
Approximately Pareto-optimal Solutions for
Bi-Objective k-Clustering Problems

Anna Arutyunova
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
anna.arutyunova@hhu.de

Jan Eube
University of Bonn

Bonn, Germany
eube@cs.uni-bonn.de

Heiko Röglin
University of Bonn

Bonn, Germany
roeglin@cs.uni-bonn.de

Melanie Schmidt
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
mschmidt@hhu.de

Sarah Sturm
University of Bonn

Bonn, Germany
sturm@cs.uni-bonn.de

Julian Wargalla
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
julian.wargalla@hhu.de

Abstract

As a major unsupervised learning method, clustering has received a lot of attention
over multiple decades. The various clustering problems that have been studied
intensively include, e.g., the k-means problem and the k-center problem. How-
ever, in applications, it is common that good clusterings should optimize multiple
objectives (e.g., visualizing data on a map by clustering districts into areas that
are both geographically compact but also homogeneous with respect to the data).
We study combinations of different objectives, for example optimizing k-center
and k-means simultaneously or optimizing k-center with respect to two different
metrics. Usually these objectives are conflicting and cannot be optimized simul-
taneously, making it necessary to find trade-offs. We develop novel algorithms
for approximating the set of Pareto-optimal solutions for various combinations of
two objectives. Our algorithms achieve provable approximation guarantees and we
demonstrate in several experiments that the approximate Pareto front contains good
clusterings that cannot be found by considering one of the objectives separately.

1 Introduction

Clustering is a major unsupervised learning method that is used to find structure in data. It is often
described as the process of dividing objects into groups called clusters such that objects in the same
cluster are similar and objects in different clusters are dissimilar. There are several mathematical and
algorithmic ways to describe a good clustering, but two objectives that correspond to that description
for the case of metric clustering are the k-diameter problem and Single Linkage clustering.

In the k-diameter problem, we are given a point set P from a metric space and a number k and want
to find a partition of P into k clusters that minimizes the maximum diameter of any cluster. This
models the first problem: Finding clusters where the objects in the same cluster are similar. This
problem can be 2-approximated by well-known algorithms [30, 37]. But are approximate or even
optimal solutions for this problem automatically also good for the second half of the description,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Table 1: State-of-the-art approximation factors
objective rad / diam med mean msr

best guarantee / reference 2 / [30, 37] 2.67059 / [16] 9 + ϵ / [4] 3 + ϵ / [11]

i.e., ensuring that points in different clusters are dissimilar? Certainly not, as the small example in
Figure 1 shows: An optimal k-diameter clustering with k = 2 has radius ∆, but x2 and x3 are very
close together in this solution.

x1 x2x3 x4

∆ ϵ ∆

Figure 1: A toy example.

Single Linkage clustering is a linkage method that finds the clustering
in which the minimum distance between any two clusters is maximized,
i.e., it focuses on the second goal. We refer to the problem of maxi-
mizing the minimum inter-cluster distance as the k-separation problem
in the following, i.e., Single Linkage is an optimal algorithm for the
k-separation problem. In Figure 1 with k = 2, Single Linkage computes
the clustering {{x1, x2, x3}, {x4}} or the symmetric clustering.

1 2-4 -3 -2 -1 0

A

Figure 2: The set Xk for k = 3.

Unfortunately, there is an inherent tension be-
tween the k-diameter and k-separation problem,
even if the points are on the Euclidean line R.
In Figure 1, we could observe that the optimal
k-separation clustering is still a very good k-
diameter clustering (assuming ϵ to be small).
However, one can construct examples where the two cost functions cannot be reconciled:

Example 1. For any fixed k ∈ N consider the set Xk = {1, . . . , k − 1} ∪A with A = {−x/k | x ∈
{0, . . . , k(k − 1)2}}. Figure 2 illustrates this for k = 3. Now the only way to obtain a minimum
inter-cluster distance of 1 is to use k − 1 singleton clusters {1}, . . . , {k − 1} and one cluster for A
(any other clustering needs to break A and has a separation of 1/k). Notice that this clustering has a
maximum diameter of (k−1)2 since that is the diameter of A. However, the best k-diameter clustering
divides the points into intervals of equal length, achieving a diameter of ((k−1)2+(k−1))/k = k−1,
which is smaller by a factor of k − 1.

Example 1 demonstrates that the natural goal of clustering is inherently a goal with two potentially
conflicting objectives. Our formalization with k-diameter and k-separation is an example of a
bi-objective clustering problem.

This is only one motivation for studying multi-objective (or bi-objective) clustering. Clustering
with respect to multiple objectives simultaneously or based on different metrics arises naturally in
applications (we cite a selection of works at the beginning of the related work section). Yet the
theoretical study of multi-objective clustering problems is, so far, very limited. We consider the case
of bi-objective clustering and study combinations of various clustering objectives with the possibility
of optimizing each over its individual metric.

Objectives We restrict to the case where centers are chosen from the point set. This is common for
k-median, but uncommon for k-means. We leave the extension where centers can be chosen from an
ambient metric space to future work. So let (P, d) be a metric space. Given C ⊂ P with |C| = k
and an assignment σ : P → C we define the following objective functions:

k-center: rad(C, σ, d) = maxp∈P d(p, σ(p))
k-diameter: diam(C, σ, d) = maxp,q∈P : σ(p)=σ(q) d(p, q)
k-median: med(C, σ, d) =

∑
p∈P d(p, σ(p))

k-means: mean(C, σ, d) =
∑

p∈P d2(p, σ(p))

k-min sum radii (k-msr): msr(C, σ, d) =
∑

c∈C maxp∈σ−1(c) d(c, p)
k-separation: sep(C, σ, d) = minp,q∈P : σ(p) ̸=σ(q) d(p, q)

Notice that in contrast to standard definitions, here we need an assignment function because our
solutions are trade-offs and may not necessarily assign points to closest centers (for k-diameter and
k-separation we do not need the centers but only the partitioning that σ induces; we use the same
notation here for convenience and introduce additional notation in the respective technical sections).
Each objective induces an optimization problem when we fix the number of clusters k ∈ N we want to

2

obtain1. The k-separation problem is a maximization problem, all other objectives are to be minimized,
i.e., the aim is to compute a set C with k centers and an assignment function σ with σ−1(c) ̸= ∅
for all c ∈ C such that the respective objective function is as low as possible. All the minimization
problems are NP-hard and also NP-hard to optimize to arbitrary precision [17, 31, 40, 44]. On the
positive side, approximation algorithms with small constant factors are known for all the minimization
problems mentioned, see Table 1 (all numbers are for the general metric case, including k-means).
The k-separation maximization problem can be solved optimally by running the well-known Single
Linkage algorithm until the given number k of clusters is left.

Use Cases We have two different use cases: 1) Simultaneously optimizing a well-known k-
clustering minimization problem together with the conflicting k-separation maximization problem.
2) Optimizing two k-clustering minimization problems simultaneously. In both cases, we allow to
choose different metrics for each objective. As an example for 2), imagine that we want to visualize
data on a map by clustering districts into larger regions. Then regions should be homogeneous with
respect to the data but at the same time also geographically coherent on the map, not stretching out
too far. For this application we can use as the first metric the data-based metric and as the second
metric the geographic distance between regions on the map. Then we can choose an objective, e.g.,
k-center, and find a good trade-off when optimizing k-center with respect to the two objectives. This
idea is discussed in more detail in Section 3.2.

Multi-objective Optimization and Pareto Sets Both use cases can benefit from the same tool box
of multi-objective optimization. Standard approaches are optimizing a weighted sum of the objectives,
or limiting one objective and optimizing the other (leading to a constrained clustering problem), or
computing/approximating the Pareto front. We follow the latter approach and focus on algorithms to
approximate the Pareto front of bi-objective clustering problems. Let us first define this concept for-
mally: Given two metrics d1, d2 on X and two objectives f1, f2 ∈ {rad, diam,med,mean,msr, sep},
a solution (C, σ) is dominated by a solution (C ′, σ′) if the following is true for both i = 1, 2:
fi(C

′, σ′, di) ≤ fi(C, σ, di) if fi is a minimization objective and fi(C
′, σ′, di) ≥ fi(C, σ, di) if fi

is a maximization objective, and in addition, for i = 1 or i = 2, the inequality is strict. A solution
(C, σ) is called Pareto-optimal if it is not dominated by any other solution. We denote by P the set of
all Pareto optimal solutions and call P the Pareto set or Pareto front.

Notice that by definition the Pareto front contains a solution (Ci, σi) optimizing objective fi for
i = 1, 2. Since all aforementioned minimization objectives are NP-hard, we therefore cannot compute
the Pareto fronts exactly in polynomial time unless P = NP. Instead we design algorithms for
computing approximate Pareto fronts in the following sense: Given α = (α1, α2) ∈ R2, a set Pα is an
α-approximate Pareto set if the following is true: For every Pareto-optimal solution (C, σ) ∈ P, there
is a solution (C ′, σ′) ∈ Pα that is an α-approximation to (C, σ), i.e., fi(C ′, σ′, d1) ≤ αifi(C, σ, di)
for i ∈ {1, 2} if fi is a minimization objective and fi(C

′, σ′, d1) ≥ (1/αi)fi(C, σ, di) for i ∈ {1, 2}
if fi is a maximization objective. Figure 3 shows two examples of approximate Pareto sets. In 3a) the
trade-off is between k-separation and k-means (use case 1). This is discussed in Section 3.1. In 3b)
both objectives are chosen as k-center, but with two different metrics that arise from a map design
question discussed in Section 3.2 (use case 2). In both pictures the area dominated by a solution lies
to the right and above the corresponding point.

While other approaches for multi-objective optimization (like optimizing a weighted sum of the
objectives or solving a constrained clustering problem) produce a single trade-off of the objectives,
an important advantage of the approximate Pareto front is that it consists of a diverse set of trade-offs.
This is beneficial for data analysis because it offers more information and flexibility to the data analyst.
In particular, an approximate Pareto front contains for any weighting of the objectives an approxi-
mately optimal solution and often, in addition to this, also other interesting solutions. We develop and
analyze algorithms for computing approximate Pareto fronts. We also demonstrate experimentally
the usefulness of approximate Pareto fronts and our algorithms in different applications.

1We treat k as an exact bound (except for the somewhat different msr objective). For minimization problems,
choosing ≤ k or = k centers makes no difference since splitting clusters improves the cost. We prefer = k
centers because otherwise, combinations with k-separation would include a trivial Pareto-optimal solution that
just constructs one cluster P with infinite separation.

3

(a) Approximate Pareto set for k-separation
and k-means on the same metric, data set 2d-
10c-no4, see Section 3.1.

150 200 250 300 350 400 450 500 550
Distance in km

200

400

600

800

1000

1200

In
co

m
e

Di
ffe

re
nc

e
in

 Pareto Points

(b) Approximate Pareto set for k-center with
two metrics as described in Section 3.2, with
k = 16 clusters.

Figure 3: Examples of approximate Pareto sets copied from the later experimental sections.

Related work on Pareto sets There is a large body of literature on multi-criteria optimization
problems in different contexts (see, e.g., the book of Ehrgott [23]). A common approach is to
compute or approximate the Pareto set because only Pareto-optimal solutions constitute reasonable
trade-offs. If the Pareto set or its approximation is small, it can be presented to a human decision
maker or used in some other post-processing step. For many multi-criteria optimization problems,
algorithms for computing the Pareto set have been developed (e.g., for the multi-criteria shortest path
problem [19] and the bi-criteria network flow problem [48]) The running time of these algorithms is
usually polynomial in the output size, i.e., they are efficient if the Pareto set is small. A drawback of
this is that Pareto sets can often be of exponential size in the worst case. To obtain more efficient
algorithms and to reduce the size of the output, approximate Pareto sets have been studied extensively.
Papadimitriou and Yannakakis showed that there always exist approximate Pareto sets of polynomial
size and they showed that an α-approximate Pareto set [49] for a problem can be computed efficiently
if and only if a certain variant of the problem, called the gap problem, can be solved efficiently.

Related Work on multi-objective clustering Heuristics for approximating Pareto fronts for clus-
terings are used in applications. Popular techniques include, e.g., genetic algorithms [24, 42],
multi-objective particle swarm optimization [10, 14], evolutionary algorithms [36, 47], and combina-
tions of k-means and fuzzy c-means [9]. All these heuristics have in common that they come without
a guarantee on the approximation factor. We cannot review all the literature in this area and focus on
what we perceive as most related.

The only work studying the same scenario is a paper by Alamdari and Shmoys [5] who discuss the
combination of k-center and k-median and give, following the above definition, an algorithm that
computes a (4, 8)-approximation of the Pareto front. Their algorithm uses an LP rounding approach
based on a k-median LP with an additional side constraint that restricts the radius of clusters to a
given number L. The algorithm uses an optimal (fractional) solution to this LP and rounds it to an
integral solution, hereby increasing the radius to 4L and the k-median cost to 8 times the LP cost.
The general approach has some resemblance with our findings in Section 2.2 (and Supplementary
Section B.3), but it is based on the LP rounding algorithm by Charikar et al. [12], while we adapt the
primal dual algorithm by Jain and Vazirani [41]. We achieve an incomparable approximation factor
of (9, 6 + ϵ). Alamdari and Shmoys also give an example that shows that the two objectives k-center
and k-median cannot be optimized simultaneously in general, making a similar point as we do in
Example 1 showing that at least one of the objectives can at best be Ω(

√
n)-approximated.

Davidson and Ravi [20] discuss the combination of k-means and must-link and cannot-link constraints.
As we discuss in the introduction and in Lemma 3, enforcing a certain separability translates directly
into must-link constraints. However, [20] is mostly concerned with NP-hardness results (which stem
mostly from cannot-link constraints) and reformulating constraints in a computationally more feasible
way. Our focus is on the computationally very efficient Single Linkage / must-link constraints and
the computation of Pareto optimal solutions.

In Section 3.1 (and Section C.1), we evaluate if the usage of orthogonal objectives can improve the
performance of clustering with respect to recovering a ground truth clustering. A similar approach is
evaluated by Handl and Knowles in [35]. The first objective studied there is a k-means/k-median
type objective called deviation. The second objective is based on nearest neighbors and evaluates the

4

fraction of points that satisfies that the point is in the same cluster as its nearest neighbor. This has a
similar purpose as our use of separation in Section 3.1, and also leads to improved F-measures. The
focus of that work is still different as we focus on provable approximations of the Pareto front.

For the evaluation in that same section, we use normalized mutual information scores following Fred
and Jain [27]. In that paper, the idea is to combine multiple clusterings into one clustering in order to
obtain more robust clusterings. The authors use a clustering ensemble of different solutions computed
by k-means and then let their combination be guided based on the normalized mutual information
score. The focus of that work is different since we aim to produce an informative ensemble while
Fred and Jain aim at combining an ensemble into a single robust clustering.

2 Results

We provide algorithms to compute the approximate Pareto set for most combinations of two clustering
objectives f1, f2 ∈ {rad, diam,med,mean,msr, sep}. To compute the approximate Pareto set we
make use of the variety of approximation algorithms which optimize over one of the clustering
objectives. This includes the 2-approximation for k-center/k-diameter by Hochbaum and Shmoys [37]
which we adapt to compute an approximate Pareto set for the combination of f1 ∈ {rad, diam, sep}
and f2 ∈ {rad, diam}. We further incorporate the radius/diameter in the (6 + ϵ)-approximation for
k-median (also yielding an O(1)-approximation for k-means) by Jain and Vazirani [41] to obtain an
approximate Pareto set for the combination of f1 ∈ {rad, diam} and f2 ∈ {med,mean}. We adapt
the (3 + ϵ)-approximation for k-min sum radii by Buchem et al. [11] to deal with clusters instead of
points such that it can be combined with k-separation. For the combinations of f1 = sep and f2 ∈
{med,mean} we use existing algorithms to compute a solution which optimizes f1 and a solution
which optimizes f2 and combine them to a good solution for both objectives, similar to the nesting
technique described by Lin et al. [46]. Lastly for the combinations of f1, f2 ∈ {med,mean} we use
the result on convex Pareto sets by Diakonikolas [22]. All of these adaptions are straightforward
and we mainly follow the existing work. For the computation of the approximate Pareto set for
f1, f2 ∈ {rad, diam} we furthermore design a new algorithm with improved running time which
differs significantly from the naive implementation of the Hochbaum and Shmoys [37] adaptation.

We complement these results by providing instances where it is not possible to find solutions which
simultaneously approximate k-separation and any of the minimization problems to constant factors.
We see this for k-separation and k-diameter in Ex. 1 above, it works analogously for k-center. For
k-median we analyze a similar example in Obs. 11, k-means works analogously. For k-separation
and k-MSR, the example can be found in Obs. 21. This highlights the advantage of Pareto fronts
which allow for a trade-off between two opposing clustering objectives. In the following we explain
our results and techniques in more detail.

2.1 Combining k-separation with various k-clustering minimization objectives

Single Linkage is known to have undesirable properties for practical applications, in particular
chaining effects. Yet its underlying idea – creating separated clusters – makes a lot of sense intuitively.
In this set of results, we investigate the combination of Single Linkage, i.e., the maximization of the
k-separation objective, with algorithms that aim to construct good clusters with respect to various
popular k-clustering criteria. The idea is that the clustering may benefit from a certain extent of
cluster separation without the negative effect of using only Single Linkage to obtain the solution.
In Section 3.1 we exemplify the benefit of this idea by a practical evaluation of the k-separation /
k-means combination. There we find that ensuring a small amount of separability and then running
k-means++ yields good results with respect to recovering a ground truth clustering in our experiments.

Table 2 gives an overview of our theoretical findings. An entry (1, a) means that we show how to
compute the approximate Pareto set P(1,a). More precisely: Let d1 and d2 be two metrics on the same
point set, and let f2 ∈ {sep, rad, diam,med,mean,msr} be the second objective. Now let α = (1, a)
be the entry in the corresponding column of Table 2. Then this means that we can compute an
α-approximate Pareto set Pα with respect to sep with metric d1 and f2 with metric d2. The second
line refers to the corresponding theorem. All the individual theorems and their proofs are in the
supplementary material.

5

Table 2: Results for combining k-separation with various objectives. Here δ1 and δ2 refer to the best
known approximation guarantee for k-median/k-means, currently δ1 = 2.67059/δ2 = 9 + ϵ [16, 4].

k-separation k-center k-diameter k-median k-means k-MSR

k-sep. (1, 1) (1, 2) (1, 2) (1, 2 + δ1) (1, 4 + 4
√
δ2 + δ2) (1, 3 + ϵ)

proof Thm. 5 Thm. 9 Thm. 7 Thm. 12 Thm. 17 Thm. 24

Techniques The k-separation objective is friendly in the sense that we know exactly how optimal
solutions look like. First observe that in any optimal solution, the objective value equals the distance
of two points in different clusters. This means that there are only Θ(n2) possible optimal values. And
if we fix a value ∆ to be the desired separation, then this means that all points x, y with d(x, y) < ∆
have to be in the same cluster because otherwise the objective is automatically below ∆. And if
we transitively merge all pairs x, y with d(x, y) < ∆, then we get a solution with objective value
≥ ∆. So it is well characterized how an optimal k-separation solution looks like (also see Lemma 3).
To combine k-separation with other clustering objectives we first consider such a clustering with
separation ∆, if it has already k clusters, there is nothing left to do. If it has more than k clusters we
decide which clusters to merge based on the second clustering objective.

This immediately leads to the (1, 1)-entry when combining two k-separation objectives (for different
metrics): Iterate through all Θ(n4) combinations of possible optimal objective values (∆1,∆2). For
each guess, merge x, y if d1(x, y) < ∆1 or d2(x, y) < ∆2 (or both). While the running time can
certainly be improved, this gives the full optimal Pareto front in polynomial time.

For f2 = rad or f2 = diam, we also have that the optimum value of a solution is a pairwise distance
between two points. Thus, there are also at most O(n2) possible values that f2 can take. There is a
well-known algorithm due to Hochbaum and Shmoys [37] that for any given radius R (or diameter)
can produce a solution with at most double that value or prove that no solution with value R exists.
We adapt this algorithm to work on the above clustering with Separation ∆ as input. The algorithm is
similar to the original work by Hochbaum and Shmoys. By iterating through all pairs of possible
separation and possible radius/diameter values, we obtain the (1, 2)-approximate Pareto set. The
details are discussed in Section A.2 of the supplementary material.

When combining sep with f2 = med or f2 = mean (Supplementary Section A.3), we still know that
the separation value ∆ is one of O(n2) candidates. We use the above clustering with separation ∆
and decide which clusters to merge further based on an approximate clustering with respect to f2. For
this purpose we use the nesting technique described by Lin et al. [46] in the context of approximation
algorithms for hierarchical clustering. Since we need an approximate clustering with respect to f2,
the quality of our Pareto set depends on the approximation ratio of the algorithm for f2.

Finally, we combine sep with msr. This is the only place where we study msr as it is less common
than the other clustering objectives. It is also the only objective where we deviate from the rule
that clusters have to have = k clusters and allow < k clusters. We study it because it seems more
aligned with k-separation than the other objectives. However, Obs. 21 reveals that also k-separation
and k-MSR cannot be approximated simultaneously. In order to approximate the Pareto front, we
adapt the very recent state-of-the-art algorithm for k-MSR approximation from [11] to our setting.
That algorithm has an approximation ratio of 3 + ϵ and indeed, we show how to compute (1, 3 + ϵ)-
approximate Pareto fronts. Buchem et al. [11] give an intricate primal-dual algorithm for the k-MSR
problem. Our general idea follows the above themes: We iterate through all possible separation
values ∆, obtain a clustering with separation ∆, and then compute an approximate k-MSR solution.
However, for this to work we need to adapt the algorithm to cope with clusters instead of points.
Similar to the adaption of the algorithm by Hochbaum and Shmoys the input now consists of clusters,
and this needs to be taken into account when trying to cover them with balls. We discuss this in the
supplementary material in Sec. A.4.

2.2 Combining k-center or k-diameter with a k-clustering minimization problem

Now we turn to combinations of popular k-clustering minimization problems. Table 3 lists combina-
tions involving k-center or k-diameter. Again, let d1 and d2 be two metrics on the same point set.
Then let f1 ∈ {rad, diam}, let f2 ∈ {rad, diam,med,mean} be the second objective. Finally, let

6

Table 3: Results for combining rad and diam for two different metrics or with a sum-based objective.
The combination of k-center/k-diameter with k-separation can be found in Table 2.

k-center/k-diameter k-median k-means

k-center/k-diameter (2, 2) (9, 6 + ϵ) / (18, 6 + ϵ) (9, 54 + ϵ) / (18, 54 + ϵ)
proof Cor. 37 Thm. 41 / Cor. 44 Thm. 42 / Cor. 44

α = (a, b) be the entry corresponding to f1 and f2 in Table 3. Then this means that we can compute
an α-approximate Pareto set Pα with respect to rad or diam with metric d1 and f2 with metric d2.
The second row links to the proof in the supplementary material.

Techniques. The k-center objective has the already mentioned property that there are at most O(n2)
possible objective values, one for each pairwise distance in the data set. This also directly limits the
size of the resulting Pareto Set when combining two k-center or k-diameter objectives by O(n2).
This is tight since we were able to provide an instance where the optimum Pareto set has indeed a
size of Ω(n2) (Supplementary Section B.2). However it can be proven that there always exists a
(2, 2)-approximation of the Pareto front of size O(n).

We adapt a well-known 2-approximation algorithm due to Hochbaum and Shmoys [37]. A straight-
forward adaption of this algorithm would iterate through O(n4) pairs (r1, r2) of possible radii and
check for each of them if a maximal independent set of size at most k can be found in an appropriate
threshold graph. While this would result in a running time of O(n6), we improve the running time by
observing that only certain pairs (r1, r2) need to be checked (in total O(n2) many) and by updating
the threshold graph dynamically. While updating the threshold graph can have a time complexity of
up to Ω(n2) in certain iterations, we were able to use a suitable potential function to show that the
amortized time needed to update the graph lies within O(n) per iteration. Hereby we show that we
can compute the approximate Pareto set P(2,2) in time O(n3). The algorithm and its analysis also
work for k-diameter, giving the same guarantees. For more details we refer to Section B.1 of the
supplementary material.

To combine k-center with k-median and k-means (possibly with different metrics), we adapt the
primal dual algorithm due to Jain and Vazirani [41]. Alamdari and Shmoys [5] adapt the approxi-
mation algorithm by Charikar et al. [12], which leads to a (4, 8)-approximate Pareto set. For recent
algorithms [4, 15, 16], incorporating radius requirements does not seem easily possible.

The primal dual algorithm gives a (6 + ϵ)-approximation guarantee for k-median and a 54-
approximation guarantee for k-means (the paper only states 108, but that is because the k-means
problem is considered in Rd there, while we study it in the setting where centers are chosen from the
input point set. As [4] also observe, the guarantee then improves to 54.) The primal dual algorithm
is based on an LP formulation where variables xij indicate that point j is assigned to center i. The
adaptation starts by fixing a radius R and removing all xij for which d(i, j) > R. It then follows
the proof of [41] to first obtain an algorithm for approximating facility location and then obtaining a
k-median (or k-means) solution by combining two solutions: one with < k clusters and high cost
and one with > k clusters and small cost. In the combination step we have to ensure that the radius
stays bounded (see Lemma 47). We can ensure a 9-approximation with respect to the radius while
keeping the original approximation factors for k-median/k-median from [41]. To extend the results to
k-diameter, we use that the diameter is at most twice the radius. This standard observation transfers
the results for rad with med and mean to diam.

2.3 Combinations of k-median and k-means

In the previous sections we have enumerated over a candidate set that contained all Pareto-optimal
solutions and used this enumeration to compute approximately optimal solutions. This is no longer
feasible here because the Pareto set is too large: Theorem 48 in the supplementary material shows
that the combination of med and mean both with the same Euclidean metric can lead to Pareto sets
of exponential size. Similar examples can be constructed for f1 = f2 and f1 ∈ {med,mean} if
d1 ̸= d2.

7

Table 4: Number of points n, dimension d, and number of desired clusters k for all data sets in §3.1.
name Rice Dry Bean Wine Optdigits Iris 2d-4c-no3 2d-10c-no3 2d-10c-no4

ref [1] [2] [3] [6] [26] [34] [32] [34]
n 3810 13611 178 5620 150 1123 3359 3291
d 7 16 13 64 4 2 2 2
k 2 7 3 10 3 4 10 10

A possible approach to compute an approximate Pareto set is due to Papadimitrou and Yannakakis
[49]. They showed that there always exists an ϵ-approximate Pareto set whose size is polynomial in
the input size and 1

ϵ′ where ϵ = (1+ ϵ′, 1 + ϵ′). There is a polynomial algorithm to construct such an
ϵ-approximate Pareto set if and only if one is able to solve the following problem in polynomial time:
Given the instance and b1, b2 ∈ R, find a solution s with fi(s) ≤ bi for i ∈ {1, 2} or report that there
is no solution s with (1 + ϵ′)fi(s) ≤ bi for i ∈ {1, 2}. Unfortunately, for the combinations of the
objectives med,mean it is unknown, whether this problem can be solved efficiently. We leave this as
an open problem.

An alternative to approximate Pareto sets is to consider another subset of the Pareto set, namely the
set of supported Pareto-optimal solutions, i.e., the set of solutions that are optimal for a weighted sum
of the objectives. For two minimization objectives f1 and f2, a solution (C, σ) is a supported Pareto-
optimal solution if there exist weights w1, w2 ≥ 0 such that (C, σ) is a solution for the objective
w1f1 + w2f2 with minimum value. For a solution (C, σ) let F (C, σ) = (f1(C, σ), f2(C, σ)) and
F (P) = {F (C, σ) | (C, σ) ∈ P}. The supported Pareto-optimal solutions are exactly the solutions
that form the vertices of the convex hull of F (P). Hence, we will call the set of supported Pareto-
optimal solutions the convex Pareto set in the following. Diakonikolas [22] has also introduced the
notion of approximate convex Pareto sets. For α = (α1, α2) ∈ R2 we say that a set of solutions CPα

is an approximate convex Pareto set if for any solution (C, σ) there is a a convex combination of
solutions in CPα that is an α-approximation to (C, σ). In this context we always assume α1 = α2

and therefore just write CPα1
instead of CP(α1,α2) in the following. Diakonikolas [22] showed that

an (F)PTAS for the convex Pareto exists if there is an (F)PTAS for optimizing weighted sums of the
objectives. Based on this, we obtain the following theorem.

Theorem 51. Given a finite set P , metrics d1, d2 on P and two objectives f1, f2 ∈ {med,mean}.
Let ϵ > 0. Then we can compute an (δ + ϵ)-approximate convex Pareto set CPδ+ϵ in time that is
polynomial in the input size and 1

ϵ , where δ = 2.67059 if f1 = med and f2 = med, and δ = 9 + ϵ
if f1 = med and f2 = mean or f1 = mean and f2 = mean. The size of this set |CPδ+ϵ| is also
polynomial in 1

ϵ and |P |.

3 Applications and Experimental Evaluation

We implemented algorithms for two objective combinations and tested them on different applications.
The source code can be found at https://github.com/algo-hhu/paretoClustering.

3.1 Application: k-separation and k-means

We test the approach to combine k-separation with a conflicting objective. As that second objective,
we choose k-means. Since the data sets used in our experiments are from Rd, we do not use the
algorithm described in Sec. A.3 for general metrics but a variant of it which is tailored to Rd and
allows centers from Rd instead of only P . It is described below. The Euclidean metric is used for
both sep and mean. We test this algorithm on data sets from Rd with available ground truth. We fix
the number k of clusters to be the desired number of clusters in the ground truth. All data sets were
downloaded from freely available sources, see Table 4 for information on the data sets.

Algorithm. For every data set, we compute the approximate Pareto set for the desired number
of clusters as follows. Recall that for a data set of size n there are only O(n2) possible values for
the separation. We compute these values in time O(n2d) and sort them in increasing order in time
O(n2 log(n)). Starting with separation 0, we increase the separation in every step to the next largest
value. Suppose the separation is ∆ in the current step, then we merge all points whose distance is at

8

https://github.com/algo-hhu/paretoClustering

(a) Clustering by k-means++ for
k = 10.

(b) Clustering by Single Linkage
for k = 10.

(c) Best clustering on the approxi-
mate Pareto curve for k = 10.

Figure 4: Clusterings computed on data set 2d-10c-no4 by Handl and Knowles [33].

Table 5: NMI of the best solutions by single linkage and k-means++, and of the best solution C∗ in
the Pareto set. Randomized algorithms were repeated 20 times and values are then averages.

Rice Dry Bean Wine Optdigits Iris 2d-4c-no3 2d-10c-no3 2d-10c-no4

SL 0.0007 0.1626 0.0615 0.1220 0.0000 0.4631 0.6763 0.7260
kM++ 0.4693 0.5164 0.4265 0.7459 0.7405 0.8715 0.9065 0.9052

C∗ 0.4728 0.5231 0.4400 0.7627 0.8578 0.9267 0.9491 0.9779

most ∆. This can be done efficiently via a Union Find data structure. Since the resulting clustering
may have more than k clusters, we have to reduce the number of clusters to k. For data sets in Rd and
the k-means objective, one can replace every cluster by its centroid weighted by the number of points
in the cluster and then cluster these weighted centroids instead of using the nesting technique of Lin
et al. [46] for general metrics. Instead of choosing the theoretically best approximation algorithm
for k-means, we use k-means++ [8] to cluster the centroids as it is fast (running time O(nkd)) and
usually produces solutions of high quality for the k-means problem in practice. Then the respective
clustering on the original data set has separation at least ∆ and at most k clusters. One can show that
this algorithm computes an α-approximate Pareto set with α = (1, O(log k)).

Prototypical desired behavior. Consider Fig. 4. It shows the data set 2d-10c-no4 by Handl and
Knowles [33], which is a synthetic data set with 10 clusters. The first two figures show the clusterings
produced by k-means++ and Single Linkage for k = 10. We see that k-means++ finds most clusters
but due to its limitation to spherical clusters, some clusters are split up and others are merged (Fig. 4a).
Single Linkage on the other hand is too much affected by the outliers: It merges most points into two
clusters, using the remaining 8 clusters for very few outlier points (see Fig. 4b). But when allowed
many more clusters (here, 85 instead of 10), Single Linkage is very successful at finding the most
important groups of points that belong together (see Fig. 8c in the suppl. material). Fig. 3a shows the
Pareto curve. The 16th point with a separation of 0.68 is the most successful combination with repect
to all metrics. It is shown in Fig. 4c.

Numerical evaluation. We compare the clusterings in the approximate Pareto set to the ground
truth. For this purpose we compute the Normalized Mutual Information (NMI), Rand Index (RI), and
Fβ-scores for β = 0.5, 1, 2. Each of these measures results in values in [0, 1], where a value of 1
is achieved when the computed clustering matches the ground truth. For every measure, we pick
the clustering C∗ in the approximate Pareto set that has highest value with respect to this measure
to demonstrate that there is a good solution on the Pareto front. The full experimental evaluation,
plots of Pareto fronts, other plots and also the definition of all scores can be found in Sec. A.3 in
the supplementary material. Table 5 shows the Normalized Mutual Information Score for all tested
data sets. We see the best solution found in 20 runs of the respective algorithm (except for Single
Linkage, which is deterministic). The algorithms were run with the k associated with the ground
truth of the data set. Single Linkage does in general not perform well in recovering the ground truth
clustering. The clusterings produced by k-means++ are much better. For all data sets, the NMI of the
best Pareto solution is even higher, with some notable positive examples like iris and 2d-10c-n4.
The other performance measures show a similar tendency, although sometimes C∗ is slightly worse,
for example on data set rice (see Table 11 in Sec. A.3). This can happen because the solutions on

9

(a) Purely income based
clustering.

(b) The 10-th Pareto solu-
tion

(c) Purely geography based
clustering.

Figure 5: Comparison between the 10-th Pareto solution with the purely geographic and the purely
income based clustering for k = 16.

Table 6: Comparison between the time series based clustering, the geography based clustering, and
the 54-th Pareto clustering with regard to the biggest cluster radius for both metrics and the mean
cluster radius over all clusters for both metrics.

max rad geo mean rad geoc max rad ts mean rad ts

Geography based clustering 1566 km 619 km 20,9 cm 4,1 cm
54-th Pareto Solution 2411 km 799 km 8,0 cm 3,1 cm
Time Series based clustering 18172 km 1570 km 6,7 cm 2,8 cm

the Pareto front do not necessarily include the pure k-means++ solution as special case because it is
only an approximation to the optimal k-means clustering and therefore can be dominated by other
solutions in the approximate Pareto set with smaller k-means cost.

On all data sets that are not synthetic, the best result in the approximate Pareto set uses a small
separation value. Therefore we conjecture that it is sufficient to use a few steps of single linkage
before starting k-means++ in order to improve the quality of the solution.

3.2 Applications: k-center with two different metrics

We use two k-center-objectives with different metrics to visualize two different geodetic data sets.
The goal in both cases is to visualize data, but to also make it more compact and therefore easier
to understand by trying to find geographically close areas that contain similar data. Details of this
section are in Supplementary Sections C.2 and C.3. The first data set we use are the monthly median
incomes of the 400 districts in Germany as obtained from [29]. We compute an approximate Pareto
set for k = 16 (the number of states in Germany), which contains a total of 38 different clusterings.
Figure 3b shows the approximate Pareto curve. In Figure 5 one can see the 10-th Pareto-optimal
solution compared to the clusterings that consider only one of the objectives. One can see that the
Pareto solution has a cleaner structure than the purely income based clustering, but at the same time
shows how the median income behaves in different regions of Germany.

For our second application we use a data set that consists of (normalized) time series of the sea level
height on different locations all over the world. We use time series that were created using the sea
level simulation provided by ORA5 [18], at the location where the tide gauge stations of the PSMSL
[50, 39] are located. As metric d1 we use the mean difference between the time series. As geographic
distance measure d2 we use the Euclidean distance between two stations. The time-series-based
distance and the Euclidean distance of the gauge stations can behave very differently. We cluster with
k = 150. Then the approximate Pareto set contains 106 clusterings. Table 6 shows the maximum
and mean radii of the clusters in the solutions computed purely based on geometry, in the solution
purely based on the time-series-based distance, and in a carefully picked Pareto-optimal solution.
The numbers show that the Pareto-optimal solution is a very reasonable trade-off.

10

Acknowledgments and Disclosure of Funding

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 390685813 and 459420781 and by the Lamarr Institute for Machine Learning and
Artificial Intelligence (lamarr-institute.org). We furthermore thank Johanna Hillebrand for providing
code to visualize the sea level data.

References

[1] Rice (Cammeo and Osmancik). UCI Machine Learning Repository, 2019. doi:10.24432/
C5MW4Z.

[2] Dry Bean. UCI Machine Learning Repository, 2020. doi:10.24432/C50S4B.

[3] Stefan Aeberhard and M. Forina. Wine. UCI Machine Learning Repository, 1991. DOI:
https://doi.org/10.24432/C5PC7J.

[4] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. In Proc. of 58th IEEE Annual
Symposium on Foundations of Computer Science, (FOCS), pages 61–72, 2017. doi:10.1109/
FOCS.2017.15.

[5] Soroush Alamdari and David B. Shmoys. A bicriteria approximation algorithm for the k-center
and k-median problems. In Proc. of 15th International Workshop on Approximation and Online
Algorithms (WAOA), pages 66–75. Springer, 2017. doi:10.1007/978-3-319-89441-6_6.

[6] E. Alpaydin and C. Kaynak. Optical Recognition of Handwritten Digits. UCI Machine Learning
Repository, 1998. doi:10.24432/C50P49.

[7] Anna-Klara Großwendt. Theoretical Analysis of Hierarchical Clustering and the Shadow Vertex
Algorithm. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, May 2020. URL:
https://hdl.handle.net/20.500.11811/8348.

[8] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proc. of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1027–1035, 2007. URL: http://dl.acm.
org/citation.cfm?id=1283383.1283494.

[9] Lilian Astrid Bejarano, Helbert E. Espitia, and Carlos E. Montenegro. Clustering analysis
for the pareto optimal front in multi-objective optimization. Comput., 10(3):37, 2022. doi:
10.3390/computation10030037.

[10] Ahmed Nasreddine Benaichouche, Hamouche Oulhadj, and Patrick Siarry. Multiobjective
improved spatial fuzzy c-means clustering for image segmentation combining pareto-optimal
clusters. J. Heuristics, 22(4):383–404, 2016. doi:10.1007/s10732-014-9267-9.

[11] Moritz Buchem, Katja Ettmayr, Hugo K. K. Rosado, and Andreas Wiese. A (3 + ε)-
approximation algorithm for the minimum sum of radii problem with outliers and extensions for
generalized lower bounds. In Proc. of the 2024 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1738–1765, 2024. doi:10.1137/1.9781611977912.69.

[12] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor ap-
proximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149, 2002.
doi:10.1006/jcss.2002.1882.

[13] Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. J.
Comput. Syst. Sci., 68(2):417–441, mar 2004. doi:10.1016/J.JCSS.2003.07.014.

[14] Carlos A. Coello Coello and Maximino Salazar Lechuga. MOPSO: a proposal for multiple ob-
jective particle swarm optimization. In Proc. of the 2002 Congress on Evolutionary Computation
(CEC), pages 1051–1056. IEEE, 2002. doi:10.1109/CEC.2002.1004388.

[15] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Im-
proved approximations for euclidean k-means and k-median, via nested quasi-independent sets.
In Proc. of 54th Annual ACM Symposium on Theory of Computing (STOC), pages 1621–1628.
ACM, 2022. doi:10.1145/3519935.3520011.

11

https://doi.org/10.24432/C5MW4Z
https://doi.org/10.24432/C5MW4Z
https://doi.org/10.24432/C50S4B
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1007/978-3-319-89441-6_6
https://doi.org/10.24432/C50P49
https://hdl.handle.net/20.500.11811/8348
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://doi.org/10.3390/computation10030037
https://doi.org/10.3390/computation10030037
https://doi.org/10.1007/s10732-014-9267-9
https://doi.org/10.1137/1.9781611977912.69
https://doi.org/10.1006/jcss.2002.1882
https://doi.org/10.1016/J.JCSS.2003.07.014
https://doi.org/10.1109/CEC.2002.1004388
https://doi.org/10.1145/3519935.3520011

[16] Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn. Breach-
ing the 2 LMP approximation barrier for facility location with applications to k-median. In Proc.
of the 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 940–986, 2023.
doi:10.1137/1.9781611977554.CH37.

[17] Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. Johnson coverage hypothesis:
Inapproximability of k-means and k-median in p-metrics. In Joseph (Seffi) Naor and Niv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1493–1530. SIAM, 2022. doi:10.1137/1.9781611977073.63.

[18] Copernicus Climate Change Service. Climate data store, (2021): Oras5 global ocean reanalysis
monthly data from 1958 to present. copernicus climate change service (c3s) climate data store
(cds). doi:10.24381/cds.67e8eeb7.

[19] H. William Corley and I. Douglas Moon. Shortest paths in networks with vector weights. Journal
of Optimization Theory and Application, 46(1):79–86, 1985. doi:10.1007/BF00938761.

[20] Ian Davidson and S. S. Ravi. Intractability and clustering with constraints. In Zoubin Ghahra-
mani, editor, Proc. of the 24th International Conference on Machine Learning (ICML), pages
201–208, 2007. doi:10.1145/1273496.1273522.

[21] Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutsch-
land (AdV). URL: https://regionalatlas.statistikportal.de/.

[22] Ilias Diakonikolas. Approximation of Multiobjective Optimization Problems. PhD thesis,
Columbia University, USA, 2011. doi:10.7916/D80K2GR9.

[23] Matthias Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005. doi:10.1007/
3-540-27659-9.

[24] Katti Faceli, André Carlos Ponce de Leon Ferreira de Carvalho, and Marcílio Car-
los Pereira de Souto. Multi-objective clustering ensemble. Int. J. Hybrid In-
tell. Syst., 4(3):145–156, 2007. URL: http://content.iospress.com/articles/
international-journal-of-hybrid-intelligent-systems/his00047.

[25] Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proc. of
the 20th Annual ACM Symposium on Theory of Computing (STOC), page 434–444, New York,
NY, USA, 1988. Association for Computing Machinery. doi:10.1145/62212.62255.

[26] R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. doi:10.24432/C56C76.

[27] Ana L. N. Fred and Anil K. Jain. Robust data clustering. In Proc. of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages 128–136. IEEE
Computer Society, 2003. doi:10.1109/CVPR.2003.1211462.

[28] Zachary Friggstad and Mahya Jamshidian. Improved Polynomial-Time Approximations for
Clustering with Minimum Sum of Radii or Diameters. In Proc. of the 30th Annual European
Symposium on Algorithms (ESA), Leibniz International Proceedings in Informatics (LIPIcs),
pages 56:1–56:14, 2022. doi:10.4230/LIPIcs.ESA.2022.56.

[29] Bundesagentur für Arbeit. Sozialversicherungspflichtige bruttoarbeitsentgelte im re-
gionalen vergleich, 2021. URL: https://statistik.arbeitsagentur.de/DE/
Navigation/Statistiken/Interaktive-Statistiken/Entgelte-regional/
Entgelte-regional-Nav.html.

[30] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

[31] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
J. Algorithms, 31(1):228–248, 1999. URL: https://doi.org/10.1006/jagm.1998.0993,
doi:10.1006/JAGM.1998.0993.

[32] Julia Handl and Joshua Knowles. 2d-10c-no3. URL: https://personalpages.manchester.
ac.uk/staff/julia.handl/generators.html.

[33] Julia Handl and Joshua Knowles. 2d-10c-no4. URL: https://personalpages.manchester.
ac.uk/staff/julia.handl/generators.html.

[34] Julia Handl and Joshua Knowles. 2d-4c-no3. URL: https://personalpages.manchester.
ac.uk/staff/julia.handl/generators.html.

12

https://doi.org/10.1137/1.9781611977554.CH37
https://doi.org/10.1137/1.9781611977073.63
https://doi.org/10.24381/cds.67e8eeb7
https://doi.org/10.1007/BF00938761
https://doi.org/10.1145/1273496.1273522
https://regionalatlas.statistikportal.de/
https://doi.org/10.7916/D80K2GR9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
http://content.iospress.com/articles/international-journal-of-hybrid-intelligent-systems/his00047
http://content.iospress.com/articles/international-journal-of-hybrid-intelligent-systems/his00047
https://doi.org/10.1145/62212.62255
https://doi.org/10.24432/C56C76
https://doi.org/10.1109/CVPR.2003.1211462
https://doi.org/10.4230/LIPIcs.ESA.2022.56
https://statistik.arbeitsagentur.de/DE/Navigation/Statistiken/Interaktive-Statistiken/Entgelte-regional/Entgelte-regional-Nav.html
https://statistik.arbeitsagentur.de/DE/Navigation/Statistiken/Interaktive-Statistiken/Entgelte-regional/Entgelte-regional-Nav.html
https://statistik.arbeitsagentur.de/DE/Navigation/Statistiken/Interaktive-Statistiken/Entgelte-regional/Entgelte-regional-Nav.html
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1006/JAGM.1998.0993
https://personalpages.manchester.ac.uk/staff/julia.handl/generators.html
https://personalpages.manchester.ac.uk/staff/julia.handl/generators.html
https://personalpages.manchester.ac.uk/staff/julia.handl/generators.html
https://personalpages.manchester.ac.uk/staff/julia.handl/generators.html
https://personalpages.manchester.ac.uk/staff/julia.handl/generators.html
https://personalpages.manchester.ac.uk/staff/julia.handl/generators.html

[35] Julia Handl and Joshua D. Knowles. Exploiting the trade-off - the benefits of multiple objectives
in data clustering. In Proc. of the 3rd International Conference on Evolutionary Multi-Criterion
Optimization (EMO), pages 547–560, 2005. doi:10.1007/978-3-540-31880-4_38.

[36] Julia Handl and Joshua D. Knowles. An evolutionary approach to multiobjective clustering.
IEEE Trans. Evol. Comput., 11(1):56–76, 2007. doi:10.1109/TEVC.2006.877146.

[37] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985. doi:10.1287/moor.10.2.180.

[38] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms for
bottleneck problems. J. ACM, 33(3):533–550, may 1986. doi:10.1145/5925.5933.

[39] Simon J. Holgate, Andrew Matthews, Philip L. Woodworth, Lesley J. Rickards, Mark E.
Tamisiea, Elizabeth Bradshaw, Peter R. Foden, Kathleen M. Gordon, Svetlana Jevrejeva, and
Jeff Pugh. New data systems and products at the permanent service for mean sea level. Journal
of Coastal Research, 29:493–504, 2013.

[40] Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discret.
Appl. Math., 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

[41] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, 2001. doi:10.1145/375827.375845.

[42] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective optimization using
genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf., 91(9):992–1007, 2006. URL: https:
//doi.org/10.1016/j.ress.2005.11.018, doi:10.1016/J.RESS.2005.11.018.

[43] Bjornar Larsen and Chinatsu Aone. Fast and effective text mining using linear-time document
clustering. In Usama M. Fayyad, Surajit Chaudhuri, and David Madigan, editors, Proc. of the
5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
16–22. ACM, 1999. doi:10.1145/312129.312186.

[44] Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Inf. Process. Lett., 120:40–43, 2017. doi:10.1016/J.IPL.2016.11.009.

[45] Nissan Lev-Tov and David Peleg. Polynomial time approximation schemes for base station
coverage with minimum total radii. Computer Networks, 47(4):489–501, 2005. doi:10.1016/
j.comnet.2004.08.012.

[46] Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson. A
general approach for incremental approximation and hierarchical clustering. SIAM Journal on
Computing, 39(8):3633–3669, 2010. doi:10.1137/070698257.

[47] Anirban Mukhopadhyay, Ujjwal Maulik, and Sanghamitra Bandyopadhyay. A survey of
multiobjective evolutionary clustering. ACM Comput. Surv., 47(4):61:1–61:46, 2015. doi:
10.1145/2742642.

[48] Adli Mustafa and Mark Goh. Finding integer efficient solutions for bicriteria and tricriteria
network flow problems using dinas. Computers & Operations Research, 25(2):139–157, 1998.
doi:10.1016/S0305-0548(97)00027-0.

[49] Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In Proc. of the 41st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 86–92, 2000. doi:10.1109/SFCS.2000.892068.

[50] Permanent Service for Mean Sea Level (PSMSL). Tide gauge data, retrieved on 13 november
2023. URL: http://www.psmsl.org/data/obtaining/.

[51] William M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66(336):846–850, 1971. doi:10.1080/01621459.1971.
10482356.

[52] Robin Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method.
Comput. J., 16(1):30–34, 1973. doi:10.1093/COMJNL/16.1.30.

[53] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.
[54] Silke Wagner and Dorothea Wagner. Comparing clusterings: an overview. Technical report, Uni-

versität Karlsruhe, Fakultät für Informatik Karlsruhe, 2007. URL: https://publikationen.
bibliothek.kit.edu/1000011477.

13

https://doi.org/10.1007/978-3-540-31880-4_38
https://doi.org/10.1109/TEVC.2006.877146
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1145/5925.5933
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1145/375827.375845
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1016/J.RESS.2005.11.018
https://doi.org/10.1145/312129.312186
https://doi.org/10.1016/J.IPL.2016.11.009
https://doi.org/10.1016/j.comnet.2004.08.012
https://doi.org/10.1016/j.comnet.2004.08.012
https://doi.org/10.1137/070698257
https://doi.org/10.1145/2742642
https://doi.org/10.1145/2742642
https://doi.org/10.1016/S0305-0548(97)00027-0
https://doi.org/10.1109/SFCS.2000.892068
http://www.psmsl.org/data/obtaining/
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1093/COMJNL/16.1.30
https://publikationen.bibliothek.kit.edu/1000011477
https://publikationen.bibliothek.kit.edu/1000011477

Supplementary Material
A Theoretical Part: Pareto Sets for Combinations Involving k-separation

Given a set of points P , k ∈ N and metrics d1, d2 on P , in the previous sections we define a
k-clustering on P as a set C of k centers and an assignment σ : P → C. For combinations involving
k-separation, it can be helpful to view clusterings as partitionings. We introduce the following
equivalent notation that is used in Sections A.1, A.2.1 and Section A.2.2.

Observe that {σ−1(c) | c ∈ C} forms a partition of P of size k. The only change in definition is that
we observe that this partition is already sufficient to compute the objective values of the solution. Let
C be a partition of P of size k, for i = 1, 2 we define

sep(C , di) = min
C,C′∈C ,C ̸=C′

min
p∈C,q∈C′

di(p, q)

diam(C , di) = max
C∈C

max
p,q∈C

di(p, q)

rad(C , di) = max
C∈C

min
c∈C

max
p∈C

di(p, c).

For convenience we view a k-clustering as a partition of P in k clusters in Sections A.1, A.2.1 and
Section A.2.2.

A.1 Combining k-Separation and k-Separation

We consider the k-separation problem and observe that defining a threshold for the separation
translates into a set of must-link constraints. We define the graph of points that have to be connected
given a certain separation value τ and use this to define a clustering.

Definition 2. Let (P, d) be a finite metric space and τ ≥ 0. The τ -separation graph G(P,d)(τ) of P
consists of

• vertices V(P,d)(τ) = P and

• edges E(P,d)(τ) = {{x, y} | x, y ∈ P : 0 < d(x, y) ≤ τ}.

We denote by S(P,d)(τ) the clustering consisting of the connected components of G(P,d)(τ).

The following shows that S(P,d) is in some sense at the heart of τ -separability. For brevity,
we use the following in this lemma: We name a clustering C of P is τ -separated if τ ≤
maxC,C′∈C ,C ̸=C′ min(c,c′)∈C×C′ d(c, c′).

Lemma 3. Let (P, d) be a metric space and τ ≥ 0. Then

1. S(P,d)(τ) is τ -separated.

2. If C is clustering of (P, d) then it is τ -separated if and only if S(P,d)(τ) is a refinement of
clustering C . This means that for every S ∈ S(P,d)(τ) there exists some C ∈ C such that
S ⊆ C.

In this sense, S(P,d)(τ) can be called the minimally τ -separated clustering.

Proof. This immediately follows from two easy observations:

1. The minimal distance between two different clusters S, S′ ∈ S(P,d)(τ) is strictly more than
τ . Otherwise an edge would have been added between the respective points.

2. We cannot split any cluster S ∈ S(P,d)(τ) without lowering to separability to at most τ :
since S is connected in G(P,d)(τ) at least one edge would have to be cut.

Lemma 4. Let (P, d) be a metric space consisting of n elements, and τ ≥ 0. We can compute
S(P,d)(τ) in O(n2) time.

14

Proof. The τ -separation graph can be computed in O(n2) time. Connected components can be found
in linear time.

Now we can conclude that we can compute the optimal Pareto set (in time O(n2)) when we combine
f1 = sep and f2 = sep on possibly different metrics d1 and d2. Given two thresholds τ1 and τ2, just
compute S = S(P,d1)(τ1) and merge all of its clusters S, S′ whose distance min(s,s′)∈S×S′ d2(s, s

′)
is at most τ2. In other words, we merge S and S′, whenever there exists a cluster S′′ ∈ S(P,d2)(τ2)
with S ∩ S′′ ̸= ∅ and S′ ∩ S′′ ̸= ∅. The resulting clustering C is minimally hierarchically com-
patible with both S(P,d1)(τ1) and S(P,d2)(τ2) in the sense that every other clustering hierarchically
compatible with the latter has to be compatible with C as well. All merges we have conducted were
necessarily forced to achieve the separation values. Had we left out any of them, one of the separation
values would be violated. We can thus conclude with the following result.

Theorem 5. Let d1, d2 be two metrics defined over a finite set P . Then for f1 = sep and f2 = sep
we can compute their Pareto set in polynomial time.

A.2 Combination of k-Diameter/k-Center with k-Separation

In this section, we combine k-diameter/k-center with k-separation. Although similar at first sight
to the cases already discussed with k-diameter/k-center, the combinations with k-separations differ
conceptually quite a bit. Whereas all prior combinations consisted of objective functions that penalize
the same behavior, k-separation is concerned with a different clustering aspect. Not only do we want
dissimilar points to belong to different clusters, but also for similar points to belong to the same
cluster. Ideally, clusters should not only be small, but clear lines of demarcation should also run
between them.

Between these two goals, there is an inherent tension that cannot readily be resolved. One favors
clusterings comprising a small number of clusters (at the limit there are one, or rather, two clusters),
while the other favors clusterings comprising a large number of clusters (at the limit every point
belongs to a separate cluster). In fact, if we fix the number of clusters, then there’s no guarantee that
a solution that yields constant-factor approximation for both objectives at the same time even exists,
not even when the underlying metric space derives from the Euclidean line R.

Next we present an example where there exists no solution that is simultaneously a constant factor
approximation for k-center/k-diameter and k-separation.

Example 6. For any fixed m ∈ N≥1 consider the set

Pm = {1, . . . , k − 1} ∪ {−x/m | x ∈ {0, . . . ,m(k − 1)2}}︸ ︷︷ ︸
Am

and the Euclidean metric d1(x, y) = d2(x, y) = |x− y| on R.

We first show that any constant-factor approximation for either the k-diameter or the k-separation
objective performs poorly for the other objective.

First, note that C = {{1}, . . . , {k − 1}, Am} is the only clustering with a separation value of
sep(C , d2) = 1. Indeed, any other k-clustering C ′ has to break up Am and so has a separation of
only sep(C ′, d2) = 1/m (the distance between any two consecutive points in Am). In other words,
C is the only solution that provides a constant-factor approximation for the k-separation objective.
However, C does not provide a good approximation for the k-diameter objective. Since it does not
break up Am, it has a diameter of (k − 1)2. This is worse by a factor of k − 1 than just indifferently
dividing up Pm into k sets of “equal size”. Indeed, partitioning [−(k − 1)2, k − 1] ⊃ Pm into k
intervals of equal length yields a clustering of diameter at most

(k − 1)2 + (k − 1)

k
=

k(k − 1)

k
= k − 1.

The same argument also shows that constant-factor approximations for the k-diameter objective
perform poorly with respect to the k-separation objective. A solution that provides a constant-factor
approximation for the k-diameter objective has to break up Am and thus has a separation value that
is m times worse than the optimal.

15

For k-center the argument works analogously with the only difference that the radius of C is lower
bounded by (k−1)2

2 while the optimal solution with respect to k-center has radius at most k−1
2 + 1.

Thus, instead of trying to optimize k-diameter/k-center and k-separation simultaneously, we again
focus on Pareto sets.

A.2.1 Combination of k-Diameter with k-Separation

In line with previous sections we will provide a subroutine that, given an estimation of the value of a
Pareto-optimal solution, will compute a close approximation.
Theorem 7. Let S,D ∈ R be two non-negative numbers. If there exists a clustering C ∗ with
diam(C ∗, d1) ≤ D and sep(C ∗, d2) ≥ S, then Algorithm 1 computes a solution C in polynomial
time with diam(C , d1) ≤ 2D and sep(C , d2) ≥ S. If no such clustering C ∗ exists, Algorithm 1
returns an error message.

Algorithm 1 is a relatively simple subroutine that, for a pair of possible diameter and separation values,
either constructs a (1, 2)-approximation in polynomial time, or signals that no such Pareto-optimal
solution exists. Using this subroutine we can simply iterate over all diameter-separation pairs and
collect the results to get an approximate Pareto set Pα with α = (1, 2).

Algorithm 1: Approximate solution for k-diameter and k-separation
input :A finite set P , two metrics d1, d2 on P , a number k ∈ N, two values D,S ∈ R≥0.

1 C ← {{x} | x ∈ P}
2 while ∃C,C ′ ∈ C , C ̸= C ′ : d2(C,C

′) < S do
3 C ← (C \ {C,C ′}) ∪ {C ∪ C ′}
4 if D < diam(C , d1) or |C | < k then
5 return no such clustering exists

6 G≤D ← (C , {{C,C ′} | diam(C ∪ C ′, d1) ≤ D})
7 I = {I1, . . . , Iℓ} ← maximal independent set in G≤D

8 if ℓ > k then
9 return no such clustering exists

10 partition G≤D into star-graphs S1, . . . Sℓ centered around I1, . . . Iℓ
11 forall i ∈ {1, . . . , ℓ} do
12 D = ∅
13 forall C ∈ Si do
14 if |C | = k then
15 return C

16 C ← (C \ {D}) ∪ {D ∪ C}
17 D ← D ∪ C

18 return C

Before proving Theorem 7 we will quickly outline Algorithm 1, splitting it into two phases. In the
first phase (we could also call it the Single-Linkage phase), starting with |P| clusters of size one each,
we successively merge those that have a distance of less than S with regard to d2. This is necessary
to ensure a good separation value. In the second phase (we could call this the Hochbaum-Shmoys
phase) we then reduce the number of clusters further, while ensuring that the diameter with regards to
d1 does not grow too large.

Proof of Theorem 7. Let us first consider what happens when Algorithm 1 fails and returns an error
message. Clearly, this only happens when we reach line 5 or line 9. In any either case, we have
to show that there cannot exist a clustering C ∗ with diam(C ∗, d1) ≤ D and sep(C ∗, d2) ≥ S. We
show that the assumption that such a clustering C ∗ exists yields a contradiction.

Consider the first case where Algorithm 1 reaches line 5. In lines 1 to 3 we have, starting with a
separate cluster for each point, merged all clusters that are at a distance of at most S from each other.

16

(Apart from the order in which the clusters get merged, this is the same as running the Single Linkage
algorithm on (P, d2).) Note, that a clustering in which any one such merge has not been carried out
has to have a separation value strictly less than S, because there would exist two points x, y ∈ P ,
contained in different clusters, with d2(x, y) < S. In other words, to ensure a separation value of at
least S, every merge performed so far has been obligatory and so, if we reach line 5, we know that
C ∗ cannot exist.

Next, consider the other case in which Algorithm 1 reaches line 9. Within the second phase, we are
trying to reduce the number of clusters, while maintaining a small diameter. To achieve this we have
constructed a graph G≤D in lines 6 to 7 whose edges indicate viable and cheap merges. That is, edges
in this graph represent the only merges that could in fact be made without violating the requirements
imposed on C ∗. They represent the only merges whose resulting clusters have a diameter of at most
D. Now, once we reach line 9, we know that this graph contains an independent set I of size ℓ > k.
As outlined above, all merges so far have been obligatory and so it follows that for each C ∈ I
there exists some C∗ ∈ C ∗ with C ⊆ C∗. Therefore, by the pigeonhole principle there has to be a
cluster C∗ that contains two different clusters from I . But I is an independent set in G≤D and
so diam(C ∗, d1) ≥ diam(C∗, d1) > D. Again C ∗ with the desired properties does not exist. This
concludes the first part of the proof.

What’s left to show is that, whenever Algorithm 1 returns a clustering, it in fact returns a good
clustering. In the first phase we have constructed a clustering C ∗ with sep(C ∗, d2) ≥ S and
diam(C ∗, d1) ≤ D, but potentially |C ∗| > k. By subsequently merging clusters within star-graphs
induced by an independent set within G≤D, we are able to resolve this problem. Of course, none of
the merges can decrease the separation factor, so we only have to consider how the diameter changes.
This, however, is just a straight-forward application of the triangle inequality: every star-graph clearly
has a diameter of at most 2D.

Corollary 8. Given a finite set P and metrics d1, d2 on P . We can compute the approximate Pareto
set Pα for α = (1, 2) with respect to the objectives f1 = sep and f2 = diam in polynomial time.

Running Algorithm 1 with a separation value of S = 0 (or S < min{d2(x, y) | x ̸= y ∈ P})
amounts to finding a 2-approximate solution for the standard k-diameter problem. Since it is known
that there does not exist a polynomial-time (2− ε)-approximation algorithm for this problem, unless
P = NP [25], we know that the (1, 2)-factor established in Theorem 7 cannot be improved.

A.2.2 Combination of k-Center with k-Separation

We can also combine the k-separation objective function with the k-center objective function. Since
the latter is closely related to the k-diameter objective function, most analyses here will be similar to
those of the previous section. We focus mostly on the subroutine because that is the only part that
qualitatively changes. Phase 2 of Algorithm 1 has to be adjusted to ensure that the following theorem,
analogous to Theorem 7, holds.

Theorem 9. Let S,R ∈ R be two non-negative numbers. If there exists a k-center solution C ∗ with
rad(C ∗, d1) ≤ R and sep(C ∗, d2) ≥ S, then Algorithm 2 computes a solution C in polynomial time
with rad(C , d1) ≤ 2R and sep(C , d2) ≥ S. If no such clustering C ∗ exists, Algorithm 2 returns an
error message.

Algorithm 2 shows the modified subroutine. The construction of our merging graph in the second
phase now depends on the optimal centers of the previously computed clusters.

Proof of Theorem 9. Again, we start the proof by analyzing the points of failure and show that the
existence of a solution C ∗ satisfying the bounds in the theorem leads to a contradiction. The first
case, where Algorithm 2 return an error message at line 5 can be handled in exactly the same way as
in the original proof and so we won’t repeat it here. Instead, consider the case, where Algorithm 2
returns an error message in line 9. As before, all merges up to this point had been obligatory. Leaving
out any such merge would yield a clustering that does not satisfy the lower bound for the separation.
We thus know that the clustering C is in fact just a refinement of the clustering C ∗, which means that
there have to exist two clusters C,C ′ ∈ I that are both subsets of the same cluster C∗ ∈ C ∗. But
then C∗ has to have a radius of rad(C∗, d1) ≥ 1

2diam(C ∪ C ′) > R, contradicting our assumptions.

17

Algorithm 2: Approximate solution for k-center and k-separation
input :A finite set P , two metrics d1, d2 on P , a number k ∈ N, two values R,S ∈ R≥0.

1 C ← {{x} | x ∈ P}
2 while ∃C,C ′ ∈ C , C ̸= C ′ : d2(C,C

′) < S do
3 C ← (C \ {C,C ′}) ∪ {C ∪ C ′}
4 if R < rad(C , d1) or |C | < k then
5 return no such clustering exists

6 G≤2R ← (C , {{C,C ′} | diam(C ∪ C ′, d1) ≤ 2R})
7 I = {I1, . . . , Iℓ} ← maximal independent set in G≤2R

8 if ℓ > k then
9 return no such clustering exists

10 partition G≤2R into star-graphs S1, . . . Sℓ centered around I1, . . . Iℓ
11 forall i ∈ {1, . . . , ℓ} do
12 D = ∅
13 forall C ∈ Si do
14 if |C | = k then
15 return C

16 C ← (C \ {D}) ∪ {D ∪ C}
17 D ← D ∪ C

18 return C

Finally, we prove that any clustering returned by the algorithm is in fact a good solution. That the
lower bound for the separation value is satisfied is, again, obvious. Let us thus move on to the the
upper bound on the radius. After the first phase all clusters necessarily have a radius of at most
R (otherwise the algorithm would fail in line 5). To see that the second phase does not increase
the radius by much, fix zI ∈ I for every cluster I ∈ I . For every I ∈ I all other clusters C
belonging to the star graph S of I are close to I in the sense that diam(I ∪ C) ≤ 2R. In particular
d1(zI , x) ≤ 2R for all x ∈ C, implying that, indeed, rad(

⋃
C∈S C) ≤ 2R.

Corollary 10. Given a finite set P and metrics d1, d2 on P . We can compute the approximate Pareto
set Pα for α = (1, 2) with respect to the objectives f1 = sep and f2 = rad in polynomial time.

Again, the (1, 2)-approximation factor cannot be improved. For S = 0, Algorithm 2 computes 2-
approximate solutions for k-center, which is the lowest approximation ratio achievable in polynomial
time [38], unless P = NP.

A.3 Combination of k-separation and k-median/k-means

The instance outlined in Example 6 can again be used to show that there is no hope of finding a
clustering that performs well with regard to both the k-median (or k-means) and the k-separation
objective.
Observation 11. Consider a set of points {x/m | x ∈ {0, . . . ,mℓ}} for any ℓ and even m. The
1-median cost of this set is given by

mℓ∑
x=0

∣∣∣∣ xm − ℓ

2

∣∣∣∣ = 2

mℓ
2 −1∑
x=0

(
ℓ

2
− x

m

)
=

2

m

mℓ
2 −1∑
x=0

(
mℓ

2
− x

)

=
2

m

mℓ
2∑

x=1

x =
1

4
ℓ(mℓ+ 2)

since the points are evenly spaced and thus the optimal center is ℓ/2. Now, if we consider the same
set

Pk,m = {−x/m | x ∈ {0, . . . ,m(k − 1)2}}︸ ︷︷ ︸
Ak,m

∪{1, . . . , k − 1}

18

as in Example 6, then we run into the same issues. By the above computation, Ak,m has a 1-median
cost that is in Ω(k4), whereas the subsets that we get from dividing [−(k−1)2, k−1] into k intervals
of equal length each have a 1-median cost that is in O(k2). The k-median cost of the only clustering
C = {{1}, . . . , {k − 1}, Ak,m} that achieves a constant-factor approximation ratio with regard to
sep is worse by a factor of Ω(k) than that of the optimum. Conversely, if we split up Ak,m to achieve
a good k-median solution, then the separation value will be bad.

Thus, as before, we have shown that all clusterings can have a good (i.e. constant-factor) approxima-
tion ratio either with regard to the k-median objective or with regard to the k-separation objective,
but not both simultaneously.

Similar to the case of the k-center objective the value of the k-separation function is determined by
two of the points in P , we know that for the same reasons the Pareto set for this combination consists
of at most n(n−1)

2 different solutions.

Theorem 12. Given a finite set P , two metrics d1, d2 and objectives f1 = sep and f2 = med.
Then we can compute the α-approximate Pareto set Pα for α = (1, 2 + δ) with respect to f1, f2 in
polynomial time, where δ is the best approximation bound achievable for the k-median problem.

The following corollary follows directly from the above theorem and the fact that Cohen-Addad et al.
[16] presented a (2.67059 + ϵ)-approximation algorithm for the k-median problem.

Corollary 13. We can compute the approximate Pareto set Pα for α = (1, 4.67059 + ϵ) with respect
to the objectives f1 = sep and f2 = med in polynomial time.

In order to prove the theorem, we use the nesting-technique introduced for hierarchical clustering by
Lin et al. [46].

Definition 14 (adapted from [46]). We say that a clustering objective f1 ∈ {med,mean} admits
the (γ, δ)-nesting property if the following holds for every clustering instance. Let P be a finite set
of points, d a metric on P and k ∈ N. For every two clusterings (C, σ), (C ′, σ′) with |C| = k and
|C ′| > k there exists a clustering (C̃, σ̃) with |C̃| = k which satisfies the following properties

1. for p, q ∈ P with σ′(p) = σ′(q) we have σ̃(p) = σ̃(q) and

2. med(C̃, σ̃, d) ≤ γ ·med(C ′, σ′, d) + δ ·med(C, σ, d).

We call (C̃, σ̃) a (γ, δ)-nesting with respect to solutions (C, σ) and (C ′, σ′).

The first property guarantees that points which are contained in the same cluster in (C ′, σ′) stay
in the same cluster in (C̃, σ̃) and the second property guarantees that the cost of (C̃, σ̃) can be
bounded in terms of the cost of the other two solutions. Lin et al. [46] show that k-median admits
the (2, 1)-nesting property. For k-means in the Euclidean space Großwendt [7] shows that k-means
admits the (4, 2)-nesting property.

For k-median we follow the approach for the (2, 1)-nesting by Lin et al. [46] to compute the
approximate Pareto set P(1,2+δ) with respect to f1 = sep and f2 = med.

Lemma 15 ([46]). The k-median objective admits the (2, 1)-nesting property.

Proof. Let P be a finite set of points, d a metric on P and k ∈ N. Given two clusterings (C, σ) and
(C ′, σ′) with |C| = k and |C ′| > k we want to construct a clustering (C̃, σ̃) which is a (2, 1)-nesting
with respect to solutions (C, σ) and (C ′, σ′).

We now construct our solution by setting C̃ = C. For p ∈ P we define the assignment as follows

σ̃(p) = argmin
c∈C̃

d(c, σ′(p)).

Now notice that (C̃, σ̃) satisfies |C̃| = k. Furthermore we have for points p, q ∈ P with σ′(p) = σ′(q)
that σ̃(p) = σ̃(q).

19

To bound the k-median cost, we first bound the distance of each point p to its center:

d(p, σ̃(p)) ≤ d(p, σ′(p)) + d(σ′(p), σ̃(p))

≤ d(p, σ′(p)) + d(σ′(p), p) + d(p, σ(p))

≤ 2 · d(p, σ′(p)) + d(p, σ(p))

The first inequality holds due to the triangle inequality. The second inequality holds due to

d(σ′(p), σ̃(p)) = min
c∈C̃

d(σ′(p), c) ≤ d(σ′(p), σ(p)) ≤ d(σ′(p), p) + d(p, σ(p)).

Taking the sum over all points gives us:∑
p∈P

d(p, σ̃(p)) ≤
∑
p∈P

(2 · d(p, σ′(p)) + d(p, σ(p)))

= 2 ·med(C ′, σ′, d) +med(C, σ, d).

This concludes the proof.

We now apply this lemma to compute the approximate Pareto set for f1 = sep and f2 = med.

Lemma 16. Given the minimal distance between two clusters D > 0. Let (C∗, σ∗) be the optimal
k-median solution with respect to d2 that fulfills sep(C∗, σ∗, d1) ≥ D. Then we can compute a
solution (C, σ) with |C| = k such that all clusters have at least distance D to each other with respect
to d1, and med(C, σ, d2) ≤ (2 + δ) ·med(C∗, σ∗, d2) in polynomial time or report that there is no
such clustering.

Proof. Since we have given the minimal distance between clusters D, we know that all points that
have distance smaller than D to each other must lie in the same cluster of (C∗, σ∗). Therefore we
can construct a clustering (CS , σS) that greedily clusters all of these points together.

Note that if there exists a solution that fulfills our distance requirement then |CS | ≥ k since all of
these groups would have to be present in (C∗, σ∗) which is a k-clustering. If not, then D is chosen
too large.

If |CS | = k, then it must hold that (CS , σS) = (C∗, σ∗) and we are done. Therefore we assume for
the rest of the proof that |CS | > k.

It is clear that all points that are clustered together in (CS , σS) must be clustered together in our
solution (C, σ), because if there are points p, q with σS(p) = σS(q) but σ(p) ̸= σ(q) we have
d1(p, q) < D and therefore sep(C, σ) < D. Therefore the solution (C, σ) must be compatible with
(CS , σS) and at the same time ensure that the k-median cost with respect to d2 is not too high. To
ensure this, we denote by (CM , σM) a δ-approximation to the best k-median solution (w.r.t. d2).
Therefore (CM , σM) is also a δ-approximation to (C∗, σ∗).

Since the separation cost function is independent of the set of centers CS we can without loss of
generality choose the center set to be the set of points that minimizes med(CS , σS , d2). Since points
which are in the same cluster in (CS , σS) have to be in the same cluster in (C∗, σ∗) as well, we know

med(CS , σS , d2) ≤ med(C∗, σ∗, d2). (1)

Now let (C, σ) be a clustering which is a (2, 1)-nesting with respect to (CM , σM) and (CS , σS).
Such a clustering exists by Lemma 15.

For all p, q with d1(p, q) < D it holds that σS(p) = σS(q) and therefore also σ(p) = σ(q). Thus we
obtain sep(C, σ, d1) ≥ D. For the k-median cost with respect to d2 we obtain

med(C, σ, d2) ≤ 2 ·med(CS , σS , d2) +med(CM , σM , d2)

≤ 2 ·med(C∗, σ∗, d2) + δ ·med(C∗, σ∗, d2)

= (2 + δ) ·med(C∗, σ∗, d2),

where the last inequality holds because of inequality (1). This concludes the proof.

20

The theorem now follows from the fact that there are only n(n−1)
2 many possible values for D and we

can test all of them in polynomial time. Note that in the last steps of the proof of Lemma 16 we say
med(CM , σM , d2) ≤ δ ·med(C∗, σ∗, d2). The same guarantee holds also with the optimal k-median
clustering instead of the Pareto-optimal solution (C∗, σ∗), and in cases where the Pareto-optimal
solution has bad values for the k-median target function, this might be a big advantage.

The combination of k-separation and k-means works exactly the same way, with the exception that
we cannot simply use the triangle inequality in the analysis, leading to the following theorem.

Theorem 17. Given a finite set P and two metrics d1, d2 and objectives f1 = sep and f2 = mean.
Then we can compute the α-approximate Pareto set Pα for α = (1, 4 + 4 ·

√
δ + δ) with respect to

f1, f2 in polynomial time, where δ the best approximation bound achievable for the k-means problem
with respect to d2.

The following corollary follows directly from the above theorem and the fact that Ahmadian et al. [4]
presented a (9 + ϵ)-approximation algorithm for the k-means problem in general metrics.

Corollary 18. We can compute the approximate Pareto set Pα for α = (1, 25 + ϵ) with respect to
the objectives f1 = sep and f2 = mean in polynomial time.

We now follow the approach that Lin et al. [46] used to get a (8, 2)-nesting, but without setting τ = 2
at the end of the proof, which leads to the following more general statement:

Lemma 19 ([46]). The k-means objective admits the (4+ τ2, 1+ 4
τ2)-nesting property for all τ > 0.

Proof. Analogously to the proof of Lemma 15 we get:

d(p, σ̃(p))2 ≤ (2 · d(p, σ′(p)) + d(p, σ(p)))2

= 4 · d(p, σ′(p))2 + 4 · d(p, σ′(p))d(p, σ(p)) + d(p, σ(p))2

≤ (4 + τ2) · d(p, σ′(p))2 + (1 +
4

τ2
) · d(p, σ(p))2

for all τ > 0. The last inequality follows from the fact that 4ab ≤ τ2 · a2 + 4
τ2 · b2 for all a, b, τ > 0.

Summing up over all points leads to:∑
p∈P

d(p, σ̃(p))2 ≤
∑
p∈P

(
(4 + τ2) · d(p, σ′(p))2 + (1 +

4

τ2
) · d(p, σ(p))2

)
= (4 + τ2) ·mean(C ′, σ′, d) + (1 +

4

τ2
) ·mean(C, σ, d).

In the following lemma, we can now choose the value of τ in relation to the available k-means
approximation factor δ in order to improve our approximation factor.

Lemma 20. Given the minimal distance between two clusters D > 0. Let (C∗, σ∗) be the optimal
k-means solution with respect to d2 that fulfills sep(C∗, σ∗, d1) ≥ D. Then we can compute a
solution (C, σ) with |C| = k such that all clusters have at least distance D to each other with respect
to d1, and mean(C, σ, d2) ≤ (4 + 4

√
δ + δ) ·mean(C∗, σ∗, d2) in polynomial time or report there

is no such clustering.

Proof. Both the algorithm and the analysis for sep(C∗, σ∗, d1) ≥ D works exactly as in the proof of
Lemma 16. Let (CM , σM) and (CS , σS) be defined analogously to the proof of Lemma 16.

Let (C, σ) be a clustering which is a (4 + 2
√
δ, 1 + 2√

δ
)-nesting with respect to (CM , σM) and

(CS , σS). Such a clustering exists by setting τ2 = 2
√
δ in Lemma 19.

For all p, q with d1(p, q) < D it holds that σS(p) = σS(q) and therefore also σ(p) = σ(q). Thus we
obtain sep(C, σ, d1) ≥ D.

21

For the k-means cost with respect to d2 we obtain

mean(C, σ, d2) ≤ (4 + 2
√
δ) ·mean(CS , σS , d2) + (1 +

2√
δ
) ·mean(CM , σM , d2)

≤ (4 + 2
√
δ) ·mean(C∗, σ∗, d2) + δ(1 +

2√
δ
) ·mean(C∗, σ∗, d2)

= (4 + 2
√
δ) ·mean(C∗, σ∗, d2) + (δ + 2

√
δ) ·mean(C∗, σ∗, d2)

= (4 + 4
√
δ + δ) ·mean(C∗, σ∗, d2),

where the last inequality holds because (CM , σM) is a δ-approximation to the optimal k-means
solution. This concludes the proof.

A.4 Combining the k-MSR problem and k-Separation problem

In this section, we combine the k-separation and the k-msr objectives. Notice that we here allow that
clusterings have less than k clusters.

The k-msr objective differs from other center-based objectives on a fundamental level. Whereas
it is always optimal with regard to the k-center, the k-median, or the k-means objectives to assign
points to their closest center, the same does not hold for the k-msr objective. Even on a line graph
and even when the centers are chosen optimally, assigning points to their closest centers can result
in a clustering whose k-msr cost is three times the cost of an optimal solution [45], and for more
complicated metric spaces this factor grows quickly. In particular, the black-box approach that we
have used in the previous two sections is not applicable here because it relies heavily on this property.
Instead, we will work through the explicit primal-dual algorithm of Buchem et al. [11] and show that
it still works if we replace single points with preformed clusters. Before that, however, let us quickly
ascertain, as before, that these two objectives cannot be approximated well simultaneously.
Observation 21. The example that we now provide does not turn out to be as bad as the ones given
in Example 6 or Example 11. This is because we can often merge clusters that are close to each other
without increasing the k-msr cost by much. If we were to consider the other examples, then we would
quickly find that the same arguments do not hold. For example, in the k-diameter case, we only had
to compare the clustering

C = {{1}, . . . , {k − 1}, Ak,m}
with one that evenly partitions Pk,m as a subset of [−(k−1)2, k−1] into k sets of equal length k−1,
to deduce that C, which is the only constant-factor approximation with regard to the k-separation
objective, is only Ω(k)-approximative with regard to the k-diameter objective. However, with regard
to the k-msr objective we would have to sum up all the radii of the second partitioning and so end
up with clustering whose is cost is also in the order of Ω(k2). In other words, this example does
not show that C is a bad clustering with regard to the k-msr objective. Instead we consider a graph
metric consisting of two parts:

1. a line graph consisting of k − 1 points, where all edges have weight 1;

2. a clique consisting of k − 1 points, where all edges have weight
√
k.

Each distance d(x, y) on the union of both graphs is given as the weight of a shortest path between x
and y. For there to always exist such a path we can just add a single edge somewhere between the
first and the second part with arbitrarily large weight. Now let us consider the only constant-factor
approximation with regard to the k-separation objective. As before, this clustering results from
merging all points in the line graph and leaving all points in the clique separate. Its separation value
is
√
k, whereas every other clustering has to have a separation value of 1 because it has to split up

the line graph. However, the k-msr cost of this solution is ⌈k−1
2 ⌉, which is worse by a factor of

√
k

than merging the clique and leaving each point in the line graph separate, as the latter has a k-msr
cost of exactly

√
k.

With this established, let us find a convenient formulation of the k-mim-sum-radii problem to be used
in this section. We first recall the notion of balls around points.

22

Definition 22. Let (P, d) be a finite metric space. For a pair (c, r) ∈ P × R, let B(P,d) (c, r) =
{x ∈ P | d(x, c) ≤ r} denote the set of points in P that are at distance at most r from c.

In the introduction, we said that the solution of an instance (P, d) of the k-msr problem is an
assignment function σ : P → C from P to a subset C ⊂ P that consists of k centers. The stated
goal was to find a σ that minimizes

∑
c∈C maxx∈σ−1(c) d(x, c). Since the cost of a single cluster is

determined only by two points, we can conceptualize solutions slightly differently. Instead of an
assignment we are looking for k pairs (c1, r1), . . . , (ck, rk) ∈ P × R that minimize

∑
i ri and that

guarantee that P ⊆
⋃

i B(P,d) (ci, ri). Each such pair induces a (not necessarily unique) assignment
by mapping each point x ∈ P to a center ci with d(x, ci) ≤ ri. We will work with this formulation
in the remainder of this section. The following shows how we wish to combine the k-separation and
k-msr objective functions.
Definition 23 (The τ -separated k-msr problem). Let d1, d2 be two metrics over a finite set P , k ∈ N,
and τ ≥ 0. The goal in the τ -separated k-msr problem is to find k pairs P = {(c1, r1), . . . , (ck, rk)}
that minimize cost(P) =

∑k
i=1 ri and that guarantee that for all S ∈ S(P,d1)(τ) there exists some

iS ∈ {1, . . . , k} with S ⊆ B(P,d2) (ciS , riS).

Instead of starting with individual points, we compute the minimally τ -separated clustering in a
preprocessing step and then only subsequently merge clusters in this clustering to reach k clusters.
By slightly adjusting the approach by Buchem et al. [11] we get the following result.
Theorem 24. There exists a (3 + ε)-approximation algorithm for the τ -separated k-msr problem
that runs in nO(1/ε) time.

The approximation factor is exactly the same as in the original paper. Before getting into the details
of Buchem et al.’s primal-dual algorithm we have to note an essential observation established by
Buchem et al.
Definition 25. Let (P, d) be a finite metric space and Q ⊂ P × R a finite set of pairs. The
intersection-graph G(P,d)(Q) of Q consists of

• vertices V(P,d)(Q) = Q and

• edges E(P,d)(Q) = {{(c, r), (c′, r′)} | B(P,d) (c, r) ∩ B(P,d) (c
′, r′) ̸= ∅}.

One of the most interesting properties of the k-msr objective is that the cost of a solution can some-
times be reduced by merging clusters (which cannot happen with the other center-based objectives).
For example, this is the case whenever ci ∈ B(P,d) (cj , rj), i.e., when the center of one pair is
contained within the ball of another pair. The following result of Buchem et al. shows that we can
merge sets of intersecting clusters without introducing too much additional cost.
Lemma 26 (Cf. Appendix C of [11]). Let (P, d) be a finite metric space, Q ⊆ P × R a finite set of
pairs whose intersection-graph G(P,d)(Q) is connected, and I ⊂ V(P,d)(Q) an independent set that
maximizes

∑
(c,r)∈I r. Then there exists a pair (c∗, r∗) ∈ P × d(P × P) such that

1.
⋃

(c,r)∈Q B(P,d) (c, r) ⊂ B(P,d) (c
∗, r∗) and

2. r∗ ≤ 3
∑

(c,r)∈I r.

The proof of this result is dispersed over several technical results contained in Appendix C of [11].
Since it does not concern our new constraints, we won’t repeat it here. However, with this taken care
of, we are now in the position to work through the actual primal-dual algorithm. Fix an arbitrary
instance (a finite set P , two metrics d1 and d2 over P , a number k ∈ N, a threshold τ ≥ 0) and let
(c∗1, r

∗
1), . . . , (c

∗
k, r

∗
k) denote the pairs of optimal solution P for the τ -separated k-msr problem in

non-increasing order of their radii.

The first step is common to all primal-dual approaches for the k-msr problem ([13, 28, 11]) and
consists of guessing the 1/ε largest pairs (c∗1, r

∗
1), . . . , (c

∗
1/ε, r

∗
1/ε) of the optimal solution (where

we assume w.l.o.g. that 1/ε ∈ N). This can be done in nO(1/ε) time and leaves us to only have to
approximate the remaining k′ = k − 1/ε pairs (c∗1/ε, r

∗
1/ε), . . . , (c

∗
k, r

∗
k). The pairs comprising the

optimal solution can be of drastically different size, but this segmentation ensures that all leftover

23

clusters
S ′ = {S ∈ S(P,d1)(τ) | ∀i ∈ {1, . . . , 1/ε} : S ̸⊆ B(P,d2) (ci, ri)}

can be covered by balls of radii at most r1/ε ≤ ε · cost(P). This will give us some breathing room
later on. From now on we can focus on the τ -separated k′-msr problem for P ′ =

⋃
S∈S ′ S.

For the second step of the algorithm, let us set up the primal and dual LP corresponding to the
problem. While they look quite similar to those for the vanilla k-msr problem, conceptually they are
slightly different. While Buchem et al. only have to cover individual points, we have to ensure that
clusters from S ′ = {S1, . . . , Sℓ} are always covered as a whole.

Primal LP:
minimize

∑
(c,r) r · x(c,r)

subject to
∑

(c,r):Sj⊂B(P,d2)(c, r)
x(c,r) ≥ 1 ∀j ∈ {1, . . . , ℓ}∑

(c,r) x(c,r) ≤ k′

x(c,r) ≥ 0

where we have a variable x(c,r) for every pair (c, r) consisting of a center c ∈ P and a radius
r ∈ R := {d(x, y) | x, y ∈ P : d(x, y) ≤ r∗1/ε}. The corresponding dual LP is as follows:

Dual LP:
maximize

∑
j αj − λk′

subject to
∑

j : Sj⊂B(P,d2)(c, r)
αj ≤ r + λ ∀(c, r)
αj ≥ 0 ∀j ∈ {1, . . . , ℓ}
λ ≥ 0

As expected, the second step consists of computing a solution for the dual LP that can almost fully pay
for a solution of the original τ -separated k-msr problem. While this is the standard for primal-dual
algorithms, Buchem et al.’s specific approach for the vanilla versions differs significantly from the
earlier approaches of both Charikar and Panigrahy [13], as well as Friggstad and Jamshidian [28].

Definition 27. Let (α, λ) be a solution for the dual LP and µ =
r∗1/ε
|P|2 . A pair (c, r) ∈ P × R is

almost tight, if the corresponding dual constraint is tight up to an additive factor of µ, i.e., if∑
j : Sj⊂B(P,d2)(c, r)

αj ≥ r + λ− µ.

Starting with the trivial solution α1 = . . . = αℓ = 0 and λ = 0, Buchem et al. successively increase
the values in such a way that the number of connected components of the intersection-graph of almost
tight pairs decreases while still guaranteeing that the solution stays valid and that every point is
contained in the ball of at least one almost tight pair. Roughly speaking, once they reach k′ connected
components, they’re able to derive a good solution for the k′-msr problem on P ′ with the help of
Lemma 26.

The overall approach is the same for us, but we have to modify the invariant to ensure that the clusters
S ∈ S ′ are fully contained within the ball of at least one tight pair. Now, contrary to the vanilla case,
in which the trivial solution satisfies the invariant, because which every point x ∈ P ′ is contained
within the respective ball B(P,d2) (x, 0), the trivial solution for our LP does not necessarily satisfy
our modified invariant. This is because the balls of radius 0 do not necessarily cover all clusters
S ∈ S ′. But this can easily be rectified by successively increasing the αj’s for clusters Sj that are
not yet covered at a uniform speed and end when no such cluster remains. At the end of this phase,
the invariant will be satisfied and we can continue in the same manner as Buchem et al. Let T denote
the set of currently tight pairs. Since no αj can be increased on its own, from now on we also have to
increase λ to offset this. Even then, if there is an (almost) tight pair, whose ball covers two different
clusters from S ′, then we cannot increase both of them, as this would (quickly) lead to a violation
of the respective constraint. Like Buchem et al. we greedily choose a maximal set of αj’s in such

24

a way that no two corresponding clusters are fully contained within the ball of some pair from T .
These variables as well as λ are increased uniformly by some value until one additional pair that until
then wasn’t almost tight becomes tight. Due to the choice of the αj’s, the validity of the solution is
guaranteed and the invariant satisfied. As long as the intersection-graph of the updated set T contains
strictly more than k′ connected components, we will increase the αj values of at least k′ + 1 clusters,
which means that the objective value of the solution increases as well. By relating this increase in
cost during each iteration to the upper bound k′r∗1/ε of the primal LP, Buchem et al. prove that the
number of possible iterations is upper bounded by O

(
|P|4

)
(or rather O

(
k|P|3

)
). In particular, this

shows that the process can be continued until at most k′ connected components are left.

From this point onward, the remaining analysis is independent of the newly imposed constraints and
so we will not cover it in detail. Just note that the resulting set of almost tight clusters T satisfies all
the requirements that are necessary for us to conclude the proof in the same manner as Buchem et
al. have done (see the proof of Lemma 2.3 in [11]).

By considering all thresholds τ ∈ d1(P × P) we get the following result on the Pareto set for
f1 = sep and f2 = msr.
Theorem 28. Let d1, d2 be two metrics defined over a finite set P and ε > 0. Then for f1 = sep and
f2 = msr we can compute an α-approximate Pareto set Pα with α = (1, 3 + ε) in O(n1/ε) time.

B Theoretical Part: Pareto Sets for Combining Minimization Objectives

B.1 Combination of two k-center/k-diameter objectives

We will calculate a (2, 2)-approximate Pareto set for the combination of two objectives f1, f2 ∈
{diam, rad}. To do this we adapt the algorithm by Hochbaum and Shmoys [37], which computes a
2-approximation for the objectives rad, diam, to the case where we want to optimize over two such
objectives simultaneously.

Remember that we are given two metrics d1, d2 on P and want to minimize fi with respect to di.
Let R = R1 × R2, where Ri = {di(v, w) | v, w ∈ P}. For any pair of distances (R1, R2) let
GR1,R2 denote the graph containing an edge between exactly those pairs of nodes v, w ∈ P fulfilling
that d1(v, w) ≤ R1 and d2(v, w) ≤ R2. We adjust the algorithm by Hochbaum and Shmoys [37]
as follows. Let βi = 1 if fi = diam and βi = 2 if fi = rad throughout the remainder of this
section. As in the original algorithm we can use the graph Gβ1R1,β2R2

to test for a pair of distances
(R1, R2) ∈ R whether there exists a solution with cost (2R1, 2R2) or decide that there is no solution
with cost (R1, R2).
Lemma 29. If the graph Gβ1R1,β2R2

contains an independent set of size greater than k then there
does not exist a solution with cost at most (R1, R2).

Proof. Let us assume that there exists a solution (C, σ) with cost (R1, R2). Let v, w ∈ P with
σ(v) = σ(w). Observe that di(v, w) ≤ 2Ri if fi = rad and di(v, w) ≤ Ri if fi = diam and thus
v, w are connected by an edge in Gβ1R1,β2R2

. Let I be an independent set in Gβ1R1,β2R2
. By the

previous observation we know that I cannot contain two points v, w with σ(v) = σ(w) and therefore
|I| ≤ |C| = k.

Lemma 30. If Gβ1R1,β2R2
contains a maximal independent set I of size at most k, there exists a

solution (C, σ) with C = I and cost at most (2R1, 2R2).

Proof. For every node v we can simply set σ(v) = v if v ∈ I or σ(v) = c for a neighbor c of v in
I (there always exists such a neighbor because otherwise I would not be maximal). If fi = rad it
holds that di(p, σ(p)) ≤ 2Ri and thus rad(I, σ, di) ≤ 2Ri. If fi = diam it holds for p, q ∈ P with
σ(p) = σ(q) that di(p, q) ≤ 2Ri and thus diam(I, σ, di) ≤ 2Ri.

Now let R′
i be defined as the biggest distance with respect to di smaller or equal than βiRi between

a pair of points in P . Observe that actually Gβ1R1,β2R2
= GR′

1,R
′
2
. Thus we obtain the following

corollary of Lemma 29.
Corollary 31. Let R′

i = maxp,q∈P:di(p,q)≤βiRi
di(p, q) for i = 1, 2. If GR′

1,R
′
2

contains an indepen-
dent set of size greater k then there exists no solution with cost at most (R1, R2).

25

In conclusion it is sufficient to compute a maximal independent set in GR1,R2 for all (R1, R2) ∈
R = R1 × R2 (remember that values in R directly correspond to potential cost values). If the
independent set has size less or equal to k we include the respective solution in the approximate
Pareto set. Because of Lemma 30 and Corollary 31 one obtains a (2, 2)-approximate Pareto set. Given
thatRi contains O(n2) distances between points in P and the calculation of a maximal independent
set in O(n2) we can compute the approximate Pareto set in time O(n6). One can easily improve
upon the running time by observing the following. If we find an independent set of size greater k in
the graph GR1,R2

we do not have to consider any combination (R′
1, R2) with R′

1 < R1. Similarly
if the maximal independent set has size at most k one does not need to consider any combination
(R1, R

′
2) with R′

2 > R2 since it would be dominated by the currently found solution anyway. We
combine both observations to reduce the number distances inR which we have to consider.

We start with the largest distance R1 ∈ R1 and the smallest distance R2 ∈ R2 and increase the R2 if
the maximal independent set computed in GR1,R2

has size > k, we decrease R1 otherwise. This way
one would still obtain a (2, 2)-approximate Pareto set while reducing the number of considered pairs
inR from O(n4) to O(n2) which yields a total running time of O(n4).

This can be further improved by observing the following. If we already have calculated the graph
GR1,R2

and a maximal independent set in this graph we probably do not need to recalculate the entire
graph and independent set if we slightly decrease R1 (and thus remove edges from the graph) or
slightly increase R2 (which adds edges). Instead one can simply modify the current graph while
keeping track how this affects the independent set. This is far cheaper most of the time. To update
the independent set properly we store for each node p ∈ P the set Bp of its neighbors contained in
the current independent set (intuitively these are the nodes that keep p from joining the independent
set as well). Following this idea one ends up with Algorithm 3. In the following we will prove its
correctness and that its running time is O(n3).

Algorithm 3:

1 sort distances d1(p, q) for p, q ∈ P: d(1)1 ≤ . . . ≤ d
(m)
1

2 sort distances d2(p, q) for p, q ∈ P: d(1)2 ≤ . . . ≤ d
(m)
2

3 let j = 0, P(2,2) = ∅, I = P, E = ∅, R1 = d
(m)
1 , R2 = 0

4 let Bp = ∅ for all p ∈ P
5 for i = m, . . . , 1 do
6 while |I| > k and j ≤ m do
7 j ++

8 R2 = d
(j)
2

9 foreach point pair {p, q} with d2(p, q) = R2 and d1(p, q) ≤ R1 do
10 ADDEDGE({p, q})

11 if |I| ≤ k then
12 let C = I , let σ(p) = p for p ∈ I and σ(p) = q where q is an arbitrary element in Bp for

p ∈ P\I . Add (C, σ) to P(2,2)

13 foreach point pair p, q with d1(p, q) = R1 and d2(p, q) ≤ R2 do
14 REMOVEEDGE({p, q})

15 R1 = d
(i−1)
1

16 return P(2,2)

Lemma 32. The following invariants are true for Algorithm 3 (at the beginning of line 6):

1. (P, E) = GR1,R2

2. I is a maximal independent set of GR1,R2

3. For all p ∈ P , it holds that Bp is the set of neighbors of p contained in I .

The invariant can be proven via a straightforward induction. The main idea is, that if we remove an
edge between a point p in the independent set I and another point q we need to check whether q has

26

Algorithm 4: ADDEDGE({p, q})
1 W.l.o.g. q ∈ I ⇒ p ∈ I
2 if p ∈ I then
3 Bq = Bq ∪ {p}
4 if p ∈ I, q ∈ I then
5 I = I \ {q}
6 for {q, r} ∈ E do
7 Br = Br \ {q}
8 if |Br| = 0 then
9 I = I ∪ {r}

10 Add r to Bs for all neighbors s of r

11 E = E ∪ {{p, q}}

Algorithm 5: REMOVEEDGE({p, q})
1 E = E \ {{p, q}}
2 if p ∈ I or q ∈ I then
3 set v = p, w = q if q ∈ I , set v = q, w = p otherwise
4 Bv = Bv \ {w}
5 if |Bv| = 0 then
6 I = I ∪ {v}
7 foreach neighbor r of v do
8 Br = Br ∪ {v}

still neighbors in the independent set left (i.e. Bq ̸= ∅). If this is not the case we need to add q to the
independent set to keep it maximal.

If we add an edge, the only critical case appears when it connects two nodes p, q which are both in the
independent set. If this is the case, we need to remove one of them from I to keep it an independent
set. However if we remove q we need to check for every neighbor r if it can now be added to I (i.e.,
the respective set Br is empty) to ensure that I stays maximal. In both operations the entries Bx are
updated for all x ∈ P accordingly.

Theorem 33. Algorithm 3 calculates a (2, 2)-approximate Pareto set.

Proof. Let us consider an arbitrary solution S with cost R∗
i with respect to fi for i = 1, 2. We choose

i′, j′ such that d(i
′)

1 = maxp,q∈P:d1(p,q)≤β1R∗
1
d1(p, q) and d

(j′)
2 = maxp,q∈P:d2(p,q)≤β2R∗

2
d2(p, q).

Using Corollary 31 we may conclude that if Algorithm 3 reaches an iteration with i = i′ and j = j′

the maximal independent set has size at most k. By Lemma 30 this results in a solution with cost
(2R∗

1, 2R
∗
2) which is added to P(2,2). However there might be two cases which prevent this situation

from happening:

• Case 1: At some point during the execution of the algorithm i = i′, j ≤ j′ and i gets
decreased.

One might note that i only gets decreased if an independent set of size at most k has been
found in G

d
(i′)
1 ,d

(j)
2

. Since d
(i′)
1 ≤ β1R

∗
1 and d

(j)
2 ≤ d

(j′)
2 ≤ β2R

∗
2 we obtain by Lemma 30

that a solution with cost (2R∗
1, 2R

∗
2) has been found. Thus S is (2, 2)-approximated.

• Case 2: At some point during the execution of the algorithm i ≥ i′, j = j′ and j gets
increased.

We observe that j gets only increased if the current independent set I of the algorithm has
size greater k. Furthermore the edge set of G

d
(i′)
1 ,d

(j′)
2

is a subset of the one of G
d
(i)
1 ,d

(j)
2

.

27

Thus I is also an independent set of G
d
(i′)
1 ,d

(j′)
2

. However by Corollary 31 this means that

there cannot exist a solution with cost (R∗
1, R

∗
2) which is a contradiction.

Thus we may conclude that any solution is at least (2, 2)-approximated by one of the solution
contained in P(2,2).

Now we want to bound the running time of the algorithm. To do this, we will introduce a potential
function Φ whose value is determined by the current state of the edge set E and the independent
set I of the algorithm. We define Φ((P,E), I) =

∑
p∈I deg (p) where deg(p) is the degree of p in

(P,E). Another way to think about this potential is that it is the sum of the size of Bp for every
node p, because each node in the independent set blocks every neighbor q from becoming part of the
independent set itself and thus appears in the respective set Bq . We will now bound both the cost of
the operation REMOVEEDGE({p, q}), as well as those of ADDEDGE({p, q}) by a function in O(n)
plus the respective potential change ∆Φ induced by this change (which might be negative).

Before doing this we need to clarify how the sets (Bp)p∈P are actually represented by the algorithm.
We want to be able to add a point to Bp, delete a point and extract an arbitrary element contained
in Bp in time O(1) each. All these requirements are fulfilled by a doubly linked list if we maintain
pointers for each edge e = {p, q} telling us where p is stored in the set Bq and vice versa. Using this
we can now bound the cost of the respective operations.
Lemma 34. The cost of REMOVEEDGE({p, q}) is bounded by O(2 + ∆Φ).

Proof. If neither p nor q are contained in I , the potential does not change while we only incur
constant cost and the lemma holds. Otherwise let w.l.o.g. p be contained in I (note that not both
nodes can be contained in I since they were connected by an edge). We distinguish two cases:

If q has another neighbor in I besides p, i.e. |Bq| ≥ 2, then the size of Bq decreases by 1 and the
potential Φ also decreases by 1. Thus O(2 + ∆Φ) = O(1) while the operation takes only constant
time.

If p was the only neighbor of q that was contained in the independent set, q gets added to I as well
to ensure that I is maximal. As a result for every neighbor r of q we need to add q to Br which
leads to a running time of O(c), where c is the number of neighbors of q, after the edge {p, q} has
been removed. At the same time every neighbor of q also increases the potential Φ by one when q
gets added to I . Thus ∆Φ = c − 1. As a result the running time of the operation lies still within
O(2 + ∆Φ) = O(c+ 1).

Lemma 35. The cost of ADDEDGE({p, q}) is bounded by O(2n+∆Φ)

Proof. The only critical case is that both p and q are contained in I because otherwise we only
incur constant cost while also the potential only changes by a constant. In this case the node q gets
removed from the independent set which means that for every neighbor r we need to remove q from
Br. Since q has at most n neighbors the cost of this procedure lies in O(n) while the potential
decreases by at most n. However if q was the only neighbor of r within I we need to add r to I to
ensure that I is maximal. As a result we again need to update the set Bs for all neighbors s of r,
which costs O(deg(r)) while the potential gets increased by deg(r). In total we get that the cost of
ADDEDGE is bounded by O

(
n+

∑
r∈I′ deg(r)

)
, where I ′ denotes the set of nodes newly added to

the independent set. At the same time:

O(2n+∆Φ) = O

(
2n− n+

∑
r∈I′

deg(r)

)
= O

(
n+

∑
r∈I′

deg(r)

)

Thus the lemma holds.

Using these two lemmas we can now bound the running time of Algorithm 3:
Theorem 36. The running time of Algorithm 3 lies within O(n3).

Proof. The running time of the algorithm mainly consists of three parts:

28

• The sorting of the distances in the beginning which needs time O(n2 log(n))

• Up to n(n−1)
2 calls of DELETEEDGE and ADDEDGE each (as each point pair gets inserted

and deleted at most once). Using the previous two lemmas we can bound the respective
costs by O(2 + ∆Φ) and O(2n+∆Φ). One might note that both at the beginning as well
at the end of the algorithm there is not a single edge in the edge set which means that Φ = 0.
Thus the total change of the potential is 0 and we can bound the total cost of the insertion
and deletion operations by O(n3).

• Constructing a solution from the independent set costs at most O(n) since we only have to
extract an element of Bp for every point p ∈ P . Since at most O(n2) solutions get added to
P(2,2) (one for every i in line 5 of Algorithm 3) the total time for constructing the solutions
lies in O(n3).

Thus also the entire running time is bounded by O(n3).

The following corollary is an immediate consequence of Theorem 33 and Theorem 36.
Corollary 37. Given a set P of n points, two metrics d1, d2 on P , k ∈ N and two objectives
f1, f2 ∈ {rad, diam}. We can compute the approximate Pareto set P(2,2) with respect to f1, f2 in
time O(n3).

B.2 The size of the Pareto set

In this section we will prove that there can actually exist Ω(n2) different Pareto optimal solutions if
we combine two different k-center/k-diameter objectives with each other.
Lemma 38. For every n ∈ N and f1, f2 ∈ {rad, diam} there exist a set of n points P and metrics
d1, d2 on P such that the size of the Pareto set P with respect to f1, f2 is in Ω(n2).

Proof. Let P be a set of size n. We chose the metrics d1, d2 on P as follows. Let p1, ..., pm be all
pairs of distinct points in P (i.e. m = n(n−1)

2). For every i we set d1(pi) to 1 + i
m and d2(pi) to

2− i
m . Furthermore we set d1(p, p) = d2(p, p) = 0 for all p ∈ P . One may note that the distance

between two distinct points lies always between 1 and 2. Thus the triangle inequality is trivially
fulfilled and d1, d2 are indeed metrics on P .

Now we consider the situation were we want to compute a k-clustering with k = n− 1. Observe that
only a single point gets assigned to a center besides itself. Then every k-clustering corresponds to
one pair pi of points that are contained in the same cluster and vice versa. The cost of this solution
is (d1(pi), d2(pi)). It is easy to observe that each of theses solutions is in fact Pareto optimal. Let
pi and pj be two pairs and assume w.l.o.g that i < j. Then it holds that d1(pi) < d1(pj) while
d2(pi) > d2(pj) which means that neither solution dominates the other one. Thus we end up with
m ∈ Ω(n2) different Pareto optimal solutions.

However one might note, that in the clustering instance constructed to prove Lemma 38 many
solutions differ only by a small factor. One could obtain a (2, 2)-approximate Pareto set of size 1 by
just choosing an arbitrary solution. While this is of course a special case one can prove that in fact
there always exists a (2, 2)-approximate Pareto set of size n. This result is a direct consequence of
the fact that in a metric there can only be a limited number of distances between point pairs (which
correspond to potential k-center/k-diameter solutions) that differ pairwisely by a factor of 2.
Lemma 39. Let P be a set of n points and let d be a metric on P . Then there do not exist n pairs of
points p1, ..., pn in P such that for all i ̸= j it holds that d(pi) ≤ 1

2d(pj) or d(pi) ≥ 2d(pj).

Proof. Suppose the statement would be wrong. Then there exists a subset of indices i1, .., ik such
that pi1 = {vi1 , wi1}, ..., pik = {vik , wik} and wij = vij+1 for all j = 1, . . . , k − 1 and wik = vi1 .
Let w.l.o.g. the distance of pi1 be maximum among distances of all pij . Then it holds by the triangle
inequality that

d(pi1) ≤
k∑

j=2

d(pij).

29

We might observe that the second longest edge is at most half as long as pi1 and that the third longest
edge is at most half as long as the second longest and so on. Thus we obtain

d(pi1) ≤ d(pi1)

k∑
j=1

1

2j
< d(pi1).

which is a contradiction.

The following corollary is a consequence of Lemma 39.
Corollary 40. Given a set P of n points, two metrics d1, d2 on P , k ∈ N and two objectives
f1, f2 ∈ {rad, diam}. There exist a (2, 2)-approximate Pareto set with respect to f1, f2 of size O(n).

Proof. Let P be the Pareto set induced by f1, f2. We will now construct a (2,2)-approximate Pareto
set Q of P. We will do this by iterating through P. First let Q = ∅. We start by adding the solution
that optimizes f1 to Q. Then we move along the curve by improving f2 while getting worse in f1.
Whenever we encounter a solution that is not (2,2)-approximated by the previous points in Q, we add
it. We repeat this until we reach the end of the curve.

Let x and y be two neighboring solutions in Q. Without loss of generality we assume that x was
added to Q before y. Note that since we only get worse in f1 we know that f1(x) < f1(y) and
therefore it must hold that f2(y) < 1

2f2(x) since otherwise x would (2,2)-approximate y.

By construction Q is a (2,2)-approximate Pareto set to P. Now assume for contradiction that |P| > n.
Then there would have been added more than n solutions to Q, such that for all x ̸= y ∈ Q it holds
that either f2(x) > 2f2(y) or f2(y) > 2f2(x). Since all solutions correspond directly to pairwise
distances in d2 of our point set P , this is a contradiction to Lemma 39 and therefore the corollary
follows.

B.3 Combination of k-center/k-diameter with k-median/k-means

We consider the combination of k-center with k-median or k-means with respect to two distinct
metrics d1 and d2. It is easy to see, that the size of the Pareto set is bounded by the number of possible
radii for k-center. Since this is always the distance between two points, we obtain |P| ≤ n(n−1)

2 .
Alamdari and Shmoys [5] show that we can compute the approximate Pareto set Pα for α = (4, 8)
with respect to f1 = rad and f2 = med and the special case where d1 = d2 . They modify the
LP-based approach by Charikar et al. [12] for k-median to compute a solution which is also a good
approximation to the radius.

In a similar way we show that the approach for k-median by Jain and Vazirani [41] can be modified
to compute the approximate Pareto set Pα for α = (9, 6 + ϵ) in the more general case d1 ̸= d2.
Theorem 41. Given a finite set P , two metrics d1, d2 on P , k ∈ N. If for R > 0 there exists a
solution (C, σ) for P with rad(C, σ, d1) ≤ R we can compute a solution (C ′, σ′) in polynomial time
such that rad(C ′, σ′, d1) ≤ 9 ·R and med(C ′, σ′, d2) ≤ (6 + ϵ) ·med(C, σ, d2).

Since the algorithm in [41] also produces a (54 + ϵ)-approximation for k-means we can also adapt it
to compute the approximate Pareto set Pα for α = (9, 54 + ϵ) for the case f1 = rad and f2 = mean.
Theorem 42. Given a finite set P , two metrics d1, d2 on P , k ∈ N. If for R > 0 there exists a
solution (C, σ) for P with rad(C, σ, d1) ≤ R we can compute a solution (C ′, σ′) in polynomial time
such that rad(C ′, σ′, d1) ≤ 9 ·R and mean(C ′, σ′, d2) ≤ (54 + ϵ) ·mean(C, σ, d2).

We assume that the algorithm by Alamdari and Shmoys [5] for k-center and k-median can also be
adapted to the combination of k-center and k-means with an adjusted approximation factor.

For the case f1 = rad and f2 = med we can compute the approximate Pareto set Pα for α = (9, 6+ϵ)

by checking all n(n−1)
2 possible values for the radius R. Suppose there exists a k-center solution

for P with radius ≤ R and let (CR, σR) be such a solution that minimizes the k-median cost.
Theorem 41 implies that we can compute a solution (C ′

R, σ
′
R) with f1(C

′
R, σ

′
R, d1) ≤ 9 · R and

med(C ′
R, σ

′
R, d2) ≤ (6 + ϵ) · med(CR, σR, d2) in polynomial time. Let Pα be the set containing

all these solutions, then Pα is an α-approximate Pareto set. Following the same approach we can

30

compute the approximate Pareto set Pα for α = (9, 54 + ϵ) in the case f1 = rad and f2 = mean.
This yields the following corollary.

Corollary 43. Given a finite set P , two metrics d1, d2 on P and k ∈ N. We can compute the
approximate Pareto set Pα for

• α = (9, 6 + ϵ) with respect to the objectives f1 = rad and f2 = med

• α = (9, 54 + ϵ) with respect to the objectives f1 = rad and f2 = mean

in polynomial time.

To combine k-diameter with k-median/k-means we observe that any solution (C, σ) with
diam(C, σ, d1) ≤ R satisfies rad(C, σ, d1) ≤ R. By Theorem 41 we can compute a solution
(C ′, σ′) with diam(C ′, σ′, d1) ≤ 2rad(C ′σ′, d1) ≤ 18R and med(C ′σ′, d2) ≤ (6+ ϵ)med(C, σ, d2)
in polynomial time. A similar statement holds for the combination of k-diameter and k-means by
Theorem 42.

Corollary 44. Given a finite set P , two metrics d1, d2 on P and k ∈ N. We can compute the
approximate Pareto set Pα for

• α = (18, 6 + ϵ) with respect to the objectives f1 = diam and f2 = med

• α = (18, 54 + ϵ) with respect to the objectives f1 = diam and f2 = mean

in polynomial time.

To prove Theorem 41 we repeat the (6 + ϵ)-approximation algorithm for k-median proposed by Jain
and Vazirani [41] and explain the relevant changes to obtain a solution which also approximates the
radius. Following [41] we first develop an algorithm for the facility location problem.

In the facility location problem we deal with a set F of possible facilities and a set D of clients.
Furthermore we are given a metric d on F ∪D and facility opening costs f(i) ≥ 0 for every i ∈ F .
The task is to compute a set C ⊂ F which minimizes the sum of opening costs and distances between
a client and its closest facility

∑
i∈C f(i) +

∑
j∈D mini∈C d(i, j). Later, when we use the algorithm

for facility location to solve the k-median problem on the set P , we set F = D = P .

We consider the combination of facility location with the k-center objective. Suppose we are given
two metrics d1, d2 on F ∪D and want to minimize the facility location cost (with respect to d2) as
well as the maximum distance between a client and its facility (with respect to d1). Now a client may
not be assigned to its nearest facility with respect to d2, since this may result in a large radius with
respect to d1. Thus we say that a solution consists of a set C ⊂ F and an assignment σ : D → C
of clients to facilities. We seek to minimize the objectives rad(C, σ, d1) = maxj∈D d1(j, σ(j)) and
fac(C, σ, d2) =

∑
i∈C f(i) +

∑
j∈D d2(j, σ(j)).

Theorem 45. Given a set of facilities F with opening costs f(i) ≥ 0 for i ∈ F , clients D, two
metrics d1, d2 on F ∪D and a number R > 0. If there exists a solution (S, τ) with rad(S, τ, d1) ≤ R,
then we can compute a solution (C, σ) in polynomial time such that rad(C, σ, d1) ≤ 3 · R and
3
∑

i∈C f(i) +
∑

j∈D d2(j, σ(j)) ≤ 3 · fac(S, τ, d2).

For some radius R > 0 we want to compute an optimal facility location solution with respect to d2
under the side constraint that the radius of every emerging cluster is at most R with respect to d1.
We consider the standard formulation of the facility location problem as an integer program with the
additional constraint that a client can only be assigned to a facility if it is at a distance at most R.
Let M = {(i, j) | i ∈ F, j ∈ D, d1(i, j) ≤ R} be the set of all such combinations. We consider the

31

following integer program.

minimize
∑
i∈F

f(i)yi +
∑

(i,j)∈M

d2(i, j)xij

subject to ∑
(i,j)∈M

xij ≥ 1 ∀j ∈ D

xij ≤ yi ∀(i, j) ∈M

xij ∈ {0, 1} ∀(i, j) ∈M

yi ∈ {0, 1} ∀i ∈ F

Given an optimal solution (x, y) of this program we open a facility i ∈ F iff yi = 1 and assign a
client j to i iff xij = 1. Let (C, σ) be the respective solution for facility location. It is easy to see that
we have rad(C, σ, d1) ≤ R since we only allow a client to be assigned to a facility within distance of
R with respect to d1.

To obtain the linear program we relax the last constraints to xij ≥ 0 and yi ≥ 0. Its dual is then given
by

maximize
∑
j∈D

αj

subject to
αj − βij ≤ d2(i, j) ∀(i, j) ∈M∑
(i,j)∈M

βij ≤ fi ∀i ∈ F

αj ≥ 0 ∀j ∈ D

βij ≥ 0 ∀(i, j) ∈M

We construct a solution for the dual LP by starting with αj = 0 for all j ∈ D and growing them
simultaneously at the same rate until some stopping condition is met. Later on the variable αj will
pay for the connection cost of client j and it will pay partially for the opening cost of some facility.

As in the algorithm in [41] we introduce the notion of time. We start at time 0, where all variables are
set to 0, all facilities are closed and all clients are unconnected. While time proceeds we increase all
variables of unconnected clients uniformly such that if a client j is unconnected at time t we have
αj = t at this time.

We have to maintain the feasibility of the solution. There are two types of events at time t which can
violate the feasibility.

The first type of event happens when there is a unconnected client j and (i, j) ∈ M such that
αj = d2(i, j). In this case we declare (i, j) to be tight. If facility i is open we declare j to be
connected to i. Otherwise from time t on we have to maintain the constraint αj − βij ≤ d2(i, j) by
starting to increase βij at the same rate as αj .

The second type of event happens when there is a facility i such that
∑

(i,j)∈M βij = f(i). In this
case we declare facility i to be open. Furthermore all unconnected clients j with (i, j) tight are
declared to be connected to i.

We stop the process when all clients are connected. Let C ′ be the set of open facilities at the end of
this process. For a client j let σ′(j) = i if j is declared connected to facility i. Then (C ′, σ′) is a
feasible solution to the facility location problem with rad(C ′, σ′, d1) ≤ R. We would like to bound
the facility location cost fac(C ′, σ′, d2) in terms of

∑
j∈C αj . However it is not possible to upper

bound the facility opening costs for facilities in C ′, since for a client j there may be multiple facilities

32

i ∈ C ′ for which βij > 0. Thus αj pays for opening multiple facilities from C ′. Therefore following
the work of [41] we will close some of the facilities in C ′ such that in the end every client pays for
opening at most one facility.

To decide which facilities we close from C ′ we construct a graph G on C ′ as follows. We connect
two facilities i, i′ ∈ C ′ by an edge if there exists a client j with βij > 0 and βi′j > 0. Then let
C ′′ ⊂ C ′ be a maximal independent set in G. For a client j we assign a facility from C ′′ as follows.
If there is a facility i ∈ C ′′ with βij > 0 we set σ′′(j) = i and call j directly connected. Since C ′′ is
an independent set, this facility is even unique. If there is no such facility in C ′′, we consider the
facility i which j is assigned to in (C ′, σ′), i.e., i = σ′(j). If i ∈ C ′′ we set σ′′(j) = i and call j
directly connected. Otherwise we know by maximality of C ′′ that there exists a facility i′ ∈ C ′′

which is connected to i by an edge. In this case we set σ′′(j) = i′ and call j indirectly connected.
Lemma 46. For the solution (C ′′, σ′′) computed by the algorithm we obtain 3

∑
i∈C′′ f(i) +∑

j∈D d2(j, σ
′′(j)) ≤ 3

∑
j∈D αj and rad(C ′′, σ′′, d1) ≤ 3R.

Proof. Let D1 ⊂ D be the set of directly connected clients and D2 ⊂ D be the set of indirectly
connected clients.

For a facility i ∈ C ′′ we know that f(i) =
∑

(i,j)∈M βij =
∑

i∈D1 : i=σ′′(j) βij . Where the first
equality holds, because i was declared open by the algorithm and the second equality holds, because
all clients j ∈ D with βij > 0 have to be assigned to i by σ′′ and are directly connected.

Let j ∈ D and i = σ′′(j). If j is directly connected we know that (i, j) ∈M and αj = βij+d2(i, j).
If j is indirectly connected we claim that d2(i, j) ≤ 3αj . Let i′ = σ′(j), since j is indirectly
connected, we know that i and i′ are connected by an edge in G. Thus there must be a client j′ ∈ D
with βij′ > 0 and βi′j′ > 0. We know that αj′ = βij′ + d2(i, j

′) and αj′ = βi′j′ + d2(i
′, j′), so

therefore d2(i, j
′) ≤ αj′ and d2(i

′, j′) ≤ αj′ . Let t be the time when facility i is declared open
by the algorithm and t′ the time when i′ is declared open by the algorithm. Since j′ is declared
to be connected as soon as it has a tight edge to an open facility, we know that j′ is connected at
time min{t, t′} and therefore α′

j ≤ min{t, t′}. On the other hand we know that t′ = αj , since
σ′(j) = i′. In total we obtain by triangle inequality, that d2(i, j) ≤ d2(i, j

′)+d2(j
′, i′)+d2(i

′, j) ≤
2αj′ + αj ≤ 3αj .

Altogether this implies

3
∑
i∈C′′

f(i) +
∑
j∈D

d2(j, σ
′′(j)) = 3

∑
i∈C′′

∑
j∈D1 : i=σ′′(j)

βij +
∑
j∈D1

αj − βσ′′(j)j +
∑
j∈D2

3αj

≤ 3
∑
j∈D1

βσ′′(j)j +
∑
j∈D1

αj − βσ′′(j)j +
∑
j∈D2

3αj

≤ 3
∑
j∈D

αj .

This yields the first part of the lemma.

For the second part let j be a client and i = σ′′(j). We have to prove that d1(i, j) ≤ 3R. If j is
directly connected we have (i, j) ∈M which implies d1(i, j) ≤ R. If j is indirectly connected let
i′ = σ′(j). Notice that this implies (i′, j) ∈M . Since j is indirectly connected, we know that i and
i′ are connected by an edge in G. Thus there must be a client j′ ∈ D with βij′ > 0 and βi′j′ > 0 and
therefore (i, j′), (i′, j′) ∈M . We obtain d1(i, j) ≤ d1(i, j

′) + d1(j
′, i′) + d1(i

′, j) ≤ 3R.

We are now able to prove the theorem.
Theorem 45. Given a set of facilities F with opening costs f(i) ≥ 0 for i ∈ F , clients D, two
metrics d1, d2 on F ∪D and a number R > 0. If there exists a solution (S, τ) with rad(S, τ, d1) ≤ R,
then we can compute a solution (C, σ) in polynomial time such that rad(C, σ, d1) ≤ 3 · R and
3
∑

i∈C f(i) +
∑

j∈D d2(j, σ(j)) ≤ 3 · fac(S, τ, d2).

Proof. Since (S, τ) is an integral solution to the LP with radius R, we know that the above algorithm
computes a solution α for the dual LP with

∑
j∈D αj ≤ fac(S, τ, d1). Let (C ′′, σ′′) be the solution for

facility location computed by the algorithm. We can apply Lemma 46 to see that rad(C ′′, σ′′, d1) ≤
3 ·R and 3

∑
i∈C′′ f(i) +

∑
j∈D d2(j, σ

′′(j)) ≤ 3fac(S, τ, d2).

33

Given some radius R > 0 and a set of points P . We originally wanted to compute an optimal
k-median solution of P with respect to d2 under the side constraint that the radius of every emerging
cluster is at most R with respect to d1. We consider the following formulation of the k-median
problem as a linear program with the additional constraint that a point can only be assigned to a
center if it is at distance at most R. Let M = {(i, j) | i, j ∈ P, d1(i, j) ≤ R} be again the set of all
such combinations. We consider the following linear program.

minimize
∑

(i,j)∈M

d2(i, j)xij

subject to ∑
(i,j)∈M

xij ≥ 1 ∀j ∈ P

xij ≤ yi ∀(i, j) ∈M∑
i∈F

yi ≤ k

xij ≥ 0 ∀(i, j) ∈M

yi ≥ 0 ∀i ∈ P

Its dual is then given by

maximize
∑
j∈P

αj − zk

subject to
αj − βij ≤ d2(i, j) ∀(i, j) ∈M∑
(i,j)∈M

βij ≤ z ∀i ∈ P

αj ≥ 0 ∀j ∈ P
βij ≥ 0 ∀(i, j) ∈M

z ≥ 0

Let (x⋆, y⋆) and (α⋆, β⋆, z⋆) be optimal solutions for the above linear program and its dual. We relax
the constraint that restricts the number of centers by k. Instead as in [41] we introduce a cost f for
opening a center. This yields an instance for the facility location problem where the set of clients
D and facilities F equals P and the cost for opening a facility equals f . We can use Theorem 45 to
compute a facility location solution (C, σ) for this instance. Let (α, β) be the respective solution for
the dual program computed by the algorithm, then

∑
j∈P d2(j, σ(j)) ≤ 3(

∑
j∈P αj − f |C|). Thus

if |C| = k we see that (α, β, f) is a feasible solution for the dual program with cost
∑

j∈P αj − f |C|
and therefore med(C, σ, d1) =

∑
j∈P d2(j, σ(j)) ≤ 3(

∑
j∈P αj − f |C|) ≤ 3(

∑
j∈P α⋆

j − z⋆k) =

3
∑

j∈P d2(i, j)x
⋆
ij .

However we cannot rely on the existence of facility cost f such that the algorithm for facility location
outputs a solution with exactly k centers. Instead for ϵ > 0 we can find via binary search cost f1
such that the respective solution (C1, σ1) for facility location consists of k1 < k centers and the
cost f2 such that the respective solution (C2, σ2) for facility location consists of k2 > k centers
and |f2 − f1| ≤ ϵ2dmin

3n where dmin = mini,j∈P,i̸=j d2(i, j). We slightly modify the randomized
rounding algorithm by [41] for k-median to select k centers C ⊂ C1 ∪ C2 such that in the end we
obtain a solution with E(med(C, σ, d2)) ≤ 6

∑
j∈P d2(i, j)x

⋆
ij and rad(C, σ, d1) ≤ 9R. We only

explain the randomized rounding and do not go into detail about the binary search for f1 and f2 and
the derandomization of selecting C ⊂ C1 ∪ C2, since this can be done analogously to [41].

The randomized rounding works as follows: Let a = k2−k
k2−k1

. Furthermore for i ∈ C1 consider the set
Ti = {i′ ∈ C2 | σ−1

1 (i) ∩ σ−1
2 (i′) ̸= ∅} ⊂ C2. For every i ∈ C1 let c(i) = argmini′∈Ti

d1(i
′, i) and

34

set C ′
2 = {c(i) | i ∈ C1} ∪ T where T is an arbitrary set of centers from C2 \ C ′

2 such that in the
end |C ′

2| = k1. Let S be a set of cardinality k − k1 chosen uniformly at random from C2 \ C ′
2. With

probability a we set C = C1 ∪S. For a point j ∈ P if σ2(j) ∈ S we set σ(j) = σ2(j) and otherwise
σ(j) = σ1(j). With probability 1− a we set C = C ′

2 ∪ S. For a point j ∈ P if σ2(j) ∈ C, we set
σ(j) = σ2(j) and otherwise σ(j) = c(σ1(j)).

The difference to the rounding procedure in [41] lies in the choice of C ′
2. To ensure that the radius

with respect to d1 can be bounded, we are not allowed to simply set C ′
2 as the set of points in C2

closest to C1. With a simple modification for C ′
2 we can ensure that both the k-median cost and the

radius can be bounded.
Lemma 47. We have E(med(C, σ, d2)) ≤ (6 + 2ϵ)

∑
(i,j)∈M x⋆

ijd2(i, j) and rad(C, σ, d1) ≤ 9R.

Proof. For a point j ∈ P we distinguish two cases. If σ2(j) ∈ C ′
2 then E(d2(j, σ(j)) = a ·

d2(j, σ1(j)) + (1 − a) · d2(j, σ2(j)). If σ2(j) ∈ C2\C ′
2 then with probability k−k1

k2−k1
= 1 − a we

have σ2(j) ∈ C and d2(j, σ(j)) = d2(j, σ2(j)), with probability a2 we have σ2(j) /∈ C, σ1(j) ∈ C
and d2(j, σ(j)) = d2(j, σ1(j)). With the remaining probability a(1− a) we have

d2(j, σ(j)) = d2(j, c(σ1(j))) ≤ d2(j, σ1(j)) + d2(σ1(j), c(σ1(j)))

≤ d2(j, σ1(j)) + d2(σ1(j), σ2(j))

≤ 2d2(j, σ1(j)) + d2(j, σ2(j)).

Where the second inequality holds because σ2(j) ∈ Tσ1(j) and c(σ1(j))) is the closest center to
σ1(j) among all centers in Tσ1(j). In total we obtain

E(d2(j, σ(j))) ≤ (1− a)d2(j, σ2(j)) + a2d2(j, σ1(j)) + a(1− a)(2d2(j, σ1(j)) + d2(j, σ2(j)))

≤ 2(ad2(j, σ1(j)) + (1− a)d2(j, σ2(j))).

Therefore

E(
∑
j∈P

d2(j, σ(j))) ≤ 2(a
∑
j∈P

d2(j, σ1(j)) + (1− a)
∑
j∈P

d2(j, σ2(j)).

It is left to prove

a
∑
j∈P

d2(j, σ1(j)) + (1− a)
∑
j∈P

d2(j, σ2(j) ≤ (3 + ϵ)
∑

(i,j)∈M

x⋆
ijd2(i, j).

Let (α(i), β(i)) be the solution for the dual facility location LP associated with the solution (Ci, σi)
for i = 1, 2. Observe that by Lemma 46 we have∑

j∈P
d2(j, σi(j)) ≤ 3(

∑
j∈P

α
(i)
j − fiki).

Moreover if we use f1 − f2 ≤ ϵ2dmin

3n we obtain

(1− ϵ2)
∑
j∈P

d2(j, σ2(j)) ≤ 3(
∑
j∈P

α
(2)
j − f1k2) + 3(f1 − f2)k2 − ϵ2

∑
j∈P

d2(j, σ2(j))

≤ 3(
∑
j∈P

α
(2)
j − f1k2) + ϵ2dmin − ϵ2dmin

= 3(
∑
j∈P

α
(2)
j − f1k2).

Finally we get

a
∑
j∈P

d2(j, σ1(j)) + (1− a)
∑
j∈P

d2(j, σ2(j) ≤ (3 + ϵ)(
∑
j∈P

aα
(1)
j + (1− a)α

(2)
j − f1k)

≤ (3 + ϵ)
∑

(i,j)∈M

x⋆
ijd2(i, j).

35

Where the last inequality follows from the fact that (aα(1) + (1− a)α(2), aβ(1) + (1− a)β(2), f1) is
a feasible solution to the dual of the k-median LP.

To bound the radius of (C, σ) with respect to d1 we observe that for every point j ∈ P we have σ(j) ∈
{σ1(j), σ2(j), c(σ1(j))}. In the case σ(j) = σi(j) we can use d1(j, σi(j)) ≤ rad(Ci, σi, d1) ≤ 3R
and in the last case we use that there exists a point j′ with σ1(j) = σ1(j) and σ2(j) = c(σ1(j))
and thus by triangle inequality d1(j, c(σ1(j))) ≤ d1(j, σ1(j))) + d1(σ1(j

′), j′) + d1(j
′, σ2(j)) ≤

2rad(C1, σ1, d1) + rad(C2, σ2, d1) ≤ 9R.

Theorem 41 follows immediately from the previous lemma.

The algorithm in [41] also extends to squared distances and yields a (54 + ϵ)-approximation for
k-means. Notice that the additional factor of 2 in the Euclidean space mentioned in [41] can be
omitted since we restrict the set of possible centers to P from the beginning. Theorem 42 summarizes
the results for k-means.

B.4 Combinations of k-median and k-means

We first prove that the size of the Pareto set can be exponential for the combination k-median and
k-means even if d1 = d2. For this purpose we present a small construction that consists of several
points which should be covered by one center in the final solution. Both the optimal center and the
value of the 1-median solution differ from the optimal center and the value of the 1-means solution in
this construction.

Let M ⊂ R be such a construction and d1(x, y) = d2(x, y) = ∥x− y∥2 = |x− y|. In the following
we denote by c1, c2 the optimal 1-median and the optimal 1-means center, respectively. Furthermore
let αi =

∑
p∈M |p − ci| and βi =

∑
p∈M |p − ci|2 for i ∈ {1, 2} and assume that α1 < α2 and

β1 > β2. An example of such a construction is given in Example 50.

We now construct an instance P with an exponentially large Pareto set by combining several scaled
versions of M . Let Mλ = {2λ · x + λ ·∆ | x ∈ M} and cλi = 2λ · ci + λ ·∆ for i ∈ {1, 2} and
∆ ≥ δ2k+1, where δ denotes the maximum diameter of M . Define P to be an instance consisting of
M0,M1,M2,M3, . . . ,Mk−1. Thus P consists of k substructures, each of which should be a cluster
of the optimal k-clustering for both cost functions.

Theorem 48. For every k ∈ N there exists a point set P ⊂ R such that for d1 = d2 = ∥·∥2 and
f1 = med, f2 = mean we have |P| ≥ 2k.

In order to prove this theorem, we look at the 2k clusterings that are constructed by choosing either
ci1 or ci2 as center of each of the k different substructures Mi. More formally, define for I ⊆ [k] the
center set CI which contains ci1 iff i ∈ I and ci2 otherwise. For all p ∈ Mi we set σI(p) = ci1 if
ci1 ∈ CI and σI(p) = ci2 if ci2 ∈ CI .

The following lemma shows that every such center set induces a Pareto-optimal clustering, which
directly proves the theorem.

Lemma 49. (CI , σI) is Pareto-optimal for all I ⊆ [k].

Proof. We prove the lemma by contradiction. Assume there is an I ′ such that (CI′ , σI′) dominates
(CI , σI). We consider two cases.

1 2
3 1 1

Figure 6: Example for the construction M . The numbers below indicate the numbers of points on the
location.

36

Case 1:
∑

i∈I′\I 2
i−1 >

∑
i∈I\I′ 2i−1. In this case we know

mean(CI , σI , ∥·∥2) =
∑
i∈I

22i−2β1 +
∑
i/∈I

22i−2β2

=
∑

i∈I\I′

22i−2β1 +
∑

i∈I∩I′

22i−2β1 +
∑

i∈I′\I

22i−2β2 +
∑

i/∈I∪I′

22i−2β2

<
∑

i∈I′\I

22i−2β1 +
∑

i∈I∩I′

22i−2β1 +
∑

i∈I\I′

22i−2β2 +
∑

i/∈I∪I′

22i−2β2

=
∑
i∈I′

22i−2β1 +
∑
i/∈I′

22i−2β2

= mean(CI′ , σI′ , ∥·∥2)

where the inequality holds because
∑

i∈I′\I 2
i−1 >

∑
i∈I\I′ 2i−1 and the β1 > β2. This

contradicts the assumption.

Case 2:
∑

i∈I′\I 2
i−1 <

∑
i∈I\I′ 2i−1. Here we analogously get med(CI , σI , ∥·∥2) <

med(CI′ , σI′ , ∥·∥2), which also contradicts the assumption.

By the construction of P we know that (CI , σI) cannot be dominated by any other solution (C, σ).
It is easy to observe that if Mi contains a center that it is always better to assign all other points
within this center independently whether we consider the k-median or k-means objective. Thus for
any Pareto-optimal solution (C, σ) that dominates a solution (CI , σI) there exists a non-empty set U
of indices such that for all i ∈ U there is no center chosen within Mi. At the same time the other
k− |U | scaled versions of M contain |U | additional centers. Thus we might remove arbitrary centers
from these until every Mj contains only a single center, choose an arbitrary center in Mi for any
i ∈ U and for all j ∈ {0, ..., k − 1} reassign all points in Mj to the respective center. For each index
i ∈ U the k-median assignment cost of any point in Mi gets reduced from at least ∆− δ · 2k−1 to at
most δ2k−1. At the same time the assignment cost of any point contained in a cluster where a point
gets removed increases by at most δ · 2k−1 while the cost of the remaining nodes stays the same.
Thus the k-median cost decreases by at least |M ||U |(∆− 3δ2k−1) > 0. A similar statement can be
shown for the k-means objective. Thus the respective solution would not have been Pareto-optimal
which is a contradiction which means that for any I the solution (CI , σI) is Pareto-optimal and the
lemma follows.

In the following we see one possible example for the construction M .
Example 50. Consider 5 points on a line, where the distance between the first three points and the
second point is 1 and the distance between the second and the third point is 2 (see Figure 6). Then the
optimal median center is one of the leftmost points, while the optimal mean center is the single point
in the middle. Therefore α1 = 4, α2 = 5, β1 = 10 and β2 = 7, fulfilling the prerequisites on M .

Even though the Pareto set of this combination may have exponential size, Papadimitrou and Yan-
nakakis [49] showed that there always exists an (1 + ϵ, 1 + ϵ)-approximate Pareto set, whose size is
polynomial in the input size and 1

ϵ . They furthermore showed that there is a polynomial algorithm
to construct such an (1 + ϵ, 1 + ϵ)-approximate Pareto set if and only if one is able to solve the
following problem in polynomial time: Given the instance and b1, b2 ∈ R, either find a solution
s with fi(s) ≤ bi for i ∈ {1, 2} or report that there is no solution s with (1 + ϵ)fi(s) ≤ bi for
i ∈ {1, 2}. Unfortunately, for f1, f2 ∈ {med,mean} it is unknown whether this problem can be
solved efficiently.

From now on, we focus on finding an approximate convex Pareto set instead. Since in the following
we only consider cases where α1 = α2, we write CPα instead of CPα,α for convenience.
Theorem 51. Given a finite set P , metrics d1, d2 on P and two objectives f1, f2 ∈ {med,mean}.
Let ϵ > 0. Then we can compute an (δ + ϵ)-approximate convex Pareto set CPδ+ϵ in time that is
polynomial in the input size and 1

ϵ , where δ = 2.67059 if f1 = med and f2 = med, and δ = 9 + ϵ
if f1 = med and f2 = mean or f1 = mean and f2 = mean. The size of this set |CPδ+ϵ| is also
polynomial in 1

ϵ and |P |.

37

To do this, we make use of a scheme presented by Diakonikolas [22]. The idea is essentially to reduce
a given multi-objective optimization problem to an associated problem with a single, combined
objective.

More formally, let f1, f2 be two minimization objectives, and w = (w1, w2) ∈ R2
+ a weight vector.

Then we define the related Comb-problem to be the problem that seeks to minimize the weighted
combination of both objectives w · f = w1 · f1 + w2 · f2.

We denote by Combδ(w) a routine that returns a δ-approximate solution to the Comb-problem with
weight vector w. We will show that a polynomial time Combδ(w) routine is enough to compute a
(δ · (1 + ϵ))−approximate convex Pareto set to the bi-objective original problem Π for all ϵ > 0. To
achieve this, we will describe a scheme which returns such a set where the number of calls to the
Combδ routine is polynomial in 1

ϵ and the input size.

The scheme and its proof are basically identical to the one Diakonikolas describes in his thesis [22],
where he showed that an (F)PTAS for the Comb-problem is sufficient to obtain an (F)PTAS to the
convex Pareto set. In the following we show that the proof still works, if instead of an (F)PTAS for
the Comb-routine we only have an approximate Combδ-routine.

A point s ∈ R2
+ is called approximately balanced if both its coordinates are within factor 2 of each

other. We will first construct a set to (δ · (1 + ϵ))-cover all approximately balanced solution points
Sbal, and later use the fact that approximate convex Pareto sets are invariant under the scaling of their
objectives to cover all solution points.

First we observe that for all ϵ > 0 there is a set of size O(1ϵ) that (1 + ϵ)-covers all approximately
balanced solution points. We want to compute a δ-approximation to such a set using only O(1ϵ) many
calls to Combδ . Therefore we are looking for a set of weight vectorsWbal with |Wbal| ∈ O(1ϵ) whose
corresponding solution set Qbal = {Combδ(w) | w ∈ Wbal} contains a (δ · (1 + ϵ))-approximate
convex Pareto set of Sbal.

We will now define the setWbal in a way, that is only dependent on ϵ, but not on the given problem
instance. For that purpose, we set M = ⌈ 2ϵ ⌉. LetWbal = {(1, l

M), (l
M , 1) | l ∈ [M]}. It is easy to

see that |Wbal| ∈ O(4ϵ). Therefore we can compute Qbal with O(4ϵ) many calls to Combδ. Let Q∗
bal

be the convex Pareto set of Qbal.

The following lemma shows that the set Q∗
bal is in fact a (δ · (1 + ϵ))-approximate convex Pareto set

for all approximately balanced solution points.
Lemma 52. For every approximately balanced solution point s ∈ Sbal, there is a convex combination
of points in Q∗

bal that (δ · (1 + ϵ))-covers it.

Proof. We first prove the following claim: For any weight vector w ∈ R2
+ there is a solution

q∗ ∈ Q∗
bal such that w · q∗ ≤ δ(1 + ϵ)w · s.

Let w = (w1, w2) be an arbitrary weight vector. By symmetry and by scaling of the weights we can
without loss of generality assume that w2 ≤ w1 = 1. Let w∗ be (w1, w

∗
2), where w∗

2 arises from
w2 by rounding up to the next higher multiple of 1

M . It follows that w∗ ∈ Wbal and therefore was
considered by our scheme. Let q∗ be the solution point given by Combδ(w

∗).

By the definitions of w∗ and of Combδ the following holds:
wq∗ ≤ w∗q∗

≤ δ · w∗s

= δ · (w1 · s1 + w∗
2 · s2)

≤ δ · (w1 · s1 +
(
w2 +

1

M

)
· s2)

= δ · (ws+ 1

M
s2)

≤ δ · (ws+ 2

M
s1) (2)

≤ δ · (ws+ 2

M
ws) (3)

≤ δ · (1 + ϵ)ws,

38

where inequality (2) follows from the fact that s is approximately balanced and inequality (3) follows
from the fact that w1 = 1 and therefore s1 contributes directly to ws. This proves the claim.

Let q = (q1, q2) be the point that lies on the border of the convex hull of Q∗
bal and fulfills q1

q2
= s1

s2
(therefore q intersects the line between s and the origin).
Let ql, qr be the solutions in Q∗

bal such that ql1 ≤ q1 ≤ qr1 and there is no p ∈ Q∗
bal with ql1 ≤ p ≤ qr1 .

Let (1, wl), (1, wr) be the weights that generated ql and qr, respectively.

Then we know that for all weights between wl and wr either ql or qr are approximately optimal
(since w · p is linear in p and w for all w, p). Therefore there is a w = (1, w∗) with wr ≤ w∗ ≤ wl

such that w · ql = w · qr and both points are approximately optimal for this weight. Since q is a
convex combination of ql and qr we know that w · q = w · ql ≤ δ(1+ ϵ)w · s. Together with q1

q2
= s1

s2

it follows that s is approximately dominated by q which is a convex combination of ql, qr ∈ Q∗
bal.

Since normally not all solution points are approximately balanced, Q∗
bal might not cover all solution

points. Diakonikolas shows that this can be taken care of by looking at multiple different scalings of
the objective functions such that for each point s of the solution space there is one scaling such that s
is approximately balanced in the scaled version. He furthermore shows that a polynomial number of
scalings is sufficient.

This proves that for all ϵ > 0 one can construct a ((1 + ϵ) · δ)-convex Pareto set whose size is
polynomial in ϵ if there is a polynomial Combδ-routine. The runtime of this construction is also
polynomial in 1

ϵ for two objectives.

All that is left to do in order to prove the theorem is to show that there exist Comb routines that yield
the desired approximation factors to the different combinations of objective functions.

Lemma 53. Let d1, d2 be two metrics. Then the following hold:

1. There is a Comb2.67059-routine for f1 = med and f2 = med.

2. For all ϵ′ > 0 there is a Comb9+ϵ′ -routine for f1 = med and f2 = mean.

3. For all ϵ′ > 0 there is a Comb9+ϵ′ -routine for f1 = mean and f2 = mean.

Proof. 1. Since for any weight vector w ∈ R2
+ the function d′ = w1 · d1 + w2 · d2 is again a

metric, the Comb-problem can be solved by any approximation algorithm for the k-median
problem under general metrics. The currently best known algorithm is from Cohen-Addad
et al. [16] and achieves an approximation factor of 2.67059.

2. The algorithm for k-means in general metrics by Ahmadian et al. [4] extends to all sum-
based cost functions of the form

∑
p∈P c(p, σ(p)) whose distance function c(i, j) fulfills

the inequality c(i, j) ≤ 3(c(i, k) + c(k, l) + c(l, j)). The combined objective for the k-
means and k-median cost-functions for an arbitrary weight vector w ∈ R2

+ is given by w1 ·
med(C, σ, d1)+w2 ·mean(C, σ, d2) = w1 ·

∑
p∈P d1(p, σ(p))+w2 ·

∑
p∈P d22(p, σ(p)) =∑

p∈P w1 · d1(p, σ(p)) + w2 · d22(p, σ(p)). Thus all we have to do in order to apply the
algorithm to our objective is to show that c(i, j) = w1 · d1(i, j) + w2 · d22(i, j) fulfills the
necessary property, which is done in the following:

c(i, j) = w1d1(i, j) + w2d
2
2(i, j)

= w1(d1(i, k) + d1(k, l) + d1(l, j)) + w2(d2(i, k) + d2(k, l) + d2(l, j))
2

≤ w1(d1(i, k) + d1(k, l) + d1(l, j)) + 3w2(d
2
2(i, k) + d22(k, l) + d22(l, j))

≤ 3(w1d1(i, k) + w2d
2
2(i, k) + w1d1(k, l) + w2d

2
2(k, l) + w1d1(l, j) + w2d

2
2(l, j))

= 3(c(i, k) + c(k, l) + c(l, j)).

Therefore we also achieve the factor 9+ϵ′ for the combined cost function using the algorithm
in [4].

39

3. This works analogously to 2., by setting c(i, j) = w1 · d21(i, j) + w2 · d22(i, j) instead.

The theorem now follows directly from Lemma 53 and the factor achieved by our scheme.

C More Details on Experimental Results

C.1 Improving k-means++ by combination with separation

We test the approach to combine k-means with separation presented in Chapter A.3 on data sets with
ground truth inputs [2, 26, 6, 1, 3, 34, 32, 33]. We hope to improve the quality of the solution found
by k-means++ by a combination with Single Linkage. We evaluate the best solution (compared to
the ground truth) found by our approach in comparison to solutions found by k-means++ [8] and
Single Linkage [52]. Since all tested data sets are provided with a ground truth, we fix the number of
clusters k for the approximate Pareto set to be the desired number of clusters in the ground truth.

Algorithm. For every data set, we compute the approximate Pareto set for the desired number
of clusters as follows. Recall that for a data set of size n there are only O(n2) possible values for
the separation. We compute these values in time O(n2d) and sort them in increasing order in time
O(n2 log(n)). Here d is the dimension of the data set. Starting with separation 0, we increase the
separation in every step to the next largest value. Suppose the separation is ∆ in the current step, then
we merge all points whose distance is at most ∆. This can be done efficiently via a Union Find data
structure. Since the resulting clustering may have more than k clusters, we have to reduce the number
of clusters to k. For data sets in Rd and the k-means objective, one can replace every cluster by its
centroid weighted by the number of points in the cluster and then cluster these weighted centroids
instead of using the nesting technique of Lin et al. [46] for general metrics. Instead of choosing
the theoretically best approximation algorithm for k-means, we use k-means++ [8] to cluster the
centroids as it is known to be fast (running time O(nkd)) and to produce solutions of high quality for
the k-means problem in practice. Then the respective clustering on the original data set has separation
at least ∆ and at most k clusters. One can show that this algorithm computes an α-approximate
Pareto with α = (1, O(log k)).

Evaluation. We compare the clusterings in the approximate Pareto set to the ground truth. For
this purpose we compute the Normalized Mutual Information, Rand Index, and Fβ-scores for
β = 0.5, 1, 2. We briefly recall their definition below. For every measure we pick the clustering
in the approximate Pareto set that has highest value with respect to this measure. We compare our
results with two variants of k-means++ and Single Linkage. In the first variant we do not fix the
number of clusters, i.e., k-means++ and Single Linkage are performed for every k = 1, . . . , n and we
compute the highest values achieved by these clusterings. In the second variant we fix k to the desired
number of clusters in the ground truth and compute the respective values for all measures. Since
k-means++ and our algorithm are randomized, the depicted values are the average of the maximum
values achieved in 20 runs. The results are in Figure 11.

Data Sets. We tested the algorithms on the following data sets.

• Iris [26]: 150 points, d = 4, k = 3

• Dry Bean [2]: 13611 points, d = 16, k = 7

• Rice [1]: 3810 points, d = 7, k = 2

• Wine [3]: 178 points, d = 13, k = 3

• Optdigits [6]: 5620 points, d = 64, k = 10

• 2d-4c-no3 [34] (Figure 7a): 1123 points, d = 2, k = 4

• 2d-10c-no3 [32] (Figure 7b): 3359 points, d = 2, k = 10

• 2d-10c-no4 [33] (Figure 7c): 3291 points, d = 2, k = 10

40

(a) 2d-4c-no3 (b) 2d-10c-no3 (c) 2d-10c-no4

Figure 7: Visualization of the ground truth for the three synthetic data sets.

Results. The results show that for all data sets except rice and all measures the best solution in the
approximate Pareto set has a higher value than the solutions found by Single Linkage and k-means++
individually for the same number of clusters. In some cases k-means++ and Single Linkage provide
better results when allowing different numbers of clusters. Especially Single Linkage does provide
better results when we allow for more clusters, since it is sensitive to outliers. We see for example on
the data set 2d-10c-no4 in Figure 8 that Single Linkage reconstructs all of the larger clusters when
performed for an appropriate separation value and performs better than k-means++ with k = 10
(Figure 8a). However the number of clusters is large (k = 85) since there are some outliers which
are in separate clusters. If we perform Single Linkage for k = 10 we see that the result is two large
clusters containing most of the points and 8 clusters with at most 2 points each. The best solution in
the approximate Pareto set (Figure 8d) mostly coincides with the solution found by Single Linkage in
Figure 8c, however it has only 10 clusters. A similar behavior can also be observed on the data sets
2d-4c-no3 and 2d-10c-no3 in Figure 9 and Figure 10.

Based on our experiments the combination of k-means++ and Single Linkage can be useful to

• reduce the number of clusters found by Single Linkage or
• improve the quality of the k-means++ solution.

On all data sets that are not synthetic, the best result in the approximate Pareto set has a small
separation, as we see in Figure 12. Therefore we assume that it is sufficient to execute the algorithm
for small separation values instead of computing the whole approximate Pareto set to improve the
quality of the solution. Notice that on the data sets rice, wine, and optdigits the best solutions on the
approximate Pareto set for some measures are the ones with smallest separation. However it does not
necessarily coincide with the solution found by k-means++ and in fact performs better with respect
to NMI,RI, and Fβ-scores. For a visualization of NMI on the approximate Pareto set we refer to
Figure 13. In Figure 14 one can see the variance of the measures for k-means++ and the approximate
Pareto set.

Resources and running time. The experiments were performed on a machine with a 2.7GHz
AMD Ryzen 7 PRO 6850U processor and 32GB RAM. The source codes are in C++ and available
at https://github.com/algo-hhu/paretoClustering in folder kMeans_SL. The first draft of
the k-means++ algorithm and the Union Find data structure were produced using ChatGPT 4.0,
but then adapted and extended for our needs. The code was compiled using g++ version 11.4.0
with optimization flag -O2. Since the experiments are performed for a proof of concept and are not
optimized for running time, the running time was not tracked. The computation of the approximate
Pareto set and the evaluation with respect to all measures took at most 15 minutes per data set.

Measures. The following measures are used to evaluate the similarity between the ground truth
and the computed clustering. The measures take values in [0, 1], where a value of 1 is achieved when
the computed clustering matches the ground truth. For a detailed survey on such measures we refer
to [54]. Let (C, σ) be the computed clustering and (C∗, σ∗) be the ground truth. For i ∈ C, j ∈ C∗

let

• Pij = {p ∈ P | σ(p) = i, σ∗(p) = j} be the set of points assigned to center i by the
computed clustering and j by the ground truth,

41

https://github.com/algo-hhu/paretoClustering

(a) Clustering by k-means++ for k = 10. (b) Clustering by Single Linkage for k = 10.

(c) Clustering by Single Linkage for separation ∆ =
0.67 and k = 85.

(d) Clustering on the approximate Pareto curve for
k = 10.

Figure 8: Clusterings computed on data set 2d-10c-no4.

• P∗j = {p ∈ P | σ∗(p) = j} be the set of points assigned to j by the ground truth,
• Pi∗ = {p ∈ P | σ(p) = i} be the set of points assigned to i by the computed clustering,

• pij =
|Pij |
n , p∗j =

|P∗j |
n and pi∗ = |Pi∗|

n .

Rand Index: The Rand Index is defined by Rand [51]. Let the set of true positives be TP =
{{i, j} | i, j ∈ P, i ̸= j, σ(i) = σ(j) and σ∗(i) = σ∗(j)}, i.e., it contains pairs of points
which are contained in the same cluster both in (C, σ) and (C∗, σ∗). Furthermore let the
set of true negatives be TN = {{i, j} | i, j ∈ P, i ̸= j, σ(i) ̸= σ(j) and σ∗(i) ̸= σ∗(j)},
i.e., it contains pairs of points which are contained in different clusters both in (C, σ) and
(C∗, σ∗). The Rand Index is defined as

RI(C, σ) =
2(|TP |+ |TN |)

n(n− 1)
.

Fβ-score: The F-score was introduced in the context of clustering by Larsen and Aone [43]. For
centers i ∈ C and j ∈ C∗, we define the precision as Prec(i, j) = |Pij |

|Pi∗| and the recall as

Rec(i, j) =
|Pij |
|P∗j | .

We combine their definition with the more general definition of an Fβ-score in binary
classification by van Rijsbergen [53] and obtain the Fβ-score of a cluster i and j as

Fβ(i, j) = (1 + β2)
Prec(i, j) · Rec(i, j)

β2 · Prec(i, j) + Rec(i, j)
.

The Fβ-score of (C, σ) is then defined as

Fβ(C, σ) =
1

n

∑
j∈C∗

|P∗j |max
i∈C

Fβ(i, j).

42

(a) Clustering by k-means++ for k = 4. (b) Clustering by Single Linkage for k = 4.

(c) Clustering by Single Linkage for separation ∆ =
1.37088 and k = 11.

(d) Clustering on the approximate Pareto curve for
k = 4.

Figure 9: Clusterings computed on data set 2d-4c-no3.

Normalized Mutual Information: We also consider the Normalized Mutual Information as defined
by Fred and Jain [27].

NMI(C, σ) =
2

H(C, σ) + H(C∗, σ∗)

∑
i∈C

∑
j∈C∗

pij log
(pij
p∗jpi∗

)
,

where H(C, σ) = −
∑

i∈C pi∗ log(pi∗) and H(C∗, σ∗) = −
∑

i∈C∗ p∗j log(p∗j) are the
entropies of the clusterings (C, σ) and (C∗, σ∗).

43

(a) Clustering by k-means++ for k = 10. (b) Clustering by Single Linkage for k = 10.

(c) Clustering by Single Linkage for separation ∆ =
0.36 and k = 243.

(d) Clustering on the approximate Pareto curve for
k = 10.

Figure 10: Clusterings computed on data set 2d-10c-no3.

44

iris
Measure k-Means++ kMeans++ with k=3 Single Linkage Single Linkage with k=3 Pareto front with k=3

RI 0.8734 0.8683 0.8836 0.3289 0.9379
F1 0.8829 0.8780 0.8838 0.5000 0.9481
F2 0.8865 0.8807 0.8412 0.7143 0.9476

F0.5 0.8964 0.8827 0.9349 0.3846 0.9512
NMI 0.7452 0.7405 0.7070 0.0000 0.8578

dry-bean
Measure k-Means++ kMeans++ with k=7 Single Linkage Single Linkage with k=7 Pareto front with k=7

RI 0.8279 0.8026 0.8274 0.2470 0.8069
F1 0.6016 0.5944 0.3975 0.3348 0.5968
F2 0.7091 0.6339 0.5534 0.5369 0.6453

F0.5 0.6130 0.5713 0.3647 0.2503 0.5772
NMI 0.5277 0.5164 0.3753 0.1626 0.5231

rice
Measure k-Means++ kMeans++ with k=2 Single Linkage Single Linkage with k=2 Pareto front with k=2

RI 0.7892 0.7892 0.6325 0.5104 0.7888
F1 0.8794 0.8794 0.6729 0.6728 0.8792
F2 0.8796 0.8796 0.8353 0.8351 0.8794

F0.5 0.8802 0.8802 0.7123 0.5647 0.8800
NMI 0.4693 0.4693 0.2334 0.0007 0.4728

wine
Measure k-Means++ kMeans++ with k=3 Single Linkage Single Linkage with k=3 Pareto front with k=3

RI 0.7148 0.7105 0.6862 0.3628 0.7199
F1 0.7145 0.6919 0.6804 0.5029 0.7241
F2 0.8123 0.6982 0.7676 0.7036 0.7771

F0.5 0.7224 0.7034 0.6452 0.3921 0.7440
NMI 0.4278 0.4265 0.4105 0.0615 0.4400

optdigits
Measure k-Means++ kMeans++ with k=10 Single Linkage Single Linkage with k=10 Pareto front with k=10

RI 0.9528 0.9320 0.9024 0.0998 0.9390
F1 0.8322 0.7854 0.1818 0.1818 0.8137
F2 0.8216 0.7992 0.3572 0.3572 0.8246

F0.5 0.8748 0.7864 0.2355 0.1220 0.8149
NMI 0.7846 0.7459 0.4627 0.0000 0.7627

2d-4c-no3
Measure k-Means++ kMeans++ with k=4 Single Linkage Single Linkage with k=4 Pareto front with k=4

RI 0.9645 0.9645 0.9943 0.7243 0.9941
F1 0.9726 0.9726 0.9960 0.7538 0.9955
F2 0.9725 0.9725 0.9952 0.8759 0.9955

F0.5 0.9732 0.9732 0.9968 0.6724 0.9956
NMI 0.9052 0.9052 0.9792 0.7260 0.9779

2d-10c-no3
Measure k-Means++ kMeans++ with k=10 Single Linkage Single Linkage with k=10 Pareto front with k=10

RI 0.9795 0.9655 0.9850 0.7943 0.9894
F1 0.9209 0.8803 0.9116 0.5431 0.9684
F2 0.9294 0.8895 0.9248 0.7302 0.9698

F0.5 0.9409 0.8867 0.9382 0.4374 0.9686
NMI 0.9260 0.9065 0.9118 0.6763 0.9491

2d-10c-no4
Measure k-Means++ kMeans++ with k=10 Single Linkage Single Linkage with k=10 Pareto front with k=10

RI 0.9724 0.9597 0.9906 0.6056 0.9817
F1 0.8874 0.8608 0.9715 0.3735 0.9410
F2 0.8863 0.8707 0.9579 0.5825 0.9495

F0.5 0.9157 0.8691 0.9871 0.2767 0.9447
NMI 0.8933 0.8715 0.9409 0.4631 0.9267

Figure 11: Highest values achieved by k-means++ for arbitrary k, k-means++ with fixed k, Single
Linkage for arbitrary k, Single Linkage with fixed k and approximate Pareto set with fixed k.
Whenever k is fix, we fix it to the cluster number in the ground truth.

45

(a) iris, k = 3 (b) dry bean, k = 7

(c) rice, k = 2 (d) wine, k = 3

(e) optdigits, k = 10 (f) 2d-10c-no3, k = 10

(g) 2d-4c-no3, k = 4 (h) 2d-10c-no4, k = 10

Figure 12: Approximate Pareto curves. The highlighted points show the solutions on the curve with
highest NMI,RI,Fβ-scores. The points on the curve are numbered from right to left.

46

(a) iris, k = 3 (b) dry bean, k = 7

(c) rice, k = 2 (d) wine, k = 3

(e) optdigits, k = 10 (f) 2d-10c-no3, k = 10

(g) 2d-4c-no3, k = 4 (h) 2d-10c-no4, k = 10

Figure 13: Normalized Mutual Information for approximate Pareto curves. The highlighted points
show the solutions on the curve with highest values.

47

Measures Variance
iris k-means++

RI 1.6864e-04
F1 5.0690e-04
F2 1.7680e-05

F0.5 1.1936e-04
NMI 3.4781e-04

iris k-means++ k=7
RI 1.2151e-03
F1 1.9033e-03
F2 8.0220e-04

F0.5 2.5604e-03
NMI 1.3560e-03

iris Pareto set
RI 8.9365e-04
F1 8.0365e-04
F2 8.4472e-04

F0.5 5.6302e-04
NMI 1.1630e-03

dry-bean k-means++
RI 1.5876e-07
F1 2.2125e-05
F2 5.2971e-05

F0.5 6.8142e-06
NMI 7.2917e-06

dry-bean k-means++ k=2
RI 1.4560e-05
F1 2.5828e-05
F2 3.4703e-04

F0.5 2.0610e-04
NMI 1.7967e-05

dry-bean Pareto set
RI 1.9592e-05
F1 1.7173e-05
F2 1.0253e-04

F0.5 3.5594e-05
NMI 5.7523e-07

optdigits k-means++
RI 1.3865e-05
F1 8.2189e-04
F2 6.0707e-04

F0.5 2.8317e-04
NMI 9.0615e-05

optdigits k-means++ k=3
RI 1.2933e-04
F1 1.8262e-03
F2 1.3216e-03

F0.5 1.9015e-03
NMI 5.6838e-04

optdigits Pareto set
RI 2.8145e-05
F1 3.1205e-04
F2 2.5979e-04

F0.5 1.6697e-04
NMI 1.1354e-04

2d-4c-no3 k-means++
RI 3.8151e-07
F1 6.1481e-07
F2 6.2162e-07

F0.5 5.5008e-07
NMI 5.9403e-06

2d-4c-no3 k-means++ k=4
RI 3.8151e-07
F1 6.1481e-07
F2 6.2162e-07

F0.5 5.5008e-07
NMI 5.9403e-06

2d-4c-no3 Pareto set
RI 4.9304e-32
F1 1.2326e-32
F2 4.9304e-32

F0.5 1.2326e-32
NMI 1.2326e-32

Measures Variance
rice k-means++

RI 1.4400e-08
F1 6.6097e-09
F2 6.6097e-09

F0.5 6.0840e-09
NMI 4.5369e-08

rice k-means++ k=2
RI 1.4400e-08
F1 6.6097e-09
F2 6.6097e-09

F0.5 6.0840e-09
NMI 4.5369e-08

rice Pareto set
RI 0.0000e+00
F1 0.0000e+00
F2 0.0000e+00

F0.5 1.2326e-32
NMI 1.1937e-06

wine k-means++
RI 4.9972e-05
F1 6.3148e-07
F2 3.6481e-06

F0.5 1.6959e-04
NMI 2.5335e-06

wine k-means++ k=3
RI 1.5471e-04
F1 1.2263e-03
F2 1.3653e-04

F0.5 1.4320e-03
NMI 1.9449e-05

wine Pareto set
RI 6.6312e-07
F1 2.5850e-05
F2 9.2865e-05

F0.5 8.4455e-05
NMI 4.8492e-05

2d-10c-no3 k-means++
RI 4.4768e-05
F1 8.5650e-04
F2 7.6900e-04

F0.5 3.4128e-04
NMI 1.3592e-04

2d-10c-no3 k-means++ k=7
RI 2.0670e-04
F1 1.7448e-03
F2 1.3333e-03

F0.5 2.0250e-03
NMI 4.3568e-04

2d-10c-no3 Pareto set
RI 2.2066e-06
F1 4.8728e-05
F2 2.4905e-05

F0.5 6.8946e-05
NMI 1.4273e-05

2d-10c-no4 k-means++
RI 2.1759e-05
F1 3.4336e-04
F2 1.4351e-04

F0.5 1.8235e-04
NMI 8.8342e-05

2d-10c-no4 k-means++ k=4
RI 5.9045e-05
F1 8.7161e-04
F2 5.6323e-04

F0.5 1.1198e-03
NMI 2.1481e-04

2d-10c-no4 Pareto set
RI 4.4955e-05
F1 5.5125e-04
F2 1.3260e-04

F0.5 4.5889e-04
NMI 7.0230e-05

Figure 14: Variance of values for 20 runs of k-means++ and our algorithm.

48

C.2 Visualizing median incomes in Germany

In this section we use our algorithm for combining two different k-center objectives to cluster the
400 German districts by their median income. Our goal is to compute clusters of districts of similar
median income that are also geographically compact. Hence, we use as second objective function the
geographic distance between the districts. This way it can be ensured that only districts close to each
other get clustered together. This results in clusters that actually correspond to meaningful regions
which could help identifying and analyzing regional inequality within a country.

To calculate the difference between the monthly median incomes of two states we used the information
of the German “Bundesagentur für Arbeit” [29] from December 31, 2022. To calculate the distance
between the districts we obtained a geojson file containing their border [21], calculated the centers of
mass where we interpreted the shapes as regular polygons (as the curvature of the earth should not
have too much influence on that scale), and then calculated the distance between those centers while
accounting for the curvature of the earth.

Figure 15 provides an overview on the income structure in Germany. We will mainly discuss the
details of the results for the case that k = 16 (the number of states in Germany). The respective
Pareto curve is shown in Figure 16. However, the behavior for other choices of k is similar, as can be
seen in Figure 17.

In total the Pareto curve contains 38 different solutions, where the first optimizes the geographic
radius of the clusters as much as possible and the 38-th minimizes the income difference. We will
have a closer look at the 10-th and 15-th solution. We consider solutions that appear relatively early
in the Pareto front because the geographic radius increases to 300 or even 350 kilometers relatively
early on the Pareto front. Clusterings with such a large radius are not interesting because the air-line
distance between Kiel (which lies in the north of Germany) and Munich (which lies in the south)
is less than 700 kilometers, meaning that the solutions appearing later in the Pareto front cluster
together districts that are far apart. In Subfigure 19b the 10-th Pareto solution is depicted. On the left
the clusters are colored by the average income of the respective districts and on the right in colors
that are easier to distinguish but have no intrinsic meaning. One can see that multiple clusters are
next to each other that barely differ in their income which is not surprising because if the algorithm
would cluster them together the geographic distance between the different parts of the cluster would
get too large. At the same time we have some regions where two or more clusters basically cover
the same geographic region and split up the districts depending on the respective median income in
these districts. Despite all of this, the left image gives us a very good idea how the incomes differ in
different regions of Germany. This is also interesting because the geographic radius of this clustering
is roughly 196 kilometers and the maximum income difference between a district and its respective
center is 463C per month. Even though the latter value allows the algorithm to cluster districts
together that have a large income difference (as a comparison the maximum income difference is
roughly 1900C) the clusters appear to be reasonable and meaningful.

To get a better idea about the quality of the chosen Pareto solution in Figure 19a, the clustering
produced by a k-center 2-approximation that only considers the income difference as a metric as well
as a similar clustering for the geographic distance metric are depicted in Figure 19c. As expected
for the income-based clustering the clusters are split up over the entirety of Germany. If one depicts
them in the colors corresponding to the median income of the districts in the cluster, one basically
ends up with a modified version of Figure 15 where the income levels have been discretized to 16
different levels. On the other hand, in the geography-based clustering districts with very different
median income have been clustered together. As a result the median incomes are very similar for
many pairs of clusters (it is almost the average over the entirety of Germany) and the information
where a wealthy region starts and a not so wealthy region ends gets obscured.

In Figure 20 the 15-th Pareto solution is depicted. The geographic radius of this solution is 245
km and the maximum income difference between a district and its center is 321C. Indeed one can
observe that in the map which colors the clusters according to their average median income a lot more
details are visible. However at the same time, the clusters are a lot less compact often being split up
into multiple regions or having holes in which the contained districts are part of another cluster. The
resulting images also give an idea why we did not look at Pareto solutions prioritizing the income
metric even more since already in this solution the clusters do not really resemble something that a
person would intuitively describe as a region.

49

Figure 15: Visualization of the median monthly incomes in Germany (in Euro).

150 200 250 300 350 400 450 500 550
Distance in km

200

400

600

800

1000

1200

In
co

m
e

Di
ffe

re
nc

e
in

Pareto Points

Figure 16: The resulting Pareto curve for k = 16. The 10-th and 15-th solution are marked with red
squares.

50

200 250 300 350 400 450 500 550
Distance in km

200

400

600

800

1000

1200

In
co

m
e

Di
ffe

re
nc

e
in

Pareto Points

(a) k = 10

150 200 250 300 350 400 450 500 550
Distance in km

200
400
600
800

1000
1200
1400
1600

In
co

m
e

Di
ffe

re
nc

e
in

Pareto Points

(b) k = 15

100 200 300 400 500 600
Distance in km

200

400

600

800

1000

1200

In
co

m
e

Di
ffe

re
nc

e
in

Pareto Points

(c) k = 20

Figure 17: The resulting Pareto curves for different k

(a) Income-based clustering (b) The 10-th Pareto solution (c) Geography-based clustering

Figure 18: Comparison between the 10-th Pareto solution with the purely geographic and the purely
income based clustering for k = 16.

Resources and running time. The experiments were performed on a machine with a 1.8 GHz Intel
Core i7-8565U processor and 16 GB RAM. The source codes are in Java and were compiled using
oracle OpenJDK version 21.02. The computations of the Pareto sets took at most a couple of seconds.

51

(a) Income-based clustering k = 16

(b) The 10-th Pareto solution

(c) Geography-based clustering

Figure 19: Comparison between the 10-th Pareto solution with the purely geographic and the purely
income-based clustering for k = 16. The clusters are once colored according to the average income
over all districts in that cluster (left) and once with well distinguishable colors (right).

52

(a) Clusters colored by the average income
of the districts

(b) Clusters colored by well distinguishable
colors

Figure 20: The 15-th Pareto solution for k = 16.

C.3 Clustering of sea level data

Another example for an application of combining two k-center objectives with different metrics is
to cluster the tide gauge stations of the Permanent Service for mean Sea Level (PSMSL) [50, 39]
dataset. This dataset consists of 1581 tide gauge stations all over the world, most of them located
on coastlines. Figure 21 shows their positions. Each of those stations measures the sea level at its
respective location on a monthly basis, resulting in 1581 time series, some of which date back into
the 19-th century.

Our goal is to cluster stations together that show similar behavior of the sea level, but at the same
time we also want clusters to be geographically close to each other. In this way, we hope to be able
to identify regions where the sea level behaves similarly and find a representative set of stations,
that uses fewer stations, but does not loose a lot of information. It might also be helpful in order to
achieve a more evenly spread out set of stations since the northern hemisphere is over-represented in
terms of concentration of the stations in comparison to the southern hemisphere.

We clustered the stations according to their geographic distance and the distance of the corresponding
time series. For the geographic distances, we used the Euclidean distance between the stations, while
accounting for the curvature of the earth. For the distance between the time series we used the mean

Figure 21: Positions of the PSMSL tide gauge stations.

53

Figure 22: Approximate Pareto curve for the sea level data for k=150. The 54-th approximate Pareto
solution is highlighted in red.

over the pairwise difference between two time series, namely

dmean =
1

l

∑
i

t
(1)
i − t

(2)
i ,

where t(1), t(2) are two time series with |t(1)| = |t(2)| = l. For both distance measures, we used the
k-center objective.

Unfortunately, the time series do not all cover the same time span and many of them have missing
periods of data points due to a lot of different reasons (e.g., damage of the respective station,
stations were not all built at the same time). Since our distance measure is not metric under these
circumstances, which is a crucial part of our analysis, we conducted our experiments on a synthetic
dataset using the ORAS5 [18] global ocean reanalysis, which simulates the sea level beginning in
1958 until today on grid coordinates all around the world. We created time series similar to the
PSMSL dataset by mapping the coordinates of every station to the geographically closest grid point
of the simulation that lies in the sea. With this method, we were able to produce 1581 complete time
series, dating from January 1958 until December 2022. Since we are only interested in the change in
sea level height, we normalized all time series by subtracting their mean value.

We considered the clustering for k = 150. In total, the approximate Pareto set contains 106 solutions.
Figure 22 shows the approximate Pareto curve. The first Pareto solution optimizes for the time series
metric, while the 106-th solution minimizes for the geographic distance. The 54-th Pareto solution is
highlighted in red, since we are using it in later figures as example for a Pareto solution that balances
both objectives quite well. One can see that by only moving by one or two solutions in the Pareto
curve, there can be major improvements on one metric while the loss on the other metric is relatively
small in comparison, especially on its border. Therefore the Pareto solutions might even be interesting
in the case, where one is mainly interested in one of the metrics.

In the following, we will compare the 54-th Pareto solution to the clusterings, that either only consider
the time series based clustering, or only consider the geography based clustering. The clusterings
we compare to have been computed without any knowledge of the second objective. They do not
necessarily coincide with the two extreme solutions in the approximate Pareto set. We compare those
two solutions to the 54-th solution of our Pareto curve, which is located on the middle of the Pareto
curve and therefore should be a good trade-off between the different objectives.

54

Table 7: Comparison between the time series based clustering, geography based clustering and the
54-th Pareto clustering with regard to the biggest cluster radius for both metrics, the mean cluster
radius over all clusters for both metrics, and the max. cluster size (cs). The values for the time series
based metrics (ts) are in m and rounded to three decimals, the geographic distances (geo) are in km
and rounded to two decimals.

max geo mean geo max ts mean ts max cs

Geography based clustering 1,566.48 619.40 0.209 0.041 95
54-th Pareto Solution 2,411.21 799.05 0.080 0.031 128
Time Series based clustering 18,172.36 1,570.64 0.067 0.028 157

One can see a visualization of the three clusterings in Figure 23. For more details, Figure 24 shows
the region of Europe (since there is a high concentration of stations there). The Pareto solution and
the geographic solution both show quite compact clusters, while the clusters of the time series based
clustering span bigger distances and are also overlapping each other. One can also see, that for the
time series based clustering, the regions that have a very high concentration of stations usually also
contain more cluster centers than the regions with a low concentration of cluster centers, while in
the Pareto solution and especially in the geography based clustering, the centers are more evenly
distributed over the globe.

Figure 26 shows the clusters with the largest geographic distance for the geography based solution,
the time series based solution, and the 54-th approximate Pareto solution. It is easy to see that both
the geographic and the Pareto clustering are quite compact, and all points of the cluster are located
in the same geographic region, while the points of the time series based clustering span over three
different oceans.

Analogously, Figure 25 shows the worst cluster with respect to the time series for the same three
clusterings. One can see that in the Pareto clustering and the time series based clustering, the red
center curves seem to be relatively good representatives of the other curves, while in the geography
based clustering there are curves that obviously do not match the center curve at all.

Table 7 confirms these findings, and also shows that these effects are not only restricted to the worst
cluster in a solution, but also visible in the mean of the radii over all clusters. Like before, for both
objectives the mean radius of the Pareto solution is much closer to the mean radius of the clustering
that is optimized for the respective objective than to the other one.

Resources and running time. The experiments were performed on a machine with an 2,4 GHz
Apple M2 processor and 24 GB RAM. The source codes are in Java and were compiled using oracle
OpenJDK version 21.02. The computations of the Pareto sets took less than a minute.

55

(a) Geography based clustering.

(b) The 54-th Pareto solution.

(c) Time series based clustering.

Figure 23: The geographically biggest clusters of the 54-th Pareto solution, the clustering that only
considers the geographic distance, and the clustering that only considers the time series for k = 150.
Different clusters are depicted in different colors. The centers of the clusters are marked by a red
square.

56

(a) Geography based clustering. (b) The 54-th Pareto solution.

(c) Time series based clustering.

Figure 24: The geography based clustering, the 54-th Pareto solution, and the time series based
clustering in the area of Europe. Centers are drawn in red.

(a) Geography based clustering. (b) The 54-th Pareto solution.

(c) Time series based clustering.

Figure 25: Comparison between the worst clusters (for the time series based distance function) of the
54-th Pareto solution, the clustering that only considers the geographic distance, and the clustering
that only considers the time series for k = 150. The centers of the clusters are marked red.

57

(a) Geography based clustering.

(b) The 54-th Pareto solution.

(c) Time series based clustering.

Figure 26: Comparison between the geographically worst cluster of the 54-th Pareto solution with
the clustering that only considers the geographic distance and the clustering that only considers the
time series for k = 150. The centers of the clusters are marked by a red square.

58

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction state that we provide algorithms for approxi-
mating Pareto sets, achieve provable approximation guarantees and perform experiments.
All theoretical results supporting the first two claims are then summarized in Section 2,
in particular the main guarantees and the theorems proving them are listed in Table 2 and
Table 3. The experimental evaluation is summarized in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We try to be as precise as possible when stating the results. One limitation
is that we restrict the choice of centers to the point set. This is stated on 2 (paragraph
Objectives). Another limitation is that the distance function has to be metric, but this is
common for all the mentioned clustering objectives.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

59

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical results are an integral part of this paper. Due to space con-
straints, we could not include the technical proofs into the main part. We have decided to
present the full derivation of the material in the supplementary material. Results involving
the k-separation problem are in Section B in the supplementary material and Section A
contains all results combining minimization objectives.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The algorithms to compute approximate Pareto sets which are discussed in
the theoretical part of this paper were implemented for the combinations k-center with
k-center and k-separation with k-means. In the latter case the implemented algorithm differs
in some aspects from the algorithm described in Section A.3 for practical reasons. The
differences are discussed in Section C.1. For the evaluation of the results we provide a
detailed description of the evaluation process along with a description of the used measures
in Section C.1.
We provide the source code via a GitHub repository https://github.com/algo-hhu/
paretoClustering. All data sets are from publicly available sources and we provide links
to those sources, see Table 4 and the references in Section 3.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

60

https://github.com/algo-hhu/paretoClustering
https://github.com/algo-hhu/paretoClustering

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provided the code and referenced the sites where the data can be obtained.
The code is in Java / C++ and does not need a specific environment to be compiled and run.
The data used in Section C.1 has not been pre-processed except for reading the ground truth
from the file into a separate file. For the data in Section C.2, the data is publicly available
and straightforward to use. The sea level data used in Section C.3 might be more of a
challenge. We tried to describe the process to enable reproduction. We would like to publish
the pre-processed data set, but we are worried about copyright issues if we re-post the data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experimental evaluation does not include a training phase. The aim of the
experiments is to demonstrate the usefulness of our theoretical findings on Pareto sets for
clustering problems. The measures used in the results are explained and there are no hidden
parameters (the only parameter that our algorithms have is the number k of centers, and this
is specified in the experimental sections).

61

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Many of our experiments were deterministic and thus require no error bars
and similar measures. The only algorithms using randomization were those incorporating
k-means++ for which we provided the variance in Table 14.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Most experiments were executed on everyday computers with negligible
running time as the experiments were not very computation heavy. For completeness we
added the exact configurations of the used computers as well as giving a reasonable bound
of the time of execution.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

62

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: While one can never predict entirely the applications of ones research, there is
no straightforward way to use the results for any harmful applications. Furthermore to the
authors’ knowledge the used data sets are open access and can be used for purposes similar
to this one.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To the authors’ knowledge this work will not affect society directly. Our
algorithms can be used to obtain better clusterings.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: None of our data or models have this kind of risk.

Guidelines:

• The answer NA means that the paper poses no such risks.

63

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the data we used are properly cited and we provided the respective URLs
where we found the data set. We also complied to the respective terms of service.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The main assets introduced in this paper are the algorithms which are described
and analyzed thoroughly in the respective sections.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

64

paperswithcode.com/datasets

Justification: There were no crowdsourcing experiments or something similar.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The question is not applicable to our research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

65

	Introduction
	Results
	Combining k-separation with various k-clustering minimization objectives
	Combining k-center or k-diameter with a k-clustering minimization problem
	Combinations of k-median and k-means

	Applications and Experimental Evaluation
	Application: k-separation and k-means
	Applications: k-center with two different metrics

	Theoretical Part: Pareto Sets for Combinations Involving k-separation
	Combining k-Separation and k-Separation
	Combination of k-Diameter/k-Center with k-Separation
	Combination of k-Diameter with k-Separation
	Combination of k-Center with k-Separation

	Combination of k-separation and k-median/k-means
	Combining the k-MSR problem and k-Separation problem

	Theoretical Part: Pareto Sets for Combining Minimization Objectives
	Combination of two k-center/k-diameter objectives
	The size of the Pareto set
	Combination of k-center/k-diameter with k-median/k-means
	Combinations of k-median and k-means

	More Details on Experimental Results
	Improving k-means++ by combination with separation
	Visualizing median incomes in Germany
	Clustering of sea level data

