policy is a possibly-stochastic
mapping from observations to actions, 7 : O — A. The
learning agent interacts with the environment in rollout tra-

jectories of the form 7 = (01, a1, ..., 07, ar,0r4+1).

We assume that the observations o € O are images in
RHXWXC "with height H, width W, and number of chan-
nels C (e.g. C' = 3 with RGB images). Furthermore, the
learning agent has access to a set of gaze-augmented demon-
strations consisting of M observation-action-gaze triples:
D, = (0i,ai,9:)M,, where 0; € O, a; € A, and g; € R?
are the demonstrator’s gaze coordinates. The demonstra-
tion data is assumed to be generated by an unknown human
demonstrator policy 7.

Learning Objective. The imitation learning objective is
to identify an optimal policy 7* with minimal discrepancy
from the demonstrator policy 7y :

m* =argmin_ > Eouar [L(mh(0),7(0)))], (1)

t=1

where d is the distribution over observations at timestep
t induced by following policy 7, and L is a discrepancy
measure between two actions (e.g. MSE error).

3.2. Gaze-Regularized Architecture

Our proposed approach is a visuomotor policy based on a
multi-headed convolutional neural network, as seen in Fig-
ure2] The model is trained to take RGB images as input and
to jointly estimate their corresponding control commands
and gaze coordinates. This joint estimation of gaze and
control regularizes the network during training to predict
the most suitable set of control commands. The gaze esti-
mation also provides context to the model by highlighting
key properties of the image observations. The architecture
makes use of weight sharing to reduce the total number of
model parameters.

We leverage a pre-trained MobileNet (Sandler et al., 2018))
to extract features from the images; while the MobileNet
weights are used to initialize our model, we further fine-tune
these weights using the human demonstrations. MobileNet
is trained on real-world images and is suitable for processing
outdoor images. We remove the model’s final layer and feed
its output features through another set of convolution layers.
The features extracted from the image are passed through
two different sets of dense layers, which respectively predict
control commands and gaze coordinates.

3.3. Training Criterion

We train the GRIL model via a linear combination of a gaze
prediction loss, Lap, and a behavioral cloning loss, Lpc:

L(0) = A1 * Lap(0) + Aa % Lpc(0), @)

where 0 represents the set of trainable model parameters,
and A\; and \g are hyperparameters weighting the loss com-
ponents. Each loss term is the mean-squared error between
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the corresponding ground truth and predicted values:

M
1
Loc(®) = 223 (o | ) = ail*, 3
=1

M
Lop(0) = 17 D Imaelos |0) ~ail®, @)
i=1

where M is the number of training samples, Tacgon(0 | 6)
and 7gy,e (0 | 0) respectively denote the outputs of the action
and gaze prediction heads given observation o and model
parameters ¢, and recall that D, = (0;,a;,g;)M, is the
demonstration dataset.

4. Experiments
4.1. Autonomous Drone Navigation

We evaluate the performance of GRIL in an autonomous
quadrotor navigation domain in which experiments were
conducted in simulated environments rendered by the Un-
real Engine using Microsoft AirSim (Shah et al.}[2018al), a
high-fidelity, photo-realistic drone simulator. We consider a
search and navigate task in which the quadrotor must seek
a target vehicle that is initially out-of-view and navigate to-
ward it in a cluttered forest simulation environment, seen in
Figure[3] The environment emulates sun glare and presents
trees and uneven rocky terrain as obstacles to navigation
and visual identification of the target vehicle. We consider
two variants of the drone navigation task:

1. Stationary target: the target truck is in a location that
is fixed across episodes, and the target does not move.

2. Moving target: we use this task to evaluate how well
GRIL can generalize to a target tracking and following
task on which it was not previously trained. In this
task, the target vehicle moves along a fixed, predeter-
mined path at a fixed speed. This task requires not only
seeking out the target vehicle, but also tracking and
following the vehicle.

4.2. Dataset Collection Procedure

While performing the task, the demonstrator was given
access to the quadrotor’s first-person view, with no addi-
tional information about its location or the target location.
Using an Xbox One joystick, the demonstrator controlled
the quadrotor throttle and yaw rate using the left joystick
and controlled its forward and lateral velocity via the right
joystick, as is standard for aerial vehicles. The eye gaze
data collection was conducted using a screen-mounted eye
tracker, which was calibrated specifically for the user. Ap-
pendix [A] describes the eye tracking hardware setup, data
collection, and calibration procedure.

We define a set of 24 possible quadrotor starting locations,

Figure 3. First-person view from the quadrotor illustrating the tar-
get vehicle (yellow truck), which the agent must find and navigate
toward, and the realistic cluttered forest simulation environment

rendered using Microsoft AirSim (Shah et al.| 2018a).

which cover a pre-defined area of the map (see Figure [),
preventing invalid initial locations such as inside the ground
or trees or on the target vehicle, while covering the desired
task area. The human demonstrator collected 90 demon-
stration trajectories in which the drone navigated to the
fixed-location target. In each demonstration trajectory, the
quadrotor’s starting location was sampled randomly from
the set of 24 possible locations, and the quadrotor’s initial
heading was also randomly sampled between 0 and 360
degrees. During the demonstrations, we recorded RGB
images (224x224x3) and eye gaze coordinates. We ad-
dress observed imbalances in the dataset as described in

Appendix [B]

We evaluate each learned policy by rolling it out in the envi-
ronment. To evaluate each policy, we use a set of 10 quadro-
tor starting points; these are distinct from the 24 starting
locations used during training and are depicted in Figure []
in magenta. For each evaluation rollout starting position, the
quadrotor’s initial heading is sampled randomly. For each
evaluated model, we perform 5 evaluation rollouts at each
of the 10 evaluation start points, for a total of 5 x 10 = 50
evaluation rollouts. Using the same set of evaluation starting
locations across all models helps to ensure evaluation con-
sistency across approaches. Note that the randomly sampled
heading is held constant for the 5 rollouts in each location,
though it varies between locations.

4.3. Evaluation Metrics

We evaluate task performance in the evaluation rollouts via
the following metrics (Anderson et al} 2018):

1. Task completion rate (TCR): this is the percent of
episodes that are successful. In the stationary target
task, a rollout is successful if the quadrotor navigates
within 5 meters of the target vehicle’s center of mass.
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Figure 4. Bird’s-eye view of the target vehicle location and drone
start locations. The magenta points are the drone start locations
in the demonstration dataset, the green points are the drone start
locations during evaluation, and the single yellow point is the fixed
location of the target vehicle in the stationary target task.

In the moving target task, an episode is similarly suc-
cessful if the quadrotor navigates within 5 meters of
the in-motion truck’s center of mass.

2. Collision rate (CR): the percent of episodes in which
the agent collides with the ground or any obstacles in
the environment such as rocks and trees. The current
episode is terminated when a collision occurs.

4.4. Comparison Methods

We compare GRIL with three imitation learning base-
line methods: vanilla behavioral cloning (BC), Attention-
Guided Imitation Learning (AGIL) (Zhang et all, [2018),
and behavior cloning with a context-aware gaze loss
(BC+CGL) (Saran et al.,[2020). Appendix [D]specifies net-
work architecture details for all baseline comparisons, while
Appendix|C|specifies hyperparameter values for all methods,
as well as hyperparameter ranges tested.

The BC baseline is trained to predict control commands
directly from input images without gaze, whereas GRIL
jointly predicts control commands and gaze coordinates.
Note that the BC and GRIL network architectures are analo-
gous, except that GRIL has a gaze regularization head that
is not present in the BC model.

In AGIL, a gaze prediction network is trained to estimate a
gaze heatmap, which is then inputted to the policy network.
In contrast, GRIL leverages gaze prediction as a regular-
izer rather than a policy network input. Since AGIL was
designed for discrete control of a 2D Atari game, we devel-
oped a custom variant of AGIL for performing continuous
quadrotor control. Our implementation of AGIL is adapted

from the authors’ implementation; we change the network
architecture to process our dataset and its associated outputs
and change the loss function from a classification loss to a
regression loss.

The CGL baseline calculates an auxiliary loss that penalizes
the policy network’s final convolution layer for having low
activations where the human’s gaze is focused. Our auxiliary
loss predicts gaze rather than penalizing network weights.
As mentioned below and in the discussion, GRIL seems to
require significantly less tuning than CGL. As with AGIL,
we adapt the authors’ implementation to our task.

4.5. Results

Algorithm Performance. Table [I] displays the perfor-
mance of GRIL and all baseline comparisons. We see that
GRIL yields the strongest performance, achieving the high-
est task completion rates (TCR) and lowest collision rates
(CR) compared to the baseline methods. Meanwhile, Fig-
ure[6] provides an example qualitative comparison between
the methods by depicting the evaluation rollout trajectories
corresponding to a particular starting location in the station-
ary task. At this evaluation location, GRIL and BC-CGL
successfully navigate to the target location, while BC mostly
crashes with the terrain early and AGIL drifts away.

Generalizing GRIL to Following a Moving Target. We
next evaluate how well GRIL generalizes to following a
moving target when only trained with stationary target
demonstrations. In this moving target task, we evaluate
the same policies that were trained to search for and nav-
igate toward a stationary target; the dataset in Section [d.2]
does not include any demonstrations in which the target
moved. This task is more difficult than the stationary target
task, both because the policy must generalize to a task on
which it was not trained and because the policy must track
and follow the moving target.

Table [T shows the performance of GRIL and comparisons
on the moving target task. During these evaluation rollouts,
GRIL, BC, and BC-CGL demonstrated a remarkable capa-
bility to generalize to the new task despite not having been
previously trained on it, often successfully searching for and
following the moving target. We see that GRIL outperforms
each of the baseline methods in the moving target task, indi-
cating that GRIL is able to generalize to novel tasks more
robustly than previous state-of-the-art approaches. Qual-
itatively, we noticed that GRIL sometimes lost track of
the target if the vehicle left visual sight; however, we also
noticed that GRIL demonstrated recovery behaviors if the
target re-appeared in sight. We provide videos of GRIL
and baseline methods performing the moving target task on
our supplemental website, https://sites.google)
com/view/gaze—-regularized—1i1/.
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(c) “Saccade” gaze pattern. (d) “Obstacle fixation” gaze pattern.

Figure 5. Visualization of a sequence of three frames illustrating characteristic gaze patterns observed in the human demonstrations,
showed as magenta circles in the figure, which were also learned by the proposed model, showed as cyan circles (best viewed in color).
The larger, less transparent circle illustrates the current gaze observation and the smaller, more transparent circles represent gaze (and gaze
predictions) from previous timesteps.

GRIL BC-CGL BC AGIL
|TCR (%) CR(%) |TCR(%) CR(%) |TCR(%) CR(%) |TCR(%) CR(%) |

Stationary | 80 (£9.9) 20 (£9.9) |64 (£14.8) 36 (£14.8) |40 (£13.7) 58 (£13.5) |10 (£10.0) 60 (£16.3)
Moving |40 (+12.3) 40 (+9.4) |36 (£14.8) 42 (£15.9) |30 (£12.7) 66 (£12.3)|14 (£10.3) 86 (£10.3)

Table 1. Performance of GRIL and baselines in the stationary and moving target tasks. Notably, the moving target task evaluates the
models’ ability to transfer to a new task, since the demonstration data only included a stationary target. For both tasks, we compare
the performance of GRIL, BC, AGIL (Zhang et al.| 2018), and BC-CGL [2020). We show the collision rate (CR) and task
completion rate (TCR); values are mean (&£ standard error) over 10 starting locations, with 5 rollouts per starting location each in the
static and moving target tasks.

same direction, as illustrated in Figure[5(a)} This pattern is
mostly observed at the beginning of the episode when the
target vehicle is not in the agent’s field-of-view; b) a “rarget
fixation” gaze pattern where gaze is fixated on the target dur-
ing the final approach, as illustrated in Figure[5(b)] In this
pattern, gaze is fixed at the top of the target vehicle, inde-
pendent of the agent’s current motion; ¢) a “saccade” gaze
pattern where gaze rapidly switches between fixation on
nearby obstacles (Salvucci & Goldberg}, [2000), as illustrated
in Figure[5(c)] This pattern is characteristic when there are
multiple obstacles between the current agent location and
the target vehicle; and d) an “obstacle fixation” gaze pattern
Figure 6. Evaluation rollout trajectories for GRIL and baseline where the gaze attends to nearby obstacles when navigating
com.parisons. in the statif)nary task. Fpr one of the evaluati.on to the target, as illustrated in Figure @ This pattern is
starting locations, we depict ﬁv.e evaluatloin rqllouts correspond}ng mostly observed when the quadrotor is close to a potential
to eaf:h method. The task consists of .nav1gat1ng from the starting obstacle. This illustrates how GRIL’s gaze prediction head
location (purple dot) to the target vehicle (yellow dot). . . .. . .

is able to capture and replicate similar visual attention cues
demonstrated by the user when performing the task.

Gaze prediction results. With respect to GRIL’s gaze pre-

diction performance, we observe that several distinct gaze 5. Discussion

patterns present in the human demonstrations were also ] )

learned by GRIL’s gaze prediction head, as seen in Figure 5} We propose the GRIL algorithm for lc.averagmg human eye
a) a “motion leading” gaze pattern where gaze attends to gaze in a context-aware imitation learning framework. GRIL
the sides of the images followed by a yaw motion in the leverages gaze via a novel, multi-objective optimization ap-
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proach that jointly predicts control commands and gaze. The
gaze prediction loss helps to regularize the policy network,
so that it focuses on relevant parts of the image observations.
This novel use of eye gaze makes the model sample efficient,
practical, and generalizable. Our experiments demonstrate
GRIL’s performance in a continuous control setting featur-
ing a quadrotor in an outdoor environment, in which GRIL
outperforms state-of-the-art baseline methods AGIL and
CGL. Though our experiments train the model to perform
search and navigation toward a single stationary target, we
show that GRIL can also perform the task with a moving
target, and furthermore, that GRIL generalizes to the new
task more robustly than baseline comparisons.

We speculate that, because GRIL is optimizing multiple
objectives with action and gaze prediction heads, it may
enable more robust and efficient learning. The benefit be-
hind using a multi-objective optimization framework is two-
fold. Firstly, if a task is noisy or data is limited and high-
dimensional, it can be difficult for a model to differentiate
between relevant and irrelevant features. Multi-objective
learning helps the model to focus its attention on the features
that most matter, since optimizing multiple objectives simul-
taneously forces the model to learn relevant features that
are invariant across each objective (Caruana, |1993; |Abu
Mostafa, [1990; Ruder, 2017). Finally, a multi-objective
learning framework, as proposed by this work, enables eye
gaze prediction loss to act as a regularizer by introducing
an inductive bias. As such, it reduces the risk of overfitting
as well as the Rademacher complexity of the model, i.e. its
ability to fit random noise (Baxter, 2000).

We hypothesize that GRIL may outperform CGL in part
because it incorporates gaze in a more direct manner re-
quiring fewer hyperparameters. While GRIL utilizes the
gaze coordinate directly, CGL requires a gaze heatmap, for
which one must specify a resolution and degree of spread
about the gaze coordinates. CGL’s heatmap also results in a
more complex loss function leveraging the KL divergence,
while GRIL relies on a simpler MSE loss. We also note
that CGL imposes no additional network parameters to fit,
whereas GRIL imposes an additional network head as it
simultaneously predicts both control commands and gaze
coordinates.

In regards to why GRIL significantly outperforms AGIL, we
hypothesize that AGIL requires significantly more demon-
stration training samples compared to GRIL due to its sepa-
rate gaze prediction network. AGIL requires first training
a gaze prediction network to model human foveation by
learning a gaze prediction heatmap, and then uses the gaze
predictions to train a separate policy model. In contrast,
GRIL combines both the gaze prediction network and pol-
icy network in a single model with branching network heads
and shared weights. This significantly reduces the number

of parameters to learn.

Future work. Future work will include evaluating GRIL in
additional environments, as well as to study the use of eye
gaze in physical robot experiments. We are also excited to
leverage eye gaze regularization in other problem settings,
for instance multi-task learning and reinforcement learning.
Another interesting avenue for future work is the addition of
more human input modalities to the proposed approach, for
instance natural language, to condition the model to perform
multiple diverse tasks. The ability to use eye gaze data to
leverage human visual attention opens the door to adapting
this research to learning unified policies that can generalize
across multiple human input types, task contexts, and task
objectives.
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A. Details of the gaze data collection
A.1. Eye Tracker Calibration

Before an eye tracking recording is started, the user is taken through a calibration procedure. During this procedure, the eye
tracker measures characteristics of the user’s eyes and uses them together with an internal, anatomically-correct 3D model
of the human eye to calculate the requisite gaze data. This model includes information about shapes, light refraction, and
reflection properties of the different parts of the eyes (e.g. cornea, placement of the fovea, etc.). During the calibration, the
user is asked to look at specific points on the screen. These specific dots are also known as calibration dots. During this
period several images of the human operator’s eyes are collected and analyzed. The resulting information is then taken into
account along with the eye model and the gaze coordinates (abcissa and ordinate in the screen frame) for each image.

A.2. Gaze Data Collection

Task Display

Eye Trackér

Joystick

Figure 7. Data collection setup used to record human gaze and joystick data illustrating the relative positioning between the user, task
display, joystick, and eye tracker. The user is given only the first-person quadrotor view while performing the visual navigation task.

The task was presented to the demonstrator on a 23.8 inches display with 1920x1080 pixel resolution, and eye gaze data
collection was conducted using a screen-mounted eye tracker positioned at a distance of 61cm from the demonstrator’s eye, as
seen in Figure[7] Before data collection, the height of the demonstrator’s chair was adjusted in order to position their head at
the optimal location for gaze tracking. The eye tracker sensor was calibrated according to an 8-point manufacturer-provided
software calibration procedure. The demonstrator avoided moving the chair and minimized torso movements during data
collection while moving the eye naturally. The demonstrator was also given time to acclimate to the task until they judged
for themselves that they were confident in performing it. The dataset was collected by a single human demonstrator.

B. Addressing Data Imbalance

Data imbalance. The size of the dataset is limited due to human participation. During exploratory data analysis on the
collected dataset, it was found that the yaw-axis actions were mostly centered around zero (see Figure (), such that the agent
has many more examples of flying straight than of turning.

Data augmentation and undersampling. We performed data augmentations to address the dataset imbalance. First,
we created a horizontally-flipped version of each demonstration trajectory. The images were horizontally flipped with
corresponding changes in the horizontal gaze coordinate and control commands (i.e., roll and yaw are reversed, while pitch
and throttle are unchanged). Then we performed random undersampling of states with zero yaw, in which we rejected 90%
of the zero yaw data samples. Figure §]shows the distribution of control commands before and after the data augmentations
were applied.
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Figure 8. The distribution of control commands reflects the forward motion bias of the dataset. Most of the states have yaw commands
centered around zero. This creates an imbalance in the dataset, which may result in a visuomotor policy where the vehicle learns to fly
only straight.

Weighted BC loss function. For GRIL and all baseline comparisons, we predict actions by weighting the mean squared
error BC loss Lpc(0) given by Equation (). To help counter the forward motion bias in the dataset, the yaw control
command was weighted more highly than the other three control parameters.

M
. 1
E\;eéghted(e) — M Z ||w ® (ﬂ'action(oi ‘ 0) - ai)H2 )
=1

which is analogous to the BC loss in (2)) except that w is a vector in which the i element weights the i control command
component, and ® denotes an element-wise product. Recall that M is the number of experience tuples in the demonstration
dataset.

We manually tuned the weighting parameters w, and use a weight of 0.7 for the yaw command and weights of 0.1 for the
other control components.

C. Hyperparameters

We keep the following hyperparameters constant across all methods. The loss function is optimized using the Adam (Kingma
& Bal [2014) optimizer with a learning rate of 0.0003 for 30 epochs and batch size of 32 data samples. For training the
model we have used an exponential decay function to schedule the decrease in learning rate. The decay occurs every 10,000
steps during model training.

For CGL, the loss function is a weighted sum of a BC term and the CGL term:

»CCGL(G) = A1 % L:Bc(a) + Ao * »CCGL(Q);

where A\; and A, are hyperparameters that determine the relative weighting between the terms. We tune \; and Ay manually,
and the optimized model uses A\; = 0.9 and Ay = 0.1. GRIL has analogous A\; and Ay hyperparameters that determine the
weighting between the BC and gaze-regularization losses.

C.1. BC-CGL

We tuned the following two gaze hyperparameters for BC-CGL: the kernel size of the gaze heatmap and the loss weighting.
For the kernel size, the parameters considered were 3, 5, 10, and 15. For the loss weighting (action weight, gaze weight),
the weightings considered were (0.95, 0.05), (0.9, 0.1), (0.7, 0.3), and (0.5, 0.5). In the table, bolded values indicate the
hyperparameter values found to be optimal.

Gaze Heatmap Kernel Size 3 5 10 15
Loss Weighting (action weight, gaze weight) | (0.95, 0.05) | (0.9, 0.1) [ (0.7, 0.3) | (0.5, 0.5)
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C.2. AGIL

The gaze hyperparameter for AGIL was the kernel size of the gaze heatmap. For the kernel size, the parameters considered
were 3, 5, 10, and 15. In the table, the bolded value indicates the hyperparameter value found to be optimal.

Gaze Heatmap Kernel Size [3[5[10]15]

C.3. GRIL

The gaze hyperparameter for GRIL was the loss weighting. For the loss weighting (action weight, gaze weight), the
weightings considered were (0.95, 0.05), (0.9, 0.1), (0.7, 0.3), and (0.5, 0.5). In the table, the bolded entry indicates the
hyperparameter combination found to be optimal.

[ Loss Weighting (action weight, gaze weight) [ (0.95, 0.05)[(0.9, 0.1)[ (0.7, 0.3)[ (0.5, 0.5) |

D. Baseline Model Architectures

We present in Figures [9] [I0} [[T] and[12] the network architectures used for each baseline method: BC, Attention-Guided
Imitation Learning (AGIL) (Zhang et al.| 2018)), and Behavior Cloning with a Context-aware Gaze Loss (BC+CGL)

2020)), respectively.
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Figure 10. AGIL policy model architecture where RGB images and gaze heatmaps are used as an input to the model. The heatmap at the
bottom-left is generated as shown in Figure[T1]
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Figure 11. AGIL gaze prediction model architecture where RGB images are used as input and a predicted gaze heatmap is the output.

This model produces the heatmap seen in Figure [T0]
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Figure 12. BC+CGL where RGB images are being used as an input to the model.
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