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Abstract

Machine learning models are routinely trained on
a mixture of different data domains. Different
domain weights yield very different downstream
performances. We propose the Soup-of-Experts,
a novel architecture that can instantiate a model
at test time for any domain weights with mini-
mal computational cost and without re-training
the model. Our architecture consists of a bank of
expert parameters, which are linearly combined
to instantiate one model. We learn the linear com-
bination coefficients as a function of the input
domain weights. To train this architecture, we
sample random domain weights, instantiate the
corresponding model, and backprop through one
batch of data sampled with these domain weights.
We demonstrate how our approach obtains small
specialized models on several language modeling
tasks quickly. Soup-of-Experts are particularly
appealing when one needs to ship many different
specialist models quickly under a size constraint.

1. Introduction
Large Language Models (LLMs) work well on diverse tasks
because they have many parameters and are trained on gen-
eralist datasets (Brown et al., 2020; Bommasani et al., 2021).
However, they are costly to train and to serve, both in terms
of memory and inference cost.

Specialist language models hold fewer parameters; they
are, therefore, cheaper to store, send, and use at inference.
However, they must give up the generality of LLMs and
specialize in a few specific topics.

In cases where there is an abundance of specialization data,
training a small model on those data yields a good specialist.
However, in many settings, the specialization data is scarce:
for instance, it may come from a narrow topic of interest
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or be a small company’s internal document database. It
is, therefore, impossible to train a good-quality specialist
model on such data alone.

To obtain a small model that performs well on the special-
ization data, we leverage a large, generic pretraining dataset.
That pre-training set contains data from several domains.
A powerful method to obtain a good specialist model is
importance sampling: it adjusts the mixture weights of the
pretraining distribution to resemble the scarce specialist
dataset. This method has been shown to outperform generic
pre-training (Grangier et al., 2024b), but it has a major
drawback: it requires pre-training a full model for each spe-
cialization dataset available. This makes training cost scale
linearly with the number of specialized downstream tasks,
which can be intractable as model size and data scales.

The goal of this paper is to answer the following question:
How can we leverage a large pre-training set to obtain
specialized models that can be instantiated quickly when
the specialization data is revealed?

We formalize this question by considering the two phases
of serving specialist models.

Pretraining We have multiple pre-training domains and use
them to train a model. At this point, we do not know the
specific data and are unaware of what specific tasks we will
need to address later on.

Specialization phase We receive a specific dataset, and
using the pre-trained model, we need to quickly instantiate
a small model that works well on this specific dataset.

In Table 1, we summarize the different costs and constraints
associated with these two phases and provide a qualitative
review of the strengths and weaknesses of several strategies.

In this landscape of different models, we introduce the Soup-
of-Experts, which is designed to be able to instantiate a
small specialist model in a flash.

Our main idea is to learn to instantiate models with any
mixture of domain weights by taking a linear combination
of jointly optimized base models, called experts. We are
inspired by the works of model merging (Wortsman et al.,
2022; Arpit et al., 2022; Rame et al., 2022; 2023; 2024).
The gist of model merging is that two model parameters ΘA

and ΘB that are obtained by fine-tuning the same model
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Model Spec. size Pretrain. size Pretrain. cost Spec. Cost Spec. Latency Spec. Loss
Large generic model Large Large Large Null Large Small
Mixture of Experts Large Large Small Null Small Med
Small generic model Small Small Small Null Small Large
Domain Experts Small Large Med Small Small Med
CRISP Small Null Null Large Small Small
Soup-of-Experts Small Large Small Small Small Small

Table 1. The different quantities that matter during the phases of serving a specialized model. Spec. size is the number of parameters
in the specialized model. Pretrain. size is the total number of parameters of the pretrained model. Pretrain. cost is the cost of pretraining
the model. Spec. cost is the cost to obtain a specialized model when the specialized data is made available. Spec. latency is the cost
of performing inference with that model. Spec. loss is the loss on the specialized dataset. With these constraints in mind, we compare
different models. The goal of this work is to propose the best possible model under the constraint of having a small specialized
model size. Large generic model is a generalist model, with many parameters, that requires a long training. A mixture of Experts (Fedus
et al., 2022a; Krajewski et al., 2024) is a small model with added parameters that marginally impact the latency. Since both the LLM
and the MoE have many parameters, they are discarded from our study. Small generic model is one small model trained on a generalist
distribution. Domain experts (Gross et al., 2017) train one small model per pre-training domain. CRISP (Grangier et al., 2024b) trains one
model once the specialized data is available using a data mixture that imitates the specialized data distribution. Our proposed method, the
Soup-of-Experts, trains one model with many parameters and can quickly instantiate a small model that is good on the specialized data.
The results in this table are qualitative.

on different domains A and B can be merged by averaging,
yielding a new model Θ∗ = 1

2 (ΘA + ΘB), sometimes
called a model soup (Wortsman et al., 2022), to obtain good
performances on both datasets. An important lesson from
model merging is that some models’ parameters can be
linearly combined and yield good models.

A caveat of model merging is that the merged models can
only be fine-tuned versions of the same base model: for
merging to work, the two models must not be too far apart
in the parameters space. Our method, Soup-of-Experts,
pre-trains multiple experts that can, by design, be linearly
combined to yield a single specialized model. The linear
coefficients of the combination are learned as a function of
the pre-training domain weights. Figure 1 gives an overview
of the architecture and the training pipeline.

Paper overview In Section 2, we explain the details of the
Soup-of-Experts, its training pipeline, and how it can be
used to instantiate a specialist model quickly. In Section 3,
we demonstrate the promises of this approach in a standard
language model pre-training setup, where we train small
110M models on Redpajamav2 (Weber et al., 2024) and
specialize them on 16 domains from the Pile (Gao et al.,
2020). We conduct several analyses to clarify the roles of
model size, number of experts, training distribution, and
specialized dataset size. Finally, in Section 4, we position
our work within the literature.

2. Methods
Figure 1 gives an overview of the proposed architecture,
its interplay with data, and its training pipeline. We first
explain the training data setup.

Algorithm 1 Sampling from mix(h) =
∑k

i=1 hiDi

Input: Domains D1, . . . , Dk, domain weights h ∈ Rk,
batch size B
for b = 1, . . . , B do

Sample an index i ∼ Categorical(h)
Sample xb uniformly at random from domain Di

end for
Output: Mini batch [x1, . . . , xB ]

2.1. Sampling from the pre-training set

The pre-training set is composed of k domains
D1, . . . , Dk ⊂ X where X is the sample space (in the case
of LLMs, this is the space of text sequences). Each domain
contains many samples, usually enough to train a model
without repeating data or overfitting. We can query samples
from each of these domains, therefore we can sample from
a weighted mixture of domains: for some domain weights
h ∈ Rk, we define the sampling law mix(h) =

∑k
i=1 hiDi

such that

P (x|mix(h)) =

k∑
i=1

hiP (x|Di). (1)

This law mixes the datasets Di with proportions hi, where
the domain weights h are non-negative and sum to one. We
can efficiently query samples from mix(h) for any domain
weights h, by picking a domain i at random following the
categorical law induced by h, and then sampling an element
at random from the corresponding domain Di. The corre-
sponding law is illustrated in Figure 2, and this strategy is
described in Algorithm 1.

Classical generic pre-training uses fixed pre-training domain
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Figure 1. The Soup-of-Experts and its training pipeline. The
Soup-of-Experts consists of shared parameters S, n experts param-
eters E1, . . . , En, and an MLP that acts as a routing mechanism.
At each optimization step, we sample domain weights h from a
meta-distribution π. These domain weights have two purposes:
they are passed through an MLP to give a vector of coefficients α
that instantiates a model by combining the experts’ weights, and
they are used to sample a mini-batch of data following the domain
weights law. We then backpropagate through the corresponding
loss to update the parameters of the Soup-of-Experts.

weights hgeneric which define a generic dataset

Dgeneric = mix(hgeneric).

These weights are defined to train large generalist models
that perform well on average. Finding weights for a good
average behaviour to train large models is difficult (Xie
et al., 2023). For smaller models, even a good mix(hgeneric)
would yield a model far from strong specialists, i.e., giving
a model good at everything but excellent at nothing.

2.2. Training with mixtures of pre-training domains

We let Θ ∈ Rp the parameters of a model to be trained on
the pre-training set. We define ℓ(Θ;x) the loss function for
a sample x ∈ X (the next token prediction loss in this paper,
since we focus on language modeling). The standard LLM
pretraining consists of running Adam (Kingma, 2014) to
approximately minimize the generic loss

Lgeneric(Θ) = Ex∼Dgeneric [ℓ(Θ;x)]

Alternatively, we can train a model on any given mixture
with domain weights h by running Adam on the loss

L(Θ, h) = Ex∼mix(h) [ℓ(Θ;x)]

Grangier et al. (2024b) showed that a powerful technique
to obtain a good small model on a specific set Dspe is to i)

Domain
weights 

Figure 2. Data mixture sampling Given several pretraining do-
mains D1, . . . , Dk, an domain weights h1, . . . , hk, we can train a
model on the mixture mix(h) =

∑k
i=1 hiDi, using the sampling

procedure described in Algorithm 1. Domain weights have a criti-
cal impact on the downstream performance.

find domain weights hspe such that mix(hspe) ≃ Dspe and
then ii) train the model by minimizing L(Θ, hspe). This
importance-sampling-based method called CRISP gives
much better specialists than generic pre-training since it
trains the model on a distribution that has lots of data and
yet is close to the targeted specific distribution.

One caveat of this approach is that it requires retraining
a model from scratch anytime one wants to obtain a spe-
cialized model. While this cost might be justified in some
critical applications, we study alternative avenues to obtain
specialized models at a much smaller cost: this is the pur-
pose of the new architecture that we propose in this paper,
the Soup-of-Experts.

2.3. Soup-of-Experts

The goal of the Soup-of-Experts is to amortize the training
of models on multiple different domain weights. It de-
fines a method that, given training domain weights h ∈ Rk,
quickly instantiates a model Θ that depends on those domain
weights and that yields a low loss L(Θ, h).

To do so, we enhance the base model with n experts
E1, . . . , En ∈ Rp, which for ease of notation we stack into
a matrix E = [E1, . . . , En] ∈ Rn×p. We linearly combine
the weights with shared parameters S ∈ Rp. For a given set
of expert coefficients α ∈ Rn, we instantiate a small model
as

Θ = Combine(S,E, α) = S +

n∑
j=1

αjEj . (2)

Our main idea is to learn coefficients α as a function of the
domain weights h. To be more precise, we want to learn
parameters S, E, and a function ϕ : Rk → Rn such that,
for any domain weights h ∈ Rk, the instantiated model
Θ = Combine(S,E, ϕ(h)) performs well on the dataset
mix(h), i.e., leads to a low loss L(Θ, h). In practice, we
use a two-layer MLP for ϕ, parameterized by parameters ω,
denoted as ϕω. Although one can think of many different
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Algorithm 2 Pre-training loop for a Soup-of-Experts to
minimize the loss function L(S,E, ω) in Equation 3.

Input: Initial parameters Z = (S,E, ω), domain weights
sampling law π, domains D1, . . . , Dk, optimizer optim,
optimizer state s.
for t = 0, . . . , T − 1 do

Sample a random domain weights h ∼ π
Sample x ∼ mix(h) using Algorithm 1
Compute gradients g of the parameters by backpropa-
gation through the loss ℓ(Combine(S,E, ϕω(h), x)
Update parameters and optimizer state: Z, s ←
optim(g, Z, s)

end for
Output: Learned parameters S,E, ω

ways to define a mapping from domain weights to model
weights, we chose the parameterization in Equation 2 as it
allows us to easily scale the number of total parameters (by
increasing the number of experts n), and we know from the
model merging literature that, perhaps surprisingly, different
model parameters can be linearly combined to yield one
good model(Wortsman et al., 2022).

The Soup-of-Experts is an asymmetrical model in the sense
that it has many trained parameters (the base model and
the added expert’s parameters), but it instantiates smaller,
stand-alone smaller models for inference.

We now explain how to leverage a large pre-training set in
order to train a Soup-of-Experts.

2.4. Training Soups of Experts with meta-distributions

In order to train the Soup-of-Experts to achieve good per-
formance on a diversity of domain weights, we use a meta-
distribution π, that is, a sampling law over domain weights.

For instance, one can define π as the uniform distribution
over histograms, by sampling h̃1, . . . , h̃k i.i.d. uniformly in
[0, 1] and defining the domain weights as hi = h̃i/

∑
h̃j .

We then train the Soup-of-Experts by minimizing the aver-
age error of the model over this meta-distribution, which is
the objective function

L(S,E, ω) = Eh∼π [L(Combine(S,E, ϕω(h)), h)] (3)

We minimize this function using Adam, where at each step,
we sample domain weights h ∼ π, instantiate the corre-
sponding model, sample a mini-batch from mix(h), and do
an optimization step on ℓ(Combine(S,E, ϕ(h)), x). The
full algorithm is described in Algorithm 2, and Figure 1
illustrates this training pipeline.

The choice of meta-distribution π has a critical role on the
Soup-of-Experts obtained after training. Ideally, it should

reflect the distribution of specific tasks that one wishes to
address during the specialization phase. In our experiments,
we favor sparse domain weights and use meta-distributions
π that first sample s ≪ k domains and then take uniform
random domain weights over these s domains.

2.5. Computationnal cost

The Soup-of-Experts leads to some computational overhead
compared to standard pre-training, which we explicit here.
We compare training a generic model of size d with standard
pre-training and training a Soup-of-Experts with n experts
of size d. The routing MLP is small compared to the model
size; hence, we omit the cost of training it in the subsequent
analysis. We let b be the mini-batch size.

The training loop of models consists of A) computing gra-
dients and B) updating the parameters with Adam. For the
generic model, the cost of A) scales roughly as db (Ka-
plan et al., 2020), we let C be the proportionality con-
stant. This computes ∇Θℓ(Θ, x), with a cost Cdb. For
the Soup-of-Experts, we need to compute the gradients
with respect to the experts Ei and shared parameters S.
Let Θ = S +

∑
αiEi the merged model. Then, the

chain rule gives the gradients ∇SL = ∇Θℓ(Θ, x) and
∇EiL = αi∇Θℓ(Θ, x). In other words, the gradients w.r.t.
the experts are simply obtained by rescaling the gradient
wrt the merged parameters, which gives n · b floating point
operations. Hence, the cost of A) is C · d · b+ n · b for the
Soup-of-Experts. Crucially, the cost of backprop through
the Soup-of-Experts is only mildly affected by n, as the
gradients of the experts are obtained trivially from those of
the merged model.

For B), the generic pretraining needs to update the two
Adam EMA parameters, and then update the parameters. In
total, the flops count is 14d. For the Soup-of-Experts, we
need to use Adam for all the parameters, so the cost of B) is
14n · d.

Overall, one training iteration for generic pretraining costs
CGen = Cdb + 14d, while it is CSoE = Cdb + 15nd
for the SoE. Discarding the cost of Adam for the generic
pretraining, the relative increase is CSoE/CGen = 1 + 15n

Cb .
Hence, we see that it all depends on whether n≫ Cb/15;
the value of the constant C depends on the architecture and
other factors. In a large batch size b setting, the added cost
of using a Soup-of-Experts is negligible.

The cost of training a Soup-of-Experts of size d with n
experts is close to that of training a single model of size
d, and therefore it is much lower than that of training a
single large n × d model. For instance, in the subsequent
experiments, we train Soup-of-Experts with 128 experts of
size 110M in about a day using a grid of 8GPUs. Training
a model of size 128× 110M = 13B would take orders of
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Algorithm 3 (Grangier et al., 2024b) Estimating specialist
domain weights that are good for a specialized dataset Dspe

Input: Specialist dataset Dspe, embedded domain cen-
troids c1, . . . , ck.
Init: h1, . . . , hk = 0.
for x in Dspe do

Find closest centroid: i = argmin ∥Bert(x)− ci∥
Increment hi = hi + 1/#Dspe

end for
Output: Domain weights h1, . . . , hk

magnitude more compute, typically weeks with 128GPUs
(see (Touvron et al., 2023)).

2.6. Parameter efficient representation with low-rank
expert

Thus far, the experts have the same size as the original model.
In order to diminish the total number of parameters, we can
use a low-rank representation for the experts in the spirit
of Lora (Hu et al., 2021): in each expert Ej , each square
matrix W ∈ Ra×b is materialized as W = ABT where
A ∈ Ra×r and B ∈ Rb×r, where r ≪ a, b is the rank.
Interestingly, even though each expert’s matrices are low
rank, the instantiation

∑
αjEj has rank up to n× r, which

might be full rank if we have enough experts. Although
promising, we report in our experiments that this method is
less parameter-efficient than using fewer dense experts. Still,
in heavily resource-constrained settings, low-rank experts
can benefit over generic model.

2.7. Instantiating a Soup-of-Experts: Specialization in a
flash

After pre-training, the Soup-of-Experts has the flexibility
to quickly provide a model that is good for any data dis-
tribution domain weights h, simply by forming the param-
eters Θ = Combine(S,E, ϕ(h)). This instantiation only
requires a forward pass through a small MLP, and merging
n parameters; it does not require any training.

We describe two ways to specialize a Soup-of-Experts into
a model that performs well on a target specific dataset Dspe.
The fastest way is to obtain domain weights hspe from Dspe

so that Dspe ≃ mix(hspe). To do so, we use the nearest-
neighbor method of (Grangier et al., 2024b), which is de-
scribed in Algorithm 3 for completeness. We then instanti-
ate the parameters Combine(S,E, ϕ(hspe)). This method
is summarized in Figure 3. Since it is simple and fast, this
is the method we use in all our experiments.

A better method, which is also more expensive, is
to learn a coefficient vector α with gradient descent,
by minimizing the function of α only ψ(α) =

MLP

Combine
experts

Estimate domain weights

Figure 3. Quickly instantiating a small model from a pre-
trained Soup-of-Experts Given a specialist dataset with a few
samples, we compute the domain weights using Algorithm 3. The
domain weights are then passed through the Soup-of-Experts’ MLP
to get the coefficients α that are then used to merge the experts.
This process is quick since the MLP is small, and it requires no
training.

Ex∼Dspe [ℓ(Combine(S,E, α), x)]. Since α is low dimen-
sional (in practice we never use more than n = 128 ex-
perts), this minimization is quick, and unless Dspe has
very few samples, there is no risk of overfitting. However,
this method requires to backpropagate through the network,
which is more costly than the previous method.

As with any other model, the instantiated specialist model
can then be fine-tuned on the specialization data to increase
its performance if the computational budget allows it.

3. Experiments
We first detail the experimental setup: datasets, models,
metrics, and hyperparameters.

Pretraining domains We pre-train language model on
Redpajama2 (Weber et al., 2024), a widely used curated
web-crawl dataset. We obtain the pre-training domains
D1, . . . , Dk with the same clustering method as Grangier
et al. (2024b): we embed each document using sentence-
bert (Devlin, 2018), and then use the k-means algorithm
on these embeddings to split the dataset into k pre-training
domains. We use a hierarchical k-means, where we first
cluster the dataset into k = 64 domains and then cluster
each of these domains into 64 smaller domains, yielding in
total k = 4096 domains. We also collect the k correspond-
ing centroids c1, . . . , ck in the embedding space, in order to
use Algorithm 3 to obtain specialist domain weights.

Specialization domains We consider 16 datasets from the
PILE (Gao et al., 2020) as target specialization sets: arxiv,
dm mathematics, enron emails, europarl, freelaw, github,
hackernews, nih exporter, openwebtext, pg19, phil papers,
pubmed, stackexchange, ubuntu, uspto, and wikipedia.

For each of these datasets, we compute the corresponding
specialist domain weights using Algorithm 3.

We evaluate different methods on each of the specialization
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datasets individually, and we report averaged losses over
these domains. We defer individual domain results to the
appendix.

We highlight that these specialist domains and specialist do-
main weights are never used or seen during the pre-training
phase for all methods except for CRISP.

Models We consider standard GPT-2 type transformer ar-
chitectures, which we train with the next-token-prediction
loss. Apart from a scaling experiment, we consider a base
model size of 110M parameters. Architecture and training
hyperparameters are specified in Appendix A.

Metrics In this work, we measure the ability of a model
on a specialization dataset with its next-token prediction
loss on that domain: we focus solely on language model-
ing. This loss predicts well the downstream performance of
models with more complex metrics like reasoning, question-
answering or translation ability (Gonen et al., 2022; Du
et al., 2024; Gadre et al., 2024).

Training hyperparameters for the Soup-of-Experts Un-
less specified otherwise, we train the Soup-of-Experts with
n = 128 experts. With a base model size of 110M , these
Soup-of-Experts therefore hold a total of (128 + 1) ×
110M = 14B parameters, that can be linearly combined
into small 110M models. Apart from the corresponding
analysis, we use a meta-distribution π with a support size of
s = 4 (see Section 2.4).

Infrastructure We train each model on 8 A100 GPUs.

3.1. Baselines

All the methods we compare in this work instantiate, at
specialization time, a model with the same architecture and
number of parameters. As explained in the introduction
(Table 1), we consider the following models:

Generic Pretraining We train one generic model on the
standard pre-training distribution. At specialization time,
the model stays the same and is evaluated on the specializa-
tion set.

Domain experts (Gross et al., 2017) We train one model
on each pretraining domain Di. At specialization time,
we select the model that yields the smallest loss on the
specialization set. This technique does not scale with the
number of domains. We only train k = 64 domain experts,
as it would be infeasible to train 4096 with our budget.

CRISP (Grangier et al., 2024b) We train one model per
specialization set on the mixture mix(hspe). At specializa-
tion time, we use the corresponding model. This method
does not scale with the number of specialization domains; it
requires one pre-training run per specialization domain.

0 10 20
Time (h)

2.8

3.0

3.2

Avg. Specialized Loss

Soup of Experts
Generic Pretraining

Domain Experts
CRISP

0 10 20
Time (h)

Generic Loss

Figure 4. Training curves of the different methods. The average
specialized loss is the average of the loss of the models over 16
domains from the Pile. The generic loss is the loss of the models
on the standard pre-training distribution of RedPajamav2. The
x-axis is the training time. This number is roughly proportion-
nal to number of tokens processed, since in this setting, the cost
of instantiating the Soup-of-Experts is small in front of that of
backpropagating through the network. The domain experts and
CRISP have to train many models, so they are not competitive
in this setup. The Soup-of-Experts performs almost similarly to
generic pre-training on the generic loss, which means that it holds
the general knowledge in the pre-training set, while CRISP and
Domain Experts are not good generalists (Domain Experts are even
out of the figure limits on the right figure). The Soup-of-Experts
gives the best specialists, as seen on the left figure.

3.2. Main results

We report the training curves on the pre-training set as well
as the average loss on the specialization domains in Figure 4.
The specialized loss is obtained by computing the loss on
each specialization domain for the corresponding specialist
domain; each domain uses a different model (except for the
generic pretraining method, which uses the same model for
each specialization set).

The x-axis corresponds time, which in this case is close to
being proportionnal of the computational cost required to
train the model (indeed, the cost of instantiating the experts
is small in front of that of backpropagating through the
network, see Section 2.5; we get a throughput with the SoE
that is 77% of that of the generic pretraining).

For the Soup-of-Experts and the generic pre-trained mod-
els, the training time is unambiguous. For the two other
baselines, which train multiple models, we report the total
training time taken by all the models.

We observe that the Soup-of-Experts achieves the best per-
formance among all methods on the specialized domains,
and is only slightly worse than generic pre-training on the
pre-training loss (while generic pre-training explicitly mini-
mizes this loss).

6



Soup of Experts

Figure 5. Soup-of-Experts improve downstream tasks. We train
Soup-of-Experts with 335M parameters and 32 experts. We report
the average accuracy of these models on MMLU, ARC-Easy and
ARC-Challenge as a function of the training time using 8GPUs.
The Soup-of-Experts is always more efficient, and training it for a
long time yields a higher plateau.

The Soup-of-Experts and the generic pretraining are the only
scalable methods with respect to the number of pretraining
domains and number of specialization domains. Indeed, we
consider 16 specialization domains here. Had we consid-
ered more domains, the CRISP method would have taken
more and more pre-training time. Similarly, increasing the
number of domains would increase the computational cost
of the domain experts method a lot.

Improvements on downstream tasks In order to verify that
the improvements in terms of loss transfer to downstream
tasks, we train a larger Soup-of-Experts (335M parameters)
with fewer experts (n = 32). We compare it to generic pre-
training. We then evaluate it on question answering tasks:
MMLU, ARC-Easy and ARC-Challenge. To instantiate a
Soup-of-Experts on these tasks, we take a held-out part of
these datasets, and use the questions as the specific set, for
which we compute the histogram using Algorithm 3. We
report the average accuracy on those tasks in Figure 5

Complementarity to fine tuning For each of the pile do-
mains, we instantiate the corresponding Soup-of-Experts.
We then fine-tune this model and the baseline model with
different numbers of available fine-tuning tokens. We report
the validation losses in Figure 6, as well as the number of to-
kens the generic pretraining method needs to use to recover
a performance similar to that of the Soup-of-Experts.

3.3. Analysis

We quantify the impact of several hyper-parameters on the
behavior of the Soup-of-Experts.

Model scale We train generic pretrained models and Soup-
of-Experts with different instantiated model sizes. We report
those results in Figure 7, left.

Domain weights estimation The specialized domain
weights, computed with Algorithm 3, are estimated as fre-
quencies. When we have little data available in the spe-
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Figure 6. The gains of Soup-of-Experts during pretraining are
maintained during fine-tuning and sometimes lead to large
savings. On each of the 16 domains from the PILE, we fine-tune
the corresponding instantiated Soup-of-Experts and generic model,
with a limited number of fine-tuning tokens. We stop fine-tuning
at the point where validation loss starts increasing. Left: Average
loss over domains. We see that the Soup-of-Experts maintains its
advantage regardless of the number of available fine-tuning tokens.
Right: The number of fine-tuning tokens one needs to fine-tune
the generic model to reach the same validation loss as the base, not
fine-tuned, Soup-of-Experts. For example, on uspto, one needs
10M tokens to fine-tune the generic model and reach the same
loss as the Soup-of-Experts instantiated on uspto out of the box
after pre-training.
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Figure 7. Left: Impact of model scale We train Soup-of-Experts
and generic models with different instantiated model sizes. We
observe that Soup-of-Experts maintain their advantage across the
three scales considered here. Right: Impact of the number of
samples in the specialization set In order to instantiate a spe-
cialist model from a Soup-of-Experts, we need to estimate the
domain weights corresponding to the specialized set, as explained
in Figure 3. We investigate the impact of the scarcity of data in the
specialist set on the estimation of the domain weights, which then
impacts the instantiated Soup-of-Experts. We see that on average,
only three samples are enough to recover a model that is as good
as the generic pretrained model, and 100-1000 samples are enough
to instantiate the optimal Soup-of-Experts.

cialization set, the estimated domain weights become noisy.
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We study how data scarcity impacts the performance of the
Soup-of-Experts, using a limited number of samples as input
to Algorithm 3. We report the results in Figure 7, right.

Meta-distribution sampling law We study the impact of
the sampling law π on the Soup-of-Experts performance.
We train several Soup-of-Experts with different support
sizes s, as explained in Section 2.4. We report the impact of
s on the loss on the specialist datasets, the generic dataset,
and on random sparse domains in Figure 8.

Low rank experts As discussed in Section 2.6, we inves-
tigate the use of low-rank experts. The advantage of this
method is that, at a fixed total number of parameters count,
we can increase the number of experts and hence the ability
of the Soup-of-Experts to have a fine-grained representation
of the diversity of training domains. Sadly, as we report in
Figure 9, this method is less parameter efficient than having
dense experts. We posit that this is an optimization issue.
Indeed, a Soup-of-Experts with experts with a high rank is
able, in principle, to learn weights that are very similar to
the dense one. Yet, in practice, it is harder to train.

Comparison to model merging We compare the Soup-of-
Experts with standard model merging. To do so, we train
both a Soup-of-Experts with k=64 domains and a generic
model for 64000 iterations. Then, we fine-tune the generic
model for T steps on each of the k domains, yielding models
θ1, . . . , θk which are specialists for each domain. We then
take k′ < k domains among the k at random, and either
a) instantiate the SoE with weights uniform over the k′

domains and 0 over the other domains, or b) merge the
specialized models θi where i covers the k′ domains. We
use a linear combination of models to merge. We then report
the average loss of the corresponding model a) or b) on the
k′ chosen domains. For the model merging, we always pick
the number of fine-tuning steps T in [1000, 2000, ..., 10000]
that yields the smallest loss for each individual experiment.

When there is only one domain, fine-tuning is the best
method, since it gives a specialist. If we want good models
on more than 4 domains, Soup-of-Experts becomes advan-
tageous. Importantly, the SoE did not have to be trained on
each domain individually: in total, it has done 64000 steps,
while the model merging required 64000+64×10000 steps.

4. Related Work
The simultaneous growth of training set sizes, computational
budgets and parameter count has yield large language mod-
els (LLMs) strong at addressing a variety of tasks (Brown
et al., 2020; Jiang et al., 2023; Dubey et al., 2024).

The effectiveness of these generalist models comes at a high
inference and training cost. To improve inference effec-
tiveness, significant effort has been invested in knowledge

distillation (Gu et al., 2024; Riviere et al., 2024) and model
compression (Li et al., 2024; Wan et al., 2024). Specializa-
tion and sparsification are also important, complementary
strategies for efficient inference.

Specialization trades generality for inference efficiency: a
small model trained on data close to the targeted domain
can be strong on this domain. Since many tasks only pro-
vide little in-domain data, fine-tuning a generalist model
for a few steps is a common strategy. Data selection is a
complementary approach that resamples the pretraining set
to emphasize the most relevant parts for the target domain,
allowing a specialist model to be trained from scratch. Data
selection based on gradient alignment (Fan et al., 2023;
2024; Grangier et al., 2024a; Wang et al., 2024) and im-
portance sampling (Grangier et al., 2024b) are the main
strategies for task-aware pretraining.

Sparsification improves inference efficiency with mixture
of experts (MoE). These models avoid using all parameters
for all inputs. They jointly learn expert modules providing
specialized weights for different data slices, and routing
models deciding which weights to use (Shazeer et al., 2017;
Fedus et al., 2022b; Jiang et al., 2024; Dai et al., 2024; Abnar
et al., 2025). MoEs focus on the computational cost of
inference but not on its memory cost (Pan et al., 2024): their
routing decision are performed once the input is available,
which means that they still require access to all the weights
in memory. Model pruning (Xia et al., 2022; 2023; Ma
et al., 2023) focuses on task-dependent sparsification as a
fine tuning step, which allows memory saving. However,
such pruning strategies are difficult since their pretraining
has no incentive to discover sparse structures.

This work proposes an alternative. Like an MoE we train
a large number of parameters but still achieve efficient in-
ference. Unlike MoEs, we specialize the model to a given
test domain and provide a small, stand-alone model. Unlike
fine-tuning or task-aware pretraining, the specialized model
does not require knowing the test domain at training time:
specialization is not the result of optimization as the spe-
cialized parameters results from a closed form merging of
the pretrained parameters. An interesting future avenue of
research is to combine MoEs and Soup-of-Experts, where
the base architecture in the Soup-of-Experts is itself a MoE.
It would increase the performance of the Soup-of-Experts
without sacrificing its latency.

This work takes inspiration from litterature on the merging
of fine-tuned models, aka task-arithmetic. This litterature ob-
serves that models fine-tuned from a common ancestor can
be linearly combined without retraining (Wortsman et al.,
2022; Ilharco et al., 2022; Huang et al., 2023; Ortiz-Jimenez
et al., 2023; Tam et al., 2024). It has also been proposed to
further fine-tune merge models (Choshen et al., 2022; Rame
et al., 2023) Our work extends this merging strategy beyond
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Figure 8. Role of the support size for the meta-distribution π. The training meta-distribution π draws random domain weights by first
sampling s random domains, and then takes domain weights uniformly at random on those s domains. We investigate the impact of s, the
support size. A small value of s means that the Soup-of-Experts does not see much interaction between domains, while a large s means
that the Soup-of-Experts rarely sees sparse domains, which are critical for specialized downstream tasks. Left and middle: average
specialized and generic loss when varying the support size of the meta-distribution. As expected, taking a support size of 1 is bad, since
the Soup-of-Experts cannot learn links between domains. The generic loss gets better as the support size increases, which is expected
since the generic distribution is spread across all domains. The specialized loss is best for s = 2, which is explained by the sparsity of the
specialized set domain weights. Right: average loss on random mixtures of fixed support size. We see that the training conditions are
reflected in testing: the best Soup-of-Experts to test on domains of support size s is the Soup-of-Experts trained with s domains.
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Figure 9. Low-rank experts We investigate the possibility to use
low-rank experts as detailed in Section 2.6. Low rank experts
allow increasing the number of experts at a fixed total number of
parameters, by diminishing the rank of experts. We train multiple
Soup-of-Experts with low rank experts, varying the number of
experts in {16, 32, 64, 128} and rank in {32, 64, 128, 256, 512},
yielding models that have between 300M and 12B parameters in
total between the experts. We observe that, at a fixed parameters
count, the number of experts for low rank experts does not
matter. We also train standard Soup-of-Experts with dense experts,
and we see a different trend. We find that low-rank experts are
worse than dense experts.

fine-tuning and incorporates it into the pretraining phase.

(Dimitriadis et al., 2023) also propose an architecture that
dynamically mixes weights according to the input task, but
there are key differences with our work. First, they consider
tasks that share the data but differ in their losses, while we
consider tasks that have different data distributions with the
same loss. Second, their framework does not allow having a

Figure 10. Comparison to model merging Soup-of-Experts al-
lows to mix more efficiently a high number of domains that model
merging, while requiring no fine-tuning from a base model.

different number of experts than domains, while we use a
MLP to map histograms to experts. Finally, we introduce
shared parameters in addition to the experts, which allows
us to amortize between tasks. We discuss the differences
with this work in more detail in Appendix B.

Conclusion
We have introduced a novel asymmetrical architecture, the
Soup-of-Experts. It holds a large set of expert parameters
that encodes a family of small, stand-alone models obtained
by linear combination of the parameters. We propose a
learning algorithm so that the coefficients of the linear pro-
jection are a function of the domain weights from which the
input is sampled. A pre-trained Soup-of-Experts can, there-
fore, instantiate instantly a model tailored to any mixture
of domain weights. We demonstrated the benefits of this
approach on standard datasets, even when these datasets and
the corresponding domain weights are unavailable when the
soup is trained.
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A. Training hyper-parameters

Model size Vocab. size Embedding size Hidden MLP dim layers num heads
110M 32K 768 3072 12 12
55M 32K 512 2048 12 8
35M 32K 512 2048 6 8

Table 2. Model architectures. We use GPT-2 style transformers. All experiments except the scaling one use the 110M model. We use
shared embedding matrices for input and output.

Table 2 details the model architectures used in the experiments.

Hyperparameter Value
Batch size 128

Sequence length 1024
Learning rate 3e-4 for generic pre-training, domain experts and CRISP; 1e-4 for SoEs
Warmup steps 2000

Adam β1 0.9
Adam β2 0.999

Gradient clipping 0.1

Table 3. Training hyperparameters.

We report the training hyperparameters in Table 3. After a search of learning rate in {1e-4, 3e-4, 1e-3}, we found that the
best learning rate for the Soup-of-Experts was 1e-4, while it was 3e-4 for the other models.

We use different number of iterations for the different analyses: for the main experiments (Figure 4, Figure 6), we train the
Soup-of-Experts and the generic pre-training model for 1024K iterations (134B tokens), while we train the domain experts
and CRISP for 128K iterations (17B tokens), since we need to train multiple versions of those models.

For the model size analysis (Figure 7), we train for 1024K iterations (134B tokens). For the support size experiment
(Figure 8), and for the low-rank experts experiment (Figure 9), we train for 128K iterations (134B tokens).

B. Comparison with (Dimitriadis et al., 2023)
Using the notation of our paper, it is possible to reframe the model of (Dimitriadis et al., 2023) in the following way.

They consider a distribution of tasks L1, . . . , Lk that are loss functions from Rp ×X to R. They consider a matrix of task
interaction W ∈ Rk×n, and n experts E1, . . . , En. Given a meta-distribution π over the simplex of dimension n, they
consider the following loss function, which should be optimized with respect to the experts parameters:

L̃(E) = Ex∼D

[
Eh∼π

[
k∑

i=1

(Wh)iLi(
∑

hiEi;x)

]]
. (4)

where D is the distribution of the inputs x.In our view, the best way to make this formulation as close as the one presented
in this paper is to consider that D is the product space of the pretraining domains D = D1 × · · · ×Dk, that has elements
(x1, . . . , xk) and to consider the loss functions Li(θ; (x1, . . . , xk)) = ℓ(θ;xi), and to take W = Ik. Then, Equation 4
becomes

L̃(E) = Eh∼π

[
k∑

i=1

hiEx∼Diℓ(
∑

hiEi;x)

]
(5)

= Eh∼π

[
k∑

i=1

L(
∑

hiEi;h)

]
(6)

This formulation highlights the key differences with our work:
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Soup of Experts

• There are no shared parameters in the experts, while we have shared parameters in the experts that allow to amortize
computations

• The input domain weights are used directly to mix the experts, while we use a small MLP to map the domain weights
to the experts. This allows us to have a different number of experts than domains.

Finally, in the original formulation of Equation 4, the expectation is taken over domains, and the algorithm proposed by
Dimitriadis et al. (2023) minimizes the loss over this expectation. In our setting where D is a product space, it means that
the algorithm of Dimitriadis et al. (2023) needs to query samples from each domain in order to do one step of optimization,
while our training loop only queries samples from one mixture of domains at a time.
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Soup of Experts

C. Detailed per-specific-domain results
We report the detailed results on the 16 PILE domains in Figure 11,Figure 12, Figure 13, and Figure 14.
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Figure 11. Training curves of the different methods. Detailed results from Figure 4 on the 16 PILE domains.
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Figure 12. Fine tuning results. Detailed results from Figure 6 on the 16 PILE domains. The dashed horizontal line indicates the loss of
the Soup-of-Experts without fine-tuning.
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Figure 13. Impact of the number of samples in the specific set on the instantiated Soup-of-Experts. Detailed results from Figure 7,
right, on the 16 PILE domains. The dashed horizontal line indicates the loss of the Soup-of-Experts without fine-tuning.
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Figure 14. Impact of the support size of the meta-distribution. Detailed results from Figure 8, on the 16 PILE domains.
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