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ABSTRACT

Simulation plays a key role in scaling robot learning and validating policies, but
constructing simulations remains labor-intensive. In this paper, we introduce Re-
Gen, a generative simulation framework that automates this process using inverse
design. Given an agent’s behavior (such as a motion trajectory or objective func-
tion) and its textual description, we infer the underlying scenarios and environ-
ments that could have caused the behavior. Our approach leverages large lan-
guage models to construct and expand a graph that captures cause-and-effect re-
lationships and relevant entities with properties in the environment, which is then
processed to configure a robot simulation environment. Our approach supports
(i) augmenting simulations based on ego-agent behaviors, (ii) controllable, coun-
terfactual scenario generation, (iii) reasoning about agent cognition and mental
states, and (iv) reasoning with distinct sensing modalities, such as braking due
to faulty GPS signals. We demonstrate our method in autonomous driving and
robot manipulation tasks, generating more diverse, complex simulated environ-
ments compared to existing simulations with high success rates, and enabling
controllable generation for corner cases. This approach enhances the validation
of robot policies and supports data or simulation augmentation, advancing scal-
able robot learning for improved generalization and robustness. Please check our
website here: https://sites.google.com/view/regen-simulation.

1 INTRODUCTION

Simulated environments play a vital role in validating robotic systems and provide platforms for
robots to acquire complex skills, including autonomous driving (car, 2020; Amini et al., 2022;
Gulino et al., 2024), manipulation (Zhu et al., 2020; James et al., 2020; Nasiriany et al., 2024a), and
locomotion (Rudin et al., 2022; Makoviychuk et al., 2021). Unlike real-world learning or testing,
simulations offer access to privileged states, enable unlimited exploration, and support large-scale
parallel computation — all without the need for heavy investment in robotic hardware. Classical
simulation methods often rely on manually crafted environments and predefined scenarios, which
require significant human expertise and effort in both setup and maintenance Brockman (2016);
Müller et al. (2018). These traditional approaches, while effective, are often limited in flexibility
and scalability compared to the newer techniques. A more recent paradigm, generative simulation,
leverages generative artificial intelligence (AI) to automate the creation of simulations, greatly re-
ducing the human effort and tedious process typically involved. Promising progress has been made
in asset generation (Wang et al., 2023a; Siddiqui et al., 2024), scene layout design (Höllein et al.,
2023; Yang et al., 2024), and task and environment creation (Wang et al., 2024d; 2023c).

Generative simulation offers the potential to create infinite environments for robots to learn and
be tested in. However, previous methods often encounter significant limitations in generating low-
level control – such as a trajectory – from high-level textual descriptions, constraining the diversity
and complexity of the robot simulations. For instance, these approaches often require training a
new policy for each simulation based on a newly generated reward function, making this process
the primary computational bottleneck. We leverage the insight that behaviors are relatively limited
compared to the diverse environments in which they occur. For instance, the abrupt stopping of
a self-driving car can apply to various contexts, such as a red traffic light, a pedestrian stepping
into the road, or an approaching police car with its siren on. To address this, we draw inspiration
from inverse design (Molesky et al., 2018), a concept widely used in computational design that
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Stop for a car running a red light Yield to ambulance Brake for a fallen box Halt for a police chase

Check for delivery Allow the pet to enter Open the door for ventilation See off guest

Simulated EnvironmentsEgo-agent Behaviors Inverse Design

The robot 
opened the door

The vehicle stopped 
abruptly at an intersection 

Figure 1: Given a robot behavior (such as a trajectory or an underlying objective function) and its
textual description, ReGen generates a simulated environment that could have caused the behavior.

starts with desired properties or outcomes. For example, given a target flow pattern, the geometry
of a fluidic device is optimized accordingly. In generative simulation, we propose generating or
designing environments conditioned on the agent’s behavior. The benefits of this framework can be
investigated from different perspectives:

A validation perspective. Generative simulation via inverse design enables the conditional genera-
tion of simulated environments based on specific robot behaviors. This approach facilitates the unit
testing of robotic systems, where the unit is defined at the behavior level1. By tailoring environments
to specific behaviors, we can systematically evaluate how well a robot performs under a controlled
set of diverse yet relevant contexts, rather than relying on random or uncontrolled scenarios.

An augmentation perspective. A natural extension from validation is to incorporate failed test
cases into the robot’s learning pipeline as a form of data augmentation. This approach strengthens
the robustness of the robot’s behavior across diverse and relevant environmental contexts. Addition-
ally, this inverse approach can be seen as a method for augmenting existing simulated environments.
Given a simulated environment and a robot policy exhibiting a relevant behavior, inverse design en-
ables the sensible addition or removal of entities based on the context. This is achieved by reasoning
backward from the robot’s behavior to identify what elements in the environment are relevant.

In this work, we propose an inverse design approach for generative simulation from robot behavior
to simulation. Our method takes as input robot behaviors (e.g., motion trajectories or objectives) and
their textual descriptions, and outputs relevant simulated environments. We represent the environ-
ment as a graph that captures (i) cause-and-effect relationships and (ii) entities and their properties,
both static (e.g., locations) and dynamic (e.g., motions of actors). Each node represents an event
(e.g., yielding to an ambulance), entity (e.g., a car), or property, while edges capture causal rela-
tionships (e.g., a car stopping “due to” an ambulance) or dependencies (e.g., a siren “attached to”
an ambulance). Our graph expansion algorithm starts from the robot behavior, adding causes to
build causal relations (e.g., ego-car stationary ← distracted driver ← traffic light turns green) and
expanding events with necessary entities and properties. The graph is then converted into a finite
state machine (FSM) (Nguyen et al., 2024). We leverage the knowledge and common-sense reason-
ing of large language models (LLMs) for graph expansion and their coding capability to generate
the executable code for the simulation. In summary, we contribute:

• An inverse design approach for generative simulation demonstrated in autonomous driving and
manipulation with abilities to (i) augment simulations based on ego-agent behaviors, (ii) generate
controllable, counterfactual scenarios, (iii) reason about agent cognition and mental states, and (iv)
handle distinct sensing modalities, such as braking due to faulty GPS signals.

• Methods to construct and expand graphs using LLMs and simulation engines that capture cause-
and-effect relationships and relevant entities, later converted into simulated environments.

• Extensive experiments that showcase greater diversity of generated environments compared to
existing simulations, controllable generation of corner cases for safety-critical applications like
driving, and superior complexity of generated environments that produce vision-language-action
datasets more challenging to vision language models (VLMs) than existing datasets.

1The level of granularity at which the behavior should be defined is beyond the scope of this paper and
remains an open research question for future exploration.
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Algorithm 1 Graph Expansion

Input: vbehavior ∈ Vevent Output: G ∈ G
procedure POTENTIALLY CONNECT TO NODE(G,v, . . . )

vcandidate = node proposal(v, . . . )
G, edge added = edge construction(v, vcandidate, G)
return G, vcandidate, edge added

end procedure
Initialize: G = {} ∈ G; G← vbehavior
while ∃ input degree(v ∈ G) < 1 do

vevent ∼ {v | input degree(v ∈ G) < 1}
G, v′event, = potentially connect to node(G, vevent, . . . )
break whenever by the user.

end while
for {vevent | v ∈ G, v ∈ Vevent} do

G, ventity, edge added = potentially connect to node(G, vevent, . . . )
if edge added then

for All possible property types do
G, vproperty, = potentially connect to node(G, ventity, . . . )

end for
end if

end for

2 METHOD

2.1 PROBLEM SETUP AND HIGH-LEVEL OVERVIEW

Our method takes in as input a robot behavior B – such as a motion trajectory τ or an underlying
objective function R – along with its textual description LB and a simulator database Dasset. It
generates plausible simulated environments E where the behavior can occur. We assume access to
a simulation engine, such as CARLA (car, 2020) for autonomous driving or PyBullet (Coumans &
Bai, 2016–2021) for manipulation. The simulator database Dasset captures the simulator’s capabil-
ities through a directed graph, where a node represents an asset (e.g., siren, ambulance) and each
edge represent a relationship between two assets, (e.g., ambulance← siren). For further details on
implementation, see (Appendix A.1). At a high level, the method begins by performing a graph ex-
pansion from the leaf node, the input behavior LB , into a graph G = (V, E) containing the high-level
information needed to build the environments (Section 2.2). Next, we trace a path in the graph con-
nected to the input behavior node, which is then converted into executable code for the simulation
engine to generate the environment (Section 2.3).

2.2 INVERSE DESIGN VIA GRAPH EXPANSION

Our inverse design process begins by representing the input behavior description, LB , as a leaf node.
Starting from this node, the graph G is iteratively expanded backward, eventually containing enough
information to construct the environments.. The graph expansion involves two atomic steps: node
proposal and edge construction, applied to different types of nodes and edges. For both process we
use gpt-4o-2024-08-06 model with temp=0 and top-p=0.

Node Proposal is the process of generating candidate nodes Vcandidate = {Vevent,Ventity,Vproperty} that
can be connected to the existing graph via a source node vsource. We consider three types of nodes:
event, entity, and property nodes. First, event nodes vevent represent causes and effects (e.g., an event
“yielding to an ambulance” is a cause of another event “ego-vehicle stopping”). Its proposal involves
using a LLM to generate plausible causes LLM (v ∈ Vevent|vsource, prior), treating the source node as
the effect; the prior can be constraints from the simulation engine defined in Dasset or any preference
from human users. Next, entity nodes ventity represent static objects (e.g, debris) or dynamic actors
in the environment (e.g., an ambulance) and are proposed from a fixed set of supported assets Dasset
in the simulation engine v ∈ Ventity ⊆ Dasset. Lastly, property nodes vproperty specify attributes
for each entity, including static elements such as location (e.g. “in front of the ego”) or possible
states retrieved from Dasset. For example, candidate property nodes for a traffic light represent all its
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possible states in the simulator, such as “red,” “green,” “yellow”, and “off”. These proposed nodes
serve as candidates for the edge construction step. See Appendix A.1.2 for examples of this process
and full prompts in Appendix A.5.1.

Edge Construction determines which candidate nodes should be connected to a source node
vsource by evaluating possible connections simultaneously, rather than pairwise (Jiralerspong et al.,
2024). Formally, it involves mapping LLM : (vsource,Vcandidate) → {True,False}, where Vcandidate =
{v1, v2, . . . , vn} represent the sets of candidate nodes from the node proposal step. Edges are then
constructed for all {vi ∈ Vcandidate : LLM(vsource, vi) = True}. This mapping leverages an LLM
as a general classifier to evaluate the plausibility of each candidate connection in the context of
the source node. Our graph expansion considers three types of edge constructions: event-to-event,
entity-to-event, and property-to-entity, with the order indicating the direction. For event-to-event
edges, the LLM validates direct causal relationships using common-sense reasoning – for exam-
ple, an emergency vehicle behind the ego-vehicle may cause it to pull over, while one ahead may
not. For entity-to-event edges, the LLM selects relevant entities, while for property-to-entity edges,
connections are determined by simulatable properties relevant to the entity’s role. The edge con-
struction process performs rejection sampling by discarding implausible connections and ensuring
only edges corresponding to simulatable entities and properties in the asset databaseDasset are added
to the graph. See Appendix A.1.3 for examples and Appendix A.5.2 for full prompts.

Graph Expansion is an iterative process that repeatedly calls node proposal and edge construction
to grow the graph. Formally, the process initializes with an empty graph G = (V, E), where V = {}
and E = {}. The input behavior is then added as the initial node V = {LB}, where LB ∈ Vevent. For
example, the input behavior could be “the ego-vehicle stopping abruptly.” The expansion proceeds
by proposing candidate event nodes Vcandidate to connect any event node that lacks an incoming edge,
i.e., nodes without a defined cause. Edges are constructed based on the plausibility of the proposed
connections. Users can specify a stopping criterion, such as a maximum number of nodes or graph
depth; otherwise, the process continues indefinitely. At this stage, the graph contains only event
nodes, forming a causal graph with a directed acyclic structure. Next, entity and property nodes are
added to incorporate more details. The graph expansion process is detailed in Algorithm 1.

2.3 GROUNDING TO SIMULATED ENVIRONMENT

Given a path g ⊆ G, the goal is to output a concrete simulation that specifies: (i) the initial state
of the environment q0, (ii) the motions of all dynamic actors defined by the transition function
δ : Q × Σ → Q, and (iii) the terminal conditions, including success or failure criteria, represented
by the accepting states F ⊆ Q. Extending the work from (Nguyen et al., 2024), we convert g into
a FSM using the same LLM model and hyperparameters as in the graph expansion step. The FSM
is formally represented as the tuple FSM = (Q,Σ, δ, q0, F ); where Q is the set of abstract states,
Σ = {q|q ∈ Q} is the input alphabet, δ defines state transitions, and F is the set of accepting states.
Intuitively, the FSM defines a set of constraints that capture the temporal dynamics of the scenario,
effectively embodying temporal logic. For code example see Appendix A.2.

The set of abstract states Q are high-level code abstractions constructed using a low-level state trans-
lator (LLST), which bridges abstract reasoning with physical states in order to track states. This
tracking facilitates two key functions: (1) defining constraints to verify satisfiability, such as ensur-
ing a dish is under the faucet before rinsing, and (2) triggering state changes based on simulation
context, such as opening a car door when the ego-vehicle is nearby. These abstract states are then
implemented as executable code compatible with the simulation engine. For example, an abstract
state such as “yielding to ambulance” provides an abstraction for checking whether the ambulance is
nearby and whether the ego-vehicle is stationary: check car1 near car2(’ambulance’, ’ego’)
&& is stationary(’ego’). For an example of the full simulation config see Appendix A.2.

3 EXPERIMENTS

In this section, we start in Section 3.2 with qualitative analysis that demonstrates examples and
capabilities of the inverse design approach; in Section 3.3, we compare diversity of the generated
simulation against existing benchmarks or simulations; in Section 3.4, we showcase ReGen can be
used for effective corner case generation; in Section 3.5, we demonstrate that the complexity of
our generated environments allows us to create vision-language-action datasets that pose greater
challenges to VLMs compared to existing datasets.
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Merging into an open lane

Drive forward Drive forward

Drive forward Drive forwardChange lane

Drive forward Drive forward

Let ambulance passChange laneDrive forward Change laneSlow vehicle ahead

Drive forwardDetect lane closure Change laneDetect debris Drive forward

Drive forwardCar ahead changes lane Slows down to avoid collision Detect a door openingDrive forward Stops abruptly

TYielding for an emergency vehicle

Ego-vehicle Changes Lanes

T Avoiding debris on the road T

Overtaking a slow-moving truck T

Avoiding collision with a car cutting in front T

Ego-vehicle Stops Abruptly

Halting for a sudden opening car door T

Ego-vehicle Slows Down

Overtake slow truck

Figure 2: ReGen for driving. Given behaviors of ego-vehicle such as “change lanes”, our method
can generate simulated diverse environment such that the behavior could have occurred including
“change lanes” to “yield for an emergency vehicle”, “overtake a truck”, “merge into an open lane”,
or “avoid debris”. In the bottom row, we further show “ego-car slows down← avoid collision” and
“ego-car stops← halt for opening car door”.

Close the window

Block outside odor T Protect plant from sun T Trap candle’s scent T Keep out unwanted gaze T

Turn on the faucet
T Rinse the dish Thaw frozen vegetable Water the plantCollect water from the tap T

Figure 3: ReGen for manipulation. Given behaviors of robot manipulator such as “turn on the
faucet”, our method can generate diverse simulated environments with sensible context such as “to
collect water”, “to rinse the dish”, “to water the plant”. Note that due to the limitation of the simula-
tion engine that cannot simulate everything such as the temperature in the “thaw frozen vegetable”
case, our method makes simplification that only retrieves and properly places the object.
3.1 EXPERIMENT SETUP

Driving. For autonomous driving, we utilize the CARLA simulator (Dosovitskiy et al., 2017). We
selected six key ego-motion behaviors: driving forward, changing lanes, stopping at an intersection,
stopping abruptly in the middle of the road, and stopping after making a right turn. Each behavior is
defined in natural language and mapped to a predefined route, encoded in an XML file that defines
the start location, target waypoints, and speed. The ego-vehicle follows this route generated by an
A∗ search algorithm, with longitudinal and lateral PID controllers for speed and steering control.

To simulate other agents, we define behavior templates such as stationary(location) and
drivingforward(start, speed). These agents also use A∗ for planning and PID controllers
for low-level control. We use CP-SAT solver (Perron & Furnon, 2019) to solve parameters such as
start positions, end positions, and speed, ensuring they satisfy the constraints of the FSM.

Manipulation. For manipulation tasks, we use the PyBullet simulator (Coumans & Bai, 2016–2021)
and selected 10 example reward functions from RoboGen (Wang et al., 2024d) for general tasks
such as closing the window and opening the door. Since all assets in the environment are static,
our approach emphasizes object placement rather than motion reasoning. as required in driving
scenarios with dynamic actors. We employ the CP-SAT solver to ensure constraint satisfaction of
the FSM. For policy training, we use Soft Actor Critic (SAC) (Haarnoja et al., 2018).

3.2 QUALITATIVE ANALYSIS

Generative Simulation via Inverse Design. We demonstrate the inverse design approach of ReGen
by generating diverse simulations from a single behavior, showcasing qualitative results across driv-
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The driver ahead remains distracted despite the green light.

t=0s t=5s t=10s t=15s

The driver abruptly stops after realizing a wrong turn caused by GPS jamming.

t=0s t=10s t=20s

1. Mental State (e.g. Distracted Driver)

2. Reasoning in different sensing modalities: (e.g. GPS Jamming)
Simulated GNSS

Brake lights on Brake lights off

Different lane In same lane

What if the vehicle in front stops without brake lights?

What if the emergency vehicle was in the same lane?

Ego-vehicle Ego-vehicle

Green light Green light

3. Counterfactual Generation

Figure 4: Emergent capabilities of ReGen. (1) Our method can reason about mental states or
the underlying decision making of actors that exhibit as behaviors in the environment, e.g., dis-
tracted driver→ not moving despite the green light. (2) Our method can reason in different sensing
modalities and realize them if supported in the simulation engine, e.g., GPS jamming with simulated
measurement in CARLA. (3) Our method can generate counterfactual scenarios by slightly perturb-
ing constructed graph with a “what-if” question, such as from “the front car stops with brake light”
to “the front car with broken brake light stops and thus brake light being off”.

ing and manipulation domains. As shown for driving in Figure 2, when provided with a behavior
such as “changing lanes,” our method can simulate scenarios such as “yielding for the ambulance,”
“overtaking a slow vehicle,” or “avoiding debris on the road.” Unlike prior methods, which often re-
quired extensive data collection or expert-curated policies to create such scenarios, we demonstrate
that our approach can generate these variations by simply reconfiguring the environmental context
with respect to the given robot behavior. For instance, as shown in Figure 8 in the Appendix shows
that ChatScene primarily generates collision avoidance scenarios, while DriveCoT and DriveLM
focus mainly on general driving scenarios. In contrast, ReGen supports diverse task scenarios, in-
cluding “picking up passengers,” “stopping for pedestrians,” and “yielding to emergency vehicles.”
This capability can potentially be applied to augment the simulation of the original robot learning
pipeline, further enhancing the robustness of the learned behaviors.

Similarly, in the manipulation domain as in Figure 3, given an input such as “turn on the faucet,”
our method can infer new action verbs and their corresponding purposes, such as “thawing frozen
vegetables,” “watering a plant,” or “washing dishes.” This capability extends beyond simulating
actions to also capturing the underlying intent or goal behind each action.

Simulating Mental States. Accurately capturing subtle mental states and decision-making pro-
cesses from real-world driving datasets is inherently challenging. ReGen provides a framework
for simulating nuanced mental states, such as a distracted driver at an intersection (see Figure 4
(1)). Previous work, like DriveCoT (Wang et al., 2024c), employs rule-based expert policies to
control vehicles and generate ground truth labels for reasoning processes. However, this approach
can introduce extraneous variables that obscure causal relationships. For example, in a DriveCoT
scenario labeled as yielding at an intersection, 16/17 annotations correctly attributed the stop to a
traffic sign, but missed the emergency vehicle’s influence as a contributing factor. ReGen mitigates
this by reusing scenes and applying targeted interventions to simulate distinct cognitive processes,
providing greater control in modeling mental states.

Reasoning with Different Sensing Modalities. ReGen extends its capabilities by reasoning over
multiple data modalities, including vision, language, and other distinct sensor inputs such as GNSS
(see Figure 4 (2)). By leveraging large language models (LLMs), ReGen can provide reasoning over
these different modalities to simulate complex scenarios that influence the decision-making of the
ego-driver. For instance, invoking functions such as add gnss noise() allow for the simulation of
GPS jamming, connecting sensor noise to abstract concepts such as signal interference.

Counterfactual Generation. Our method can generate counterfactuals, such as modifying brake
lights or adjusting the initial location of surrounding vehicles, to improve explainability in multi-
modal foundation models (Figure 4 (3)). For example, by altering brake lights, we can test whether
the model infers speed from visual motion cues or relies on brake lights as a shortcut, addressing the
limitation of multimodal foundation models identified in prior work (Sreeram et al., 2024).
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Method Number of Scenarios Embedding Diversity ↑ SelfBleu Diversity ↑
NHTSA Crash Report 24 0.1381 0.4350
Zero-shot (gpt-3.5-turbo-0125) 30 0.1509± 0.01 0.0945± 0.03
Zero-shot (gpt-4o-2024-08-06) 30 0.1680± 0.02 0.6082± 0.13
Zero-shot (top-p=1, temp=1) 30 0.1767± 0.04 0.7814± 0.06
Zero-shot (top-p=0, temp=0) 30 0.1493± 0.01 0.4143± 0.02
ChatScene 40 0.1214 0.2945
DriveLM 696 0.1135± 0.00 0.4731± 0.01
ReGen (Ours) 24 0.2268 0.7377

Table 1: Simulation diversity for driving. The baselines include NHTSA typology (National High-
way Traffic Safety Administration, 2007), a zero-shot LLM method, ChatScene (Zhang et al., 2024)
(few-shot), and DriveLM (Sima et al., 2024). Apart from expert driving or exclusively safety-critical
scenarios, our method can generate a broader range of environments, e.g., yielding to emergency ve-
hicles, navigating intersections with malfunctioning traffic light, thus achieving better diversity.

Methods # Environments Unique Reward Functions Embedding Diversity ↑
Behavior-100 100 100 0.5513 ± 0.01
RLBench 106 106 0.5819 ± 0.01
GenSim 152 152 0.4350 ± 0.01
RoboGen (manipulation) 46 46 0.5787 ± 0.01
RoboGen (subset) 10 10 0.5536
ReGen (Ours) 38 10 0.6560

Table 2: Simulation diversity for manipulation. We compare to Behavior-100 (Srivastava et al.,
2021), RLBench (James et al., 2019), GenSim (Wang et al., 2024b), and RoboGen (Wang et al.,
2024d). Our method augment simulation in an orthogonal axis that changes environmental context,
e.g., “opening the door to let the pet in” or “opening the door to pick up delivery”, as opposed to
purely skill-driven environments, e.g., “opening the door”, thus achieving better diversity.

3.3 SIMULATION DIVERSITY

In this section we conduct a series of experiments to evaluate the diversity of generated simulations
against extensive baselines in Table 1 and 2. To quantify the diversity in terms of task semantics and
scene configurations, we use text diversity metrics, following approaches from (Wang et al., 2024d;
Nguyen et al., 2024). Specifically, we assess diversity using metrics such as Self-BLEU (Zhu et al.,
2018; Papineni et al., 2002) and embedding similarity with Sentence-BERT (Reimers & Gurevych,
2019). For each method, we sample a set equal to the smallest sample size among the baselines and
compute their similarity score, repeating this process 10 times and reporting their average diversity
score as 1− similarity.

Driving. Table 1 shows the scenario diversity results in the driving domain. We compare our method
against CARLA Leaderboard 2.0. scenarios, which cover traffic scenarios based on the NHTSA ty-
pology (National Highway Traffic Safety Administration, 2007). ChatScene (Zhang et al., 2024)
employs few-shot prompting of large language models to generate diverse safety-critical scenarios,
while DriveLM (Sima et al., 2024) provides graph annotations from the NuScenes dataset (Caesar
et al., 2020). Additionally, we evaluate the diversity of zero-shot methods across varying top-p
and temperature settings, as well as with different LLM models, including gpt-4o-2024-08-06
and gpt-3.5-turbo-0125. Our method consistently outperforms all baselines in scenario diver-
sity, as measured by embedding similarity and Self-BLEU scores. Methods like ChatScene focus
exclusively on safety-critical scenarios, while DriveLM is limited to general driving scenarios. Al-
though increasing the top-p and temperature settings slightly improves diversity for the zero-shot
baseline, our method achieves superior diversity even with conservative settings (top-p = 0 and
temperature = 0), demonstrating that the improvements are not merely a result of tuning these pa-
rameters. In contrast to the baselines, our approach can simulate a broader range of scenarios, such
as yielding to emergency vehicles or navigating intersections with malfunctioning traffic lights. The
success rate of our scenario generation is 80%, with a detailed breakdown provided in Table 5 in
the Appendix. Most failure cases are due to overly strict FSM constraints that require multiple con-
ditions to be satisfied simultaneously. Although semantically correct, it imposes unnecessary strict
satisfiability requirements. Further discussion can be found in Appendix A.4.2.
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Figure 5: Diversity of Corner Cases. Com-
pared to ChatScene (Zhang et al., 2024), our
method generate more diverse corner cases
via reasoning about different causes.

Base Traffic ScenariosMetric Method SO TO LaneC VP
LC 0.30 0.09 0.87 0.83
AdvSim 0.51 0.33 0.86 0.87
CS 0.45 0.61 0.89 0.87
AdvTraj 0.50 0.31 0.78 0.82
ChatScene 0.89 0.70 0.95 0.79

CR ↑

ReGen (ours) 0.90 0.83 0.96 0.77

Figure 6: Collision Rate in SafeBench. SO
means Straight Obstacle. TO means Turning Ob-
stacle. LaneC means Lane Changing. VP means
Vehicle Passing. Baselines include LC (Ding
et al., 2020), AdvSim (Wang et al., 2023b), CS
(Wang et al., 2023b), AdvTraj(Cao et al., 2022),
and ChatScene (Zhang et al., 2024). Our method
can produce corner-case that leads to higher colli-
sion rate (CR).

Manipulation. Table 2 shows the simulation diversity in the manipulation domain. Since the task
descriptions were short we only report the embedding diversity since n-gram based metrics are
not applicable. We compare our results against baselines such as RoboGen (Wang et al., 2024d),
GenSim (Wang et al., 2024b), Behavior-100 (Srivastava et al., 2021), and RLBench (James et al.,
2019). In prior work, generating a manipulation simulation often required learning a new task
either through reward design (Wang et al., 2024d) or by using expert demonstrations (Wang et al.,
2024b). We demonstrate using our inverse design framework that we can generate simulations
by reusing learned behaviors from these methods to simulate new scenarios. We use 10 reward
functions from RoboGen, each generating 5 variants of environments. With success rate of 78%,
we end up having 38 environments. The most failure cases are invalid reasoning of articulated
objects, e.g., a shelf-opening event with the asset not being able to open. Among all baselines, our
method achieve the highest diversity. This is mainly because prior works mostly focus on simulating
environment corresponding to a single skill, often within similar contexts – e.g., “open the door”
and “close the door”, while our method augments simulation in an orthogonal axis such as “open
the door to let the pet in.” However, unlike driving where fine-grained control on many entities
especially dynamic actors is possible, our approach simplifies manipulation tasks by limiting actions
to retrieving and placing entities in contextually appropriate locations (e.g., the dog has to be outside
the door). Elements not supported by the simulation engine – such as simulating the motion of a pet
walking in – are skipped. We leave these (better articulated objects and more flexibility of simulation
engine for manipulation) as future research.

3.4 CORNER CASE GENERATION

In Figure 5, we demonstrate our method’s ability to generate diverse corner case scenarios for test-
ing in safety critical scenarios, as detailed in Table 6. We highlight ReGen’s ability to reuse an
existing adversarial policy behavior in more diverse context. For comparison, we evaluated against
ChatScene (Zhang et al., 2024), which uses LLM few-shot prompting and converts text into simula-
tion via text-to-scenic. For fair comparison, we use the same adversarial policy behavior as theirs but
change the context of the environment. We consistently achieved greater diversity than ChatScene
across all adversarial policy behaviors. While ChatScene introduces only minor variations, such as
a pedestrian crossing in front of a car or vending machine, our method captures a broader range
of cause-and-effect relationships. For the “pedestrian walking” behaviors, our method generates
unique causes, such as a group of protesters causing a collision or a single pedestrian forcing an-
other vehicle to stop abruptly in front of the ego-vehicle. These scenarios underscore the greater
diversity enabled by our approach. We observe that both methods achieve greatest diversity for the
behavior “drive forward,” as it can be applied in a broader range of contexts, such as driving fast or
slow, accelerating, and decelerating. In contrast, both methods exhibit lower diversity for left and
right turns, as these scenarios offer fewer plausible contextual variations.

We then evaluated these generated scenarios against ChatScene and other adversarial policy learning
baselines including Learn-to-Collide (LC) (Ding et al., 2020), AdvSim (Wang et al., 2023b), Carla
Scenario Generator (CS) (Wang et al., 2023b), Adversarial Trajectory Optimization (Cao et al.,
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Method Accuracy (%) ↓
GPT-4o GPT-4-Turbo Claude 3.5 Sonnet

DriveCoT 0.87 0.80 0.80
DriveLM 0.90 0.83 0.77
ReGen (Ours) 0.63 0.53 0.50

Table 3: Complex Vision-language-action Dataset from Our Simulated Environments. We com-
pare with existing driving-related reasoning datasets, DriveCoT (Wang et al., 2024c) and DriveLM
(Sima et al., 2024). The accuracy of reasoning about the correct ego-vehicle actions is reported.
Our dataset consists of more complex scenarios compared to baselines with mostly urban driving
maneuvers, thus posing greater challenges to existing VLMs.

2022) to test whether the corner-case simulations led to higher collision rates. The results, presented
in, Table 6, only includes the collision rates, as the final score incorporates driving infractions,
which fall outside the scope of generating collision scenarios. To run the benchmark, we converted
our scenarios into scenic files, required in the SafeBench benchmark (Xu et al., 2022). This process
was done manually as generating scenic files is outside the scope of our work.

Both our method and ChatScene outperform other baselines by leveraging LLMs to intelligently
spawn adversarial agents. We further validate by human inspection that all generated environments
do not place actors in the locations that cause inevitable collision, namely too close to the ego-car.
However, our method surpasses ChatScene by diversifying the underlying causes of challenging
scenarios. While ChatScene primarily generates scenarios where an object crosses in front of the
ego-vehicle (e.g., a pedestrian crossing or a car merging), our method introduces more complex
variations, such as a group of pedestrians or a vehicle traveling in the opposite direction. Empirically,
these scenarios are significantly more challenging for the driving policies, such as requiring larger
steering adjustments to avoid groups of pedestrians.

3.5 PROBING MULTIMODAL FOUNDATION MODELS

In this section, we evaluate how well the state-of-the-art vision language models (VLMs) can reason
about the vision-language-action dataset produced by the generated simulation from our methods,
compared to existing datasets. We aim to (i) demonstrate a scalable possibility of multi-modal data
synthesis with complex reasoning and (ii) use the complexity of the produced dataset as an indirect
measure to demonstrate the complexity of the generated simulation. We conduct experiment in the
driving domain; the goal of the VLMs is to process a sequence of images along with textual context
and question, and answer most plausible actions to be taken by the ego-vehicle. Specifically, we
assess the VLMs’ ability to infer the desired action in our generated driving scenarios and compare
their performance with two literature baselines: DriveCoT (Wang et al., 2024c) and DriveLM (Sima
et al., 2024). In DriveCoT the authors used rule-based expert policies to control ego and generated
ground-truth labels for reasoning processes, while in DriveLM they employed graph annotations
on NuScenes dataset (Caesar et al., 2020) as a large scale real-world driving dataset. From each
dataset, we randomly select 30 simulation traces, together with the ground-truth desired ego action
for each one. As part of the preprocessing, we extract three consecutive key frames from each
simulation trace, where the last key frame corresponds to the timepoint where the desired ego action
has been recorded. Since here we are solely evaluating the planning capability of VLMs, we also
provide some privileged information, such as the location and speed of all entities in the scene, to
the VLMs. Therefore, the three key frames, along with their corresponding privileged information
that are parsed from the recorded log files, are provided to the VLMs, and they are prompted to
identify the desired action for ego. The VLMs tested in this evaluation include GPT-4o (OpenAI,
2024), GPT-4-turbo (Achiam et al., 2023), and Claude 3.5 Sonnet (Anthropic, 2024). The success
rates of the VLMs in inferring the desired actions are presented in Table 3. As shown in Table 3,
the success rate of VLMs in inferring the desired ego actions for our dataset is significantly lower
compared to the DriveCoT and DriveLM datasets. This difference is due to the greater diversity of
scenarios generated by our method compared to those in DriveCoT and DriveLM. In the baseline
datasets, the desired ego actions are primarily common urban driving maneuvers, such as stopping
or moving forward, whereas our method produces scenarios with a wider range of ego actions.

9
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We observed that VLMs frequently responded with deceleration as the default action, consistent
with findings in prior work (Sreeram et al., 2024). For instance, in lane change scenarios such
as “avoiding debris”, “overtaking a slow vehicle”, “merging into an open lane”, or “swerving to
avoid a wrong-way driver” the VLM often suggested that the ego-vehicle should brake and stop
behind obstacles instead of performing a logical lane change to avoid them. These outcomes suggest
that VLMs generally struggle in environments with nuanced spatial and situational reasoning. In
contrast, DriveCoT (also using the CARLA simulator) generates scenarios where objects appear
directly in the ego-vehicle’s path, requiring a deceleration response. In such cases, the VLMs’
biases align with the expected behaviors for those scenarios. These observed failures underscore
a limitation of off-the-shelf VLMs in reasoning about complex driving scenarios. Conversely, the
scenarios in DriveLM were less challenging for VLMs, as they mostly comprised general driving
scenarios, as shown in Appendix A.4.1.

4 RELATED WORK

Robot Simulation. Simulation has played a critical role for general robotics. Simulated environ-
ments for driving (car, 2020; Amini et al., 2022; Gulino et al., 2024), manipulation (Zhu et al., 2020;
James et al., 2020; Nasiriany et al., 2024a), and locomotion (Rudin et al., 2022; Makoviychuk et al.,
2021; Wang et al., 2023d), have each contributed significantly to their robotic subfield. Their use for
verification has its own community and field of research (Kleijnen, 1995; Pace, 2004; Corso et al.,
2021), in parallel to significant efforts for leveraging such approaches for policy training (Muratore
et al., 2022; Wang et al., 2022; Loquercio et al., 2019). Our work focuses on a new paradigm of
robot simulation that uses generative models for more scalable simulation construction.

Generative Simulation. Generative simulation methods have emerged as a powerful tool for auto-
matically creating diverse and realistic scenarios in robot manipulation (Wang et al., 2023c; Man-
dlekar et al., 2023) and more general robotic tasks (Wang et al., 2024d; Nasiriany et al., 2024b). Our
work shares the same goal of automating the process of constructing simulation with the power of
generative AI. Uniquely, we follow an inverse design approach which is more tailored for validation
and augmentation use cases, complementing existing approaches with an orthogonal axis.

LLMs for simulation. Specific approaches for diverse data generation (Shiroshita et al., 2020;
Sinha et al., 2020) within simulation environments, including those that leverage language models
(Zhong et al., 2023; Elmaaroufi et al., 2024; Zhang et al., 2024) are playing an important role in how
simulation environments are used for both verification and system training. More broadly, our work
relates to the rich set of different approaches harnessing LLMs for reasoning about, and planning in,
domains such as robotics (Zeng et al., 2023; Wang et al., 2024a) and autonomous driving (Cui et al.,
2023). These include aspects such as language-based planners (Song et al., 2023; Liu et al., 2023;
Mao et al., 2023), and simulation environments (Zala et al., 2024), among others.

5 CONCLUSION

We present an inverse design approach for generative simulation, demonstrated in autonomous driv-
ing and manipulation. Using LLMs and simulation engines, we construct and expand graphs that
capture cause-and-effect relationships and relevant entities, which are then converted into simu-
lated environments. With the extensive experiments, we demonstrate capabilities of our method via
qualitative analysis, superior diversity compared to existing simulation, more effective corner-case
generation, and more complex vision-language-action dataset synthesis than current dataset.

Limitation. There are properties that our method can reason about but are not fully simulatable
due to limitations of the simulation engine. For example, without simulating temperature, we can-
not measure the progress of “thawing the frozen vegetable”. This limitation is more common in
manipulation tasks than in driving, where robots primarily interact with other actors, allowing for
more flexible simulation. Another challenge is handling articulated objects, such as reasoning about
opening a shelf, which cannot be simulated with the available assets. For further details, please refer
to Appendix A.4.2.
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A APPENDIX

A.1 GRAPH EXPANSION DETAILS

A.1.1 ASSET DATABASE

The simulator database, Dasset = (V,E), is represented as a directed graph, where each node v ∈ V
corresponds to a simulatable asset, such as sensors (e.g. GPS, temperature, humidity), agents (enti-
ties with a dynamic model), objects (static entities without a dynamic model), properties (e.g., siren,
car door, light color), and behaviors of other agents (e.g., driving forward, standing still, walking).
Each edge e ∈ E represents a relationship between two assets, such as (siren→ ambulance) the siren
belongs to the ambulance. A property is a node with an incoming edge while agents and objects only
have outgoing edges. For instance, the “starting location” can also be considered a property for a
behavioral trajectory, Bτ , where the agent starts. We provide an example of Dasset for the CARLA
simulator and PyBullet:

Code Example 1: Asset Database for CARLA Simulator (Dasset)

node["vehicles"] = ["bicycle", "sedan", "ambulance"]
node["traffic"] = ["traffic light"]
node["behavior"] = ["constant speed/stationary/change Lanes..."]
node["traffic light"] = ["red/green/yellow/off"]
node["ambulance"] = ["siren", "behavior"]
node["bicycle"] = ["behavior"]
node["sedan"] = ["behavior", "front door"]
node["siren"] = ["on/off"]
node["front door"] = ["open/closed"]
node["constant speed"] = ["ending location", "starting location",
"target speed"]
...

Here, an entity like an “ambulance” have properties such as [‘siren’ , ‘behavior’]. The ‘siren’ prop-
erty in CARLA can have states, ‘on/off,’ indicated by ‘/’. Meanwhile, the “behavior” property, such
as maintaining a constant speed, includes an ‘ending location’ property. This location, for instance,
‘in front of the ego-vehicle,’ can be dynamically queried from the LLM.

Code Example 2: Asset Database for PyBullet (Dasset)

node["static objects"] = ["desk lamp", "tv", "trash can", "ceramic cup", "book",
"toy", "children", "adult", ...]

node["behavior"] = ["stationary/stationary"]
node["stationary"] = ["location"]
...

In the PyBullet simulator, the behavior is limited to [’stationary/stationary’] due to its inability to
simulate dynamic actors.

A.1.2 NODE PROPOSAL

Event nodes. Candidate nodes can be generated either by an LLM or provided by the user. For
instance, in Example 1, given a source node, the LLM generates plausible events, such as ‘stopping
because there is a jaywalker.’ In another example, if the prior involves a ‘police car,’ the generated
events might include scenarios like a ‘police chase.’ However, not all nodes proposed during the
node proposal stage are valid causes. For instance, ‘animal on the road’ might be invalid if it
is not simulatable, or ‘a jaywalker in another city’ would be logically implausible. During edge
construction, each proposed node is validated to ensure it represents a plausible cause of the source
node.
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Example 1: Event nodes (Vevent)

Source node: "The ego-vehicle stopped abruptly"
***Example #1***
Prior: null
Candidate event nodes (proposed by LLM): ["a jaywalker walked in front", "animal

on the road", "emergency vehicle approaching from behind", "debris ahead"]

***Example #2***
Prior: "police car"
Candidate event nodes (prosposed by LLM): ["road block", "police chase",

"arrest", ...]

***Example #3***
Candidate event nodes (proposed by user): ["a tree fell in front", "a jaywalker

in another city", "a cyclist changed lanes"]

Entity nodes From the asset database Dasset, the candidate nodes include all entities listed in Dasset,
starting from the node node[‘‘vehicles"]. In the implementation, we also append additional
entities, such as pedestrians and static objects. The appropriate vehicle for the source node will be
selected during the edge proposal stage, detailed in Appendix A.1.3.

Example 2: Entity nodes (Ventity)

Source node: "Emergency vehicle approaching from behind"
Candidate event nodes: ["bicycle", "ambulance", "sedan"]

Property nodes In Example 1, we verify whether the variable exists in the databaes. For instance,
the variable ‘siren’ is found in Dasset, allowing us to retrieve its values such as ‘on’ and ‘off,’ as
detailed in Appendix A.1.1. In Example 2, the variable ‘location’ does not have predefined values
(i.e. no ‘location’ key in node) so we query the LLM to generate all possible locations. However, not
all generated locations may be valid. The appropriate nodes are selected during the edge proposal
stage.

Example 3: Property nodes (Vproperty)

Event-to-event graph: "ego-vehicle stopped abruptly <- emergency vehicle
approaching from behind"

Entity-to-event graph: "emergency vehicle approaching from behind <- ambulance"

***Example 1***
Source node: "siren"
Candidate event nodes (from asset database): ["on", "off"]

***Example 2***
Source node: "start location"
Candidate event nodes (proposed by LLM): ["behind the ego-vehicle on adjacent

lane", "behind the ego-vehicle on same lane", "in front of ego-vehicle on
adjacent lane", "in front of ego-vehicle on same lane"]

A.1.3 EDGE CONSTRUCTION

Given a list of candidate nodes (from Appendix A.1.2), the edge construction process is used to
select plausible nodes and eliminate unlikely ones. For event-to-event edges, a node such as “a
jaywalker in another city” can be excluded because the causal relationship “ego-vehicle stopping
abruptly← a jaywalker in another city” is implausible. For entity-to-event edges, only nodes such
as “ambulance” are selected from the available entities, as they are relevant to the source node
“emergency vehicle approaching from behind.” In cases where the source node is “tree falls in
front,” and no corresponding “tree” entity exists in the simulator, no edges are created. Finally,
for property-to-entity edges, relevant simulatable properties are selected, such as “siren” for an
ambulance.
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Example 4: Event-to-event (Eevent)

Source node: "ego-vehicle stopped abruptly"
Candidate nodes: ["a jaywalker walked in front", "animal on the road",

"emergency vehicle approaching from behind", "debris in the road", "a tree
fell in front", "a jaywalker in another city", "a cyclist changed lanes"]

**Chosen nodes**: ["a jaywalker walked in front", "animal on the road",
"emergency vehicle approaching from behind", "debris in the road", "a tree
fell in front", "a cyclist changed lanes"]

**Nodes not chosen**: ["a jaywalker in another city"]
**Generated graphs**:

1. ego-vehicle stopped abruptly <- a jaywalker walked in front
2. ego-vehicle stopped abruptly <- animal on the road
3. ego-vehicle stopped abruptly <- emergency vehicle approaching from behind
4. ego-vehicle stopped abruptly <- debris in the road
5. ego-vehicle stopped abruptly <- a tree fell in front
6. ego-vehicle stopped abruptly <- cyclist changed lanes

Example 5: Entity-to-event (Eentity)

***Example 1***
Source node: "Emergency vehicle approaching from behind"
Candidate event nodes: ["bicycle", "ambulance", "sedan"]

*Chosen nodes*: ["ambulance"]
*Nodes not chosen*: ["bicycle", "sedan"]
*Generated graphs*:

1. emergency vehicle approaching from behind <- ambulance

***Example 2***
Source node: "Tree fell in front"
*Chosen nodes*: []
*Nodes not chosen*: ["bicycle", "ambulance", "sedan"]
Return that this event cannot be simulated in CARLA

Example 6: Property-to-entity (Eproperty)

Event-to-event graph: "ego-vehicle stopped abruptly <- emergency vehicle
approaching from behind"

Entity-to-event graph: "emergency vehicle approaching from behind <- ambulance"

***Example 1***
Source node: "siren"
Candidate event nodes (from asset database): ["on", "off"]

*Chosen nodes*: ["on"]
*Nodes not chosen*: ["off"]
*Generated graphs*:

1. ambulance <- siren

***Example 2***
Source node: "start location"
Candidate event nodes (proposed by LLM): ["behind the ego-vehicle on adjacent

lane", "behind the ego-vehicle on same lane", "in front of ego-vehicle on
adjacent lane", "in front of ego-vehicle on same lane"]

*Chosen nodes*: ["behind the ego-vehicle on adjacent lane"]
*Nodes not chosen*: ["behind the ego-vehicle on same lane", "in front of

ego-vehicle on adjacent lane", "in front of ego-vehicle on same lane"]
*Generated graphs*:

1. behind the ego-vehicle on same lane <- starting location <-- ambulance ...
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A.2 GROUNDING TO SIMULATION DETAILS

The graph expansion process produces a graph that defines an environment and describes the sce-
nario. This graph serves as input to the LLM to generate the Low-Level State Translator (LLST),
which bridges abstract reasoning with physical state transitions in order to track states. This tracking
is crucial for defining constraints that align with the intended scenario we aim to simulate. For ex-
ample, the abstract state “Ambulance Approaching” defines a constraint that requires the ambulance
to be behind the ego-vehicle and in motion.

Code Example 3: Generated Graph

causal_graph = [’Ambulance approaching from behind’, ’Ego-vehicle abruptly
stopped on left lane’]

entities = [{’name’: ’ambulance1’, ’type’: ’agent’, ’entity_name’: ’ambulance’,
’behavioral_properties’: {’action’: ’Vehicle drives straight the entire
time’, ’starting location’: ’behind the ego vehicle in the right lane’,
’ending location’: ’in front of ego vehicle in the right lane’}},

{’name’: ’ego-vehicle’, ’type’: ’agent’, ’entity_name’: ’ego-vehicle’,
’behavioral_properties’: {’action’: ’Vehicle drives straight and suddenly
stops’}}]

Code Example 4: Low-Level State Translator

def _agent_state_tracker(self, agent_name) -> None:
if agent_name == "ambulance1":

# State: Ambulance Approaching
if behind_vehicle(agent_name, "ego-vehicle") and

is_currently_moving(agent_name):
self._update_state("Ambulance Approaching", agent_name, True)

# State: Ambulance Close to Ego
if are_close_by(agent_name, "ego-vehicle") and

is_currently_moving(agent_name):
self._update_state("Ambulance Close to Ego", agent_name, True)

...

These abstract states are subsequently used to construct a finite state machine (FSM), incorporating
transitions that capture the temporal dynamics of the scenario and encode temporal logic. For ex-
ample, in this scenario, the abstract state “Ambulance Approaching” must occur and must precede
the state “Ambulance Passing Ego.”

Code Example 5: Finite State Machine

fsm = [[(’ambulance1’, ’Ambulance Approaching’), (’ego-vehicle’, ’Ego
Driving Steady’)],

[(’ambulance1’, ’Ambulance Close to Ego’)],
[(’ego-vehicle’, ’Ego Braking’)],
[(’ego-vehicle’, ’Ego Stopped Abruptly’)],
[(’ambulance1’, ’Ambulance Passing Ego’)]]

Given a FSM, we use Google’s CP-SAT solver to find solutions for the variables such as the x, y
coordinates of the start and end positions (x0, y0, xT , yT ), as well as the speed, such that it satis-
fies the constraints imposed by the FSM. For instance, the behavior of the ambulance, defined as
“drive straight,” is generated as: DriveStraight(’ambulance’, x0, y0, xT , yT , speed). The
simulation considered valid only if it terminates in a state that satisfies the terminal condition of the
FSM.

start": {"x": -25, "y": 4}, "end": {"x": 80, "y": 4}, "speed": 40,

Full Config Example. We provide the full example of the generated scenario config file below:
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Code Example 6: Scenario Config Example

narrative = "An ambulance approached from behind, prompting the ego vehicle to
stop abruptly, allowing the ambulance to pass safely."

entities = [{’name’: ’ambulance1’, ’type’: ’agent’, ’entity_name’: ’ambulance’,
’behavioral_properties’: {’action’: ’Vehicle drives straight the entire
time’, ’starting location’: ’behind the ego vehicle in the right lane’,
’ending location’: ’in front of ego vehicle in the right lane’}}, {’name’:
’ego-vehicle’, ’type’: ’agent’, ’entity_name’: ’ego-vehicle’, ’properties’:
{}, ’behavioral_properties’: {’action’: ’Vehicle drives straight and
suddenly stops’}}]

vehicles = [{"name": "ambulance1",
"start": {"x": -25, "y": 4}, "end": {"x": 80, "y": 4},
"speed_range": [40, 40],
"blueprint_id": "vehicle.ford.ambulance",
"driving_policy": "drive forward",
"type": "dynamic",
"heading": 0}]

causal_graph = [’Ambulance approaching from behind’, ’Ego-vehicle abruptly
stopped on left lane’]

fsm = [[(’ambulance1’, ’Ambulance Approaching’), (’ego-vehicle’, ’Ego Driving
Steady’)],

[(’ambulance1’, ’Ambulance Close to Ego’)],
[(’ego-vehicle’, ’Ego Braking’)],
[(’ego-vehicle’, ’Ego Stopped Abruptly’)],
[(’ambulance1’, ’Ambulance Passing Ego’)]]

class StateManager(StateManagerBase):
def __init__(self, obj_name, world):

super().__init__(obj_name, get_object_states(), world)

def _agent_state_tracker(self, agent_name) -> None:
if agent_name == "ambulance1":

# State: Ambulance Approaching
if behind_vehicle(agent_name, "ego-vehicle") and

is_currently_moving(agent_name):
self._update_state("Ambulance Approaching", agent_name, True)

# State: Ambulance Close to Ego
if are_close_by(agent_name, "ego-vehicle") and

is_currently_moving(agent_name):
self._update_state("Ambulance Close to Ego", agent_name, True)

# State: Ambulance Passing Ego
if right_in_front(agent_name, "ego-vehicle") and

is_currently_moving(agent_name):
self._update_state("Ambulance Passing Ego", agent_name, True)

elif agent_name == "ego-vehicle":
# State: Ego Driving Steady
if is_ego_driving_steady(agent_name):

self._update_state("Ego Driving Steady", agent_name, True)

# State: Ego Braking
if is_braking(agent_name):

self._update_state("Ego Braking", agent_name, True)

# State: Ego Stopped Abruptly
if is_currently_stopped(agent_name):

self._update_state("Ego Stopped Abruptly", agent_name, True)
return None
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A.3 ABLATION

Accuracy of edge creation. In Table 4, we present an ablation study evaluating the accuracy of edge
creation during the graph expansion stage. For event-to-event edges, we assess whether the LLM can
correctly identify causal and non-causal variables given the input behavior, testing only at a depth
of 1. For entity-to-event edges, we evaluate whether the LLM can accurately identify simulatable
events and select corresponding assets from the database. The results show in Table 4 show con-
sistently high performance for event-to-event and entity-to-event edges across both domains, with
accuracy exceeding 0.90. The consistency in LLM responses across trials can be attributed to the
temperature and top-p hyperparameters being set to 0. Failure cases for entity-to-event stem from
the LLM’s misunderstanding of the simulator’s capabilities, described in Dasset. For example, when
given a graph such as “ego-vehicle stopping← flood to knees,” the LLM might propose changing
the weather (treated as an entity) to “flooding,” which is valid in general but misaligned with the
constraints of the simulation engine. Finally, for property-to-entity edges, we evaluate the LLM’s
ability to select the most plausible location. While the LLM performs well on simpler properties,
such as determining whether a siren should be on, its accuracy decreases for properties requiring
complex spatial-temporal reasoning. In our driving experiment, the LLM was tasked with selecting
end locations for two entities across two scenarios, with each entity having 8 possible locations. We
observed significantly higher variance in its responses.

Accuracy Precision Recall F1 Score

Event-to-Event Driving 0.98± 0.04 1.00± 0.00 0.97± 0.06 0.98± 0.03
Manipulation 0.98± 0.04 1.00± 0.00 0.97± 0.04 0.98± 0.02

Entity-to-Event Driving 0.91± 0.02 0.86± 0.02 0.98± 0.03 0.92± 0.01
Manipulation 0.94± 0.02 1.00± 0.00 0.89± 0.03 0.94± 0.02

Property-to-Event Driving 0.81± 0.09 0.73± 0.11 0.90± 0.03 0.80± 0.08
Manipulation 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

Table 4: Accuracy of Edge Creation

Figure 7: Controllability

Eliciting Diversity & Controllability. Figure 7 shows the pairwise diversity distribution of gener-
ated scenarios, measured as the proportion of scenarios with unique event-to-event nodes, excluding
the input behavior node. A value of 100% indicates all compared scenarios have distinct causes,
while 0% means they share the same cause but vary in properties, such as their start location or
behavior. We observe that scenario diversity increases as the causes vary. Notably, the bimodal
distribution suggests that introducing new causal graph introduces greater diversity by exploring
broader cause-and-effect relationships, while changes to the property graph result in more nuanced
variations. By explicitly introducing new causal variables, we guide the model to explore a more
diverse range of plausible outcomes, uncovering interactions that are otherwise not immediately
apparent, but entirely plausible.
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Re-usability. Beyond generating diverse simulations, our method allows for the efficient reuse of
existing behaviors. In Table 2, we show that the diversity of manipulation tasks generated by our
method surpasses all baselines, even with the use of only 10 reward functions – a subset of RoboGen
tasks. Although RoboGen supports a broad range of tasks, our method further increases the task
diversity by 18.50%. Previous methods encountered a bottleneck in simulating actions from text
due to the need to design a unique reward function for every task (Wang et al., 2024d; Ma et al.,
2024; Nguyen et al., 2024). Our method addresses this by changing the context to reflect different
higher-level goals, enabling the creation of new tasks while reusing the same task-specific reward
function. For instance, the task ”opening the door” can be augmented to convey new narratives such
as ”ventilating the room,” ”letting the guest out,” or ”letting the pet in.” This contextual dimension
is a unique capabilty of ours that addresses the limitations of simulating actions from text.
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A.4 CASE STUDY

A.4.1 GENERATED SCENARIOS

Driving. Our method provides broader coverage of driving scenario categories compared to existing
approaches, as shown in Figure 8. While methods like ChatScene focus exclusively on safety-
critical scenarios and DriveLM consists more general driving tasks, our approach generates a diverse
range of scenarios encompassing both safety-critical and general driving scenarios. Furthermore, our
method enables the generation of scenarios testing new skills, such as “yielding to an emergency
vehicle” or “picking up a passenger.”

Figure 8: Categories of Scenarios (driving)

A.4.2 FAILURE MODES

Most failures in simulating the scenarios arose from overly strict FSM constraints that required mul-
tiple conditions to be satisfied simultaneously. For example, consider the scenario “object falling
off a truck causing the ego-vehicle to stop.” While we were able to find solutions that satisfy the
constraint of the box falling to the ground and the ego-vehicle braking, the scenario became infeasi-
ble because FSM required that the delivery truck exit the scene simultaneously with the ego-vehicle
stopping. Although this requirement is not incorrect, relaxing the constraint – such that the delivery
truck’s exit is not strictly tied to the ego-vehicle’s stop – would render the scenario feasible.

Code Example 7: Failure case (driving)

fsm = [[(’delivery_truck’, ’Approaching Intersection’), (’box’, ’On Truck’),
(’ego_vehicle’, ’Driving Steady’)],

[(’delivery_truck’, ’In Intersection’), (’box’, ’Falling’)],
[(’box’, ’On Ground’), (’ego_vehicle’, ’Braking’)],
[(’delivery_truck’, ’Exiting Intersection’), (’ego_vehicle’, ’Stopped’)]]

Scenarios involving the ambulance posed additional challenges due to the constraints imposed by
its vehicle dynamics. Specifically, the ambulance’s slower acceleration made it difficult to overtake
another vehicle within a short distance.

For the manipulation domain, most failures occurred for scenarios that require placing objects inside
another articulated object. For example, all scenarios involving the behavior “the robot opens the
table door” failed because objects could not be placed inside the table closet. Unlike the driving
domain, the manipulation scenarios did not have dynamic actors. Consequently the FSM constraints
in manipulation were less complex, avoiding the issues seen in driving.

Unique challenges and limitations to manipulation include scenarios such as “rotate lamp head to
remove screen glare,” which require determining object orientations – an open problem due to the
arbitrary canonical orientations of meshes in simulation. Similarly, simulating other modalities, such
as temperature or sound, is not currently feasible yet in PyBullet. For example, tasks like “thawing
frozen vegetables” cannot simulate the temperature of the vegetable. While our method correctly
identifies relevant objects, such as “frozen vegetables,” these limitations underscore gaps in current
simulation capabilities.
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Input Behavior Scenario Name Feasible/Infeasible of FSM
1.1) Traffic light malfunction Feasible
1.2) Distracted driver late start Feasible
1.3) Intersection congestion Feasible
1.4) Pedestrian jaywalking Feasible

Driving forward from being stationary

1.5) Let emergency vehicle pass at intersection Feasible
2.1) Traffic congestion due to lane closure Feasible
2.2) Letting emergency vehicle pass Infeasible
2.3) A large truck ahead stopped abruptly Feasible
2.4) A vehicle cutting in Feasible

Slowing down

2.5) Speed enforcement Feasible
3.1) Road assistance Feasible
3.2) Elder walking on the street Feasible
3.3) Accident ahead Feasible
3.4) Yield to ambulance Feasible

Stop abruptly while driving forward

3.5) Parked car door open Feasible
4.1) Protest on the streets Infeasible
4.2) Parked car at intersection corner Feasible
4.3) Police checkpoint Feasible
4.4) Letting the ambulance pass Infeasible

Stop abruptly after taking a turn

4.5) Picking up a passenger Feasible
5.1) Ambulance entering intersection Feasible
5.2) Sudden traffic signal change Feasible
5.3) Another vehicle running a red light Feasible
5.4) Object falling out of truck Infeasible

Stop abruptly while crossing an intersection

5.5) Police chase Feasible
6.1) Debris in front Feasible
6.2) Slow traffic Infeasible
6.3) Yielding for an emergency vehicle Infeasible
6.4) Lane closure Feasible

Changing lanes while driving forward

6.5) Driver going in the wrong direction Infeasible

Table 5: Breakdown of scenario feasibility for driving
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Input Behavior Scenario Name Feasible/Infeasible of FSM
1.1) Block unpleasant odor Feasible
1.2) Minimize outside noise to watch a movie Feasible
1.3) Control ambient lighting Feasible
1.4) Block outside construction site noise Feasible
1.5) Avoid prying eyes Feasible
1.6) Ensure confidentiality during a private conversation Infeasible

The robot closes the window

1.7) Block direct sunlight to protect indoor plants Feasible
2.1) Improve air ventiliation Feasible
2.2) Check delivered package Infeasible
2.3) Bid farewell and let the guest out FeasibleThe robot opens the door

2.4) Allow a pet to enter Feasible
3.1) Bake a cake Feasible
3.2) Roast vegetables Feasible
3.3) Preheating the oven InfeasibleThe robot adjusts the oven temperature

3.4) Warming a ceramic cup Infeasible
4.1) Clean dirty dishes Feasible
4.2) Watering plants Feasible
4.3) Filling a water bottle Feasible
4.4) Thawing frozen vegetables Feasible
4.5) Washing mixed fruits in a bowl Feasible
4.6) Soaking a sponge Feasible
4.7) Wash off broccoli in sink Feasible

The robot adjusts the water flow

4.8) Cleaning a coffee mug Feasible
5.1) Looking for a cereal box Infeasible
5.2) Showing table content to someone Infeasible
5.3) Retrieve a pet toy kept out of sight InfeasibleThe robot open the table doors

5.4) Look for a hiding pet Infeasible
6.1) Clearing the floor after playtime Feasible
6.2) Put away toys as guest arrive Feasible
6.3) Removing choking hazard near pets FeasibleThe robot is storing an item into storage furniture

6.4) Store detergent out of children’s reach Feasible
7.1) Retrieve ingredients for cooking Infeasible
7.2) Clearing expired items InfeasibleThe robot is retrieving an item from a fridge
7.3) Offering food for a visitor Feasible
8.1) Brighten the desk to read a book Feasible
8.2) Showcase an artwork Feasible
8.3) Setting up a small photography shoot to avoid shadows FeasibleThe robot is turning on a lamp

8.4) Setup working environment Feasible
9.1) Remove glare from display screen FeasibleThe robot tilt the display screen 9.2) Sharing a presentation during a meeting Feasible
10.1) Searching for an item Infeasible
10.2) Looking for documents InfeasibleThe robot pull a drawer out
10.3) Finding a pencil Infeasible
11.1) Unpacking boxes Feasible
11.2) Checking content of box Infeasible
11.3) Inspection at warehouse FeasibleThe robot is retrieving an item from a box

11.4) Retrieving an item for a person Infeasible
12.1) Transporting soil for gardening Infeasible
12.2) Fetching water for mopping the floor FeasibleThe robot is carrying a bucket
12.3) Grabbing a bucket to fill sand Feasible

Table 6: Breakdown of scenario feasibility for manipulation
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A.5 FULL PROMPTS

A.5.1 NODE PROPOSAL

Prompt: Event Node Proposal Prompt

Input variables: causal_graph
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
Prompt:
You are an expert in driving scenarios.

In this scenario there is {causal_graph}.

Please provide a list of all the plausible scenarios that caused
{causal_graph[-1]}. Make sure it is precise. Provide the final answer as a
comprehensive list of plausible scenarios in the following format within
the tags <Answer>...</Answer>:

- cause_name: cause description

Answer: Let’s think step by step.

Example 7: Event Node Proposal LLM Response

**Input**:
causal_graph = ["ego-vehicle stopping abruptly"]

**Output**:
Sure, lets think through plausible scenarios step by step.
...
<Answer>
- **Pedestrian crossing**: A pedestrian unexpectedly crosses in front of the

ego-vehicle.
- **Vehicle cutting in**: Another vehicle unexpectedly cuts in front of the

ego-vehicle.
...
- **Mechanical failure**: A sudden internal failure such as brake malfunction

leads to abrupt stopping.
- **Emergency vehicle**: An emergency vehicle suddenly appears or signals the

ego-vehicle to yield.
- **Cyclist lane violation**: A cyclist suddenly moves into the ego-vehicles

path.</Answer>

Prompt: Property Node Proposal Prompt

Input variables: node_name, candidate_values,
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
Prompt:
You are an expert in driving scenarios.

In this scenario there is {causal_graph}. The entities in the scenario are:
{entities_name}

Please provide a list of all the possible {node_name}s for the entities in the
scenario, excluding the ego-vehicle. Make sure it is precise. Provide the
final answer as a comprehensive list of possible {node_name}s in the
following format within the tags <Answer>...</Answer>:

- entity_name: [’{node_name}1’, ’{node_name}2’, ...]

Answer: Let’s think step by step.
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Example 8: Property Node Proposal LLM Response

**Input**:
node_name = "starting location"
causal_graph = ["emergency vehicle", "ego-vehicle stopping abruptly"]
entities = [{’name’: ’ambulance1’,

’type’: ’agent’,
’entity_name’: ’ambulance’,
’behavioral_properties’: {}},
{’name’: ’ego-vehicle’,
’type’: ’agent’,
’entity_name’: ’ego-vehicle’,
’behavioral_properties’: {’action’: ’Vehicle drives straight and

suddenly stops’}}]

**Output**:
Sure, lets think through plausible locations step by step.
...
<Answer>
- ambulance1: [’in the right lane behind the ego-vehicle’, ’in the right lane in

front of the ego-vehicle’, ’in the left lane behind the ego-vehicle’, ’in
the left lane in front of the ego-vehicle’]</Answer>

A.5.2 EDGE CREATION

Prompt: Property Node Proposal Prompt

Input variables: node_name, candidate_values, entities
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
Prompt:
You are an expert in driving scenarios.

The possible {node_name}s for each entity are:
{candidate_values[entity["name"]] for entity in entities}

What are all the possible {node_name}s for each entity in the scenario? To
answer this, first, please summarize the details of each entities in the
scenario. Then, check each to see if it is the possible outcome given what
is known. For each, start by stating everything that is known about all the
entities, then check if it is plausible given what is known, finally give
your conclusion. Think step by step. You must not assume additional actions
beyond what is explicitly described in the behavior. You must also assume
that the actions are executed fully. Your evaluation needs to be in the
following format:

1. **Name of {node_name}**
- Known:
- Analysis: (think step by step)
- Contradictions to what is known: (think step by step)
- Conclusion:

Finally, provide the final answer as a list of locations in the following
formats within the tags <Answer>...</Answer>.

- entity_name: [’{node_name}1’, ’{node_name}2’, ...]

Here are some tips to help you answer the question:
- You may assume that the vehicles can break traffic rules as long as it is

plausible in real life (realistic). However, the vehicles action must not
violate the behavior described.

- The {node_name}s selected can only be from the list of possible {node_name}s
provided.

Answer: Let’s think step by step.
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Example 9: Property Node Proposal LLM Response

**Input**:
node_name = "starting location"
causal_graph = ["emergency vehicle", "ego-vehicle stopping abruptly on left

lane"]
entities = [{’name’: ’ambulance1’,

’type’: ’agent’,
’entity_name’: ’ambulance’,
’behavioral_properties’: {}},
{’name’: ’ego-vehicle’,
’type’: ’agent’,
’entity_name’: ’ego-vehicle’,
’behavioral_properties’: {’action’: ’Vehicle drives straight and

suddenly stops’}}]
candidate_values = {"ambulance1": [’in the right lane behind the ego-vehicle’,

’in the right lane in front of the ego-vehicle’, ’in the left lane behind
the ego-vehicle’, ’in the left lane in front of the ego-vehicle’]}

**Output**:
Sure, lets think through plausible locations step by step.
...
<Answer>
- ambulance1: [’in the right lane behind the ego-vehicle’]</Answer>
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