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ABSTRACT

Why do larger language models generalize better? To explore this question, we de-
velop generalization bounds on the pretraining objective of large language models
(LLMs) in the compute-optimal regime, as described by the Chinchilla scaling laws.
We introduce a novel, fully empirical Freedman-type martingale concentration
inequality that tightens existing bounds by accounting for the variance of the loss
function. The generalization bound can be broken into three contributions: the
number of parameters per token, the loss variance, and the quantization error at a
fixed bitrate. As language models are scaled up, the number of parameters per data
point stays constant; however, both the loss variance and the quantization error
decrease, implying that larger models should have smaller generalization gaps.
We examine why larger models tend to be more quantizable from an information
theoretic perspective, showing that the rate at which they can integrate new infor-
mation grows slower than their capacity on the compute optimal frontier. From
these findings we produce a scaling law for the generalization gap, showing that
our bounds decrease in a predictable way.

1 INTRODUCTION

Large language models (LLMs) have demonstrated a remarkable general purpose problem solving
capacity across a wide range of complex tasks which humans are able to perform, from classical
NLU (Brown, 2020), forecasting (Gruver et al., 2023), mathematics (Trinh et al., 2024), spatial
reasoning (Patel & Pavlick, 2022), and many other areas. For a large majority of individual tasks,
model capabilities increase monotonically as the next token prediction loss from the pretraining
objective decreases.

A conceptually useful story about the learning process involves the model accommodating predictive
subprograms of progressively larger computational depth and complexity. During pretraining, shallow
details are absorbed first: the log likelihood loss is most easily decreased by learning word frequencies,
syntax, and grammar. As these details are absorbed, slightly higher level structures such as facts,
relations, and idioms then become the next batch of the lowest hanging fruit, giving way to yet higher
level structures and pattern matching.

For reasons that are not yet well understood, this process is reflected in the pretraining objective
as a power law for LLMs and other generative models on natural data. The frontier of the best
achievable performance given a fixed computational budget C obeys a fixed and predictable power
law relationship L(C) ∝ C−α over many orders of magnitude (Kaplan et al., 2020). This relationship
appears to vary considerably with the kind of data (Henighan et al., 2020) (e.g. natural text vs images
vs math) and only weakly on the details of the model architecture and training method (Bahri et al.,
2021).

Effort in quantifying what this relationship is in a given domain and how it varies as model size
and dataset size are traded off has been extremely valuable in guiding where resources are spent in
constructing more capable AI models (Brown, 2020; Besiroglu et al., 2024; OpenAI, 2023; Dubey
et al., 2024) and charting a path for the future. In this work, we target the why of scaling laws.
While mathematically simple toy models or toy data are valuable, we aim to study the why of scaling
laws on real models and real data by focusing on just one contribution to the scaling law curve: the
token-wise generalization gap. Constructing a generalization bound sensitive enough to capture the
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small differences between architectures and yet simple enough to write down in a short formula is
likely impossible; however, even the broad strokes of behavior such as how generalization scales
with compute have not been addressed. Thus, here we focus high level understanding rather than
algorithmic intervention.

In order to construct the relevant generalization bounds, we introduce a novel empirical Freed-
man concentration inequality (Freedman, 1975). Our generalization bound highlights three critical
components—the ratio of parameters per token in compute-optimal scaling (which is roughly con-
stant), the token-wise loss variance (which decreases with model size), and the performance gap
between quantized and unquantized models (which also decreases with model size). As an alternative
to quantization, we bound the information transfer between dataset and the model, showing that
the information content in the model grows sublinearly with model size, and thus the complexity
decreases with model size. These components collectively contribute to a predictable reduction in the
generalization gap as models grow larger.

2 BACKGROUND

2.1 GENERALIZATION BOUNDS

At a high level, we are interested in the expected test error (population risk) EX′∼pD [Rh(X)(X
′)] for

a given model (hypothesis) h depending on the training set X but evaluated on a test set X ′ sampled
from the data distribution pD. One conceptually convenient way of breaking down this quantity is
into the irreducible error, approximation gap, and generalization gap:1

EX′∼pD
[Rh(X)(X

′)] = R∗(X)︸ ︷︷ ︸
Irreducible Error E

+Rh(X)(X)−R∗(X)︸ ︷︷ ︸
Approximation Gap A

+ EX′∼pD
[Rh(X)(X

′)]−Rh(X)(X)︸ ︷︷ ︸
Generalization Gap G

.

The first term describes the entropy of natural text, e.g. the amount of truly random information
content in the data, which cannot be further explained even when knowing the true data generating
process. The second term describes the approximation gap, capturing the extent to which the
trained model is able to fit the training data. This term combines both model capacity, e.g. as
described by universal approximation theorems (Cybenko, 1989), as well as optimization via how
well the training algorithm is able to find the given solution. Finally, we have the generalization gap,
capturing the extent to which training and testing performance diverge on account of overfitting to
the statistically irrelevant regularities in X . Though generalization bounds focus on the last term, all
three quantities are of interest for understanding LLM behavior. Empirically, it has been observed
that the generalization gap for LLMs (at least in the low epoch regime) tends to be extremely small or
even negligible compared to the other two terms.

Among the simplest generalization bounds is the finite hypothesis with prior generalization bound
applied to IID data (Shalev-Shwartz & Ben-David, 2014). With probability at least 1− δ,

EX′∼pD [Rh(X)(X
′)]−Rh(X)(X) ≤ ∆

√
log 1/P (h) + log 1/δ

2m

where m is the number of IID data points, ∆ is an upper bound on the range of values the risk
can take, and P (h) is a prior distribution over hypotheses in a discrete hypothesis class H. With a
judicious choice of prior, log 1/P (h) can be related to the compressed size of the model measured in
nats (Lotfi et al., 2022).

During text pretraining, the individual tokens are not sampled IID. Thus, a generalization bound
requires treating entire documents (often thousands of tokens) as the elements the empirical risk is
computed over. Note that modern language models have hundreds of times more parameters than
documents they were trained on. With the help of very extreme compression methods and using
smoothing to bound ∆, it is possible to construct nonvacuous bounds (Lotfi et al., 2024a). However,
the required compression (greater than 100 times) is so severe that it cripples model performance.

1We note this differs from the commonly referred to estimation-approximation error breakdown (Bottou &
Bousquet, 2007) or the bias-variance decomposition (Brown & Ali, 2024); however, the train error-generalization
gap is more useful for our purposes.
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In a recent work, Lotfi et al. (2024c) explore breaking down generalization into tokenwise gener-
alization, e.g. how the loss varies with each individual predicted token being resampled under the
distribution but keeping the context the same. Splitting up the training dataset X into the sequence of
tokens [Xk]

D
k=1, the authors bound

T =
1

D

D∑
k=1

E[Rh(Xk | X<k) | X<k]−Rh(X),

where Rh(Xk | X<k) is the negative log likelihood for token k given the context X<k, and the
expectation is taken with respect to p(Xk|X<k) from the data distribution. The authors bound T

using Azuma’s inequality to arrive at a bound scaling as ∆
√

log 1/P (h)
2D . We improve upon this bound,

reducing to a leading term of ∆ log 1/P (h)
D .

2.2 CHINCHILLA SCALING LAWS

A key insight from the current machine learning paradigm is that the dataset should not be considered
a fixed quantity. Rather than optimizing to find the best model for a given dataset, one should instead
try to find the best performing model and dataset for a given computational budget. Muennighoff et al.
(2024) describes the optimal allocation of resources for increasing the size of the model and increasing
the size of the dataset under the assumption that data is plentiful relative to the computational budget.

Let N be the number of parameters and D be the number of training tokens. In the one epoch regime
of LLM pretraining, the negative log likelihood loss is well-approximated by the power law

R(N,D) = E +
A

Nα
+

B

Dβ
,

where A,B are empirically estimated constants, exponents α, β have similar values, and E is the
irreducible error. Optimizing N(C) and D(C) under the constraint of a fixed compute budget
C ≈ 6ND (Kaplan et al., 2020), one arrives at

N∗(C) = G(C/6)a D∗(C) = G−1(C/6)b

for constants G, a, b that depend on A,B, α, β (Hoffmann et al., 2022).

Within the margin of statistical error, we have a = b = 0.5 in the optimal allocation of compute
(Besiroglu et al., 2024). Therefore, the ratio of parameters per token, N∗(C)/D∗(C) = G2, is a
fixed constant. Evaluating the constants from Muennighoff et al. (2024), we have G2 ≈ 1/20. Note
that many open source models optimize performance amortized over both training time and inference
time compute, which leads to smaller than Chinchilla optimal models, e.g. models with a ratio
N/D < G2. In the context of this paper, we will assume the Chinchilla optimal scaling N/D = G2

with the understanding that any generalization bounds we construct would only be tighter if the ratio
N/D is smaller.
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Figure 1: Pythia models and checkpoints chosen
along the compute optimal frontier (checkpoints
given by the marked values).

To test our theory, we use the open source Pythia
model family (Biderman et al., 2023) ranging
from 70 million to 12 billion parameters. Un-
like other open source LLMs, we have full ac-
cess to both the Pythia model checkpoints from
training and the Pile dataset they were trained
on (Gao et al., 2020). From these intermedi-
ate checkpoints, we choose the set of models
along the compute optimal frontier to match
N/D = 1/20, reflecting the choice for number
of training steps and model size that one would
have made optimizing only for performance at
the given computational budget. The chosen
checkpoints are plotted in the training frontier
of these models in Figure 1.
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3 GENERALIZATION BOUND

In this section, we will build up the components for our generalization bounds. To capture the relevant
behavior, we derive a new concentration inequality for martingales. We apply a prior weighted union
bound to this concentration inequality so that we can apply it to models in a large hypothesis class,
taking advantage of the low complexity inherent in compressible models. Bounding the worst case
loss behavior using prediction smoothing, we apply this bound to LLMs.

3.1 AN EMPIRICAL FREEDMAN’S CONCENTRATION INEQUALITY

Theorem 3.1. Let X1, . . . , Xn be a sequence of Fk-measurable random variables. Let Y1, . . . Yn

be any other sequence of Fk−1-measurable random variables such that the difference is bounded
below: Ak = (Yk −Xk)/∆ > −1 for some ∆ ≥ 0. Let K be a finite subset of (0, 1). Then, with
probability at least 1− δ,

1

n

n∑
k=1

(
E[Xk | Fk−1]−Xk)

)
≤ ∆C +Σ

√
C, (1)

where C := 1
n log |K|

δ , and

Σ = Σ(C,∆, {Xk − Yk}nk=1,K) := min
s∈K

∆
√
C(1− s)/s+

∆√
C

1

n

n∑
k=1

v
(
sAk

)
/s

and v(x) = x− log(1 + x).

Proof: See Section A.1. This concentration inequality states that the sequence of random variables
concentrates on their conditional means with a term Σ depending on the empirical variation of the
loss value. We note that Σ can be viewed as a variance term. As we show in Appendix A, using a

small K, the variance proxy can be upper bounded: Σ ≤ 2
√

1
n

∑n
k=1(Xk − Yk)2. This is explicitly

related to the empirical variance but with the mean replaced by Yk. Although the minimization form
above is unwieldy, it produces significantly tighter estimates of Σ (a factor of ∼ 5x smaller). When
the loss variation Σ is small, concentration happens at a rate linear in the complexity C rather the
slower

√
C rate.

This concentration inequality provides the core result for our generalization bounds, and to the best
of our knowledge it is the first martingale concentration inequality to incorporate a variance term
which can be evaluated on the original data. We can view this bound as aiming to achieve the benefits
that Freedman’s inequality has over Azuma’s inequality while being fully empirical, replacing the
population variance with a fully empirical proxy. Our approach is analogous to the fully empirical
Bernstein bound derived in Maurer & Pontil (2009), but in the martingale rather than IID setting.
Unfortunately, the proof technique of Maurer & Pontil (2009) does not carry over to the martingale
case and instead we take quite a different approach. We derive our concentration inequality in
Theorem A.5 making use of a proxy Yk that is Fk−1-measurable but which can take the place of
E[Xk | Fk−1] in the variance. In practice, we choose this quantity to be the mean of the model
NLL under resampling of the given token according to the model distribution in place of the data
distribution.

3.2 EXTENDING TO A DISCRETE HYPOTHESIS CLASS

From the concentration inequality in Equation 1, we derive the following discrete hypothesis class
generalization bound.

Theorem 3.2. Let X1, . . . , Xn be a sequence of (possibly dependent) random variables. Let Rh(Xk |
X<k) denote the risk for element Xk given the previous elements of the sequence for hypothesis h in a
countable hypothesis class H. Let ph(Xk | X<k) be any (hypothesis dependent) distribution over Xk

conditioned on X<k. Consider a prefix free coding of each h ∈ H and let L(h) be the length of that
code measured in nats. Let K be a finite subset of R+. Assuming Rh(Xk | X<k)−EYk∼ph

[Rh(Yk |
X<k)] ≤ ∆ for some ∆ > 0, we have that simultaneously for all h ∈ H, with probability at least

4
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1− δ,
1

n

∑
k

E[Rh(Xk | X<k) | X<k] ≤
1

n

∑
k

Rh(Xk | X<k)) + ∆C +Σ
√
C, (2)

where the complexity C is given by

C :=
L(h) + log |K|/δ

n

and Σ = Σ(C,∆, {Ak}nk=1,K) from Theorem 3.1 for Ak = Rh(Xk | X<k) − EYk∼ph
[Rh(Yk |

X<k)].

Proof: See Section A.2.

3.3 WORST CASE BEHAVIOR AND SMOOTHING

The last component of our bounds is the smoothing to bound the worst case behavior of the model,
which in general for the negative log likelihood can be arbitrarily large. We employ the prediction
smoothing idea from Lotfi et al. (2024a), where the model is mixed with a uniform distribution over
the tokens with a given mixing parameter. Unlike application in previous work, we optimize over
this parameter analytically so that we can remove it from the bounds and evaluation entirely, instead
merely as a tool for constructing bounds while all evaluations are with the unsmoothed model.

Theorem 3.3. For the categorical negative log likelihood objective R̂h = − 1
n

∑n
k=1 log ph(Xk |

X<k) on V classes and C ∈ R+, there exists a prediction smoothed model ps(·) = (1− α)ph(·) +
α/V which has a worst case loss ∆s = supXk,X<k

− log ps(Xk | X<k) ≤ log(V/α), and the risk
satisfies

R̂s + C∆s ≤ R̂h + C log V +
√
2C, (3)

for some value α ∈ (0, 1) (approximately C/(1 + C)).

The proof is provided in Section A.3.

3.4 GENERALIZATION BOUND FOR CHINCHILLA LANGUAGE MODELS

Finally, we assemble these three components into a generalization bound that we can empirically
evaluate for language models. Combining the prediction smoothing bound with Theorem 3.2 applied
to the smoothed quantized model produces the result of Theorem 3.4. Note that each term in the
expression has an interpretable meaning.
Theorem 3.4. Let X1, . . . , XD be the sequence of D (possibly dependent) tokens formed from
concatenating each sequence in the dataset together into a single stream of tokens. Let Rh(Xk |
X<k) = − log ph(Xk | X<k) denote the NLL for element Xk given the previous elements for a
given model h and with vocabulary size V and N parameters. Let R̂h = 1

D

∑D
k=1 Rh(Xk | X<k)

be the empirical risk and Rh = 1
D

∑D
k=1 E[Rh(Xk | X<k) | X<k] be the tokenwise expected risk

for that model. Let K be a finite subset of (0, 1). For any given quantization q of h using b bits per
parameter with expected risk Rq, there exists a label smoothed model sq with Rsq(Xk | X<k) =
(1− α)Rq(Xk | X<k) + α/V for fixed α ∈ (0, 1) which achieves a tokenwise population risk with
probability 1− δ

Rsq ≤ R̂h + Clog V︸ ︷︷ ︸
Random Guess NLL

+ Σ
√
C︸ ︷︷ ︸

Loss Variation

+
√
2C︸︷︷︸

Smoothing Cost

+ (R̂q − R̂h)︸ ︷︷ ︸
Quantization Gap

, (4)

where the complexity C is given by

C =
(
N
D

)
b log 2 + 1

D log |K|
δ ,

and Σ = Σ(C,∆, {Ak}nk=1,K) (defined in Theorem 3.2) which can be upper bounded in terms of
the empirical loss variance

Σ ≤ 2

√√√√ 1
D

D∑
k=1

(
Rq(Xk | X<k)− EYk∼ph

[Rq(Yk | X<k)]
)2
.
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Figure 2: Left: A direct comparison of our evaluated generalization bound, and the empirical loss as
a function of model scale. As the model is scaled up, our bound improves just like the empirical loss.
Center: Loss variation Σ entering into the generalization bound. As the loss deviation decreases, so
does the largest term in our bound. Right: Comparison of the relative scale of the contributions to
Theorem 3.4.

To make sense of the bound, let’s consider the various terms. The bounded quantity on the left hand
side, Rsq , is the expected tokenwise risk of the smoothed and quantized version of hypothesis h. The
bound is written in terms of the empirical risk of the original model h, with R̂q − R̂sq controlled by
the smoothing cost and quantization gap. Typically, the largest contribution to the bound is C log V ,
e.g. the complexity times the negative log likelihood of random guessing. The loss variation relates
to how spread the empirical loss is and can be seen as a model realizability term. If there existed a 0
loss model in the model class, then this term could be brought to 0. Given the nonzero entropy of
natural text, this will not be the case; however, as models improve and approach the irreducible error,
so too will the empirical loss variation.

In this setup, the complexity C is just the ratio of parameters to data points, N
D = G2, times the

number of bits per parameter used in the quantization b, plus a negligible additional term. The
decreased complexity of using fewer bits for b trades off with the quantization gap, and in principle
this parameter should be optimized to achieve the best bound. As all terms in the expression can be
evaluated empirically, we can determine how much of the empirical observation it can explain and
how much remains to be understood.

To get a sense for the scale of the different terms, consider the following typical scenario. For
simplicity, suppose V = 50000, log V ≈ 11, b = 3, G2 = 1/20, which yields C ≈ 1/9. Σ varies
with model scale but is of scale 1/10, and the quantization gap is around 1/10. Evaluating these terms,
Rsq − R̂h ≤ 11/9 + 1/30 + 1.4/3 + 1/10 ≈ 1.8 nats per token, and we see that the random guess
and smoothing terms contribute most to the size of the bound. To put this value into perspective, the
empirical risk R̂h itself is around 2 nats per token and the boundary between vacuous and nonvacuous
bounds is at log V ≈ 11 nats per token.

4 EMPIRICAL EVALUATION

As Theorem 3.4 is fully empirical, we simply need to empirically evaluate the loss variation term
Σ along with the quantization gap and we can evaluate the generalization bound. We compute
these quantities on the given Pythia checkpoints on the Pile dataset on which they were trained and
quantized using GPTQ (Frantar et al., 2023) to b = 4 bits per parameter, and we evaluate the bounds
with failure probability δ = 0.01. The results are shown in Figure 2 for the Chinchilla compute
optimal checkpoints within the Pythia model family. Additional evaluation details are provided
below.

We compute Σ with K given by 1000 equally spaced points between [0, 1] excluding the endpoints.
We estimate the risk and loss variation on an IID subsample from the collection of token-context
pairs in the training dataset of size 104 and bound the difference with standard techniques. We note
that largest 12B parameter model failed to quantize properly (possibly due to the learning rate drop
as it was the only checkpoint taken at the end of training) and so we removed it from the evaluation.
As we must pick out the compute optimal checkpoints from training runs that were not designed for
this purpose, for the two smallest models (70m and 160m parameters), which the relevant region of

6
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the training curve is more sparsely sampled with checkpoints, the closest models consistently have
too small a value of N/D, biasing these two initial data points towards lower values and we urge the
reader to keep this in mind while reading the plots.

In Figure 2, we can observe several points. In Figure 2 center, we see that the loss variation decreases
with model size in a predictable way, also obeying a power law relationship with a constant offset.
As additional compute is spent, the models explain a larger fraction of the variance in the data and
the loss variation decreases, but like with the irreducible error there is a minimum value that it is
converging towards. Beyond language models, we would expect to see this behavior also, but the
predictable improvements with compute give it the simple relationship observed here. In Figure 2
right, we break down the individual contributions to the generalization bound, with the quantization
error and loss variance being small and decreasing whereas the C log V term and smoothing terms
make up the majority and are not decreasing (if the complexity C is constant). Figure 2 left shows
the comparison with the bound value Rsq and the empirical risk R̂h. The fact that the quantization
gap at a fixed number of bits is decreasing model size has been observed to an even larger extent in
other work (Chee et al., 2024; Tseng et al., 2024) with more advanced quantization methods. This
property suggests that if b were able to be freely optimized in the bound, the complexity C would
actually decrease with model size, and we explore evidence for and consequences of this idea in the
following section.

5 COMPRESSIBILITY AND THE SUBLINEAR INFORMATION GROWTH IN LLMS

While not obvious from efficient quantization algorithms like GPTQ (Frantar et al., 2023), there are
good reasons to believe that the model complexity term L(h)/D decreases with model scale on the
compute optimal frontier.

5.1 QUANTIZABILITY FROM THE HESSIAN SPECTRUM AND QUIP

So far we have split the compressed size of the model L(h) featured in the complexity term into
the number of parameters N times the number of bits per parameter used in the quantization b:
L(h) ≤ bN log 2. In this splitting increased compressibility of a model shows up in terms of
requiring a smaller number of bits b to achieve a given quantization gap R̂q − R̂h. In Appendix B, we
provide a theoretical argument using the QuIP quantization framework (Chee et al., 2024) for why
we should expect that larger models can be more easily quantized. If the hessian around the solution
weights is PSD and the spectrum decays sufficiently rapidly, then we should expect the quantization
error to decrease with model size. In Section B.1, we investigate the Hessian spectrum empirically
finding that it indeed decays sufficiently quickly (though not always PSD). Unfortunately, the version
of QuIP needed to construct this argument cannot be run in practice due to the impractically large
computational constraints. Empirically it has been observed by some that practical quantization
algorithms also reveal that larger models are more quantizable (Tseng et al., 2024), though the effect
is not very pronounced with the GPTQ algorithm we use here.

Alternatively, we present a more abstract information theoretic argument to provide evidence for the
fact that L(h)/D decreases with model scale even if we do not have an explicit compression scheme
that makes it so.

5.2 INFORMATION ACCUMULATION IN LLMS

Despite the many parameters, at initialization the information content in a neural network (and thus
the size a compression scheme can achieve) is extremely small. It suffices to specify the model
architecture and a random seed used to initialize the weights, both of which can be specified ahead of
time without seeing the data. As the loss decreases, information is transferred incrementally from the
dataset to the weights of the model with each additional data point. This information can be quantified
abstractly using algorithmic information theory and prequential coding (Rissanen, 1984; Dawid,
1984). Let X be the training dataset with D tokens and h the LLM with N parameters. Let K(X) be
the (prefix) Kolmogorov complexity of X , that is the length of a shortest self delimiting program
that produces X when run, and we will consider the description of the LLM architecture as well as
code for performing arithmetic encoding and decoding as part of the language in question. From

7
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the symmetry of information property (the analog of Bayes rule), K(X,h) = K(h) +K(X|h) + c,
where c is a small constant and K(X|h) is the length of a shortest (self delimiting) program which
takes as input h and produces X . As described in Blier & Ollivier (2018); Voita & Titov (2020)
and more specifically in Zhang et al. (2020) for measuring the information transfer, rearranging
K(h) = K(X,h) −K(X|h) − c one can estimate an upper bound on the information stored in a
given model using prequential coding.

In a prequential code (Rissanen, 1984; Dawid, 1984), we consider the hypothesis hk obtained
from training after seeing only k − 1 of the data points in X . Starting with the initialization at
h0, one can use hk−1 to encode Xk using arithmetic coding (or any entropy stream code) with
− log2 phk−1

(Xk|X<k) bits and transmit this data. After transmitting Xk, the model is trained on
Xk and the next data point is transmitted and so forth until the entire dataset has been encoded and
transmitted. On the other end, this data allows reconstructing both the entire dataset and the model if
the details of the training algorithm are known. One simply uses hk to decode the given data point,
train one step, and repeat so that the exact sequence of models [h0, h1, h2, . . . , hD] is repeated. The
length of the code for X,h is then only −

∑D
k=1 log2 phk−1

(Xk|X<k), the area under the loss curve.

Though used for classification problems in Zhang et al. (2020), we can readily repurpose the approach
for the autoregressive unsupervised learning task. For the coding of X|h, one can estimate this using
the code length of the final model −

∑D
k=1 log2 phD

(Xk|X<k). Assembling these two components
together, one can estimate an upper bound on K(h). Notably, one can convert a regular code of ℓ bits
into a prefix free code of L = ℓ+ 2 log2 ℓ+ 1 bits. Written in terms of the empirical risk and up to
additive logarithmic factors Õ(1),

K(h) log(2) ≤
D∑

k=1

[
Rhk−1

(Xk|X<k)−Rh(Xk|X<k)
]
+ Õ(1). (5)

If we plug in the Chinchilla scaling law R(N,D) = E + AN−α + BD−β as an estimate for the
risk along the training trajectory, (and noting that 1

D

∑D
k=1 f(k) →

1
D

∫D

1
f(x)dx as D → ∞) we

would have

K(h) log(2) ≤
( D∑

k=1

R(N, k)

)
−DR(N,D) + Õ(1) = Õ(D1−β). (6)

Looking at the right hand side K(h) = Õ(D1−β) we have an insightful result for LLMs: the
information content in the model grows sublinearly in the size of the training dataset, with a coefficient
depending on the scaling law.

As shown in Figure 3 left, using the actual loss curves to evaluate
∑D

k=1

[
Rhk−1

(Xk|X<k) −
Rh(Xk|X<k)

]
and fitting the results to a power law we get a very good agreement with the predicted

Õ(D1−β). Notably the empirical fit yields 2×104 ·N0.64 ∝ D0.64, and from the constants estimated
in Besiroglu et al. (2024), β = 0.37, which would yield D1−α = D0.63. While the empirical values
for the upper bound lie above the straightforward value one gets from quantization and parameter
counting bN over the range of Pythia models, the curves predict a crossover point at ≈ 30B parameter
models. This would mean that despite the large number of parameters, the information stored in each
one decreases with scale.

5.3 IMPLICATIONS FOR GENERALIZATION BOUNDS

If we apply this observation to upper bound the complexity featured in our generalization bounds
(Theorem 3.4) C = L(h)+log |K|/δ

D = K(h) log(2)/D + log |K|/δ
D = Õ(D−β), we see that the

complexity will actually decrease with the size of the dataset even as the ratio with parameters is
held constant. With this scaling we can derive a version of the generalization bound Theorem 3.4
without needing to consider quantization or considering the number of explicit parameters in the
model, provided that the Chinchilla scaling law holds.

We evaluate the non asymptotic generalization bound of Theorem 3.4 but using the complexity
derived from empirical prequential coding bound in Figure 3 (right) and break it down into the scaling
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Figure 3: Left: Information content contained in the model as upper bounded by K(h) from the
information transfer prequential coding approach vs parameter counting and quantization. Fitting a
power law to the prequential K(h) yields 2× 104 ·N0.64. While parameter counting gives a better
upper bound over the range of Pythia models, the sublinear scaling of the prequential bound means
that it overtakes it eventually, somewhere around 30B sized models. Center: The contributions of
the various terms to our generalization bounds when using prequential coding complexity, along with
their power law fits. Right: Comparison of generalization bounds produced by the prequential vs
quantization based approaches. While the prequential bounds are worse, they follow a power law and
improve substantially with scale.

of the individual terms (center), with the Σ term scaling law extrapolated from the fit in Figure 2.
Like before, the C log V term dominates; however, the

√
2C smoothing term threatens to overtake it

with very large model sizes. We can see that the bounds based on the prequential coding are worse
than their quantization counterparts, however the bounds improve with scale and can be extrapolated
with scaling laws.

At a high level just considering the asymptotics, the generalization gap of Theorem 3.4 will be
dominated by the scaling of the smoothing term

√
2C: Rs − R̂h = Õ(D−β/2). To speculate, it

seems likely that with a more sophisticated approach for dealing with the unbounded loss, the√
C = Õ(D−β/2) could be removed, letting the Õ(D−β) shine through. If that were the case, then

the tokenwise generalization gap could be hidden within the D−β of the original scaling law, and we
leave such investigations to future work.

6 ADDITIONAL RELATED WORK

Generalization Bounds. Historically, generalization bounds for neural networks have been limited
due to their large parameter count; however, significant progress has been made in explaining the
generalization behavior of moderately large machine learning models over the years (Dziugaite &
Roy, 2017; Zhou et al., 2018; Arora et al., 2018; Lotfi et al., 2022). PAC-Bayes has proven to be a
convenient unifying framework for accommodating many of these techniques (Catoni, 2007). Lotfi
et al. (2024a) demonstrate how to construct the first non-vacuous generalization bounds for LLMs by
handling the unbounded objective with prediction smoothing and employing extreme compression
with subspace LoRA (Hu et al., 2021) training.

While Lotfi et al. (2024a) focus on constructing generalization bounds at the level of documents, Lotfi
et al. (2024b) take a different approach by applying Azuma’s inequality to derive a martingale-based
bound at the token level, leveraging the much larger number of data points. We adopt this approach
here, and improve on the O(

√
C) complexity on the dominating term from Azuma’s ineqaulity to the

O(C) of the dominating term of our inequality through the use of the loss variation. Generalization
bounds have also been used to constrain the context learning performance of LLMs (Li et al., 2023),
and generalization over the hypothesis space of prompts in vision-language models has been explored
(Akinwande et al., 2023).

Chugg et al. (2023) develop a broad family of generalization bounds applicable to both IID and
martingale settings, generalizing many previous theoretical results. The martingale bounds presented
in their work are more similar to ours than most other approaches; however, they do not provide fully
empirical bounds suitable for our purposes. In terms of concentration inequalities, the closest work is

9
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Maurer & Pontil (2009), where the authors derive a fully empirical Bernstein inequality. However,
their result and proof technique do not extend to the non-IID martingale setting.

Post-Training Quantization. For hardware efficiency, there has been significant research into
how low the precision of a model can be reduced post-training without substantially degrading its
performance (Hassibi et al., 1993; Hubara et al., 2021; Yao et al., 2022; Dettmers et al., 2022).
Empirically, the community has found that 3 or 4 bits provide a reasonable tradeoff between model
compression and performance. Further research has also focused on applying quantization at the
scale of LLMs, achieving a small number of bits per parameter, with Ma et al. (2024) pushing the
limits to 1.58 bits per parameter. With some fine-tuning, even binary networks have shown promise
(Liu et al., 2024).

We specifically highlight a few particularly relevant post-training quantization (PTQ) methods. Frantar
et al. (2023) introduce GPTQ (formerly known as OPTQ), which demonstrates extreme quantization
that scales to billions of parameters without significant degradation while being computationally
efficient. This performance is achieved through iterative rounding of the weight columns. In this
work, we use GPTQ with 4 bits to post-quantize the models. Chee et al. (2024) propose QuIP, which
relies on the insight of incoherence in approximate Hessian estimation, ensuring that weights are not
too large along a single direction, thereby suppressing outliers, computed successively at each layer.
QuIP# further improves upon this incoherence processing (Tseng et al., 2024). In this work, we adopt
the GPTQ quantizer, as it is easier to work with and to adapt to our setting.

7 DISCUSSION

Here we have provided generalization theory to better explain why large language models trained
in the compute-optimal regime generalize, with particular attention on how generalization changes
with scale. For the term that contributes the most to the generalization bound, we are able to
improve the scaling over alternate methods from

√
C to C while still being fully empirical. We

explore two approaches for constraining model complexity in the generalization bounds, directly
via quantization and parameter counting, and indirectly, via information transfer as quantified by
prequential coding. While the quantization approach yields more practical bounds, the information
transfer approach yields insights into how generalization scales with model size without requiring an
explicit quantization strategy that behaves that way.

While we believe that these insights help advance understanding, there are a number of limitations
of our approach and many questions that remain unaddressed. As previously mentioned, the

√
2C

smoothing term seems pessimistic and could likely be improved with a different approach. Addition-
ally, while the information transfer argument provides evidence that the complexity of a model is low
based on the training curve, it falls short of explaining why the complexity is low. In principle the
training curve could look different, leading to a different information transfer rate. Similarly with the
Hessian based argument for why larger models are more quantizable as it depends on the empirical
spectrum of the Hessian which we have not explained. Furthermore, why does the loss variation term
Σ scale in the way that it does?

Even more broadly, our generalization bounds constrain only the token-wise generalization gap.
While it is intuitive that generalizing well on next token prediction over the training contexts should
imply generalization on the full sequences, we are not aware of work that does so and that gap
remains to be understood. Similarly, constraining generalization on the NLL objective over data
drawn from the natural distribution may be less pertinent. Instead, it may be more relevant to constrain
the gap between the quality metrics of model generations and natural data. Farther removed, there
is the question of why the training loss scales in the way that it does, and how does that relate to
approximation theory and the architecture of the model? Though many questions remain, we hope
that the techniques here can yield generalizable insights for tackling this broader set of problems.
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A PROOFS

A.1 A FULLY EMPIRICAL MARTINGALE FREEDMAN CONCENTRATION INEQUALITY.

In this section, unless otherwise specified, log is used to denote the natural logarithm. We start with
three technical lemmas.
Lemma A.1. Consider the function v(a) = a− log(1 + a). Let µ ∈ R. For any random variable Z
with E[Z] = 0 that satisfies Z − µ > −1, we have

E[exp(Z − v(Z − µ))] = (1− µ)eµ ≤ 1.

Proof. We see that

E[exp(Z − v(Z − µ))] = eµE[exp(Z − µ− v(Z − µ))] = eµE[1 + (Z − µ)].

As E[Z] = 0, we know E[exp(Z − v(Z − µ))] = (1− µ)eµ. Additionally as 1− µ ≤ e−µ, we have
E[exp(Z − v(Z − µ))] ≤ 1, as desired.

Lemma A.2. Consider the function v(a) = a− log(1 + a). For all a ∈ (−1,∞), we have

v(a) ≤ a2/(1 + a)

Proof. Let f(a) = a2/(1 + a) − v(a). By direct calculation, we see that f ′(a) = a/(1 + a2),
which is a strictly negative function passing through 0 at a = 0. As f(0) = 0, we have f(a) ≥ 0
for all a ≥ 0. Note that lima→−1− f(a) = +∞, so f(a) must be positive on (−1, 0). The claim
follows.

For the following lemma, consider on the filtered probability space (Ω,F , {Fk}k∈N,P), and we
consider expectations with respect to P.
Theorem A.3. Let X1, . . . , Xn be a sequence of Fk-measurable random variables. Let Y1, . . . Yn be
any other sequence of Fk−1-measurable random variables such that the difference is bounded above:
Ak = Yk−Xk > −∆ for some ∆ ≥ 0. Define C = 1

n log 1
ϵ ,and B = 1

n

∑
k

(
E[Xk | Fk−1]−Xk)

)
.

For any 0 < t < 1/∆ and simultaneously for all n, we have

P
[
tB ≤ C +

1

n

n∑
k=1

v(tAk)
]
≥ 1− ϵ. (7)

Proof. Let v(a) = a− log(1 + a). Define the random variable

Mk = exp (t(E[Xk | Fk−1]−Xk)− v(t(Yk −Xk))) .

Consider Z = t(E[Xk | Fk−1] −Xk) and µ = t(E[Xk | Fk−1] − Yk). By construction, we have
that E[Z | Fk−1] = 0 and Z−µ = t(Yk −Xk) > −t∆ > −1. Thus, applying Lemma A.1, we have

E[Mk | Fk−1] ≤ 1.

Therefore Un =
∏n

k=1 Mk is a supermartingale. By Ville’s inequality (Ville, 1939), we have

sup
n

Un ≤ E[U0]

ϵ
≤ 1/ϵ

with probability at least 1− ϵ. Using the definition of U and taking the log of both sides, we have for
all n,

t

n∑
k=1

(
E[Xk | Fk−1]−Xk)

)
−

n∑
k=1

v(t(Yk −Xk)) ≤ log
1

ϵ
. (8)

Defining B = 1
n

∑
k

(
E[Xk | Fk−1]−Xk

)
, C = 1

n log 1
ϵ , Ak = Yk −Xk, rearrange Equation 8 to

obtain

tB ≤ C +
1

n

n∑
k=1

v(tAk). (9)
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Corollary A.4. Let X1, . . . , Xn be a sequence of Fk-measurable random variables. Let Y1, . . . Yn

be any other sequence of Fk−1-measurable random variables such that the difference is bounded
below: Ak = (Yk −Xk)/∆ > −1 for some ∆ ≥ 0. Let K be a finite subset of (0, 1). Then, with
probability at least 1− δ,

1

n

n∑
k=1

(
E[Xk | Fk−1]−Xk)

)
≤ ∆C +Σ

√
C, (10)

where C := 1
n log |K|/δ, and

Σ(C,∆, {Xk − Yk}nk=1,K) := min
s∈K

∆
√
C(1− s)/s+

∆√
C

1

n

n∑
k=1

v
(
sAk

)
/s

Proof. Let s = t∆. Apply a union bound to Theorem A.3 over the different values of s in K, taking
the one that minimizes the bound. Rearrange and isolate terms.

Theorem A.5. Let X1, . . . , Xn be a sequence of Fi−1-measurable random variables. Let
Y0, . . . Yn−1 be any other sequence of Fi−1 measurable sequence of random variables such that the
difference is bounded above: Xk − Yk ≤ ∆ for some ∆ ≥ 0. Define V = 1

n

∑
k(Xk − Yk)

2 and let
δ ∈ (0, 1). Then, with probability at least 1− δ, we have

1

n

∑
k

(
E[Xk | Fk−1]−Xk)

)
≤ ∆C + 2

√
V C, (11)

where C ≤ n−1
(
log 1/δ + 4 log log n/δ + 6).

Proof. Starting from Theorem A.3, we apply Theorem A.2 of v(a) ≤ a2(1+a). For our convenience,
here we will define Ak = Yk −Xk.

tB ≤ C +
1

n

∑
k

t2A2
k

1 + tAk

≤ C +
1

n

∑
k

t2A2
k

1− t∆
, (12)

where the second inequality follows from the assumption that Ak ≥ −∆.

Finally, by defining a variance term V = 1
n

∑
k A

2
k = 1

n

∑
k(Xk−Yk)

2 and rearranging Equation 12,
we see

0 ≤ t2(V +B∆)− (B +∆C)t+ C, (13)
which we recall holds with probability at least 1− ϵ.

Inequality Sketch: This inequality is very close to what we need. The approach would be to optimize
over t and then read off the constraint on B. The minimizer of the quadratic is at t∗ = B+∆C

2(V+∆B) .
Plugging in this value one would arrive at,

(1/4)
(B +∆C)2

(V +∆B)
− (1/2)

(B +∆C)2

(V +∆B)
+ C ≥ 0

Rearranging,
1

4
(B +∆C)2 −B∆C ≤ V C

1

4
(B −∆C)2 ≤ V C

and finally,
B ≤ ∆C + 2

√
V C.

At a high level, this determines the overall form of Theorem A.5, however some technical complica-
tions arise from the fact that t must be deterministic and chosen ahead of time (it must not depend
on the random variables B and C). Instead we will consider optimizing t over a discrete set of
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possibilities (not depending on B or C), and consider a union bound over the different possibilities.
Full derivation: Consider the quadratic, Equation 13. Its minimizer is given by

t∗ =
B +∆C

2(V +∆B)
.

Consider two cases: t∗ ≥ 1
∆ and t∗ < 1

∆ . If t∗ ≥ 1
∆ , then rearranging and solving for B, we see

B ≤ ∆C − 2V/∆,

which is strictly less than the value ∆C + 2
√
V C, and we are done.

Therefore it suffices to consider the case t∗ < 1/∆, where we can apply Lemma A.3. Note that this
result applies for a single t, so it cannot be directly applied to t∗. Instead, we will turn to quantization
and apply a union bound. Note that if B > 0, using that V ≤ ∆2, we have t∗ ≥ ∆C

2∆2 = C
2∆ .

Therefore we only need to consider the range: t∗ ∈ ( C
2∆ , 1

∆ ) =: T .

Drawing inspiration from floating point numbers, consider a discrete set Q defined as

Q =

{
1
∆2−b

(
1 +

k

K

) ∣∣∣∣ k = 0, 1, ...,K − 1, b ∈ N+

}
for some K ∈ N. Let

q(a) = argmin
q∈Q

|q − a|.

From this we can determine that the quantization error is bounded by

sup
a∈T

|q(a)− a|
a

≤ 1

K
.

Define a prior over the values of Q:

P (qk,b) = P (k)P (b) =
1

K

1

Z(b+ 2)(log2(b+ 2))2
.

By direct calculation, we see that 1 =
∑

k,b P (k)P (b) =
(∑∞

b=0
1

(b+2)(log2(b+2))2

)
/Z ≤ 1/Z,

therefore Z ≤ 1.

Now we apply a union bound for Lemma A.3 over values of t ∈ Q. For each t ∈ Q, we set
ϵ(t) = δP (t). We have

P
[
∀t ∈ Q : t2(V +B∆)− (B +∆Cϵ(t))t+ Cϵ(t) < 0

]
≤

∑
t∈Q

P
[
t2(V +B∆)− (B +∆Cϵ(t))t+ Cϵ(t) < 0

]
≤

∑
t∈Q

ϵ(t) = δ
∑
t∈Q

P (t) = δ.

Therefore, uniformly for all t ∈ Q,

t2(V +B∆)− (B +∆Cϵ(t))t+ Cϵ(t) ≥ 0 (14)

with probability at least 1− δ.

Now we plug in t = q(t∗). Note that 0 ≤ b ≤ log2
2
C , so we have

log
1

ϵ(t)
= log

1

δP (t)
≤ log

K

δ
+ log(3 + log2 1/C) + 2 log log2(3 + log2 1/C)

≤ log
K

δ
+ 2 + 2 log log 1/C ≤ log

K

δ
+ 2 + 2 log log n (15)

Plugging in this quantized value of t to Equation 14 and using the quantized error bound, Equation 15,
we have

(B +∆C)2

4(V +∆B)
≤ C +

3

K

(
1 +

1

K

)
1

4

(B +∆C)2

(V +∆B)

≤ C(1 + 4/K), (16)
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where in the second line we chose a K ≥ 6 so that we have
(
1− 3

K

(
1 + 1

K

))−1 ≤ 1 + 4
K . Solving

Equation 16 for B, we have the inequality

B ≤ ∆C(1 + 8/K) +
√
∆2C2(8/K)2 + 4CV (1 + 4/K)

≤ ∆C(1 + 16/K) + 2
√
V C(1 + 16/K), (17)

where the second line follows from the fact that
√
x+ y ≤

√
x +

√
y. Define C = C(1 + 16/K).

Choosing K = ⌈16 log 1/δ⌉ (which is > 6), we have

nC ≤ log 1/δ + 1 +
[
log(⌈16 log 1/δ⌉) + 2 + 2 log log n

](
1 + 1/ log(1/δ)

)
(18)

Applying some simplifications to Equation 17 and Equation 18, we obtain

B ≤ ∆C + 2
√
V C.

with
C ≤ 1

n

(
log 1/δ + 4 log log n/δ + 6).

A.2 GENERALIZATION BOUND

Converting to Prefix Free Codes Let ℓ(h) be the length of a prefix free code and L(h) be the length
of a non prefix free code. We wish to make a normalized prior over the hypotheses. We would like to
use approximately 2−L(h) where L(h) is the codelength of hypothesis h, but this sum would diverge.
Instead consider ℓ(L) = L+ 2 log2(L) + 1. Computing the sum,

∑
h 2

−ℓ(h) =
∑∞

L=1 2
L−ℓ(L) =∑∞

L=1
1

2L2 = π2/12 < 1. Thus with the prior P (h) = 12
π2 2

−ℓ(h) can be used for any countable
hypothesis class, placing higher mass on elements with shorter descriptions, which is closely related
to Kolmogorov complexity as explored in Lotfi et al. (2022).

If we know the length of the object ahead of time, then we are free to use a regular code in place of a
prefix free code. For a fixed number of parameters N and bits per parameter b, we know the length of
the code, and thus we can use ℓ(h) ≤ bN .

Applying Theorem 3.1 to the sequence Rh(Xk | X<k) with δ(h) = ϵP (h) for each hypothesis
individually, the probability that the bound is violated for an arbitrary hypothesis constrained with
a union bound

∑
h ϵP (h) = ϵ, and therefore Theorem 3.2 holds with probability at least 1 − ϵ

(replacing δ with ϵ in its expression). The log 1/δ in Theorem A.5 becomes log 1/δ + log 1/P (h) ≤
log 1/δ + ℓ(h) log 2.

A.3 PREDICTION SMOOTHING

Theorem A.6. For the categorical negative log likelihood objective R̂h = − 1
n

∑n
k=1 log ph(Xk |

X<k) on V classes and C ∈ R+, there exists a prediction smoothed model ps(·) = (1− α)ph(·) +
α/V with worst case loss supXk,X<k

− log ps(Xk | X<k) ≤ ∆s that satisfies

R̂s + C∆s ≤ R̂h + C log V +
√
2C, (19)

for some value α(C, V ) ∈ (0, 1) (approximately C/(1 + C)).

Proof. We have

− log ps = − log
(
(1− α)ph + α/V )

≤ − log ph − log
(
1− α+ α/V ).

Noting that, − log ps(Xk|X<k) ≤ ∆s = log(V/α), so adding C∆ to both sides yields

R̂s + C∆s ≤ R̂h − log(1− α+ α/V ) + C log(V/α), (20)

where the right-hand side is minimized at

α =
V C

(V − 1)(1 + C)
.
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Note that α is a deterministic quantity that we can compute ahead of time based on the model we are
bounding. Therefore we need not pay additional bits for a union bound over values of α. Substituting
α into Equation 20, we have

R̂s − R̂h + C∆s ≤ log(1 + C) + C log
(V − 1)(1 + C)

C
≤ (1 + C) log(1 + C) + C log(V/C)

≤ C log V +
√
2C,

where the last line follows from (1+x) log(1+x)−x log x ≤
√
2x for x > 0. The claim follows.

B QUANTIZABILITY FROM THE HESSIAN

We have shown that the quantization gap tends to be quite small in practice, but why is this the case?
A more complete explanation of why LLMs generalize would need to explain why they are readily
quantizable, not just why they should achieve a small generalization gap if they are quantizable. In
this section we attempt to shed light on this question on the existence of a quantized solution for a
model which achieves low quantization error at a small bitrate, regardless of how computationally
efficient it is to actually produce said quantized model .

As a starting point in the analysis of many quantization schemes (Nagel et al., 2020), consider the
Lagrange remainder form of the quadratic Taylor expansion of the loss around a given solution of the
weights θ, with θ̂ being our desired quantization,

L(θ̂) = L(θ) + g⊤(θ̂ − θ) + (θ̂ − θ)⊤H(θ̂ − θ)

holding with equality for g evaluated at θ and the Hessian H evaluated at an unknown but fixed point
ξ on the linear path between θ and θ̂. If we use a stochastic rounding algorithm that is unbiased, then
the first order term can be neglected as

E[g⊤(θ̂ − θ)] = 0,

and a high dimensional vector θ ensures the sum will concentrate around the expectation. This leaves
the quadratic form with the Hessian. .

A key property for low precision quantization of the weights (while minimizing the quadratic
quantization error) is that the scale of the components of the eigenvectors of H do not differ by a
large extent. If they do, then the quantization range must simultaneously provide coverage over a
large range of values. This criterion is formalized through the notion of incoherence, introduced in
Chee et al. (2024), which we briefly present below with a simplification of their analysis.

B.0.1 INCOHERENCE

A Hessian is µ-incoherent if the eigenvectors in the decomposition QΛQ⊤ = H ∈ RN×N satisfy

∀i, j : |Qij | ≤ µ/
√
N,

and a parameter vector is µ-incoherent if it satisfies ∀j : |θj | ≤ µ∥θ∥/
√
N . Following QuIP (Chee

et al., 2024), rather than quantizing the weights θ directly we will instead quantize the weights after
applying a random orthogonal transformation matrix P ∈ RN×N . Let w = P⊤θ and likewise
θ = Pw. Applying this rotation, the Hessian is transformed: Hw = P⊤HθP and likewise the
eigenvectors Q from Hθ = QΛQ⊤ are also multiplied Q⊤ 7→ Q⊤P .

If we choose P as a random Gaussian matrix: N (0, 1/N)N×N , applying a rotation by Q⊤ preserves
the spherically symmetric distribution. Therefore the eigenvectors Q⊤P of Hw are N (0, 1/N)N×N

distributed. Applying a union bound over the Gaussian tail probability of the N2 elements, the

maximum absolute value entry of Q is at most
√

2 log(2N2/δ)
N with probability 1− δ and therefore

incoherent with µ =
√
2 log(2N2/δ).
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B.0.2 SCALAR LDLQ

QuIP introduces the LDLQ quantization algorithm which quantizes weights sequentially and autore-
gressively taking into account how previous quantized values impact the quadratic Taylor expansion
of the loss. Applying LDLQ to the entire vector of weights w rather than block by block, one has
the following relation on the quantized weights ŵ. Let L⊤DL = Hw be the LDL decomposition of
Hw = P⊤HθP , then we can express the quantization of the weights as

ŵ = Q(w + (L− I)(w − ŵ))

where Q quantizes the weights elementwise with nearest or unbiased stochastic rounding. As L− I
is a lower triangular matrix, the full ŵ can be quantized sequentially in an autoregressive manner.
With this quantization scheme, Tseng et al. (2024) prove that the error of the quadratic in the Taylor
expansion satisfies

(ŵ − w)⊤H(w − ŵ) ≤ µ2σ2

n
Tr(H1/2)2, (21)

where the pointwise quantization error of the scalar quantizer is assumed to be E[
(
Q(x)− x

)2
] ≤ σ2

(see Theorem 4.1 applied to block size 1 and a single N × 1 weight matrix), where σ2 is a function
of the bitrate. For example x ∈ [0, 1], then a uniform grid would achieve σ2 = 2−2b−2 for b bits per
parameter. From incoherence processing µ grows only logarithmically with the dimension N .

The achievable bits per parameter for a fixed quantization error depends crucially on the spectrum of
the Hessian H , and how it scales with the dimension . We now pursue Krylov subspace routines with
Hessian vector products to evaluate these quantities numerically for LLMs.

B.1 ESTIMATING Tr(H1/2)

To estimate the trace of the square root of the Hessian matrix, Tr(H1/2), we begin by assuming that
the Hessian is positive semi-definite (i.e., it contains no negative eigenvalues). The square root of the
Hessian, denoted as S, can be expressed as:

S =

P∑
i=1

√
λiϕiϕ

T
i ,

where λi and ϕi represent the eigenvalues and corresponding eigenvectors of the Hessian, respectively.
Consequently, the trace of the square root of the Hessian is:

Tr(H1/2) =

P∑
i=1

√
λi = n

∫ ∞

0

p(λ)
√
λ dλ,

where p(λ) is the spectral density function associated with the Hessian’s eigenvalues.

A direct computation of the full eigendecomposition to obtain Tr(H1/2) has a computational com-
plexity of O(n3), which is infeasible for large models. Instead, we employ stochastic spectral
density estimation techniques (Granziol et al., 2018; Papyan, 2019; Ghorbani et al., 2019), which
scale linearly with the number of parameters. The key idea involves using the Pearlmutter trick
(Pearlmutter, 1994) to efficiently compute Hessian-vector products:

∇(∇LT v) = Hv,

where v is a random vector. This allows us to approximate the trace by leveraging the identity:

Tr(H) = E[Tr(vvTH)] = E[vTHv],

assuming v has zero mean and unit variance. These stochastic methods are well-established in
machine learning (Fitzsimons et al., 2017; Dong et al., 2017).

Building upon the work of Ubaru et al. (2017), we can derive an explicit bound on the estimation of
Tr(H1/2) using stochastic Lanczos quadrature (SLQ).
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Theorem B.1. Let H ∈ Rn×n be a symmetric positive definite matrix with eigenvalues ordered as
λ1 ≥ λ2 ≥ · · · ≥ λn and condition number κ = λ1

λn
. For any ϵ, η ∈ (0, 1), if the SLQ parameters

satisfy

m ≥
√
κ

4
log

K

ϵ
(Lanczos steps),

nv ≥ 24

ϵ2
log

2

η
(Rademacher vectors),

where K = (λmax − λmin)(
√
κ− 1)2, then the output Γ of stochastic Lanczos quadrature satisfies:

Pr

[∣∣∣∣∣Tr(
√
H)− Γ

Tr(
√
H)

∣∣∣∣∣ ≤ ϵ

]
≥ 1− η.

The proof of this theorem is provided in Appendix D. However, we observe that the bound on the
trace provided here is overly conservative for practical purposes. Therefore, we also establish a result
demonstrating self-averaging, which shows that the estimator converges to the true value based on a
single random vector.

Theorem B.2. For a single random vector v, the signal-to-noise ratio of the trace estimator for a
matrix H ∈ Rn×n, where the spectral moments of H do not depend on the matrix dimension, scales
as: √

Var(vTHv)

E(vTHv)
= O(n− 1

2 ).
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Figure 4: Spectral density plots of the 70M parameter Pythia model trained on varying fractions of
the Pile dataset using the same data and random vector seed.

We utilize the CoLA (Potapczynski et al., 2023) library to compute the spectral approximation of
the Hessian. This involves leveraging the relationship between the Lanczos T matrix and Gaussian
quadrature (Meurant & Strakoš, 2006; Granziol et al., 2019). However, these concepts are highly
specialized and may not be familiar to all readers. Therefore, we provide a high-level overview
without delving into the intricate mathematical details.

Figure 4 illustrates the spectral density of a 70M parameter Pythia model trained on different
subsets of the Pile dataset (Gao et al., 2020). Specifically, as we decrease the number of training
samples—from 1% (Figure 4a) to 0.1% (Figure 4b) and further to 0.01% (Figure 4c)—we observe
an increase in the largest eigenvalue and an increase in the mass of negative spectral density. These
phenomena are consistent with previous studies on ResNets and VGGs, where spiked Wigner random
matrix theory models have been employed to understand such behaviors (Granziol et al., 2022).

Future work aimed at establishing a tighter empirical bound could explore advanced random matrix
theory techniques (Bun et al., 2017), potentially utilizing the variance of the Hessian (Granziol et al.,
2022). In this study, we adopt a simpler approach by shifting the Hessian spectrum by the magnitude
of the largest negative eigenvalue, thereby ensuring a positive semi-definite Hessian and providing a
trivial upper bound.

From Figure 4b, we observe that the variance of each estimator remains low and that convergence is
achieved with relatively few Lanczos iterations. Additionally, Figure 5 demonstrates that varying the
random vector introduces minimal variance, while different data subsets do exhibit some variance, as
indicated by the error bars computed over three different seeds (see Figure 5b). For clarity, Figure 5a
provides another example of the spectrum with a different seed vector on the same subsampled
dataset, showing negligible differences compared to Figure 4a.
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Figure 5: Comparison of spectral density and Tr(
√
H) estimations for different subsample sizes and

configurations.

With confidence in the accuracy of our estimations for Tr(H1/2) and the Hessian spectrum, we can
interpret the implications for model quantization. Despite the high dimensionality and the presence
of many distinct eigenvalues, the Hessian spectrum decays rapidly in density. This indicates that
Tr(H1/2) grows sublinearly with the model dimension, rather than exhibiting the worst-case linear
scaling. Consequently, as model size increases, the ratio L(h)/D is expected to decrease, allowing for
a more favorable tradeoff between the bitrate and the quantization gap. This supports the hypothesis
that larger models on the compute-optimal frontier are more easily quantizable, thereby contributing
to their improved generalization performance.

C STOCHASTIC TRACE ESTIMATION IMPROVEMENT WITH MODEL SIZE

Here, we provide the proof that for a spectrum independent of model dimension, the stochastic trace
estimator has a bigger signal to noise ratio as a function of dimension.

Lemma C.1. Let u ∈ RP×1 random vector, where ui is zero mean and unit variance and finite 4th
moment E[u4

i ] = m4. Then for H ∈ RP×P , then

(i) E[uTHu] = TrH ,

(ii) Var[uTHu] ≤ (2 +m4) Tr(H
TH).

Proof. For the expectation, we see

E[uTHu] =

P∑
i,j=1

Hi,jE[uivj ] =

P∑
i=1

Hi,i = TrH.

For the variance, we have

E[||uTHu||2] =
∑
i,j

∑
k,l

Hi,jH
T
k,lE[uiu

T
j uku

T
l ]

=
∑
i,j

∑
k,l

Hi,jH
T
k,l[δi,jδk,l + δi,lδj,k + δi,kδj,l +m4δi,j,k,l]

= (TrH)2 + (2 +m4) Tr(H
2),

whence (ii) follows.

Let us consider the signal to noise ratio for some positive definite H ≻ cI√
Var[uTHu]

E[uTHu]
=

√
2 +m4

√
TrH2

Tr2 H
=

√
2 +m4

P

√
⟨λ2⟩
⟨λ⟩

(22)

where we denote the mean eigenvalue ⟨λ⟩ and the mean square eigenvalue similarly.

Remark C.2. Note that m4 is 3 for the Gaussian case and 1 for the Hutchinson trace estimator where
the entries are ±1 with probability half, which justifies its use.
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C.1 DERIVING THE IMPACT OF LOW PRECISION LANCZOS

Consider a number taken from our Hessian matrix ai,j , which can be represented as (−1)s2es. As
the exponent for FP16 has 5 bits, it has a range of 25 − 1. Since the exponent is always integer, there
is no loss of information in the range. This means the error is in the significand, which has 6 bits after
the 1. Thus, we have ϵ = 10−7.

Then, we see that

H̃ =


a1,1(1 +N (0, ϵ)) a1,2(1 +N (0, ϵ)) · · · a1,n(1 +N (0, ϵ))

a2,1(1 +N (0, ϵ)) a2,2(1 +N (0, ϵ)) · · · a2,n(1 +N (0, ϵ))
...

...
. . .

...

am,1(1 +N (0, ϵ)) am,2(1 +N (0, ϵ)) · · · am,n(1 +N (0, ϵ))



= H +


a1,1N (0, ϵ) a1,2N (0, ϵ) · · · a1,nN (0, ϵ)

a2,1N (0, ϵ) a2,2N (0, ϵ) · · · a2,nN (0, ϵ)
...

...
. . .

...

am,1N (0, ϵ) am,2N (0, ϵ) · · · am,nN (0, ϵ)

 .

Now under certain assumptions on the elements of the perturbation matrix (essentially the ai,j does
not vary too wildly or have wild dependencies) this becomes a Gaussian orthogonal ensemble (GOE)
again. Then using the Frobenius Norm, we see that the spectral width will be of order ϵ

√
⟨λ2⟩, which

depends on the square root of the average eigenvalue squared of H . Anything within this will be
noise. This is because

∑
i,j a

2
i,j = P ⟨λ2⟩. An obvious upper bound of this would be ϵλ1 but this

will likely be super loose. Note that the vast majority of the already broadened spectrum is already
very close to zero, so we would expect this to be even more extreme for the unbroadened version. A
better strategy might be to sample the noisy version of a2i,j perhaps using the diagonal approximation,
and note that in expectations we expect the square to be (1 + ϵ2) the size of its non noisy counter
part, which gives an an estimation equation√

Pϵ2
∑N

k a2i,j
N(1 + ϵ2)

.

D STOCHASTIC LANCZOS QUADRATURE PROOF

Theorem D.1. Consider a symmetric positive definite matrix A ∈ Rn×n with eigenvalues enumer-
ated in reverse order of size λ1 ≥ λ2 · · · ≥ λn and condition number κ = λ1

λn
. For ϵ, η ∈ (0, 1) and

SLQ parameters satisfying

(i) m ≥ log K
ϵ

2 log
√

κ+1√
κ−1

>=
√
κ
4 log K

ϵ Lanczos steps

(ii) nv ≥ 24
ϵ2 log 2

η Rademacher vectors,

where K = (λmax − λmin)(
√
κ− 1)2. The output Γ of stochastic lanczos quadrature is such that

Pr

[∣∣∣∣Tr(
√
A)− Γ

Tr(
√
A)

∣∣∣∣ ≤ ϵ

]
≥ 1− η (23)

Proof. The proof follows trivially from Ubaru et al. (2017), where we simply take the more general
proof and instead of the general function f(A), we take f(x) =

√
x. The second inequality for m is

directly from the paper, but the tighter bound is also available just buried.

The proof sketch goes as follows. We bound the error from the Gauss quadrature rule. We start with
a function analytic in the interval [−1, 1]. Knowing that the Gauss quadrature rule is exact for any
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polynomial up to degree 2m+ 1, we bound the sum from 2m+ 1 to infinity using Cauchy-Schwarz.
We use results from Chebyshev coefficients, symmetry and the interval boundaries to get

|I − Im| ≤ 4
√
λ1

(ρ2 − 1)ρ2m
,

where ρ is the sum of the major and minor axis of the Bernstein elipse. We shift the spectrum so that it
is in the interval [−1, 1], e.g this implies the factor of λ1−λn

2 . The shifted function is not analytic for

α = −−κ+1
κ−1 , so this will serve as our major axis. Now as x2

a2 +
y2

b2 = 1 and the focus is 1 =
√
a2 − b2,

where we take our major axis a in this case to be α. We then have our rate of convergence ρ = a+ b

through some algebra to be
√
κ+1√
κ−1

. This gives us the value of K. This is combined with the error of
the trace estimator from Roosta-Khorasani & Ascher (2015) and Cauchy-Schwartz to obtain the final
result.
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