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ABSTRACT

Why do larger language models generalize better? To explore this question, we
develop generalization bounds on the pretraining objective of large language models
(LLMs) in the compute-optimal regime, as described by the Chinchilla scaling laws.
We introduce a novel, fully empirical Freedman-type martingale concentration
inequality that tightens existing bounds by accounting for the variance of the loss
function. This generalization bound can be decomposed into three interpretable
components: the number of parameters per token, the loss variance, and the
quantization error at a fixed bitrate. As language models are scaled up, the number
of parameters per data point remains constant; however, both the loss variance and
the quantization error decrease, implying that larger models should have smaller
generalization gaps. We examine why larger models tend to be more quantizable
from an information theoretic perspective, showing that the rate at which they can
integrate new information grows slower than their capacity on the compute-optimal
frontier. From these findings we produce a scaling law for the generalization gap,
showing that our bounds become stronger in a predictable way.

1 INTRODUCTION

Large language models (LLMs) have demonstrated a remarkable general purpose problem solving
capacity across a wide range of complex tasks, from classical NLU (Brown, 2020), forecasting
(Gruver et al., 2023), mathematics (Trinh et al., 2024), spatial reasoning (Patel & Pavlick, 2022), and
many other areas. For a large majority of individual tasks, model capabilities increase monotonically
as the next token prediction loss from the pretraining objective decreases.

A conceptually useful story about the learning process involves the model accommodating predictive
subprograms of progressively larger computational depth and complexity. During pretraining, shallow
details like word frequencies, syntax, and grammar are absorbed first, followed by higher level
structures such as facts, relations, and idioms, eventually giving way to yet higher level patterns. For
reasons not yet well understood, this process manifests in the pretraining objective as a power law for
LLMs and other generative models on natural data. The frontier of best achievable performance given
a fixed computational budget C obeys a predictable power law relationship L(C) ∝ C−γ over many
orders of magnitude (Kaplan et al., 2020), varying considerably with the kind of data (Henighan et al.,
2020) but only weakly with model architecture and training method (Bahri et al., 2021).

Effort in quantifying what this relationship is in a given domain and how it varies as model size
and dataset size are traded off has been extremely valuable in guiding where resources are spent in
constructing more capable AI models (Brown, 2020; Besiroglu et al., 2024; OpenAI, 2023; Dubey
et al., 2024) and charting a path for the future. In this work, we target the why of scaling laws.
While mathematically simple toy models or toy data are valuable, we aim to study the why of scaling
laws on real models and real data by focusing on one contribution to the scaling law curve: the
token-wise generalization gap. Constructing a generalization bound sensitive enough to capture the
small differences between architectures and yet simple enough to write down in a short formula is
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likely impossible; however, even the broad strokes of behavior such as how generalization scales
with compute have not been addressed. Thus, here we focus high level understanding rather than
algorithmic intervention.

We can observe that in order for the generalization gap not to eventually dominate the contributions
to the test loss (which has not yet been observed), it must be that the generalization gap decreases
at least as fast as the approximation gap does. Deeply understanding the success of the pretraining
scaling of LLMs paradigm requires being able to predict that this would be the case.

In order to construct the relevant generalization bounds, we introduce a novel empirical Freed-
man concentration inequality (Freedman, 1975). Our generalization bound highlights three critical
components—the ratio of parameters per token in compute-optimal scaling (which is roughly con-
stant), the token-wise loss variance (which decreases with model size), and the performance gap
between quantized and unquantized models (which also decreases with model size). As an alternative
to quantization, we bound the information transfer between dataset and the model, showing that
the information content in the model grows sublinearly with model size, and thus the complexity
decreases with model size. These components collectively contribute to a predictable reduction in the
generalization gap as models grow larger.

2 BACKGROUND

2.1 GENERALIZATION BOUNDS

At a high level, we are interested in the expected test error (population risk) EX′∼pD [Rh(X)(X
′)] for

a given model (hypothesis) h depending on the training set X but evaluated on a test set X ′ sampled
from the data distribution pD. One conceptually convenient way of breaking down this quantity is
into the irreducible error, approximation gap, and generalization gap:1

EX′∼pD
[Rh(X)(X

′)] = R∗(X)︸ ︷︷ ︸
Irreducible Error E

+Rh(X)(X)−R∗(X)︸ ︷︷ ︸
Approximation Gap A

+ EX′∼pD
[Rh(X)(X

′)]−Rh(X)(X)︸ ︷︷ ︸
Generalization Gap G

.

The first term describes the entropy of natural text, e.g. the amount of truly random information
content in the data, which cannot be further explained even when knowing the true data generating
process. The second term describes the approximation gap, capturing the extent to which the
trained model is able to fit the training data. This term combines both model capacity, e.g. as
described by universal approximation theorems (Cybenko, 1989), as well as optimization via how
well the training algorithm is able to find the given solution. Finally, we have the generalization gap,
capturing the extent to which training and testing performance diverge on account of overfitting to
the statistically irrelevant regularities in X . Though generalization bounds focus on the last term, all
three quantities are of interest for understanding LLM behavior. Empirically, it has been observed
that the generalization gap for LLMs (at least in the low epoch regime) tends to be extremely small
compared to the other two terms and we aim to make sense of why this is the case.

Among the simplest generalization bounds is the finite hypothesis with prior generalization bound
applied to IID data (Shalev-Shwartz & Ben-David, 2014). With probability at least 1− δ,

EX′∼pD [Rh(X)(X
′)]−Rh(X)(X) ≤ ∆

√
log 1/P (h) + log 1/δ

2m

where m is the number of IID data points, ∆ is an upper bound on the range of values the risk
can take, and P (h) is a prior distribution over hypotheses in a discrete hypothesis class H. With a
judicious choice of prior, log 1/P (h) can be related to the compressed size of the model measured in
nats (Lotfi et al., 2022).

During text pretraining, the individual tokens are not sampled IID. Thus, a generalization bound
requires treating entire documents (often thousands of tokens) as the elements the empirical risk is
computed over. Note that modern language models have hundreds of times more parameters than

1We note this differs from the commonly referred to estimation-approximation error breakdown (Bottou &
Bousquet, 2007) or the bias-variance decomposition (Brown & Ali, 2024); however, the train error-generalization
gap is more useful for our purposes.
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documents they were trained on. With the help of very extreme compression methods and using
smoothing to bound ∆, it is possible to construct nonvacuous bounds (Lotfi et al., 2024a). However,
the required compression (greater than 100 times) is so severe that it cripples model performance.

In a recent work, Lotfi et al. (2024c) explore breaking down generalization into tokenwise gener-
alization, e.g. how the loss varies with each individual predicted token being resampled under the
distribution but keeping the context the same. Splitting up the training dataset X into the sequence of
tokens [Xk]

D
k=1, the authors bound

T =
1

D

D∑
k=1

E[Rh(Xk | X<k) | X<k]−Rh(X),

where Rh(Xk | X<k) is the negative log likelihood for token k given the context X<k, and the
expectation is taken with respect to p(Xk|X<k) from the data distribution. The authors bound T

using Azuma’s inequality to arrive at a bound scaling as ∆
√

log 1/P (h)
2D . Using a novel empirical

Freedman type inequality, we bound the same quantity T but improve upon this bound, reducing the
leading term to ∆ log 1/P (h)

D .

2.2 CHINCHILLA SCALING LAWS

A key insight from the current machine learning paradigm is that the dataset should not be considered
a fixed quantity. Rather than optimizing to find the best model for a given dataset, one should instead
try to find the best performing model and dataset for a given computational budget. Hoffmann et al.
(2022) describes the optimal allocation of resources for increasing the size of the model and increasing
the size of the dataset under the assumption that data is plentiful relative to the computational budget.

Let N be the number of parameters and D be the number of training tokens. In the one epoch regime
of LLM pretraining, the negative log likelihood (NLL) loss is well-approximated by the power law

R(N,D) = E +
A

Nα
+

B

Dβ
,

where A,B are empirically estimated constants, exponents α, β have similar values, and E is the
irreducible error. Optimizing N(C) and D(C) under the constraint of a fixed compute budget
C ≈ 6ND (Kaplan et al., 2020), one arrives at

N∗(C) = G(C/6)a, D∗(C) = G−1(C/6)b

for constants G =
(
αA
βB

)1/(α+β)
, a = β/(α+ β), and b = α/(α+ β), as derived in Hoffmann et al.

(2022).

Within the margin of statistical error, we have a = b = 0.5 in the optimal alloca-
tion of compute (Besiroglu et al., 2024). Therefore, the ratio of parameters per token,
N∗(C)/D∗(C) = G2, is a fixed constant. Evaluating the constants from Besiroglu et al.
(2024), we have G2 ≈ 1/20. We remark that many open source models optimize perfor-
mance amortized over both training time and inference time compute (Sardana et al., 2023),
which leads to “smaller than Chinchilla optimal models,” e.g. models with a ratio N/D < G2,
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Figure 1: Pythia models and checkpoints
chosen along the compute-optimal frontier
(checkpoints given by the marked values).

and similarly when repeating data in the data con-
strained setting Muennighoff et al. (2024). In the
context of this paper, we will assume the Chinchilla
optimal scaling N/D = G2, and remark that any
generalization bounds we construct would only be
tighter if the ratio N/D is smaller.

To test our theory, we use the open source Pythia
model family (Biderman et al., 2023) ranging from
70 million to 12 billion parameters. Unlike other
open source LLMs, we have full access to both the
Pythia model checkpoints from training and the Pile
dataset they were trained on (Gao et al., 2020), which
is required for our analysis. From these intermediate
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checkpoints, we choose the set of models along the compute-optimal frontier to match N/D = G2 ≈
1/20, reflecting the choice for number of training steps and model size that one would have made
optimizing only for performance at the given computational budget. The chosen checkpoints are
plotted in the training frontier of these models in Figure 1.

3 GENERALIZATION BOUND

In this section, we build the components used in constructing our final generalization bound stated
in Theorem 3.4. To capture the relevant behavior, we derive a new concentration inequality for
martingales. We apply a prior weighted union bound to this concentration inequality so that we can
apply it to models in a large hypothesis class, taking advantage of the low complexity inherent in
compressible models. Bounding the worst case loss behavior using prediction smoothing, we apply
this bound to LLMs.

At a high level, we can motivate the overall behavior of the bounds as follows. On account of the
compute optimal scaling, as LLMs are scaled, the ratio of parameters to training tokens remains a
fixed constant, G2 ≈ 1/20, less than one. However as the models improve, the per token standard
deviation of the loss decreases, and at a predictable rate of approximately c+1/

√
N . If the per token

variation is small, then a sufficiently sensitive concentration inequality will translate this into a tighter
concentration around the mean. Simultaneously, the amount of information stored per parameter, and
thus the compressed size of the model given a suitable compression scheme, appears to decrease
with scale at the compute optimal frontier. Combining these observations, we produce generalization
bounds showing that the gap between train and test shrinks as these models are scaled up.

3.1 AN EMPIRICAL FREEDMAN’S CONCENTRATION INEQUALITY

Theorem 3.1. Let (Xk)
n
k=1 = X1, . . . , Xn and (Yk)

n
k=1 be sequences of random variables adapted

to the filtration (Fk)
n
k=0 where Xk is Fk measurable and Yk is Fk−1 measurable. Assume the

difference between the two is bounded below: Ak = (Yk −Xk)/∆ > −1 for some ∆ ≥ 0. Let K be
any finite subset of (0, 1). Then, with probability at least 1− δ over the probability space (filtered by
(Fk)

n
k=0),

1

n

n∑
k=1

(
E[Xk | Fk−1]−Xk)

)
≤ ∆C +Σ

√
C, (1)

where C := 1
n log |K|

δ , and

Σ = Σ(C,∆, {Yk −Xk}nk=1,K) := min
s∈K

∆
√
C(1− s)/s+

∆√
C

1

n

n∑
k=1

v
(
sAk

)
/s

and v(x) = x− log(1 + x).

The proof is provided in Appendix A.1. This concentration inequality states that the sequence of
random variables concentrates on their conditional means with a term Σ depending on the empirical
variation of the loss value. We note that Σ can be viewed as a variance term. As we show in Appendix

A, using a small K, the variance proxy can be upper bounded: Σ ≤ 2
√

1
n

∑n
k=1(Xk − Yk)2, explic-

itly related to the empirical variance but with the mean replaced by Yk. Although the minimization
form above is unwieldy, it produces significantly tighter estimates of Σ (a factor of ∼ 5x smaller).
When the loss variation Σ is small, concentration to the mean happens at a rate linear in the complexity
C rather the slower

√
C rate. The finite set K serves merely as a device to control how finely s is

optimized, and can be set for example as a uniformly spaced grid in (0, 1).

The concentration inequality we present here provides the core result for our generalization bounds,
and to the best of our knowledge it is the first martingale concentration inequality to incorporate
a variance term which can be evaluated on the original data. We can view this bound as aiming
to achieve the benefits that Freedman’s inequality has over Azuma’s inequality while being fully
empirical, replacing the population variance with a fully empirical proxy. Our approach is analogous
to the fully empirical Bernstein bound derived in Maurer & Pontil (2009), but in the martingale rather
than IID setting. Unfortunately, the proof technique of Maurer & Pontil (2009) does not carry over to
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the martingale case and instead we take a different approach. We derive our concentration inequality
in Theorem A.5 making use of a proxy Yk that is Fk−1-measurable but which can take the place
of E[Xk | Fk−1] in the variance. In practice, we choose this quantity to be the mean of the model
NLL under resampling of the given token according to the model distribution in place of the data
distribution.

3.2 EXTENDING TO A DISCRETE HYPOTHESIS CLASS

From the concentration inequality in equation 1, we derive the following discrete hypothesis class
generalization bound.
Lemma 3.2. Let X1, . . . , Xn be a sequence of (possibly dependent) random variables. Let Rh(Xk |
X<k) denote the risk for element Xk given the previous elements of the sequence for hypothesis h in a
countable hypothesis class H. Let ph(Xk | X<k) be any (hypothesis dependent) distribution over Xk

conditioned on X<k. Consider a prefix free coding of each h ∈ H and let L(h) be the length of that
code measured in nats. Let K be a finite subset of R+. Assuming Rh(Xk | X<k)−EYk∼ph

[Rh(Yk |
X<k)] ≤ ∆ for some ∆ > 0, we have that simultaneously for all h ∈ H, with probability at least
1− δ,

1

n

∑
k

E[Rh(Xk | X<k) | X<k] ≤
1

n

∑
k

Rh(Xk | X<k)) + ∆C +Σ
√
C, (2)

where the complexity C is given by

C :=
L(h) + log |K|/δ

n

and Σ = Σ(C,∆, {Ak}nk=1,K) is as in Theorem 3.1 for Ak = Rh(Xk | X<k)− EYk∼ph
[Rh(Yk |

X<k)].

We provide the proof in Appendix A.2.

3.3 WORST CASE BEHAVIOR AND SMOOTHING

The last component of our bounds is the smoothing to bound the worst case behavior of the model,
which in general for the negative log likelihood can be arbitrarily large. We employ the prediction
smoothing idea from Lotfi et al. (2024a), where the model is mixed with a uniform distribution over
the tokens with a given mixing parameter. Unlike application in previous work, we optimize over this
parameter analytically so that we can remove it from the bounds and evaluation entirely, instead of
merely as a tool for constructing bounds while all evaluations are with the unsmoothed model.
Lemma 3.3. For the categorical negative log likelihood objective
R̂h = − 1

n

∑n
k=1 log ph(Xk | X<k) on V classes and C ∈ R+, there exists a pre-

diction smoothed model ps(·) = (1− α)ph(·) + α/V which has a worst case loss
∆s = supXk,X<k

− log ps(Xk | X<k) ≤ log(V/α), and the risk satisfies

R̂s + C∆s ≤ R̂h + C log V +
√
2C, (3)

for some value α ∈ (0, 1) (approximately C/(1 + C)).

We provide the proof in Appendix A.3.

3.4 GENERALIZATION BOUND FOR COMPUTE OPTIMAL LANGUAGE MODELS

Finally, we assemble these three components into a generalization bound that we can empirically
evaluate for language models. Combining the prediction smoothing bound with Theorem 3.2 applied
to the smoothed quantized model produces our main result. Note that each term in the expression has
an interpretable meaning.
Theorem 3.4. Let X1, . . . , XD be the sequence of D (possibly dependent) tokens formed from
concatenating each sequence in the dataset together into a single stream of tokens. Let Rh(Xk |
X<k) = − log ph(Xk | X<k) denote the NLL for element Xk given the previous elements for a
given model h and with vocabulary size V and N parameters. Let R̂h = 1

D

∑D
k=1 Rh(Xk | X<k)

5
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be the empirical risk and Rh = 1
D

∑D
k=1 E[Rh(Xk | X<k) | X<k] be the tokenwise expected risk

for that model. Let K be a finite subset of (0, 1). For any given quantization q of h using b bits
per parameter with expected risk Rq, there exists a label smoothed and quantized model sq with
Rsq(Xk | X<k) = (1− α)Rq(Xk | X<k) + α/V for fixed α ∈ (0, 1) which, with probability 1− δ,
achieves a tokenwise population risk

Rsq ≤ R̂h + Clog V︸ ︷︷ ︸
Random Guess NLL

+ Σ
√
C︸ ︷︷ ︸

Loss Variation

+
√
2C︸︷︷︸

Smoothing Cost

+ (R̂q − R̂h)︸ ︷︷ ︸
Quantization Gap

, (4)

where the complexity C is given by

C =
(
N
D

)
b log 2 + 1

D log |K|
δ ,

and Σ = Σ(C,∆, {Ak}nk=1,K) (defined in Theorem 3.2) can be upper bounded in terms of the
empirical loss variance:

Σ ≤ 2

√√√√ 1
D

D∑
k=1

(
Rq(Xk | X<k)− EYk∼ph

[Rq(Yk | X<k)]
)2
.

To make sense of the bound, let’s consider the various terms. The bounded quantity on the left hand
side, Rsq , is the expected tokenwise risk of the smoothed and quantized version of hypothesis h. The
bound is written in terms of the empirical risk of the original model h, with R̂q − R̂sq controlled by
the smoothing cost and quantization gap. Typically, the largest contribution to the bound is C log V ,
e.g. the complexity times the negative log likelihood of random guessing. The loss variation relates to
how spread the empirical loss is and can be seen as a model realizability term. If there existed a 0 loss
model in the model class, then this term could be brought to 0; however, given the nonzero entropy of
natural text, this will not be the case. Note that as models improve and approach the irreducible error,
so too will the empirical loss variation.

In this setup, the complexity C is just the ratio of parameters to data points, N
D = G2, times the

number of bits per parameter used in the quantization b, plus a negligible additional term. The
decreased complexity of using fewer bits for b trades off with the quantization gap, and in principle
this parameter should be optimized to achieve the best bound. As all terms in the expression can be
evaluated empirically, we can determine how much of the empirical observation it can explain and
how much remains to be understood.

To get a sense for the scale of the different terms, consider the following typical scenario in LLMs.
The averaged negative log likelihood loss is measured in nats per token, where a nat is log2 e bits.
For simplicity, suppose we have vocabulary size V = 50000 (so log V ≈ 11), quantization b = 3,
and G2 = 1/20, which yields C ≈ 1/9. Σ varies with model scale but is of scale 1/10, and the
quantization gap is around 1/10. Evaluating these terms, we see that Rsq − R̂h ≤ 11/9 + 1/30 +
1.4/3+1/10 ≈ 1.8 nats per token, and we see that the random guess and smoothing terms contribute
most to the size of the bound. For perspective, the empirical risk R̂h itself is around 2 nats per token
and the boundary between vacuous and nonvacuous bounds is at log V ≈ 11 nats per token.

4 EMPIRICAL EVALUATION

As Theorem 3.4 is fully empirical, we simply need to empirically evaluate the loss variation term
Σ along with the quantization gap and we can evaluate the generalization bound. We compute
these quantities on the given Pythia checkpoints on the Pile dataset on which they were trained
and quantized using GPTQ (Frantar et al., 2023) to b = 4 bits per parameter, and we evaluate the
bounds with failure probability δ = 0.01. The results are shown in Figure 2 for the Chinchilla
compute-optimal checkpoints within the Pythia model family.

We compute Σ with K given by 1000 equally spaced points between [0, 1], excluding the endpoints.
We estimate the risk and loss variation on an IID subsample from the collection of token-context pairs
in the training dataset of size 104 and bound the difference from the full training set evaluation and the
104 sized subsample with a simple Hoeffding bound. We note that largest 12B parameter model failed
to quantize properly (possibly due to the learning rate drop as it was the only checkpoint taken at the
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Figure 2: Left: A direct comparison of our evaluated generalization bound, and the empirical loss as
a function of model scale. As the model is scaled up, our bound improves just like the empirical loss.
Center: Loss variation Σ entering into the generalization bound. As the loss deviation decreases, so
does the largest term in our bound. Right: Comparison of the relative scale of the contributions to
Theorem 3.4. Here we use a fixed 4 bit quantization of the parameters.

end of training) and so we removed it from the evaluation. We must pick out the compute-optimal
checkpoints from training runs that were not designed for this purpose. For the two smallest models
(70m and 160m parameters) where the compute optimal training duration is early into the training
run and thus sparsely sampled with checkpoints, and the closest models consistently have too small a
value of N/D, biasing these two initial data points towards lower values. For these two points, we
compute the relevant quantities D,Σ, R̂h, R̂q,Σ by linearly interpolating using the parameter N/D
with the target value of G2.

In Figure 2, we can observe several points. In Figure 2 (center), we see that the loss variation decreases
with model size as 0.27 + 8337N−0.54, approximately 1/

√
N with a constant offset. As additional

compute is spent in model training, predictions narrow and the loss variation decreases. Like with
the irreducible error E, it converges to a minimum value presumably related to the varentropy of the
distribution. In Figure 2 (right), we break down the individual contributions to the generalization
bound. The quantization error and loss variance contributing a fraction of a nat per token and decrease
with scale, while the C log V term and smoothing terms contribute the majority to the bounds and
do not decrease with scale. Figure 2 (left) shows the comparison with the bound value Rsq and the
empirical risk R̂h. The fact that the quantization gap at a fixed number of bits decreases with model
size has been observed to a much greater extent in other work (Chee et al., 2024; Tseng et al., 2024)
with more advanced quantization methods and with fewer bits per parameter. This property suggests
that if b were able to be freely optimized in the bound, the complexity C would actually decrease with
model size, and we explore evidence for and consequences of this idea in the following section.

5 COMPRESSIBILITY AND THE SUBLINEAR INFORMATION GROWTH IN LLMS

While not obvious from efficient quantization algorithms like GPTQ (Frantar et al., 2023), there are
good reasons to believe that the model complexity term L(h)/D decreases with model scale on the
compute-optimal frontier.

5.1 QUANTIZABILITY FROM THE HESSIAN SPECTRUM AND QUIP

So far we have split the compressed size of the model L(h) featured in the complexity term into
the number of parameters N times the number of bits per parameter used in the quantization b:
L(h) ≤ bN log 2. In this splitting, increased compressibility of a model shows up in terms of
requiring a smaller number of bits b to achieve a given quantization gap R̂q − R̂h. In Appendix B, we
provide a theoretical argument using the QuIP quantization framework (Chee et al., 2024) for why
we should expect that larger models can be more easily quantized. If the Hessian around the solution
weights is positive semi-definite (PSD) and the spectrum decays sufficiently rapidly, then we should
expect the quantization error to decrease with model size. In Section B.3, we investigate the Hessian
spectrum empirically finding that it indeed decays sufficiently quickly (though not always PSD).
Unfortunately, the version of QuIP needed to construct this argument cannot be run in practice due
to the impractically large computational constraints. Empirically it has been observed that practical
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quantization algorithms also reveal that larger models are more quantizable (Tseng et al., 2024),
though the effect is not very pronounced with the GPTQ algorithm we use here.

Alternatively, we present a more abstract information-theoretic argument to provide evidence for the
fact that L(h)/D decreases with model scale even if we do not have an explicit compression scheme
to achieve it.

5.2 INFORMATION ACCUMULATION IN LLMS

At initialization, the information content in a large neural network is extremely small, requiring only
the model architecture and a random seed to be fully specified. As training progresses, information
transfers incrementally from the dataset to the model weights. This transfer can be quantified using
prequential coding (Rissanen, 1984; Dawid, 1984) and algorithmic information theory.

Let K(X) be the (prefix) Kolmogorov complexity of the dataset X (the length of a shortest self-
delimiting program producing X). From the symmetry of information property, K(X,h) = K(h) +
K(X|h) + c, where c is a small constant. Rearranging, K(h) = K(X,h)−K(X|h)− c measures
the information content in h as the difference between the size of the smallest program that codes
X and h jointly and the smallest program that codes X given h. As described in Blier & Ollivier
(2018); Voita & Titov (2020) and more specifically in Zhang et al. (2020), one can use prequential
coding to provide an estimate for an upper bound on K(X,h)−K(X|h).
A prequential code (Rissanen, 1984; Dawid, 1984) provides a means to code the tuple of data and
probability model (X,h) by using codes derived from intermediate snapshots of the model as it
processes and updates on each successive data point in X during training. As setup, one considers
the sender and receiver each to have an identical copy of the model at initialization h0 (along with the
randomness seed if randomness is used in the training algorithm). From this model at initialization,
the initialized probability model h0 can be used to encode data in its domain with using arithmetic
coding (or any entropy stream code) using − log2 ph0(X1) bits, which can be decoded by the receiver
using h0. With the first data point X1 transmitted, both the sender and receiver train on this data
point yielding identical models h1. From here the process can be repeated coding the subsequent
data point with coded using h1 and so forth until the entire dataset has been transmitted. Using
an entropy code for the transmission, the entire code for the transmission need not be greater than
−
∑D

k=1 log2 phk−1
(Xk|X<k) bits, the area under the loss curve. With this transmission the receiver

can reconstruct the entire dataset X = (X1, X2, . . . XD) and the sequence of models produced
during training [h1, h2, . . . , hD]. While this prequential code is not a prefix free code, it can be
converted into one with logarithmic extra bits (see Section A.2), or merely a small constant extra
bits if the vocabulary size V and dataset size D are prespecified, which we will assume from now
on. With the prequential code, K(X,h) can be upper bounded for a generative model h in terms of
the area under the loss curve, and notably this is true regardless of the number of parameters in h or
the number of bits needed in a more direct coding scheme. Instead, the information in the model is
determined by the information in the data.

While not a strict lower bound, K(X|h) can be estimated from entropy coding of the data using the
generative model as suggested in Zhang et al. (2020), and with this strategy the codelength for X
given h is −

∑D
k=1 log2 phD

(Xk|X<k), the loss for the final model. Assembling the two together,
up to small constant factors,

K(h) log(2) ≤
D∑

k=1

[
Rhk−1

(Xk|X<k)−RhD
(Xk|X<k)

]
. (5)

We evaluate this expression numerically for the Pythia models, however we can also gain some
insight by examining the asymptotic scaling of this quantity with the size of the dataset. For a
reasonable approximation for the loss along the training trajectory, one can use the Chinchilla scaling
law R(N,D) = E +AN−α +BD−β . Noting that 1

D

∑D
k=1 f(k) →

1
D

∫D

1
f(x)dx as D → ∞,

K(h) log(2) ≤
( D∑

k=1

R(N, k)

)
−DR(N,D) → β

1− β
D1−β = O(D1−β). (6)
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Figure 3: Left: Information content contained in the model as upper bounded by K(h) from the
information transfer prequential coding approach vs parameter counting and quantization. Fitting a
power law to the prequential K(h) yields 6×105 ·N0.5±0.1. While parameter counting gives a better
upper bound over the range of Pythia models, the sublinear scaling of the prequential bound means
that it overtakes it eventually, somewhere around 30B sized models. Center: The contributions of
the various terms to our generalization bounds when using prequential coding complexity, along with
their power law fits. Right: Comparison of generalization bounds produced by the prequential vs
quantization based approaches. While the prequential bounds are worse, they follow a power law and
improve substantially with scale.

From this we obtain an insightful result: the information content in the model grows sublinearly with
training dataset size, with a coefficient depending on the scaling law.

As shown in Figure 3 (left), using the empirical loss curves to evaluate
∑D

k=1

[
Rhk−1

(Xk|X<k)−
Rh(Xk|X<k)

]
and fitting the results to a power law, we get 6× 105 ·N0.5±0.1 ∝ D0.5. In contrast,

from the asymptotics using the scaling law to approximate the loss β = 0.37 evaluating (Besiroglu
et al., 2024) yields D1−α = D0.63 which is not far off. While the empirical values for the upper
bound lie above the straightforward value one gets from quantization and parameter counting bN
over the range of Pythia models, the curves predict a crossover point at ≈ 20B parameter models.

5.3 IMPLICATIONS FOR GENERALIZATION BOUNDS

If we apply this observation to upper bound the complexity featured in our generalization bounds
(Theorem 3.4) C = L(h)+log |K|/δ

D = K(h) log(2)/D + log |K|/δ
D = O(D−β), we see that the

complexity will actually decrease with the size of the dataset even as the ratio with parameters is
held constant. With this scaling, we can derive a version of the generalization bound Theorem 3.4
without needing to consider quantization or considering the number of explicit parameters in the
model, provided that the Chinchilla scaling law holds.

We evaluate the non asymptotic generalization bound of Theorem 3.4 but using the complexity
derived from empirical prequential coding bound in Figure 3 (right) and break it down into the scaling
of the individual terms (center), with the Σ term scaling law extrapolated from the fit in Figure 2.
Like before, the C log V term dominates; however, the

√
2C smoothing term threatens to overtake it

with very large model sizes. We can see that the bounds based on the prequential coding are worse
than their quantization counterparts; however, the bounds improve with scale and can be extrapolated
with scaling laws. Considering only the asymptotics, the generalization gap of Theorem 3.4 will
be dominated by the scaling of the smoothing term

√
2C: Rs − R̂h = O(D−β/2). To speculate,

it seems likely that with a more sophisticated approach for dealing with the unbounded loss, the√
C = O(D−β/2) could be removed, letting the O(D−β) shine through. If that were the case, then

the tokenwise generalization gap could indeed be hidden within the D−β of the original scaling law.

6 ADDITIONAL RELATED WORK

Generalization Bounds. Historically, generalization bounds for neural networks have been limited
by their large parameter count, though significant progress has been made in explaining generalization
behavior (Dziugaite & Roy, 2017; Zhou et al., 2018; Arora et al., 2018; Lotfi et al., 2022), with PAC-
Bayes providing a convenient unifying framework (Catoni, 2007). Lotfi et al. (2024a) constructed
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the first non-vacuous generalization bounds for LLMs using prediction smoothing and extreme
compression with subspace LoRA (Hu et al., 2021).

While Lotfi et al. (2024a) focused on document-level bounds, Lotfi et al. (2024b) used Azuma’s in-
equality for token-level martingale-based bounds. We adopt this approach but improve the complexity
from O(

√
C) to O(C) through loss variation. Related work has constrained context learning in LLMs

(Li et al., 2023) and explored generalization in vision-language models (Akinwande et al., 2023).

Chugg et al. (2023) developed generalization bounds for both IID and martingale settings generalizing
many previous results; however, these bounds are not fully empirical and thus can’t be applied in the
setting we require. Closest to our work, Maurer & Pontil (2009) derived a fully empirical Bernstein
inequality, their technique doesn’t extend to non-IID martingale settings.

Post-Training Quantization. For hardware efficiency, significant research has explored reducing
model precision post-training while preserving performance (Hassibi et al., 1993; Hubara et al., 2021;
Yao et al., 2022; Dettmers et al., 2022). Empirically, 3-4 bits provide a reasonable compression-
performance tradeoff, with recent work pushing to 1.58 bits per parameter (Ma et al., 2024) and even
binary networks showing promise (Liu et al., 2024).

For this work, we use GPTQ (Frantar et al., 2023) with 4-bit quantization, which achieves efficient
extreme quantization through iterative weight column rounding. Alternative approaches include
QuIP (Chee et al., 2024), which uses incoherence in approximate Hessian estimation to suppress
outliers, and its improved variant QuIP# (Tseng et al., 2024). We leverage the analysis from these
two papers in Appendix B to shed some light on how the quantizability scales with model size due to
the spectrum of the Hessian.

7 DISCUSSION

We have provided generalization theory to better explain why large language models trained in the
compute-optimal regime generalize, with particular attention on how generalization changes with
scale. For the term that contributes the most to the generalization bound, we are able to improve
the scaling over previous work from

√
C log V to C log V , while remaining fully empirical. We

explore two approaches for constraining model complexity in the generalization bounds, directly
via quantization and parameter counting, and indirectly, via information transfer as quantified by
prequential coding. While the quantization approach yields tighter bounds at Pythia model scale, the
information transfer approach reveals that information in the model grows at a rate that is sublinear
in the size of the dataset, and consequently the generalization gap must also decrease with scale.

While we believe that these insights help advance understanding, there are a number of limitations
of our approach and many questions that remain unaddressed. As previously mentioned, the

√
2C

smoothing term seems pessimistic and could likely be improved with a different approach. Addition-
ally, while the information transfer argument provides evidence that the complexity of a model is low
based on the training curve, it falls short of explaining why the complexity is low. In principle, the
training curve could look different if it did not follow the Chinchilla power law scaling, leading to a
different information transfer rate. Similarly, the Hessian based argument explains why larger models
are more quantizable given the scaling of spectrum of the Hessian, but why the Hessian spectrum has
this empirical behavior remains unexplained. Furthermore, it seems likely that the 1/

√
N in the loss

variation term could be explained theoretically.

Even more broadly, our generalization bounds constrain only the token-wise generalization gap.
While it is intuitive that generalizing well on next token prediction over the training contexts should
imply generalization on the full sequences, we are not aware of work that does so, and this gap
remains to be understood. Similarly, constraining generalization on the NLL objective over data
drawn from the natural distribution may be less pertinent. Instead, it may be more relevant to constrain
the gap between the quality metrics of model generations and natural data. Further removed, there
is the question of why the training loss scales in the way that it does, and how does that relate to
approximation theory and the architecture of the model? Though many questions remain, we hope
that the techniques here can yield generalizable insights for tackling this broader set of problems.
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A PROOFS

A.1 A FULLY EMPIRICAL MARTINGALE FREEDMAN CONCENTRATION INEQUALITY.

In this section, unless otherwise specified, log is used to denote the natural logarithm. We start with
three technical lemmas.
Lemma A.1. Consider the function v(a) = a− log(1 + a). Let µ ∈ R. For any random variable Z
with E[Z] = 0 that satisfies Z − µ > −1, we have

E[exp(Z − v(Z − µ))] = (1− µ)eµ ≤ 1.

Proof. We see that

E[exp(Z − v(Z − µ))] = eµE[exp(Z − µ− v(Z − µ))] = eµE[1 + (Z − µ)].

As E[Z] = 0, we know E[exp(Z − v(Z − µ))] = (1− µ)eµ. Additionally as 1− µ ≤ e−µ, we have
E[exp(Z − v(Z − µ))] ≤ 1, as desired.

Lemma A.2. Consider the function v(a) = a− log(1 + a). For all a ∈ (−1,∞), we have

v(a) ≤ a2/(1 + a)

Proof. Let f(a) = a2/(1 + a) − v(a). By direct calculation, we see that f ′(a) = a/(1 + a2),
which is a strictly negative function passing through 0 at a = 0. As f(0) = 0, we have f(a) ≥ 0
for all a ≥ 0. Note that lima→−1− f(a) = +∞, so f(a) must be positive on (−1, 0). The claim
follows.

For the following result, consider the filtered probability space (Ω,F , {Fk}k∈N,P), and we consider
expectations with respect to P.
Lemma A.3. Let X1, . . . , Xn be a sequence of Fk-measurable random variables. Let Y1, . . . Yn

be any other sequence of Fk−1-measurable random variables such that the difference is bounded
above: Ak = Yk −Xk > −∆ for some ∆ ≥ 0. Define C = 1

n log 1
ϵ , and let B = 1

n

∑
k

(
E[Xk |

Fk−1]−Xk)
)
. For any 0 < t < 1/∆ and simultaneously for all n, we have

P

[
tB ≤ C +

1

n

n∑
k=1

v(tAk)

]
≥ 1− ϵ. (7)

Proof. Let v(a) = a− log(1 + a). Define the random variable

Mk = exp (t(E[Xk | Fk−1]−Xk)− v(t(Yk −Xk))) .

Consider Z = t(E[Xk | Fk−1] −Xk) and µ = t(E[Xk | Fk−1] − Yk). By construction, we have
that E[Z | Fk−1] = 0 and Z−µ = t(Yk −Xk) > −t∆ > −1. Thus, applying Lemma A.1, we have

E[Mk | Fk−1] ≤ 1.

Therefore Un =
∏n

k=1 Mk is a supermartingale. By Ville’s inequality (Ville, 1939), we have

sup
n

Un ≤ E[U0]

ϵ
≤ 1/ϵ

with probability at least 1− ϵ. When this holds, using the definition of U and taking the log of both
sides, we have for all n,

t

n∑
k=1

(
E[Xk | Fk−1]−Xk)

)
−

n∑
k=1

v(t(Yk −Xk)) ≤ log
1

ϵ
. (8)

Defining B = 1
n

∑
k

(
E[Xk | Fk−1] − Xk

)
, C = 1

n log 1
ϵ , and Ak = Yk − Xk, by rearrange

equation 8, we obtain

tB ≤ C +
1

n

n∑
k=1

v(tAk), (9)

as desired.
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Corollary A.4. Let X1, . . . , Xn be a sequence of Fk-measurable random variables. Let Y1, . . . Yn

be any other sequence of Fk−1-measurable random variables such that the difference is bounded
below: Ak = (Yk −Xk)/∆ > −1 for some ∆ ≥ 0. Let K be a finite subset of (0, 1). Then, with
probability at least 1− δ,

1

n

n∑
k=1

(
E[Xk | Fk−1]−Xk)

)
≤ ∆C +Σ

√
C, (10)

where C := 1
n log |K|/δ, and

Σ(C,∆, {Xk − Yk}nk=1,K) := min
s∈K

∆
√
C(1− s)/s+

∆√
C

1

n

n∑
k=1

v
(
sAk

)
/s

Proof. Let s = t∆. Apply a union bound to Theorem A.3 over the different values of s in K, and
take the one that minimizes the bound. Rearrange and isolate terms yields the desired result.

Theorem A.5. Let X1, . . . , Xn be a sequence of Fi−1-measurable random variables. Let
Y0, . . . Yn−1 be any other sequence of Fi−1 measurable sequence of random variables such that the
difference is bounded above: Xk − Yk ≤ ∆ for some ∆ ≥ 0. Define V = 1

n

∑
k(Xk − Yk)

2 and let
δ ∈ (0, 1). Then, with probability at least 1− δ, we have

1

n

∑
k

(
E[Xk | Fk−1]−Xk)

)
≤ ∆C + 2

√
V C, (11)

where C ≤ n−1
(
log 1/δ + 4 log log n/δ + 6).

Proof. Starting from Lemma A.3, we apply Lemma A.2 of v(a) ≤ a2(1 + a). For our convenience,
here we will define Ak = Yk −Xk. We have

tB ≤ C +
1

n

∑
k

t2A2
k

1 + tAk

≤ C +
1

n

∑
k

t2A2
k

1− t∆
, (12)

where the second inequality follows from the assumption that Ak ≥ −∆.

Finally, by defining a variance term V = 1
n

∑
k A

2
k = 1

n

∑
k(Xk−Yk)

2 and rearranging equation 12,
we see

0 ≤ t2(V +B∆)− (B +∆C)t+ C, (13)

which we recall holds with probability at least 1− ϵ.

Inequality Sketch: This inequality is very close to what we need. The approach would be to optimize
over t and then read off the constraint on B. The minimizer of the quadratic is at t∗ = B+∆C

2(V+∆B) .
Plugging in this value, one would arrive at

(1/4)
(B +∆C)2

(V +∆B)
− (1/2)

(B +∆C)2

(V +∆B)
+ C ≥ 0

Rearranging,
1

4
(B +∆C)2 −B∆C ≤ V C

1

4
(B −∆C)2 ≤ V C

and finally,
B ≤ ∆C + 2

√
V C.

At a high level, this determines the overall form of Theorem A.5; however, some technical compli-
cations arise from the fact that t must be deterministic and chosen ahead of time, e.g. it must not

16



Published as a conference paper at ICLR 2025

depend on the random variables B and C. Instead we will consider optimizing t over a discrete set of
possibilities (not depending on B or C), and consider a union bound over the different possibilities.

Full derivation: Consider the quadratic, equation 13. Its minimizer is given by

t∗ =
B +∆C

2(V +∆B)
.

Consider two cases: t∗ ≥ 1
∆ and t∗ < 1

∆ . If t∗ ≥ 1
∆ , then rearranging and solving for B, we see

B ≤ ∆C − 2V/∆,

which is strictly less than the value ∆C + 2
√
V C, and we are done.

Therefore it suffices to consider the case t∗ < 1/∆, where we can apply Lemma A.3. Note that this
result applies for a single t, so it cannot be directly applied to t∗. Instead, we will turn to quantization
and apply a union bound. Note that if B > 0, using that V ≤ ∆2, we have t∗ ≥ ∆C

2∆2 = C
2∆ .

Therefore we only need to consider the range: t∗ ∈ ( C
2∆ , 1

∆ ) =: T .

Drawing inspiration from floating point numbers, consider a discrete set Q defined as

Q =

{
1
∆2−b

(
1 +

k

K

) ∣∣∣∣ k = 0, 1, ...,K − 1, b ∈ N+

}
for some K ∈ N. Let

q(a) = argmin
q∈Q

|q − a|.

From this, we can determine that the quantization error is bounded by

sup
a∈T

|q(a)− a|
a

≤ 1

K
.

Define a prior over the values of Q:

P (qk,b) = P (k)P (b) =
1

K

1

Z(b+ 2)(log2(b+ 2))2
.

By direct calculation, we see that 1 =
∑

k,b P (k)P (b) =
(∑∞

b=0
1

(b+2)(log2(b+2))2

)
/Z ≤ 1/Z,

therefore Z ≤ 1.

Now we apply a union bound for Lemma A.3 over values of t ∈ Q. For each t ∈ Q, we set
ϵ(t) = δP (t). We have

P
[
∀t ∈ Q : t2(V +B∆)− (B +∆Cϵ(t))t+ Cϵ(t) < 0

]
≤

∑
t∈Q

P
[
t2(V +B∆)− (B +∆Cϵ(t))t+ Cϵ(t) < 0

]
≤

∑
t∈Q

ϵ(t) = δ
∑
t∈Q

P (t) = δ.

Therefore, uniformly for all t ∈ Q, we have

t2(V +B∆)− (B +∆Cϵ(t))t+ Cϵ(t) ≥ 0 (14)

with probability at least 1− δ.

Now we plug in t = q(t∗). Note that 0 ≤ b ≤ log2
2
C , so we have

log
1

ϵ(t)
= log

1

δP (t)
≤ log

K

δ
+ log(3 + log2 1/C) + 2 log log2(3 + log2 1/C)

≤ log
K

δ
+ 2 + 2 log log 1/C ≤ log

K

δ
+ 2 + 2 log log n (15)
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Plugging in this quantized value of t to equation 14 and using the quantized error bound, equation 15,
we have

(B +∆C)2

4(V +∆B)
≤ C +

3

K

(
1 +

1

K

)
1

4

(B +∆C)2

(V +∆B)

≤ C(1 + 4/K), (16)

where in the second line we chose a K ≥ 6 so that we have
(
1− 3

K

(
1 + 1

K

))−1 ≤ 1 + 4
K . Solving

equation 16 for B, we have the inequality

B ≤ ∆C(1 + 8/K) +
√
∆2C2(8/K)2 + 4CV (1 + 4/K)

≤ ∆C(1 + 16/K) + 2
√
V C(1 + 16/K), (17)

where the second line follows from the fact that
√
x+ y ≤

√
x +

√
y. Define C = C(1 + 16/K).

Choosing K = ⌈16 log 1/δ⌉ (which is > 6), we have

nC ≤ log 1/δ + 1 +
[
log(⌈16 log 1/δ⌉) + 2 + 2 log log n

](
1 + 1/ log(1/δ)

)
(18)

Applying some simplifications to equation 17 and equation 18, we obtain

B ≤ ∆C + 2
√
V C.

with

C ≤ 1

n

(
log 1/δ + 4 log log n/δ + 6),

as desired.

A.2 GENERALIZATION BOUND

Converting to Prefix Free Codes Through Kraft-Mcmillan inequality (Kraft, 1949; McMillan,
1956) a binary prefix free code exists if and only if the code lengths ℓi for the different elements
satisfy

∑
i 2

−ℓi ≤ 1. Thus if we have L(h) as the length of a non prefix free code for each h, to
find the length of a valid prefix code we just need to find ℓ(h) such that

∑
h 2

−ℓ(h) ≤ 1. Using
ℓ(h) = L(h), the sum would diverge. Instead, consider ℓ(L) = L+ 2 log2(L) + 1. Computing the
sum,

∑
h 2

−ℓ(h) =
∑∞

L=1 2
L2−ℓ(L) =

∑∞
L=1

1
2L2 = π2/12 < 1. Thus we can convert any non

prefix free code into a prefix free code with using L+ 2 log2(L) + 1 bits.

Simultaneously, one can use the prior P (h) = 12
π2 2

−ℓ(h) for any countable hypothesis class, placing
higher mass on elements with shorter descriptions, closely related to the Solomonoff prior.

If we know the length of the object ahead of time, then we are free to use a regular code in place of a
prefix free code. For a fixed number of parameters N and bits per parameter b, we know the length of
the code, and thus we can use ℓ(h) ≤ bN .

Weighted Union Bound Applying Theorem 3.1 to the sequence Rh(Xk | X<k) with δ(h) =
ϵP (h) for each hypothesis individually, the probability that the bound is violated for an arbitrary
hypothesis constrained with a union bound

∑
h ϵP (h) = ϵ, and therefore Theorem 3.2 holds with

probability at least 1− ϵ (replacing δ with ϵ in its expression). The log 1/δ in Theorem A.5 becomes
log 1/δ + log 1/P (h) ≤ log 1/δ + ℓ(h) log 2.

A.3 PREDICTION SMOOTHING

Theorem A.6. For the categorical negative log likelihood objective R̂h = − 1
n

∑n
k=1 log ph(Xk |

X<k) on V classes and C ∈ R+, there exists a prediction smoothed model ps(·) = (1− α)ph(·) +
α/V with worst case loss supXk,X<k

− log ps(Xk | X<k) ≤ ∆s that satisfies

R̂s + C∆s ≤ R̂h + C log V +
√
2C, (19)

for some value α(C, V ) ∈ (0, 1) (approximately C/(1 + C)).

18



Published as a conference paper at ICLR 2025

Proof. We have

− log ps = − log
(
(1− α)ph + α/V )

≤ − log ph − log
(
1− α+ α/V ).

Noting that − log ps(Xk|X<k) ≤ ∆s = log(V/α), so adding C∆ to both sides yields

R̂s + C∆s ≤ R̂h − log(1− α+ α/V ) + C log(V/α), (20)

where the right-hand side is minimized at

α =
V C

(V − 1)(1 + C)
.

Note that α is a deterministic quantity that we can compute ahead of time based on the model we are
bounding. Therefore we need not pay additional bits for a union bound over values of α. Substituting
α into equation 20, we have

R̂s − R̂h + C∆s ≤ log(1 + C) + C log
(V − 1)(1 + C)

C
≤ (1 + C) log(1 + C) + C log(V/C)

≤ C log V +
√
2C,

where the last line follows from (1+x) log(1+x)−x log x ≤
√
2x for x > 0. The claim follows.

B QUANTIZABILITY FROM THE HESSIAN

We have shown that the quantization gap tends to be quite small in practice, but why is this the case?
A more complete explanation of why LLMs generalize would need to explain why they are readily
quantizable, not just why they should achieve a small generalization gap if they are quantizable. In
this section we attempt to shed light on why there should exist quantized models which achieve
low quantization error using a small number of bits per parameter for large models. Here, like in
Section 5.2 we focus on demonstrating that these schemes exist, even if they are difficult to find or
computationally inefficient to use in practice.

As a starting point in the analysis of many quantization schemes (Nagel et al., 2020), consider the
Lagrange remainder form of the quadratic Taylor expansion of the loss around a given solution of the
weights θ, with θ̂ being our desired quantization. From this expansion we have

L(θ̂) = L(θ) + g⊤(θ̂ − θ) + (θ̂ − θ)⊤H(θ̂ − θ)

holding with equality for g evaluated at θ and the Hessian H evaluated at an unknown but fixed point
ξ on the linear path between θ and θ̂, and with no higher order terms. If we use a stochastic rounding
algorithm that is unbiased, then the first order term can be neglected as

E[g⊤(θ̂ − θ)] = 0,

and a high dimensional vector θ ensures the sum will concentrate around the expectation. This leaves
the quadratic form with the Hessian. This quadratic form is what many adaptive rounding schemes
minimize through the design of their algorithms and in their analysis.

A key property for low precision quantization of the weights (while minimizing the quadratic
quantization error) is that the scale of the individual components of the eigenvectors of H do not
differ by a large extent. If they do, then the quantization range must simultaneously provide coverage
over a large range of values. This criterion is formalized through the notion of incoherence, introduced
in Chee et al. (2024), which we briefly present below with a simplification of their more general
analysis.

B.1 INCOHERENCE

A Hessian is µ-incoherent if the eigenvectors in the decomposition QΛQ⊤ = H ∈ RN×N satisfy

∀i, j : |Qij | ≤ µ/
√
N,
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and a parameter vector θ is µ-incoherent if it satisfies ∀j : |θj | ≤ µ∥θ∥/
√
N . Intuitively this

condition can be understood to be stating that the elements are not much more extreme in magnitude
than that of an equivalently sized Gaussian random matrix or Gaussian random vector.

A key insight from QuIP (Chee et al., 2024) is that rather than quantizing the weights θ, one should
look to quantize the weights after applying a random orthogonal transformation matrix P ∈ RN×N .
Even as the original weights θ and eigenvectors Q may be more sharply peaked for certain dimensions,
multiplying by a random matrix helps to spread these extreme values across dimensions leading to a
more similar range of values and more easy quantization.

Let w = P⊤θ and likewise θ = Pw. Applying this Gaussian random matrix, the Hessian is
transformed: Hw = P⊤HθP and likewise the eigenvectors Q from Hθ = QΛQ⊤ are also multiplied
Q⊤ 7→ Q⊤P . If we choose P as a random Gaussian matrix: N (0, 1/N)N×N , applying a rotation by
Q⊤ preserves the spherically symmetric distribution. Therefore, the eigenvectors Q⊤P of Hw are
N (0, 1/N)N×N distributed. Applying a union bound over the Gaussian tail probability of the N2

elements, the maximum absolute value entry of Q is at most
√

2 log(2N2/δ)
N with probability 1−δ and

therefore incoherent with µ =
√
2 log(2N2/δ). This level of incoherence after applying the random

transformation makes for easy quantizability, and as we will see in the next section it has implications
on how the quantizability changes with the number of parameters N in the neural network.

B.2 SCALAR LDLQ

QuIP introduces the LDLQ quantization algorithm which quantizes weights sequentially and autore-
gressively taking into account how previous quantized values impact the quadratic Taylor expansion
of the loss. Applying LDLQ to the entire vector of weights w rather than block by block, one has
the following relation on the quantized weights ŵ. Let L⊤DL = Hw be the LDL decomposition of
Hw = P⊤HθP , then we can express the quantization of the weights as

ŵ = Q(w + (L− I)(w − ŵ))

where Q quantizes the weights element-wise with nearest or unbiased stochastic rounding. As L− I
is a lower triangular matrix, the full ŵ can be quantized sequentially in an autoregressive manner.
With this quantization scheme, Tseng et al. (2024) prove that the error of the quadratic in the Taylor
expansion satisfies

(ŵ − w)⊤H(w − ŵ) ≤ µ2σ2

N
Tr(H1/2)2, (21)

where the pointwise quantization error of the scalar quantizer is assumed to be E[
(
Q(x)− x

)2
] ≤ σ2

(see Theorem 4.1 of Chee et al. (2024) applied to block size 1 and a single N × 1 weight matrix),
where σ2 is a function of the bitrate. For example x ∈ [0, 1], then a uniform grid would achieve
σ2 = 2−2b−2 for b bits per parameter. The range of x is not [0, 1] and constraining the number of bits
required for more sophisticated schemes requires additional analysis, but for illustrative purposes we
will use σ2 = 2−2b−2. Putting the pieces together, we have that the difference in loss between the
quantized model and unquantized model is

L(ŵ)− L(w) ≤ 2 log(2N2/δ)2−2b−2

N
Tr(H1/2)2

for H evaluated at some point ξ on the linear path between ŵ and w. Setting the acceptable
quantization error Q = L(ŵ)− L(w) we can solve for b, finding

b ≤ log2

(
Tr(H1/2)√

NQ

)
+ (1/2) log2 log(2N

2/δ)− 1/2.

Here we see that the number of bits per parameter required depends most heavily on log2

(
Tr(H1/2)√

NQ

)
.

If the spectrum of H is such that Tr(H1/2) scales slower than
√
N (such as if H were low rank or

has a spectrum the decays sufficiently rapidly), then the number of bits required for quantization
at a fixed loss decreases with scale. In the following section we provide some empirical evidence
that indeed this is the case, and hence why larger models become more quantizable (even if the
quantization scheme is impractical to implement).
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B.3 ESTIMATING Tr(H1/2)

To estimate the trace of the square root of the Hessian matrix, Tr(H1/2), we begin by assuming that
the Hessian is positive semi-definite (i.e., it contains no negative eigenvalues). The square root of the
Hessian, denoted as S, can be expressed as:

S =

P∑
i=1

√
λiϕiϕ

T
i ,

where λi and ϕi represent the eigenvalues and corresponding eigenvectors of the Hessian, respectively.
Consequently, the trace of the square root of the Hessian is:

Tr(H1/2) =

P∑
i=1

√
λi = n

∫ ∞

0

p(λ)
√
λ dλ,

where p(λ) is the spectral density function associated with the Hessian’s eigenvalues.

A direct computation of the full eigendecomposition to obtain Tr(H1/2) has a computational com-
plexity of O(n3), which is infeasible for large models. Instead, we employ stochastic spectral
density estimation techniques (Granziol et al., 2018; Papyan, 2019; Ghorbani et al., 2019), which
scale linearly with the number of parameters. The key idea involves using the Pearlmutter trick
(Pearlmutter, 1994) to efficiently compute Hessian-vector products:

∇(∇LT v) = Hv,

where v is a random vector. This allows us to approximate the trace by leveraging the identity:

Tr(H) = E[Tr(vvTH)] = E[vTHv],

assuming v has zero mean and unit variance. These stochastic methods are well-established in
machine learning (Fitzsimons et al., 2017; Dong et al., 2017).

Building upon the work of Ubaru et al. (2017), we can derive an explicit bound on the estimation of
Tr(H1/2) using stochastic Lanczos quadrature (SLQ).
Theorem B.1. Let H ∈ Rn×n be a symmetric positive definite matrix with eigenvalues ordered as
λ1 ≥ λ2 ≥ · · · ≥ λn and condition number κ = λ1

λn
. For any ϵ, η ∈ (0, 1), if the SLQ parameters

satisfy

m ≥
√
κ

4
log

K

ϵ
(Lanczos steps),

nv ≥ 24

ϵ2
log

2

η
(Rademacher vectors),

where K = (λmax − λmin)(
√
κ− 1)2, then the output Γ of stochastic Lanczos quadrature satisfies:

Pr

[∣∣∣∣∣Tr(
√
H)− Γ

Tr(
√
H)

∣∣∣∣∣ ≤ ϵ

]
≥ 1− η.

The proof of this theorem is provided in Section B.6. However, we observe that the bound on the
trace provided here is overly conservative for practical purposes. Therefore, we also establish a result
demonstrating self-averaging, which shows that the estimator converges to the true value based on a
single random vector.
Theorem B.2. For a single random vector v, the signal-to-noise ratio of the trace estimator for a
matrix H ∈ Rn×n, where the spectral moments of H do not depend on the matrix dimension, scales
as: √

Var(vTHv)

E(vTHv)
= O(n− 1

2 ).

We utilize the CoLA (Potapczynski et al., 2023) library to compute the spectral approximation of
the Hessian. This involves leveraging the relationship between the Lanczos T matrix and Gaussian
quadrature (Meurant & Strakoš, 2006; Granziol et al., 2019). However, these concepts are highly
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Figure 4: Spectral density plots of the 70M parameter Pythia model trained on varying fractions of
the Pile dataset using the same data and random vector seed.

specialized and may not be familiar to all readers. Therefore, we provide a high-level overview
without delving into the intricate mathematical details.

Figure 4 illustrates the spectral density of a 70M parameter Pythia model trained on different
subsets of the Pile dataset (Gao et al., 2020). Specifically, as we decrease the number of training
samples—from 1% (Figure 4a) to 0.1% (Figure 4b) and further to 0.01% (Figure 4c)—we observe
an increase in the largest eigenvalue and an increase in the mass of negative spectral density. These
phenomena are consistent with previous studies on ResNets and VGGs, where spiked Wigner random
matrix theory models have been employed to understand such behaviors (Granziol et al., 2022).

Future work aimed at establishing a tighter empirical bound could explore advanced random matrix
theory techniques (Bun et al., 2017), potentially utilizing the variance of the Hessian (Granziol et al.,
2022). In this study, we adopt a simpler approach by shifting the Hessian spectrum by the magnitude
of the largest negative eigenvalue, thereby ensuring a positive semi-definite Hessian and providing a
trivial upper bound.

From Figure 4b, we observe that the variance of each estimator remains low and that convergence is
achieved with relatively few Lanczos iterations. Additionally, Figure 5 demonstrates that varying the
random vector introduces minimal variance, while different data subsets do exhibit some variance, as
indicated by the error bars computed over three different seeds (see Figure 5b). For clarity, Figure 5a
provides another example of the spectrum with a different seed vector on the same subsampled
dataset, showing negligible differences compared to Figure 4a.
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Figure 5: Comparison of spectral density and Tr(
√
H) estimations for different subsample sizes and

configurations.

With confidence in the accuracy of our estimations for Tr(H1/2) and the Hessian spectrum, we can
interpret the implications for model quantization. Despite the high dimensionality and the presence
of many distinct eigenvalues, the Hessian spectrum decays rapidly in density. This indicates that
Tr(H1/2) grows sublinearly with the model dimension, rather than exhibiting the worst-case linear
scaling. Consequently, as model size increases, the ratio L(h)/D is expected to decrease, allowing for
a more favorable tradeoff between the bitrate and the quantization gap. This supports the hypothesis
that larger models on the compute-optimal frontier are more easily quantizable, thereby contributing
to their improved generalization performance.

B.4 STOCHASTIC TRACE ESTIMATION IMPROVEMENT WITH MODEL SIZE

Here, we provide the proof that for a spectrum independent of model dimension, the stochastic trace
estimator has a bigger signal to noise ratio as a function of dimension.

Lemma B.3. Let u ∈ RP×1 random vector, where ui is zero mean and unit variance and finite 4th
moment E[u4

i ] = m4. Then for H ∈ RP×P , we have
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(i) E[uTHu] = TrH ,

(ii) Var[uTHu] ≤ (2 +m4) Tr(H
TH).

Proof. For the expectation, we see

E[uTHu] =

P∑
i,j=1

Hi,jE[uivj ] =

P∑
i=1

Hi,i = TrH.

For the variance, we have

E[||uTHu||2] =
∑
i,j

∑
k,l

Hi,jH
T
k,lE[uiu

T
j uku

T
l ]

=
∑
i,j

∑
k,l

Hi,jH
T
k,l[δi,jδk,l + δi,lδj,k + δi,kδj,l +m4δi,j,k,l]

= (TrH)2 + (2 +m4) Tr(H
2),

whence (ii) follows.

Let us consider the signal to noise ratio for some positive definite H ≻ cI√
Var[uTHu]

E[uTHu]
=

√
2 +m4

√
TrH2

Tr2 H
=

√
2 +m4

P

√
⟨λ2⟩
⟨λ⟩

(22)

where we denote the mean eigenvalue ⟨λ⟩ and the mean square eigenvalue similarly.

Remark B.4. Note that m4 is 3 for the Gaussian case and 1 for the Hutchinson trace estimator where
the entries are ±1 with probability half, which justifies its use.

B.5 DERIVING THE IMPACT OF LOW PRECISION LANCZOS

Consider a number taken from our Hessian matrix ai,j , which can be represented as (−1)s2es. As
the exponent for FP16 has 5 bits, it has a range of 25 − 1. Since the exponent is always integer, there
is no loss of information in the range. This means the error is in the significand, which has 6 bits after
the 1. Thus, we have ϵ = 10−7.

Then, we see that

H̃ =


a1,1(1 +N (0, ϵ)) a1,2(1 +N (0, ϵ)) · · · a1,n(1 +N (0, ϵ))
a2,1(1 +N (0, ϵ)) a2,2(1 +N (0, ϵ)) · · · a2,n(1 +N (0, ϵ))

...
...

. . .
...

am,1(1 +N (0, ϵ)) am,2(1 +N (0, ϵ)) · · · am,n(1 +N (0, ϵ))



= H +


a1,1N (0, ϵ) a1,2N (0, ϵ) · · · a1,nN (0, ϵ)
a2,1N (0, ϵ) a2,2N (0, ϵ) · · · a2,nN (0, ϵ)

...
...

. . .
...

am,1N (0, ϵ) am,2N (0, ϵ) · · · am,nN (0, ϵ)

 .

Now under certain assumptions on the elements of the perturbation matrix (essentially the ai,j does
not vary too wildly or have wild dependencies) this becomes a Gaussian orthogonal ensemble (GOE)
again. Then using the Frobdyenius Norm, we see that the spectral width will be of order ϵ

√
⟨λ2⟩,

which depends on the square root of the average eigenvalue squared of H . Anything within this will
be noise. This is because

∑
i,j a

2
i,j = P ⟨λ2⟩. An obvious upper bound of this would be ϵλ1 but this

will likely be super loose. Note that the vast majority of the already broadened spectrum is already
very close to zero, so we would expect this to be even more extreme for the unbroadened version. A
better strategy might be to sample the noisy version of a2i,j perhaps using the diagonal approximation,
and note that in expectations we expect the square to be (1 + ϵ2) the size of its non noisy counter
part, which gives an an estimation equation√

Pϵ2
∑N

k a2i,j
N(1 + ϵ2)

.
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B.6 STOCHASTIC LANCZOS QUADRATURE PROOF

Theorem B.5. Consider a symmetric positive definite matrix A ∈ Rn×n with eigenvalues enumer-
ated in reverse order of size λ1 ≥ λ2 · · · ≥ λn and condition number κ = λ1

λn
. For ϵ, η ∈ (0, 1) and

SLQ parameters satisfying

(i) m ≥ log K
ϵ

2 log
√

κ+1√
κ−1

>=
√
κ
4 log K

ϵ Lanczos steps

(ii) nv ≥ 24
ϵ2 log 2

η Rademacher vectors,

where K = (λmax − λmin)(
√
κ− 1)2. The output Γ of stochastic lanczos quadrature is such that

Pr

[∣∣∣∣Tr(
√
A)− Γ

Tr(
√
A)

∣∣∣∣ ≤ ϵ

]
≥ 1− η (23)

Proof. The proof follows trivially from Ubaru et al. (2017), where we simply take the more general
proof and instead of the general function f(A), we take f(x) =

√
x. The second inequality for m is

directly from the paper, but the tighter bound is also available just buried.

The proof sketch goes as follows. We bound the error from the Gauss quadrature rule. We start with
a function analytic in the interval [−1, 1]. Knowing that the Gauss quadrature rule is exact for any
polynomial up to degree 2m+ 1, we bound the sum from 2m+ 1 to infinity using Cauchy-Schwarz.
We use results from Chebyshev coefficients, symmetry and the interval boundaries to get

|I − Im| ≤ 4
√
λ1

(ρ2 − 1)ρ2m
,

where ρ is the sum of the major and minor axis of the Bernstein elipse. We shift the spectrum so that it
is in the interval [−1, 1], e.g this implies the factor of λ1−λn

2 . The shifted function is not analytic for

α = −−κ+1
κ−1 , so this will serve as our major axis. Now as x2

a2 +
y2

b2 = 1 and the focus is 1 =
√
a2 − b2,

where we take our major axis a in this case to be α. We then have our rate of convergence ρ = a+ b

through some algebra to be
√
κ+1√
κ−1

. This gives us the value of K. This is combined with the error of
the trace estimator from Roosta-Khorasani & Ascher (2015) and Cauchy-Schwartz to obtain the final
result.
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