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Abstract

Data assimilation (DA) is crucial for improving the accuracy of state estimation in complex
dynamical systems by integrating observational data with physical models. Traditional solu-
tions rely on either pure model-driven approaches, such as Bayesian filters that struggle with
nonlinearity, or data-drivenmethods using deep learning priors, which often lack generalizabil-
ity and physical interpretability. Recently, score-based DA methods have been introduced, fo-
cusing on learning prior distributions but neglecting explicit state transition dynamics, leading
to limited accuracy improvements. To tackle the challenge, we introduce FlowDAS, a novel gen-
erative model-based framework using the stochastic interpolants to unify the learning of state
transition dynamics and generative priors. FlowDAS achieves stable and observation-consistent
inference by initializing from proximal previous states, mitigating the instability seen in score-
based methods. Our extensive experiments demonstrate FlowDAS’s superior performance on
various benchmarks, from the Lorenz system to high-dimensional fluid super-resolution tasks.
FlowDAS also demonstrates improved tracking accuracy on practical Particle Image Velocime-
try (PIV) task, showcasing its effectiveness in complex flow field reconstruction.
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1 Introduction

Recovering state variables in complex dynamical systems is a fundamental problem in many sci-
entific and engineering domains. Accurate state estimation from noisy and incomplete data is es-
sential in applications like climate modeling, weather forecasting, and seismology to understand
underlying physical processes and make reliable predictions. For example, in fluid dynamics, we
want to recover a continuous velocity field from sparse, noisy observations, where the task is gov-
erned by nonlinear, time-dependent partial differential equations (PDEs). The problem is chal-
lenging to solve due to the inherent stochasticity and high dimensionality of the processes. Math-
ematically, a discrete-time stochastic dynamical system can be characterized by the state-space
model:

xk+1 = Ψ(xk) + ξk, (1)
yk+1 = A(xk+1) + ηk+1, (2)

where xk ∈ RD is the state vector at time step k, Ψ(·) is the state transition map, and ξk ∼
N (0, σ2ID) denotes Gaussian noise. The observations yk ∈ RM are related to the state through
the measurement map A(·), with observation noise ηk ∼ N (0, γ2IM ). Our goal is to estimate the
posterior of the state trajectory x1:K given observations y1:K and the initial state x0, i.e., p(x1:K |
y1:K ,x0), as shown in Figure 1.

This estimationproblem, commonly referred to asDataAssimilation (DA) [Bouttier andCourtier,
2002, Lahoz and Menard, 2010, Law et al., 2015], originated in atmospheric [Bocquet et al., 2015,
Reichle, 2008, Wang et al., 2000] and oceanic forecasting [Bertino et al., 2003, Carton et al., 2000,
Cummings, 2005, Cummings and Smedstad, 2013, Derber and Rosati, 1989], and has recently
found numerous applications across diverse scientific and engineering domains [Carrassi et al.,
2018, Fletcher, 2017, Geer et al., 2018, Gustafsson et al., 2018, Rabier, 2005, Rodell et al., 2004,
Van Leeuwen, 2010]. DA combines observations with model predictions to provide more accurate
and physically consistent state estimates. Despite significant advancements, existing DA methods
still face significant challenges due to high nonlinearity and high dimensionality of the dynamic
processes.
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Figure 1: An overview of FlowDAS. We introduce a flow-based framework for data assimila-
tion, named FlowDAS, to estimate the state trajectory x0:K from the noisy observations y1:K . Our
framework uses a flow-based stochastic differential equation to model the stochastic dynamics of
the system and leverages the observations to improve the prediction accuracy. On the right, we
show a comparison of Navier-Stokes flow results between FlowDAS and the Score-based Data
Assimilation [Rozet and Louppe, 2023] method. FlowDAS produces more accurate prediction
compared to the score-based method, demonstrating its strong capability for data assimilation of
high-dimensional complex systems.

Existing DA techniques can be divided into model-driven and data-driven approaches. Model-
driven methods, like Bayesian filters, rely on explicit physical models to describe dynamics for
estimating the states. For example, Kalman filters and their variants (e.g., extended, unscented,
and ensemble Kalman filters) [Evensen, 2003] assume (quasi-)linear state transitions and obser-
vations, while particle filters [Gordon et al., 1993] offer more flexibility by usingMonte Carlo sam-
pling for Bayesian estimation. However, model-driven methods face the curse of dimensional-
ity in real-world applications [Bickel et al., 2008], because they typically require costly numeri-
cal solvers for explicit physical modeling. In contrast, data-driven approaches leverage machine
learning methods to directly learn state dynamics from observational data, bypassing the usage
of explicit physical models. For example, recent developments in score-based diffusion models
demonstrate promise for capturing complex state transitions by learning from sequences of dy-
namic states [Qu et al., 2024, Rozet and Louppe, 2023]. These generative models approximate the
joint distribution of entire state sequences, akin to popular video generation models, and can be
employed as generative priors within a Bayesian framework to support DA.However, thesemodels
often encode dynamics in latent spaces that lack accuracy and physical interpretability, leading to
instability during inference and yielding biased state estimates.

To overcome these limitations, we propose FlowDAS: a flow-based framework for data assim-
ilation. FlowDAS utilizes stochastic interpolants [Albergo et al., 2023], a new class of flow-based
generative models, to learn neural surrogates of complex system dynamics. Stochastic interpolant
models employ SDEs to create interpolative pathways between arbitrary data distributions, pro-
viding flexible control over transition dynamics for smooth, stable generation that is well-suited for
capturing nonlinear dynamics in DA tasks. This learned flowmodel is then integrated with obser-
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vational data to enable accurate and efficient state estimation. Extensive experiments demonstrate
that FlowDAS achieves state-of-the-art performance across diverse scientific applications, includ-
ing the chaotic Lorenz system andNavier-Stokes equations in fluidmechanics. We further validate
our approach in a practical DA application, Particle Image Velocimetry (PIV) [Raffel et al., 2018],
where it effectively estimates dense fluid velocity maps from sparse particle motion observations.

2 Related Work

2.1 Existing Data Assimilation Approaches

DA approaches can be broadly categorized into model-driven and data-driven methods, with par-
ticle filters and score-based data assimilation (SDA) as representative approaches in each type.

Particle filters Gordon et al. [1993] are a class of sequential Monte Carlo (SMC) methods com-
monly used for DA in non-linear, non-Gaussian dynamical systems. They represent the state dis-
tribution as a set of weighted particles, each acting as a hypothesis for the state of the system. As
new observations are received, particle states are updated on the basis of the dynamics of the sys-
tem in Equation (1), and the particle weights are adjusted according to the likelihood of each state
given the observation. Low-weight particles are periodically resampled to preserve computational
resources on the most probable states. Particle filters are highly flexible, able to model complex
distributions without requiring linearity or Gaussian assumptions. However, they face significant
computational challenges in high-dimensional settings due to the curse of dimensionality [Bickel
et al., 2008], limiting their scalability in large physical systems.

Score-based data assimilation (SDA) [Rozet and Louppe, 2023] is a recent data-driven approach
that employs score-based diffusion models to estimate state trajectories in dynamical systems. It
bypasses explicit physical modeling by learning the joint distribution of short state trajectory seg-
ments (e.g., 2k + 1 time steps) via a score network sθ(xi−k:i+k). By integrating the score network
with the observation model in a diffusion posterior sampling (DPS) framework [Chung et al.,
2022], SDA can generate entire state trajectories in zero-shot and non-autoregressivemanners. This
approach is computationally efficient for high-dimensional systems, as generative priors on short
segments allow for parallel inference, making it particularly useful for systems with sparse or lim-
ited observations. Despite these advantages, because the latent dynamics may fail to capture real-
world physics, the learned dynamics of SDAmay lack physical interpretability, leading to potential
inaccuracies. SDA also requires substantial training data, and its posterior approximations may be
less reliable in systems where the physical model is highly sensitive, as illustrated by the double
well potential problem in Appendix B.2.

2.2 Stochastic Interpolants

Stochastic interpolants [Albergo andVanden-Eijnden, 2022, Albergo et al., 2023, Chen et al., 2024b]
is a recent generative modeling framework that unifies flow-based and diffusion-based models. It
provides a smooth, controlled transition between arbitrary probability densities over a finite time
horizon.

Consider a stochastic process Xs defined over the interval s ∈ [0, 1], which evolves from an
initial state X0 ∼ π(X0) to the final state X1 ∼ q(X1). This process defines a smooth path from
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the base distribution to the target distribution, facilitating generative modeling. A stochastic inter-
polant can be described as [Chen et al., 2024b]:

Ĩs = αsX0 + βsX1 + σsWs, (3)

where (X0,X1) ∼ p(X0,X1). Ws is a Wiener process for s ∈ [0, 1] introduced after X0 and
X1 are sampled, ensuring that Ws is independent of X0 and X1. The time-varying coefficients
αs, βs, σs ∈ C1([0, 1]) satisfy boundary conditions α0 = β1 = 1 and α1 = β0 = σ1 = 0. A typical
choice for these coefficients is αs = 1 − s, σs = 1 − s, and βs = s2, ensuring that Ĩ0 = X0 and
Ĩ1 = X1, thereby creating a smooth interpolation from X0 to X1. Moreover, Chen et al. [2024b]
further showed that, for all (s,X0) ∈ [0, 1]×RD, Ĩs |X0 has the same distribution asXs, which is
the solution to the following SDE:

dXs = bs(Xs,X0) ds+ σs dWs, (4)

where the drift term bs(X,X0) is optimized by minimizing the cost function:

Lb(b̂s) =
∫ 1

0
E
[
∥b̂s(Ĩs,X0)−Rs∥2

]
ds. (5)

The “velocity" of the interpolant path,Rs, is given by:

Rs = α̇sX0 + β̇sX1 + σ̇sWs. (6)

This formulation captures the instantaneous rate of change along the interpolation path, ensuring
smooth transitions that are well-suited for modeling complex distributions.

Furthermore, the score function∇Xs log p(Xs |X0) for this SDE can be expressed as:

∇ log p(Xs |X0) = λs [βsbs(Xs,X0)− cs(Xs,X0)] , (7)

where λs and cs(Xs,X0) are defined to control the score-based dynamics.
Stochastic interpolants provides a robust method for estimating the conditional distribution

p(xk+1 | xk), which offers a powerful surrogate state transition model. In DA, given the current
state xk = X0, this framework can evolve the processXs smoothly from s = 0 to s = 1, to capture
the transition dynamics to xk+1. However, achieving observation-consistent predictions requires
conditioning these transitions on observational data. The next section introduces our approach,
which leverages stochastic interpolants for observation-informed state prediction, enabling more
accurate and reliable DA.

3 Methods

This section presents our approach, which extends the original stochastic interpolants framework
to incorporate observational data for effective DA. Inspired byDPS [Chung et al., 2022] and related
works [Alkhouri et al., 2024, Li et al., 2024, Song et al., 2024], our method adapts the score function
into a conditional form, aligningdata-driven state transitionmodelingwith observeddata to enable
accurate, observation-consistent state estimation in complex dynamical systems.
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Algorithm 1 Training
1: Input: Dataset x0:K ; minibatch sizeK ′ ≤ K; coefficients αs, βs, σs
2: repeat
3: Compute Ĩk

s andRk
s using (14) for k ∈ BK′

4: Compute the empirical loss Lemp
b (b̂) in Equation (13)

5: Take the gradient step on Lemp
b (b̂) to update b̂s

6: until converged
7: return drifts b̂s

3.1 Stochastic Interpolants for Data Assimilation

Conditional state generation Stochastic interpolants approximate the state transition p(xk+1 |
xk) by interpolating between the state variablesxk andxk+1 using the SDE defined in Equation (4)
and Equation (7) with boundary conditions X0,X1 = xk,xk+1. The drift term bs(Xs,X0) is
related to the score function ∇ log p(Xs |X0) of state transition distribution:

bs(Xs,X0) =
cs(Xs,X0)

βs
+
∇ log p(Xs |X0)

λsβs
. (8)

To generate observation-consistent states, we modify the SDE to a process conditioned on obser-
vational data, where the drift term bs(Xs,y,X0) incorporates observation information via Bayes’
rule:

bs(Xs,y,X0) =
cs(Xs,X0)

βs
+
∇ log p(Xs | y,X0)

λsβs

=
cs(Xs,X0)

βs
+
∇ log p(y |Xs,X0) +∇ log p(Xs |X0)

λsβs

=bs(Xs,X0) +
∇ log p(y |Xs,X0)

λsβs
. (9)

Estimation of ∇ log p(y | Xs,X0) The term ∇ log p(y | Xs,X0) captures the observation infor-
mation. Since the observation model only directly links y = yk+1 and X1 = xk+1, we compute
this term by integrating with respect toX1:

∇ log p(y |Xs,X0) =
∇ p(y|Xs,X0)

p(y|Xs,X0)
=
∇
∫
p(y|X1)p(X1|Xs,X0) dX1∫
p(y|X1)p(X1|Xs,X0) dX1

=
∇EX1∼p(X1|Xs,X0)[p(y|X1)]

EX1∼p(X1|Xs,X0)[p(y|X1)]
.

(10)

In practice, we approximate the above expectations by J Monte Carlo samples, X(j)
1 ∼ p(X1 |

Xs,X0):

∇ log p(y |Xs,X0) ≈
∇ 1

J

∑J
j=1 p(y |X

(j)
1 )

1
J

∑J
j=1 p(y |X

(j)
1 )

=

∑J
j=1 p(y |X

(j)
1 )∇ log p(y |X(j)

1 )∑J
j=1 p(y |X

(j)
1 )

=

J∑
j=1

wj∇ log p(y |X(j)
1 ),

(11)
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Algorithm 2 Inference

1: Input: Observation y1:K , the measurement map A, initial state x0, model b̂s(X,X0), noise
coefficient σs, grid s0 = 0 < s1 < · · · < sN = 1, i.i.d. zn ∼ N (0, ID) for n = 0 : N − 1, step size
ζn, Monte Carlo sampling times J

2: Set x̂0 ← x0

3: Set the (∆s)n = sn+1 − sn, n = 0 : N − 1
4: for k = 0 toK − 1 do
5: Xs0 ,y ← x̂k,yk+1

6: for n = 0 to N − 1 do
7: X ′

sn+1
= Xsn + b̂s(Xsn ,Xs0)(∆s)n + σsn

√
(∆s)nzn

8: {X̂(j)
1 }Jj=1 ← Posterior estimation (b̂s, sn,X0,Xsn) by Equation (12)

9: {wj}Jj=1 ← Softmax
(
{∥y −A(X̂(j)

1 )∥22}Jj=1

)
10: Xsn+1 = X ′

sn+1
− ζn∇Xsn

∑J
j=1wj∥y −A(X̂(j)

1 )∥22
11: end for
12: x̂k+1 ←XsN

13: end for
14: return {x̂k}Kk=1

where we apply a softmax function to the J scalars {log p(y | X(j)
1 )}Jj=1 to compute the sample

weights wj = p(y |X(j)
1 )/

∑J
j=1 p(y |X

(j)
1 ).

Acceleration ofMonte Carlo sampling Accurate sampling from p(X1 |Xs,X0) requires solving
the SDE in Equation (4), which can be computationally intensive. To improve efficiency, we pro-
pose using approximate numerical integration methods such as Euler’s method [Süli and Mayers,
2003, p. 317] or Heun’s method [Süli and Mayers, 2003, p. 324]:

Euler: X̂1 = bs(Xs,X0)(1− s) +
∫
σs dWs,

Heun: X̂ ′
1 =

bs(Xs,X0) + b1(X̂1,X0)

2
(1− s) +

∫
σs dWs.

(12)

These methods offer first-order and second-order approximations, respectively, introducing slight
numerical bias but significantly accelerated sampling speed (i.e.,O((1− s)2) for Euler andO((1−
s)3) for Heun). In practice, Heun’s method consistently demonstrated better performance than
Euler’s method. Appendix A.2 further compares these approximations.

3.2 Implementation Details

Training We used a dataset consisting of multiple simulated state trajectories x0:K to train the
drift function bs(Xs,X0) in stochastic interpolants (see Appendix B.1 for more details). We ap-
proximate the cost function in Equation (5) by the empirical loss:

Lemp
b (b̂) =

1

K ′

∑
k∈BK′

∫ 1

0
∥b̂s(Ĩk

s ,xk)−Rk
s∥2 ds, (13)
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whereK ′ ≤ K and BK′ ⊂ {0 : K} is a subset of indices of cardinalityK ′, with

Ĩk
s = αsxk + βsxk+1 +

√
sσszk

Rk
s = α̇sxk + β̇sxk+1 +

√
sσ̇szk,

(14)

where zk ∼ N (0, ID) and satisfy Ws
d
=
√
sz with z ∼ N (0, ID) for all s ∈ [0, 1]. We approximate

the integral over s in Equation (13) via an empirical expectation sampling from s ∼ U([0, 1]).
Algorithm 1 provides a detailed description of the model training process.

Inference Our inference procedure generates trajectories conditioned on observations y1:K using
the learned drift model b̂s(Xs,X0). We start by setting a specific state xk as initial X0 and iterate
over a predefined temporal grid s0 = 0 < s1 < · · · < sN = 1. Within each iteration, we first
compute posterior estimates {X̂(j)

1 }Jj=1 using Equation (12) for J times. Then, we move one step
further towards sN on Xsn by solving Equation (9) which involves backpropagating the gradient
∇Xsn

∑J
j=1wj∥y−A(X̂(j)

1 )∥22 to enforce consistencywith observations yk. We iterated this process
autoregressively, by setting Xk+1

s0 = Xk
sN

. Empirically, we found that using a constant step size ζn
across the inference process produced generally good results, although fine-tuning ζn at each step
can slightly improve the performance [Bai et al., 2024, Chung et al., 2022]. The chosen J values,
reported in Table S.6, were sufficient large for stable performance, with subtle variation across the
dimensionality of problems. An ablation study, detailed in Appendix A.1, further confirmed that
larger J offers diminishing returns. Overall, Algorithm 2 summarizes the inference process.

4 Experiments and Results

This section evaluates our proposed framework, FlowDAS, on a range of tasks with a consistent
parameter setting (αs = 1 − s, σs = 1 − s, βs = s2). We test FlowDAS on both low- and high-
dimensional stochastic dynamical systems, including low-dimensional problems with high-order
observation models, such as the double-well potential (Appendix B.2.5) and the chaotic Lorenz
1963 system, as well as high-dimensional tasks involving the incompressible Navier-Stokes equa-
tions. Additionally, we demonstrate its practical applicability in a realistic Particle Image Velocime-
try (PIV) simulation. These results underscore the versatility and robustness of FlowDAS.

4.1 Lorenz 1963

In this experiment, we evaluate the performance of our FlowDAS framework using the Lorenz 1963
system, a widely studied benchmark in the DA community [Bao et al., 2023, Lorenz, 1963, Rozet
and Louppe, 2023]. The state vector of the Lorenz system, x = (a, b, c) ∈ R3, evolves according to
the following nonlinear stochastic ordinary differential equations (ODEs):

da/dt = µ(b− a) + ξ1,

db/dt = a(ρ− c)− b+ ξ2,

dc/dt = ab− τc+ ξ3,

(15)

where µ = 10, ρ = 28, and τ = 8/3 define the ODE parameters, and ξ = (ξ1, ξ2, ξ3) ∈ R3 is
the process noise, with each component having a standard deviation σ = 0.25. This chaotic system
poses a significant challenge for numericalmethods, soweuse the fourth-order Runge-Kutta (RK4)
method [Noar et al., 2024] to simulate its state transition (see Appendix B.3 for details).
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Figure 2: Data assimilation of Lorenz 1963 system. FlowDAS achieved results comparable to
the state-of-the-art model-based BPF method, significantly outperforming the data-driven SDA
method in recovering the underlying dynamics of this chaotic system. This highlights the efficiency
and robustness of FlowDAS in capturing complex, nonlinear dynamicswhilemaintaining accuracy
and stability. The variables x1, x2 and x3 correspond to a, b and c in the ODEs of the Lorenz system
Equation (15), respectively.

We observe only the arctangent-transformed value of the first state component a, so the obser-
vation model of the system is defined as

y = A(x) + η = arctan(a) + η, (16)

wehre η is the observation noise with a standard deviation γ = 0.25.

Dataset We generate 1,024 independent trajectories, each containing 1,024 states, and split the
data into training (80%), validation (10%), and evaluation (10%) sets. Initial states are sampled
from the statistically stationary regime of the Lorenz system, with additional data generation de-
tails provided in Appendix B.3. For this low-dimensional problem, we use a fully connected neural
network to approximate the drift term in stochastic interpolants; the network architecture is also
described in the same appendix.

Baselines and metrics We compare our method against two baselines: the SDA solver with a
fixed window size of 2 and the classic bootstrap particle filter (BPF) [Gordon et al., 1993]. Ap-
pendix B.3 details the score network architecture for SDA and particle density settings for BPF.

We evaluate the performance of FlowDAS and baselines using four metrics: the expectation of
log-priorEq(x1:K |y1:K) [log p(x2:K | x1)]; the expectation of logdata likelihoodEq(x1:K |y1:K) [log p(y1:K | x1:K)];
the Wasserstein distance [Villani, 2009]W1(·, ·) between the true trajectory x1:K and the estimated
trajectory x̂1:K ; and the RMSE between the true and estimated states.

Results We independently estimate 64 trajectories over 15 time steps using FlowDAS and the
baseline methods. As shown in Table 1 and Figure 2, FlowDAS outperforms SDA across all met-
rics. FlowDAS is only slightly less effective than BPF in the expected log-prior, as BPF directly
incorporates the true system dynamics into its state estimation.

The success of FlowDAS is primarily due to its accurate mapping from current to future states
(xk → xk+1). Despite lacking explicit transition equations, FlowDAS effectively captures the sys-
tem dynamics through stochastic interpolants, enabling a closer approximation of state trajectories
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FlowDAS SDA BPF

↑ log p(x̂2:K | x̂1) 17.29 -332.7 17.88
↑ log p(y | x̂1:K) -0.228 -6.112 -1.572
↓ W1(x1:K , x̂1:K) 0.106 0.528 0.812
↓ RMSE(x1:K , x̂1:K) 0.202 1.114 0.270

Table 1: Lorenz tracking results. This table summarizes the performance of FlowDAS, SDA, and
BPF on the Lorenz 1963 experiment over 15 time steps. FlowDAS outperforms SDA across all
evaluation metrics and is competitive with BPF, despite BPF utilizing the true transition equations,
which are unknown to FlowDAS and SDA. The best results for eachmetric are highlighted in bold.

compared to SDA, which models joint distributions across sequential states using diffusion mod-
els. Additionally, stochastic interpolants allow FlowDAS to produce accurate state estimates while
managing inherent variability, avoiding over-concentration on high-probability regions, and effec-
tively dealing with rare events. This advantage is further illustrated in the double well potential
experiment (Appendix B.2.5) where FlowDAS outperforms BPF, because BPF tends to be trapped
by high-probability point estimates.

4.2 Incompressible Navier-Stokes Flow

This section considers a high-dimensional dynamical system: incompressible fluid flow governed
by the 2D Navier-Stokes (NS) equations with random forcing on the torus T2 = [0, 2π]2. The state
transition, Ψ, is described using the stream function formulation,

dω + v · ∇ω dt = ν∆ω dt− αω dt+ εdξ, (17)

where ω represents the vorticity field, the state variable in this fluid dynamics system (x = ω).
The velocity v = ∇⊥ψ = (−∂yψ, ∂xψ) is expressed in terms of the stream function ψ(x, y), which
satisfies −∆ψ = ω. The term dξ represents white-in-time random forcing acting on a few Fourier
modes, with parameters ν, α, ε > 0 specified in Appendix B.4.1.

The observation operator A linearly downsamples or selects partial pixels from the simulated
vorticity fields (ω),

y = A(ω) + η, (18)
where the observation noise η has a standard deviation of γ = 0.05.

Dataset In this experiment, system dynamics are simulated by solving Equation (17) using a
pseudo-spectral method [Peyret, 2002] with a resolution of 2562 and a timestep ∆t = 10−4. We
simulate 200 flow conditions over t ∈ [0, 100], saving snapshots of fluid vorticity field (ω = ∇× v)
at the second half of each trajectory (t ∈ [50, 100]) at intervals of∆t = 0.5with a reduced resolution
of 1282. The data are divided into training (80%), validation (10%), and evaluation (10%) sets.

Baselines and metrics We compare our method against a SDA solver with a fixed window size
of 2. BPF is not included in our testing, as its particle requirements grow exponentially with sys-
tem dimensions, making it impractical for high-dimensional fluid dynamics systems. Additional
details on the model architecture and training for both SDA and FlowDAS are provided in Ap-
pendix B.4.3.
We evaluate performance using the RMSE between the predicted and ground-truth vorticity fields.
Additionally, we assess the reconstruction of the kinetic energy spectrum to determine whether
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Figure 3: Data assimilation of incompressible Navier-Stokes flow. The positive values (red)
of the state, i.e., vorticity field, indicate clockwise rotation and negative values (blue) indicate
counter-clockwise rotation. FlowDAS achieved results with more details and higher accuracy than
the SDA both in the super-resolution task and the sparse observation task, showing FlowDAS’s
efficiency in tackling DA tasks with highly non-linear complex systems. Additionally, FlowDAS
is also better at recovering high-frequency information, evidenced by the spectral analysis in Fig-
ure S.9.

the physical characteristics of the fluid are accurately preserved. Appendix B.4.5 and Figure S.9
provide the definitions and results for the kinetic energy spectrum metric.

Results We conduct experiments across different observation resolutions (322, 162) and obser-
vation sparsity levels (5%, 1.5625%). For the super-resolution task, the goal is to reconstruct high-
resolution vorticity data (1282) from low-resolution observations. In the inpainting task, only 5%
or 1.5625% of pixel values are retained, with the rest set to zero, and we attempt to recover the
complete vorticity field. The model is evaluated on four unseen datasets (2× super-resolution, 2×
inpainting), with 64 samples for each configuration. Quantitative metrics, including RMSE and
kinetic energy spectrum comparisons, are provided in Table 2 and Figure S.9.

Figure 3 presents a visual comparison between FlowDAS and SDA for the flow super-resolution
and inpainting tasks. Our method consistently outperforms SDA in terms of reconstruction accu-
racy and resolution, capturing high-frequency information with greater precision. This advantage
is further validated by the kinetic energy spectrum in Figure S.9. The RMSE scores in Table 2 fur-
ther highlight the effectiveness of FlowDAS in accurately estimating the underlying fluid dynamics
from observational data.

4.3 Particle Image Velocimetry

This section presents a realistic application of our method: Particle Image Velocimetry (PIV). PIV
is a widely used optical technique for measuring velocity fields in fluids, with many scientific ap-
plications in aerodynamics [Koschatzky et al., 2011, Taylor et al., 2010, Van Oudheusden, 2013],
biological flow studies [Ergin et al., 2018, King et al., 2007, Stamhuis, 2006], and medical research
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322 → 1282 162 → 1282 5% 1.5625%

FlowDAS 0.038 0.067 0.071 0.123
SDA 0.073 0.133 0.251 0.258

Table 2: RMSE of FlowDAS and SDA on incompressible Naiver-Stokes super-resolution and
sparse observation tasks. Results are reported for various settings: super-resolution from 322 and
162 to 1282 and sparse observation recovery at 5% and 1.5625% observed pixels. The best results
are highlighted in bold.

[Chen et al., 2014, Özcan et al., 2023, Tan et al., 2009].
In a standard PIV setup, as shown in Figure 4, fluorescent tracer particles are seeded into a fluid

flowing through a channel with transparent walls. A laser sheet illuminates the fluid, and particle
movements are recorded by a high-speed camera with adjustable temporal resolution. By analyz-
ing the displacement of these tracer particles, the velocity field within the fluid can be determined
at sparse locations. Unlike the task in Section 4.2, which involves recovering dense vorticity fields
from sparse vorticity observations, PIV introduces a slightly different DA task: recovering dense
vorticity fields (x = ω) from sparse velocity measurements. This observation model is defined by

y = A(v(ω)) + η, (19)

where the A(·) sparsely samples the velocity field v and the observation noise η has a standard
deviation of γ = 0.25. The relationship between the velocity v and the state (vorticity) ω is given
by ω = ∇ × v. To derive the velocity v from the vorticity ω, we first solve the Poisson equation
∆ψ = −ω to obtain the stream function ψ, and then compute the velocity v as the gradient of ψ.
This process is performed using the Fast Fourier Transform.

Figure 4: Illustration of the real-world
Particle Image Velocimetry (PIV) ex-
periment: The flow is seeded with
tracer particles illuminated by a laser
sheet, and their movements are cap-
tured by a camera to derive the sparse
velocity field. The goal here is to re-
cover dense vorticity field from the
sparse velocity measurement.

Dataset In this experiment, we used the same fluid dy-
namics simulation data from the NS experiments de-
scribed in Section 4.2. However, we convert the vortic-
ity data to velocity fields via Fourier transform to cre-
ate synthetic PIV datasets [Lagemann et al., 2021]. The
particle positions in our simulation were randomly ini-
tialized and then perturbed according to the simulated
flow motion pattern. In these synthetic images, we as-
sumed a particle density of 0.03 particles per pixel, a par-
ticle diameter of 3 pixels, and a peak intensity of 255 for
each particle in grayscale. The images were processed
through a standard PIV pipeline to extract particle loca-
tions, match corresponding particles across frames, and
compute sparse velocity observations. These sparsemea-
surements were then used in DA to reconstruct the full
vorticity fields.

Baselines and metrics As in Section 4.2, we compared
our method against the SDA solver with a fixed window
size of 2. Instead of training new scores or stochastic
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Figure 5: Data assimilation of Particle Image Velocimetry. The vorticity field is visualized in
the same way as in Figure 3. FlowDAS significantly outperforms SDA in terms of reconstruction
resolution and RMSE, recovering more detailed features even when direct observations are not
available. These improvements highlight the potential of FlowDAS for real-world applications.

interpolant networks, we directly adopted the networks
trained on vorticity data from the incompressible NS flow experiment to evaluate FlowDAS and
SDA on the PIV task. The same quantitative metrics from Section 4.2 were employed to validate
the performance of each method.

Results FlowDAS accurately recovers the underlying fluid motion from the observed particle
images, yielding vorticity estimates with minimal error relative to the ground truth. As shown in
Figure 5 and Appendix B.5.3, FlowDAS significantly outperformed SDA in terms of reconstruction
resolution and RMSE. This improvement underscores FlowDAS’s robustness and applicability in
fluid dynamics research.

5 Conclusion and Future Work

In this work, we introduced FlowDAS, a flow-based data assimilation framework designed to ad-
dress the challenges of high-dimensional, nonlinear dynamical systems. By leveraging stochas-
tic interpolants, FlowDAS effectively integrates complex transition dynamics with observational
data, enabling accurate state estimation without relying on explicit physical simulations. Through
experiments on both low- and high-dimensional systems—including the Lorenz 1963 system, in-
compressible Navier-Stokes flow, and Particle Image Velocimetry—FlowDAS demonstrated strong
performance in recovering accurate state variables from sparse, noisy observations. These results
highlight FlowDAS as a robust alternative to traditional model-driven methods (e.g., particle fil-
ters) anddata-driven approaches (e.g., score-baseddata assimilation), offering improved accuracy,
efficiency, and adaptability. Futureworkwill focus on scaling the framework tomore complex real-
world systems [Huang et al., 2024, Seabra et al., 2024] and further optimizing its performance with
Sim2Real setting [Chen et al., 2024a].
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Appendices
A Ablation Study

This section examines different aspects of the proposed FlowDAS, including an alternative to the
method and the hyperparameter settings. We also provide various evaluation results. To sim-
plify notation, we omit the explicit sampling distribution p(x) in the expectation operator, writing
Ex∼p(x)[f(x)] simply as Ex[f(x)]. The sampling distribution for x will be specified at the end of
the equation where necessary.

A.1 Monte Carlo Sampling and An Alternative

In Equation (10) and Equation (11), we estimate∇ log p (y |Xs,X0) by

∇ log p (y |Xs,X0) =
∇EX1 [p (y|X1)]

EX1 [p (y|X1)]
, (S.20)

where we approximate the expectation term by averaging J Monte Carlo samples:

EX1 [p (y|X1)] ≈
1

J

J∑
j=1

p (y|X(j)
1 ),X

(j)
1 ∼ p (X1|Xs,X0). (S.21)

This Monte Carlo estimate is an unbiased estimate and the error is proportional to 1√
J
. When

the number of Monte Carlo samples, i.e., J , is sufficiently large, the estimation error converges to
zero. Alternatively, one can also apply Jensen’s inequality to estimate ∇ log p (y | Xs,X0), which
provides a biased estimate:

∇ log p (y |Xs,X0) = ∇ log

∫
p (y|X1)p (X1|Xs,X0) dX1

= ∇ logEX1 [p (y|X1)] ≥ ∇EX1 [log p (y|X1)] .

(S.22)

The "≥" arises from Jensen’s inequality.

Unbiased vs. biased estimation Let Z = p(y|X1) = 1√
2πγ

e
− (y−A(X1))

2

2γ2 , where Z is a bounded
random variable within the finite range [0, 1√

2πγ
]. As a result, the logarithm function is α-Hölder

continuous with α = 1 and the gap introduced by Jensen’s inequality, i.e., the Jensen gap, can be
explicitly bounded [Simic, 2008] and given by

|logEX1 [p (y|X1)]− EX1 [log p(y|X1)]| ≤Mγ11 (S.23)

where M is a constant that satisfying |logZ − logE[Z]| ≤ M |Z − E[Z]| and γ11 = E [|Z − E [Z] |].
Additionally, because Z ∈ [0, 1√

2πγ
], we haveM < 1 and γ11 ≤ max |Z − E [Z]| ≤ 1√

2πγ
.

And for this upper-bound Mγ11 , when s → 1, p (X1 | Xs,X0) will become a delta distribution
concentrated on X̂1 and Z = p(y|X1) will also have a delta distribution concentrated on p(y|X̂1),
and the γ11 ≈ 0 finally. In conclusion, this bias should be controlled by

|logEX1 [p (y|X1)]− EX1 [log p (y|X1)]| ≤
1√
2πγ

(S.24)

Although this bias is theoretically bounded, it still results in a slight degradation in performance.
Table S.3 shows the comparison for the Lorenz experiment to illustrate this point.
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unbiased biased

↑ log p(x̂2:K | x̂1) 17.29 -36.98
↑ log p(y | x̂1:K) -0.228 -1.530
↓ W1(x1:K , x̂1:K) 0.106 0.111
↓ RMSE(x1:K , x̂1:K) 0.202 0.363

Table S.3: Evaluation of unbiased vs. biased estimation. Comparison of metrics between unbi-
ased and biased estimation in the Lorenz experiments. The results demonstrate that the unbiased
estimation outperforms the biased estimation.

Hyperparameters for Monte Carlo Sampling We examine the estimation process and associ-
ated hyperparameters in Equation (S.21), where the expectation is computed using a Monte Carlo
method. The hyperparameter J , is referred to as the number of Monte Carlo sampling iterations in
Algorithm 2. It is important to note that increasing J does not lead to an increase in neural network
evaluations but only involves additional Gaussian noise simulations, which are computationally
lightweight. To illustrate the effect of J , we use numerical results from the Lorenz experiment. As
shown in Table S.4, increasing J can improve performance by approximately 20%, with negligible
impact on computational time.

J = 3 6 12 21 30 50

RMSE 0.167 0.148 0.153 0.142 0.150 0.138

Table S.4: Effect of J . The RMSE of generated state trajectories for FlowDAS is evaluated with
different Monte Carlo sampling times J in Equation (S.21) for the Lorenz 1963 experiment. As J
increases, the RMSE initially decreases, indicating improved performance, and then stabilizes.

A.2 The Method For Posterior Estimation

We also evaluate the impact of different methods for posterior estimation: Euler’s method (1st-
order estimation) and Heun’s method (2nd-order estimation), as defined in Equation (12). The
results are presented in Table S.5, where “1st-order" and “2nd-order" refer to Euler’s and Heun’s
methods, respectively. "No correction" indicates forecasting purely based on the model without
incorporating observation information. The results show that both 1st-order and 2nd-order esti-
mations provide reasonable accuracy. However, the 2nd-order estimation (Heun’s method) con-
sistently delivers better performance. This suggests that employing more accurate estimations of
p (X1|Xs,X0) can effectively enhance model performance. Beyond the 2nd-order method, higher-
order approaches like the Runge-Kutta 4th-order (RK4) method could further improve accuracy.
However, these methods come with increased computational cost: 2nd-order estimation requires
two neural network evaluations per step compared to one for 1st-order estimation, while RK4 re-
quires four evaluations per step. In our experiments, we find that the 2nd-order estimation strikes
a good balance between performance and efficiency, making it a practical choice. Further explo-
ration of higher-order methods will be left for future research.

B Experiment Details and Results

This section provides the details of our experiments, including additional experiments and results.
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1st-order 2rd-order No correction

322 → 1282 0.048 0.038 0.206
162 → 1282 0.101 0.067 0.206

Table S.5: Effect of posterior estimation. The RMSE of vorticity estimate from FlowDAS is eval-
uated on the incompressible Navier-Stokes task using different posterior estimation methods: Eu-
ler’s method (1st-order estimation), Heun’s method (2rd-order estimation), as defined in Equa-
tion (12), and forecasting without observations (i.e., no correction). For the super-resolution tasks
162 → 1282 and 322 → 1282, both posterior estimation methods significantly outperform forecast-
ing without observations. Among them, the 2nd-order method achieves the lowest RMSE.

Figure S.6: Structure of training data. Consecutive states are paired across multiple simulated
trajectories to construct the Ĩs andRs defined in Equation (13) for training the velocity model bs.

B.1 Constructing Training Dataset

In the training stage for all experiments, we require pairs of consecutive states to train the velocity
model bs. To generate these pairs, we proceed as follows:

1. Trajectory simulation. We simulate T independent trajectories, denoted as x1:T
0:K , where each

trajectory starts from a unique initial state xt
0. The state transitions within each trajectory

follow the dynamics defined in Equation (1).

2. Consecutive state pairs formation. For each trajectory t, form two aligned sequences:

(a) xt
0:K−1: The original sequence of states with each last state xtK discarded.

(b) xt
1:K : The sequence of states shifted by one time stepwith each initial state xt0 discarded.

The two sequences form pairs of consecutive states (xt
k,x

t
k+1) for k = 0, 1, · · · ,K − 1.

3. Concatenating trajectories. Then, we concatenate T sequences of xt
0:K−1 and T sequences

xt
1:K end-to-end, respectively, into two long sequences: x1:T

0:K−1 and x1:T
1:K , where each state in

the second sequence is the corresponding successor states in the first sequence.

4. Sampling training data. During training, batches of paired consecutive states are sampled.
For each batch, we sample training data pairs as follows:

(a) sample states from x1:T
0:K−1 asX0’s.

(b) retrieve the counterpart states from x1:T
1:K as X1’s.

The batches of state pairs (X0,X1) are used to construct Ĩs and Rs in Equation (13) for
training the velocity model bs as described in Algorithm 1.
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Monte Carlo Sampling Times J Sampling Step Size ζ
Double-well 17 1
Lorenz 1963 21 0.0002

Incompressible
Navier Stokes

SR 4x 25 1
SR 8x 25 2
SO 5% 25 1
SO 1.5625% 25 1.75

Particle Image Velocimetry 25 1

Table S.6: Hyperparameters for FlowDAS in the inference stage of all experiments presented in
this study. SR stands for super-resolution task and SO represents sparse observation (inpainting)
task.

In summary, we draw many state pairs (X0,X1) and estimate the integral over s in Equation (13)
by approximated via an empirical expectation over draws of s ∼ U(0, 1), and for every s and every
state pairs (X0,X1), we independently compute Equation (14)withS samples of zk, so the training
loss can be rewritten as:

Lemp
b (b̂) =

1

K ′

∑
k∈BK′

1

S

S∑
s=1

∥b̂s(Ĩk
s ,xk)−Rk

s∥2 , (S.25)

where we randomly draws s from U(0, 1). Note that the training batch size equals S × K ′. Fig-
ure S.6 illustrates the structure of training data, showing how consecutive states are paired across
trajectories.

B.2 Double-well Potential Problem

B.2.1 The Double-well Potential System

In this experiment, we investigate a 1D tracking problem in a dynamical system driven by the
double-well potential. The system is governed by the following stochastic dynamics:

dx = −4x(x2 − 1) dt+ βd dξt (S.26)
with observation model defined by A(x) = x3. The observations are given by

y = A(x) + η = x3 + η (S.27)

where the stochastic force ξt is a standard Brownianmotionwith diffusion coefficient of βd = 0.2. η
is standard Gaussian noise with standard deviation of 0.2. The Ψ is the derivative of the potential
U(x) = x4 − 2x2 + f , where f is a function independent of x. The system describes a particle
trapped in the wells located at x = 1 and x = −1, with small fluctuations around these points, as
illustrated in Figure S.7a.

B.2.2 Training and Testing Data Generation

We trained the model on simulated trajectories generated by numerically solving the transition
equation using a temporal step size of 0.1. The training dataset consisted of 500 trajectories, each
of length 100, with initial points uniformly sampled from the range [−2, 2]. In the testing stage,
we introduced stronger turbulence to the system, causing the particle to occasionally switch wells
(x→ −x).
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(a) Illustration of theDouble-Well Potential Prob-
lem. In the double-well potential system, particles
are typically captured at the bottoms of the wells
(x = 1 and x = −1). With low probability, particles
can transition between wells due to the stochastic
term in the transition equation.

(b) Visualization Results of Double-Well Poten-
tial Problem. We show the visualization results
of FlowDAS and BPF, while the score-based solver
SDA fails to produce reasonable results. FlowDAS
can track the dramatic change of the particles that
BPF struggles to immediately react to.

Figure S.7: Illustrations and visualization results for the double-well potential problem.

B.2.3 Neural Network for Learning the Drift Velocity

In this low-dimensional double-well potential task, the drift velocity bs is approximated using a
fully connected neural network with 3 hidden layers, each having a hidden dimension of 50. Both
the input and output dimensions of the network are 1. For the condition X0 and timestep s, we
empirically find that embeddingX0, similar to how s is embedded, outperforms directly usingX0

as an additional input to the network. The intuition behind this approach is that embedding X0

helps the network better distinguish between the two variables, Xs and X0. The model is trained
using the Adam optimizer with a base learning rate of 0.005, along with a linear rate scheduler.
Training is conducted for 5000 epochs.

B.2.4 Hyperparameters During Inference

Hyperparameters of the inference procedure, specified for the double-well potential task, are pre-
sented in Table S.6.

B.2.5 Baseline

For this task, we compare our method with SDA and the classic BPF method. For SDA, we fix the
window size to two and use the same training data as FlowDAS to ensure fairness. The local score
network is implemented as a fully connected neural network, following the architecture proposed
in [Bao et al., 2023]. The score network consists of 3 hidden layers, each with a hidden dimension
of 50. Themodel is trained using the AdamWoptimizer with a base learning rate of 0.001, a weight
decay of 0.001, and a linear learning rate scheduler. Training is conducted for 5000 epochs. For the
BPF method, the particle density is set to 16384.
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B.2.6 Results

The visual results are shown in Figure S.7b. Surprisingly, while both FlowDAS and the classic BPF
method produce reasonable results, FlowDAS demonstrates superior performance in tracking dra-
matic changes in the trajectory. In contrast, the score-based solver SDA fails to produce reasonable
results. This failure arises because the starting point of SDAduring optimization is purelyGaussian
noise, leading to a poor initial estimation of the target state. Furthermore, the cubic observation
model amplifies the differences, causing the optimization gradients to explode and resulting in
recovery failure.

In FlowDAS, the error is bounded by ||yk+1 − A(xk)||22 because the generation process begins
with the previous state, which serves as a proximal estimate of the target state. Consequently,
FlowDAS undergoes a more stable optimization process.

Compared to the classic BPF method, we find that it struggles to capture dramatic changes in
the trajectory. This limitation is primarily due to the small diffusion coefficient βd, such as βd = 0.2,
which causes the predicted filtering density in BPF to concentrate around the mean value dictated
by the deterministic part of the transition equation. As a result, extreme cases lying in the tail of
the future state distribution p(xk+1 | xk) are often missed. This phenomenon can be explained by
the truncation error arising from the finite particle space [Bao et al., 2023].

In contrast, FlowDAS is capable of immediately sampling from the true conditional distribution
as the steps become sufficiently large. This allows FlowDAS to better capture the tail region of the
true distribution and react to dramatic changes, even those in low-probability areas. Additionally,
FlowDAS can effectively incorporate observation information, enabling it to balance prediction and
observation even when the true underlying state occurs in a low-probability region.

B.3 Lorenz 1963

B.3.1 The Lorenz 1963 Dynamic System

To simulate this system, we use the RK4method, which updates the solution from time tn to tn+1 =
tn + h using the following formulas for each variable a, b, and c:

k1an = h · µ(bn − an),
k1bn = h · (an(ρ− cn)− bn) ,
k1cn = h · (anbn − τcn) ,

(S.28)
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(
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k1bn
2

)− (an +
k1an
2

)

)
,

k2bn = h ·
(
(an +

k1an
2

)(ρ− (cn +
k1cn
2

))− (bn +
k1bn
2

)

)
,
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(
(an +

k1an
2

)(bn +
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(S.29)
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Figure S.8: Dynamicsmodeling evaluation in the Lorenz 1963 task: FlowDASvs. SDA. FlowDAS
produces results that closelymatch the true states, demonstrating its ability to learn the underlying
transition dynamics p(xk+1 | xk). In contrast, SDA exhibits rapid divergence from the true states.
This divergence arises because SDA focus onmodeling the joint distribution p(xk+1,xk) rather than
directly learn the transition dynamics p(xk+1 | xk), which is inherently less suitable for capturing
the system’s underlying dynamics.

k4an = h · µ ((bn + k3bn)− (an + k3an)) ,

k4bn = h · ((an + k3an)(ρ− (cn + k3cn))− (bn + k3bn)) ,

k4cn = h · ((an + k3an)(bn + k3bn)− τ(cn + k3cn)) .

(S.31)

Then, the updates for an, bn, and cn are:

an+1 = an +
1

6
(k1an + 2k2an + 2k3an + k4an),

bn+1 = bn +
1

6
(k1bn + 2k2bn + 2k3bn + k4bn),

cn+1 = cn +
1

6
(k1cn + 2k2cn + 2k3cn + k4cn).

(S.32)

After solving these deterministic updates, the stochastic force (ξ1, ξ2, ξ3) is added to (an+1, bn+1, cn+1),
which leads to the Lorenz 1963 system dynamic equations described in Equation (15).

B.3.2 Training and Testing Data Generation

We apply the RK4 method described in Appendix B.3.1 to generate the simulated training and
testing data.

B.3.3 Hyperparameters During Inference

Hyperparameters of the inference procedure, specified for the Lorenz 1963 task, are presented in
Table S.6. Noticeably, the step size ζ is smaller than in other experiments due to the chaotic nature
of the Lorenz 1963 system, which requires finer step size to accurately capture its dynamics.

B.3.4 Neural Network for Learning the Drift Velocity

In this task, we use a fully connected neural network with 5 hidden layers, each with a hidden
dimension of 256, to approximate the velocity field bs. The input and output dimensions are both
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3. For the condition X0 and timestep s, we use embeddings of dimension 4. The model is trained
using the Adam optimizer with a base learning rate of 0.005, and a linear learning rate scheduler
is applied. Training is conducted over 23000 epochs.

B.3.5 Baseline

We compare FlowDAS with SDA and BPF. For the SDA, we use a score neural network with a
fixed window size of 2. This local score function is implemented using a fully connected neural
network with 5 hidden layers, each having a hidden dimension of 256. The model is trained using
the AdamW optimizer with a base learning rate of 0.001 and a linear scheduler over 23000 epochs.
For BPF, the particle density is set to 16384.

B.3.6 Accuracy of the Learned Dynamics

We evaluate the dynamic learning performance of FlowDAS and SDA, focusing on their ability to
forecast future states without using observations. For BPF, we do not evaluate its performance in
this context since it explicitly incorporates the true system dynamics.

As SDA is designed to rely on observations and does not work in an auto-regressive manner,
we adapt it for this evaluation by using the previous state as a pseudo-observation. The SDA then
forecasts the next state based on this input. For FlowDAS,we disable the observation-based update
step by setting the step size ζn = 0.

Both methods are initialized with the same initial state, and we simulate 64 independent tra-
jectories of length 25. True states are generated by solving Equation (15) using the RK4 method,
starting from the same initial point. The visualization of location a across 25 time steps is shown
in Figure S.8.

B.4 Incompressible Navier-Stokes Flow

B.4.1 Incompressible Navier-Stokes Flow Problem Settings

For the incompressible Navier-Stokes flow problem, we adopted the problem setting from [Chen
et al., 2024b] and used the provided training data. The choices of experiment parameters are as
follows: ν = 10−3, α = 0.1, ε = 1. The stochastic force ξ is defined as:

ξ(t, x, y) =W1(t) sin(6x) +W2(t) cos(7x) +W3(t) sin(5(x+ y)) +W4(t) cos(8(x+ y))

+W5(t) cos(6x) +W6(t) sin(7x) +W7(t) cos(5(x+ y)) +W8(t) sin(8(x+ y))
(S.33)

For more details and insights about this problem, see [Chen et al., 2024b].

B.4.2 Hyperparameters During Inference

Table S.6 presents the hyperparameters of the inference procedure for the incompressible Navier-
Stokes flow task.

B.4.3 Neural Network for Learning the Drift Velocity

We used a U-Net architecture to approximate bs, following the network proposed in [Chen et al.,
2024b]. The conditioning on X0 was implemented through channel concatenation in the input.
The architectural details are as follows:

• Number of initial channels: 128.
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Figure S.9: The kinetic energy spectrum of: (a) super-resolution task: 162 → 1282; (b) super-
resolution task: 322 → 1282; (c) sparse observation task: 1.5625%; (d) sparse observation task:
5%, in the incompressible Navier-Stokes flow task. We present the kinetic energy spectrum of the
true state alongside the estimations from FlowDAS and SDA. FlowDAS can produce results that
better alignedwith the true state in terms of the kinetic energy spectrum, indicating FlowDAS’s su-
periority in recovering the physics information and effectiveness as a surrogatemodel for stochastic
dynamic systems. In contrast, SDA fails to produce reasonable high-frequency physics, evidenced
by the oscillations in the spectrum.

• Multiplication factor for the number of channels at each stage: (1, 2, 2, 2).

• Number of groups for group normalization in ResNet blocks: 8.

• Dimensionality of learned sinusoidal embeddings: 32.

• Dimensionality of each attention head in the self-attention mechanism: 64.

• Number of attention heads in the self-attention layers: 4.

We employ theAdamWoptimizer [Loshchilov andHutter, 2017]with a cosine annealing sched-
ule to reduce the learning rate during training. The base learning rate is set to 2 × 10−4. Training
is conducted with a batch size of 32 for 10000 epochs.

B.4.4 Baseline

Wecompared ourmethodwith SDA. For SDA, the score neural networkwas configuredwith a tem-
poralwindowof 2, an embedding layer dimensionality of 32, and a base number of feature channels
set to 256. The network depth was 5, and the activation function used was SiLU [Loshchilov and
Hutter, 2017]. The training process used a batch size of 64 and the AdamW optimizer. A linear
learning rate scheduler was applied with an initial learning rate of 0.001, and the weight decaywas
set to 0.001. The model was trained for 10000 epochs.

B.4.5 Kinetic Energy Spectrum Analysis

We evaluated the methods from a physics perspective using the kinetic energy spectrum. A better
method produces results that align more closely with the kinetic energy spectrum of the true state.
The kinetic energy spectrum is computed as follows:

E(kn) =
∑
p,q

kp,q ∈ bin n

E(kxp , kyq), (S.34)

where kp,q represents thewavenumbers grouped into bin n,E(kxp , kyq) is the kinetic energy at each
wavenumber and p,q are the index representing a specific discrete wavenumber along the kx or ky
axis.
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Since the direct outputs of both FlowDAS and SDA are vorticity fields, it is necessary to first
convert the vorticity into velocity before computing the kinetic energy spectrum. This conversion
is achieved by solving the Poisson equation∆ψ = −ω to obtain ψ, and then calculating its gradient
v = −∇ψ to derive the velocity v.

We present the results of the kinetic energy spectrum analysis for the Navier-Stokes flow super-
resolution and sparse observation tasks.

Figure S.10: Data assimilation of incompressible Navier-Stokes flow. Experiments were con-
ducted at observation resolution of 162 (left) and observation sparsity level at 1.5625% (right).
The goal of super-resolution task is to reconstruct high-resolution vorticity data (1282) from low-
resolution observations and the goal of sparse observation task is to recover the complete vorticity
field.

B.4.6 Additional Results

In this section, we present additional results to Section 4.2, including the kinetic energy spectrum
and visualization results for the Navier-Stokes flow super-resolution and sparse observation tasks.

162 → 1282 Super-Resolution The kinetic energy spectrum is shown in Figure S.9 (a), and ad-
ditional visualization results are provided in Figure S.10 (left). FlowDAS effectively reconstructs
high-resolution vorticity data from low-resolution observations, while SDA struggles to capture
high-frequency physics.

322 → 1282 Super-Resolution The kinetic energy spectrum is shown in Figure S.9 (b). Similar to
the 162 → 1282 task, FlowDAS achieves superior alignment with the true state compared to SDA.

1.5625% Sparse Observation The kinetic energy spectrum is presented in Figure S.9 (c), with
additional visualization results in Figure S.10 (right). FlowDAS accurately recovers the vorticity
field despite the highly sparse observations, significantly outperforming SDA.

27



5% Sparse Observation The kinetic energy spectrum is shown in Figure S.9 (d). FlowDAS con-
tinues to outperform SDA, demonstrating strong recovery of physical information.

Across all tasks, FlowDAS consistently outperforms SDA, demonstrating superior alignment
with the true kinetic energy spectrum and effective recovery of the vorticity field. FlowDAS not
only excels in super-resolution tasks but also handles sparse observation challenges with robust-
ness, maintaining physical coherence and accurately capturing high-frequency dynamics.

B.5 Particle Image Velocimetry

Figure S.11: Reconstructed Vorticity Fields and Error Maps from FlowDAS and SDA. For the ex-
ample shown in Figure 4, FlowDAS demonstrated superior reconstruction quality compared to the
score-based method SDA. Numerically, FlowDAS achieved a lower RMSE of 0.12, outperforming
SDA with an RMSE of 0.15.

B.5.1 Experiment Setting

The training data, neural network (including FlowDAS and SDA) is the same as those in the in-
compressible Navier-stokes flow simulation. Figure 4 shows the standard PIV set up.

B.5.2 Hyperparameters During Inference

Hyperparameters of the inference procedure, specified for the PIV task, are presented in Table S.6.

B.5.3 Additional Results

RMSE We compared the RMSE of the reconstructed vorticity fields with the true states for the
PIV task. Using FlowDAS and the score-basedmethod SDA,we independently generated 10 results
and computed the RMSE for each. FlowDAS achieved a lower average RMSE of 0.12, compared
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Parameter Value Unit

Particle density 0.03 particle per pixel
Particle diameter 3 Pixel
Peak intensity 255 Gray value

Table S.7: PIV task: parameters for simulation. This table summarizes parameters for the PIV
experiments in detail.

to 0.15 for SDA. This highlights the ability of FlowDAS in accurately reconstructing vorticity fields
for the PIV task.

Error map Figure S.11 provides the error maps of FlowDAS and SDA for the example shown in
Figure 4. In the FlowDAS error map, most regions are darker (indicating lower errors), with fewer
bright spots. In contrast, the SDAerrormap showsmore scattered bright areas andgenerally higher
values. These results suggest that FlowDAS recovers the PIV vorticity field more accurately.
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