
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LLMCloudHunter: Harnessing LLMs for Automated Extraction of
Detection Rules from Cloud-Based CTI

Anonymous Author(s)

ABSTRACT
As the number and sophistication of cyber attacks have increased,
threat hunting has become a critical aspect of active security, en-
abling proactive detection and mitigation of threats before they
cause significant harm. Open-source cyber threat intelligence (OS-
CTI) is a valuable resource for threat hunters, however, it often
comes in unstructured formats that require further manual analysis.
Previous studies aimed at automating OSCTI analysis are limited
since (1) they failed to provide actionable outputs, (2) they did not
take advantage of images present in OSCTI sources, and (3) they
focused on on-premises environments, overlooking the growing im-
portance of cloud environments. To address these gaps, we propose
LLMCloudHunter, a novel framework that leverages large language
models (LLMs) to automatically generate generic-signature detec-
tion rule candidates from textual and visual OSCTI data. We evalu-
ated the quality of the rules generated by the proposed framework
using 20 annotated real-world cloud threat reports. The results
show that our framework achieved a precision of 83% and recall
of 99% for the task of accurately extracting API calls made by the
threat actor and a precision of 99% with a recall of 97% for IoCs. Ad-
ditionally, 99.18% of the generated detection rule candidates were
successfully compiled and converted into Splunk queries.

KEYWORDS
Cyber threat intelligence (CTI), Large languagemodel (LLM), Threat
hunting, Cloud, Sigma rules

1 INTRODUCTION
The rapid evolution of technology, digitization, and application
development has been accompanied by an increase in the number
of cyberattacks [27], raising concerns about the security risks as-
sociated with these advancements. In the face of these concerns,
organizations have adopted dynamic defensive strategies in addi-
tion to the traditional reactive measures employed [22]. One such
strategy is threat hunting, a proactive approach aimed at searching
for and mitigating undetected threats in a network or system [16].
Threat hunters try to minimize the damage caused by threat actors
by shortening the timewindow between intrusion and discovery [7].
In their comprehensive survey, Nour et al. [22] stated that the threat
huntingmethodology consists of threemain principles: (1) formulat-
ing and testing hypotheses about the threat actor and their actions;
(2) utilizing existing information for an intelligence-driven inves-
tigation; and (3) leveraging data analysis techniques and machine
learning algorithms to effectively handle vast amounts of data.

The second principle involves collecting and analyzing publicly
available information about potential and active threats from blogs,
forums, and other digital sources. Open-source cyber threat in-
telligence (OSCTI) is one of the most commonly used sources of
information among security personnel according to the SANS 2023
CTI survey [34]. However, various challenges arise when using

OSCTI. The first and main challenge is that OSCTI often comes
in non-uniform and unstructured formats, such as text and im-
ages, rather than more actionable information/data (e.g., detection
rules) [31]. As a result, manual analysis by human experts is re-
quired to derive meaningful and actionable insights [30]. Another
challenge is the increasing amount of available information (i.e.,
CTIs), necessitating the automation of OSCTI analysis [27].

Previous studies on threat hunting introduced various method-
ologies, some of which incorporated natural language processing
(NLP) techniques, to automate the extraction and enrichment of
information from OSCTI textual data. However, the methods pre-
sented in these studies suffer from three main limitations: (1) they
provide structured but limited insights, such as identified entities
and their relationships or attack techniques, necessitating further
processing to generate actionable outputs; an exception is the ap-
proach presented by Gao et al. [13], in which the authors developed
proprietary, non-standard graph-based queries using static rules
(regexes) that require substantial customization for application with
standard tools and on-premises environments; (2) these studies, in-
cluding the work of Gao et al., do not take advantage of visual
components, such as images, which may be present in OSCTI data;
and (3) many of these methodologies were primarily developed for
on-premise environments, limiting their effectiveness and relevance
in cloud-centric environments.

Cloud computing has become an integral component in the mod-
ern enterprise landscape, valued for its scalability, cost-effectiveness,
and flexibility [32]. It employs a shared responsibility model for
security, in which both the provider and the consumer play roles in
securing cloud infrastructure and cloud-delivered applications [3].
This model presents unique challenges in threat hunting, as tra-
ditional security methodologies often fall short in addressing the
dynamic and distributed nature of cloud environments [41]. Among
these challenges is the fact that in some cloud technologies (e.g.,
serverless), access to data for threat hunting is limited to application-
level logs (APIs, storage access, etc.), and important infrastructure-
(system)-level data (e.g., virtual machines and network) can only
be accessed by the cloud provider [42]. This is exacerbated by the
fact that the exploitation of cloud-based threat intelligence has
not yet reached maturity. The work of Fengrui and Du [11] is the
only study that extends beyond on-premise OSCTI, however rather
than providing actionable output, their framework extracts MITRE
ATT&CK tactics, techniques, and procedures (TTPs) [1]. These
gaps highlight the need for innovative OSCTI analysis approaches
suited to the unique security challenges of cloud environments;
such challenges can be addressed by integrating OSCTI analysis
results within practical, actionable security measures [17].

In this paper, we present LLMCloudHunter, a novel framework
that leverages pretrained large language models (LLMs) to generate
detection rule candidates from unstructured OSCTIs automatically.
LLMCloudHunter generates Sigma rule [38] candidates from both
textual and visual cyber threat information, using an innovative,

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

automated data extraction and processing framework that leverages
LLMs and employs various techniques to address their limitations
(e.g., unstructured output and hallucinations).

Sigma rules, provided in a generic and open signature format
written in YAML, enable the creation and sharing of detection meth-
ods across security information and event management (SIEM)
systems. Fig. 1 presents our LLM pipeline for Sigma candidate gen-
eration; as can be seen, textual and visual OSCTI data is processed
first, converting it into semi-structured paragraphs in the prepro-
cessing phase. It then extracts API calls (that are unique entities to
threat hunting in cloud environments) and MITRE ATT&CK TTPs
from the paragraphs and generates initial Sigma candidates (in the
Paragraph-Level phase). Finally, it consolidates the candidates from
all paragraphs, verifies their syntactic and logical correctness, elim-
inates duplication, and enriches them with identified indicators of
compromise (IoCs) (in the OSCTI-Level phase). An example of a
Sigma rule generated by LLMCloudHunter is illustrated in Listing 1,
with a demonstration of its generation process in Appendix C.

We evaluated the efficacy and precision of the Sigma candidates
generated using 20 cloud-related OSCTI sources that we identified.
The evaluation was performed using common entity and relation-
ship extraction metrics, and the results were validated against a
ground truth carefully defined by our research team. Additionally,
we introduced a set of criteria specifically designed to test each
Sigma candidate’s functionality in the operational context of OSCTI.
This evaluation ensures that the rules generated not only meet syn-
tactic standards but are also operationally effective in addressing
the dynamic and complex nature of cloud-based cyber threats. We
also conducted an ablation study, systematically removing compo-
nents of the framework to pinpoint their individual contributions
to LLMCloudHunter’s overall efficacy. The results show that our
framework achieved a precision of 83% and recall of 99% for the task
of accurately extracting threat actors’ API calls, and a precision of
97% with a recall of 97% for IoCs. Moreover, 99.18% of the generated
Sigma candidates were successfully converted into Splunk queries.
In terms of overall performance, i.e., including the extraction of API
calls, IoCs, MITRE ATT&CK TTPs, and request parameters, our
framework achieved 85% and 88% precision and recall, respectively.

To summarize, the main contributions of this paper are: (1) A
novel LLM-based framework for the automatic generation of Sigma
candidates from unstructured OSCTI, which integrates both textual
and visual information. While our framework focuses on cloud
environments, it can be adapted for use with on-premise-related
CTI. LLMCloudHunter utilizes a pretrained LLM, thus providing
flexibility in updating the underlying LLM, and does not require
"heavy" model training. (2) An annotated dataset (used for the eval-
uation of our framework) consisting of 20 cloud-related OSCTI
posts, complete with entities and their relationships, as well as
Sigma rules. (3) Insights on the application of LLMs for complex NLP
tasks in the field of cybersecurity, pertaining to prompt engineering
techniques and the effective use of models’ features and parame-
ters. (4) A comprehensive evaluation that assesses the accuracy and
correctness of the Sigma candidates generated. (5)We make both
our code and cloud CTI dataset available to the research community
on GitHub.1

1To preserve anonymity, the code and dataset will be available upon paper acceptance.

title: Access to Terraform File from Malicious IPs
description: Detects requests for terraform.tfstate file

from known malicious IPs. This file contains sensitive
infrastructure information and secrets , indicating
potential compromise or unauthorized access.

references:
- https:// sysdig.com/blog/cloud -breach -terraform -data -

theft/
- https://docs.aws.amazon.com/AmazonS3/latest/API/

API_GetObject.html
author: LLMCloudHunter
tags:

- attack.collection
- attack.t1530

logsource:
product: aws
service: cloudtrail

detection:
selection_event:

eventSource: s3.amazonaws.com
eventName: GetObject
requestParameters.key: terraform.tfstate

selection_ip_address:
sourceIPAddress:

- 80.239.140.66
- 45.9.148.221
- 45.9.148.121
- 45.9.249.58

condition: selection_event and selection_ip_address
falsepositives:

- Automated CI/CD pipeline operations
- DevOps engineers manually running Terraform commands

level: high

Listing 1: A Sigma rule generated by LLMCloudHunter.

2 RELATEDWORK
In this section, we provide a brief overview of recent studies focused
on analyzing unstructured OSCTI analysis. A detailed description
of related work is provided in Appendix A.

Earlier works have extensively utilized NLP techniques for OS-
CTI analysis [4, 28, 35–37]. These methods leveraged advanced NLP
models to extract actionable insights from OSCTI text. However, to
adapt these models to the cyber threat domain, a significant amount
of preprocessing and fine-tuning is required. While the approach
implemented by TTPDrill [15] and THREATRAPTOR [13] reduces
the need for extensive model training, it is not flexible, and signifi-
cant customization is needed for use in cloud environments. This
is due to fundamental differences in terminology and data types
between traditional on-premise environments and cloud environ-
ments, as well as the dynamic nature of cloud architectures, which
continuously evolve with new services and configurations.

The introduction of LLMs has led to a paradigm shift in OSCTI
processing, with research demonstrating their ability to extract
meaningful and structured data from OSCTI text. Utilizing GPT-3.5,
Purba and Chu [29] and Siracusano et al. [39] addressed tasks rang-
ing from the extraction of IoCs to the generation of structured CTI
format (e.g., STIX), respectively, while Liu and Zhan [20] applied
ChatGPT to construct graphical representations of OSCTI data. Hu
et al. [14] and Fengrui and Du [11] expanded upon these capabilities
by utilizing both pretrained and fine-tuned LLM models. They em-
ployedGPT-3.5 and ChatGPT for data annotation and augmentation,
respectively, to prepare datasets for fine-tuning the LLaMA2-7B
model. Hu et al. [14] applied the fine-tuned LLaMA2-7B to construct

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

knowledge graphs, while Fengrui and Du [11] focused on TTP clas-
sification. In this research, we are the first to develop an end-to-end
framework based on a pretrained LLM, demonstrating the potential
of LLMs in processing OSCTI and generating actionable Sigma rules.
Moreover, our framework integrates visual analysis capabilities, ex-
panding the scope of OSCTI analysis beyond previous text-centric
methodologies. By leveraging pretrained LLMs, we avoid the need
for rule-based methods or training customized models with dedi-
cated datasets. Our framework also focuses on generating rules for
cloud environments, which has not been addressed before.

In terms of OSCTI datasets, in contrast to prior studies that used
semi-structured and on-premise-related datasets, we use 20 unstruc-
tured, publicly available cloud-based posts and reports sourced from
various publishers. These OSCTI reports, which describe AWS cloud
incidents, were systematically annotated by our research team to
develop a robust ground truth for development and evaluation.

Previous studies produced a variety of outputs with different
levels of utility and applicability. This includes extracting IoCs [19,
29], TTPs [11], and structured representations using the STIX for-
mat [12, 15]. More advanced approaches were used to create threat
behaviour graphs [13, 37] and knowledge graphs [4, 6, 14, 20, 28,
35, 37]. While the approaches highlighted above provide valuable
contextual information, further processing is required to trans-
form the representations into actionable defense mechanisms. To
address this, in their study, Gao et al. presented a framework for
converting OSCTI data into a threat behavior graph and associated
domain-specific queries. The detection rule candidates generated by
LLMCloudHunter, however, are in the known open-source Sigma
structure. This widely used generic signature format is inherently
suitable for integration in various application environments and
SIEMs. By capturing the entities, relations, IoCs, and TTPs identi-
fied in OSCTI, LLMCloudHunter translates threat intelligence into
applicative Sigma candidates.

3 PROPOSED METHOD
In this section, we present our proposed framework, LLMCloud-
Hunter, and how it leverages OpenAI’s GPT-4o [25] model to pro-
cess cloud-based OSCTIs and generate Sigma candidates. LLM-
CloudHunter’s pipeline (see Fig. 1) consists of three main phases:
Preprocessing, Paragraph-Level Processing, and OSCTI-Level Process-
ing; these phases are described in the subsections that follow.
Relevant Entities for Threat Hunting in Cloud Environments.
The atomic units in cloud application logs are cloud API calls, which
describe system and application activities that potentially provide
traces of threat behavior. An example of an API call may be the
GetFunction action, which requests information about a function.
Therefore, the information used to generate Sigma candidates for
threat hunting in cloud environments includes entities such as IP
addresses and user agents, similar to on-premise environments, as
well as API calls that are unique to cloud environments.

We differentiate between primary (essential) entities and contex-
tual entities. Primary entities are required for the correct execution
of generated Sigma candidates in SIEM systems. A mistake in ex-
tracting a relationship that includes a primary entity will result in
incorrect “hunting” activity. Primary entities in cloud environments
include API calls (e.g.,GetFunction) as well as the request parameters
of that API call (e.g., requestParameters.functionName: respondUser),

IoCs (including IP addresses and user agents), log source (e.g., AWS
CloudTrail), and event source (e.g., lambda.amazonaws.com). Con-
textual entities do not impact the correctness of the detection rule
logic; however, they provide additional contextual information to
the threat hunter, making the investigation of a case more efficient.
Contextual entities include the title and description of the Sigma
rule, TTPs, false positives, and criticality level.

3.1 OSCTI Preprocessing
OSCTI varies in terms of the type and format, depending on the pub-
lishing platform, the author, the nature of the collected information,
and its intended purpose. Due to this lack of uniformity, prelim-
inary steps must be performed to standardize the format. Such
steps enable the data to be automatically and effectively handled
by subsequent processing components. The preprocessing converts
the HTML content into a structured markdown format, which has
been shown to improve LLM task performance [18]. Additionally,
our framework uniquely handles image extraction, classification,
and transcription—a novel approach compared to related works.
Downloader and Parser. The automated OSCTI preprocessing
phase begins by downloading and parsing the OSCTI HTML code
(A in Fig. 1), using web scraping and processing tools such as Se-
lenium [21] and BeautifulSoup [33], followed by additional refor-
matting techniques (e.g., regex) to ensure a valid OSCTI markdown
output. By examining the web page elements, LLMCloudHunter
pinpoints the beginning and end of the relevant content, excluding
irrelevant elements (such as sidebars and advertisements). In the
next step, these HTML layout elements are converted into a unified
markdown based on the following guidelines: (1) Preserve spacing
to separate content types such as paragraphs and code sections,
maintaining their original layout. (2) Mark headings (h1, h2, etc.)
to maintain the hierarchical structure of the original HTML con-
tent. (3) Parse HTML code encompassing tables and nested lists to
preserve their structural properties. For example, a tab character is
employed in lists to signify nested items, whereas in tables, the ‘|’
symbol is used to demarcate columns. (4) Identify and embed image
URLs as placeholders within the text, positioning them according
to their original placement in the report.

After converting the HTML into a markdown, we employed
a targeted approach to exclude non-essential content (including
headings, subheadings, and the corresponding paragraphs). Such
content is identified by indicative keywords that suggest repeti-
tive and redundant information. Examples of this type of content
include overviews, recommendations, and concluding paragraphs.
For instance, if a ‘recommendations’ paragraph appears under an h2
heading, we remove the paragraph and any subsequent content un-
til the next h2 (or h1) heading is encountered, as recommendations
are not part of the attack description and often include marketing
content. This approach effectively removes non-essential or dupli-
cated content nested under the identified headings. The filtered
version of the output is then passed on to the next component in
the framework. The full output, which includes all content, will be
used in the OSCTI-Level Processing phase.
Image Analysys. Continuing with the Preprocessing phase, each
image is first classified by the Image Classifier(B in Fig. 1) using a
classification prompt as either an informative image (e.g., screen-
shots, charts, diagrams, and tables containing information related

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Paragraph-Level Processing OSCTI-Level Processing

Unstructured
OSCTI (HTML)

Downloader
and Parser

API Call
Extractor

Rule
Generator

Rule
Optimizer

Preprocessing

Rule
Deduplicator

IoC
Enhancer

Image
Transcriptor

IA HGD M



 

 

TTP
Classifier
E



Sigma
Candidates

IoC
Extractor
L

Criticality
Classifier
F

Rule
Selector

J

API Call
Remover

K Valid

Valid Valid

Image
Classifier

CB

 









Figure 1: Overview of the LLMCloudHunter framework.

to the OSCTI content) or non-informative one(e.g., decorative art,
advertisements, logos, or generic symbols). The prompt includes
the text of the paragraph in which the image is located in the OSCTI
as context to assist the LLM in determining its classification. Along
with the classification, we requested the LLM to explain the image
classification to facilitate human validation during testing. If an
image is classified as informative, it is then passed to Image Tran-
scriptor (C in Fig. 1). It is processed using a transcription prompt to
extract and convert its content into the most appropriate markdown
format (e.g., lists and code). The extracted text is integrated into
the OSCTI formatted text in its original location, preserving the
report’s context/flow and enhancing it with critical details, such as
API calls and IoCs. By adopting this comprehensive image process-
ing approach, the framework increases the accuracy of extracted
information and introduces a novel method in OSCTI analysis (See
ablation study 4). Unlike previous works, which have overlooked
the potential value of visual data, our framework integrates rele-
vant images into the analytical pipeline, ensuring that no critical
information is missed. The image classification and transcription
prompts are provided in Appendix F.

3.2 Paragraph-Level Processing
After preprocessing the OSCTI, the next phase in the LLMCloud-
Hunter framework is Paragraph-Level Processing. In this phase,
LLMCloudHunter first identifies key entities: API calls, MITRE
ATT&CK TTPs, and threat event criticality levels. These entities
are then used to enrich the formatted paragraphs, from which LLM-
CloudHunter generates initial Sigma candidates. To perform these
complex tasks, LLMs require carefully defined steps of accurate
information extraction and effective data linkage. Our experiments
showed that segmenting the OSCTI text into manageable chunks
(i.e., paragraphs) enhances the efficiency of the tasks involved in
Sigma candidate generation. This approach aligns with the natural
structure of writing, organizing information into semantically dis-
tinct paragraphs, which narrows the model’s focus and minimizes
errors. Additionally, we leverage parallelization by processing these
paragraphs concurrently to boost processing speed significantly.
API Call Extractor. The Paragraph-Level Processing phase starts
with the API Call Extractor (D in Fig. 1), which analyzes paragraphs
from the OSCTI formatted text that were generated in the previous
phase and extracts both explicitly mentioned and implicitly referred
API calls in each paragraph (this process is depicted in the flowchart
presented in Appendix F). To improve the model’s output reliability,
mitigate hallucinations (e.g., referencing nonexistent events), and

prevent the omission of API calls, we incorporate a majority voting
mechanism to ensure higher accuracy and confidence in identifying
and extracting relevant API calls.

The operational flow begins with the explicit API call extractor,
where a dedicated prompt instructs the LLM to extract all explicitly
mentioned API calls in the paragraph. This operation is executed
𝑁𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 times, with API calls that exceed the 𝑇𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 threshold
selected for subsequent analysis. Only paragraphs containing API
calls that meet the 𝑇𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 are kept; the rest are discarded.

Then, paragraphs that are found to contain explicit API calls
undergo more nuanced extraction by the Implicit API Call Extractor.
In this step, we utilized the LLM to perform a deeper analysis to infer
API calls suggested indirectly by the OSCTI author. For example,
operational descriptions such as performing a sync action on an
S3 bucket should be mapped to the ListBuckets and GetObject API
calls. Due to the complexity of identifying these implicit API calls,
this step is executed 𝑁implicit times, where 𝑁implicit is set to twice
the number of 𝑁explicit iterations performed. Similar to the explicit
API call extraction process, paragraphs are analyzed for implicit
API calls that meet the 𝑇𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 threshold. However, paragraphs
without any implicit API calls are not discarded, as they still have
some value due to their explicit API call content.
TTP Extractor. This component (E in Fig. 1) analyzes the extracted
API calls, mapping them to cloud-based MITRE ATT&CK tactics,
techniques, and sub-techniques. It utilizes a detailed prompt, which
includes mapping cloud tactics to techniques and techniques to
sub-techniques (in JSON format), along with illustrative examples
of effective and ineffective mappings. This integrated approach not
only enhances the accuracy of TTP assignments but also safeguards
against model hallucinations. Each API call is evaluated in its spe-
cific context to assign the most precise and relevant TTPs. While
these TTPs do not directly alter the detection logic of the Sigma
candidates, they play a critical role in understanding the structure
of the attack and classifying its various stages.
Criticality Classifier. This component (F in Fig. 1) estimates the
severity of each Sigma candidate. It uses a single prompt, which
includes the paragraph markdown along with the extracted API
calls and TTPs, to classify API calls into appropriate criticality levels
based on their context. The prompt guides the LLM by providing
examples (zero-shot learning), helping emphasize each API call’s
potential impact, malicious use, and monitoring importance.
Rule Generator. The last component in the Paragraph-Level Pro-
cessing phase (G in Fig. 1) receives as input a list of identified API
calls, their criticality, and corresponding TTP assignments, bundled

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

with the paragraph markdown. The LLM processes this enriched
input using the Rule Generator prompt (the full prompt is provided
in Appendix F). This prompt defines the LLM’s role as a cyber-
security analysis tool that specializes in generating Sigma rules
from OSCTI text. This approach aims to leverage extracted AWS
API calls to enrich paragraphs and transform them into Sigma can-
didates. This, in turn, enables the detection of similar activities
or patterns in log files. The generation prompt includes several
important instructions:
• Each API call provided (along with its TTPs) must be included

in the Sigma candidates, but not more than once, to avoid the
omission of important details and duplications.

• Paying attention to small details is extremely important as they
can improve the detection specificity of the Sigma candidates.

• Sigma candidates with the same attack patterns and stages (i.e.,
their TTPs) should be merged and vice versa.

• Sigma candidates must align with the specific terminology and
functionality of AWS environments to ensure relevance.

• The output (i.e., LLM response) is required to be in a uniform and
interpretable format. We used JSON format since it is a built-in
feature available through the OpenAI API [24].

Rule Validator. Once Sigma candidates are generated, a validation
function is applied to ensure that the output complies with the
Sigma standard structure (YAML). This function is denoted as Valid
in Fig. 1, and is executed by each component that produces rules
using LLM. This validation process involves sanitizing too specific
or extraneous fields, such as errorcode, errormessage, and explicit
resource names, to enhance the applicability of the rules. It also
reformats the syntax to ensure the validity of <key:value> pairs
and verifies metadata, including author names, reference URLs,
and dates. This function safeguards the integrity and consistency
of the Sigma candidates by eliminating redundant attributes and
correcting structural flaws.

3.3 OSCTI-Level Processing
The final phase in the LLMCloudHunter framework aggregates
Sigma candidates generated from individual paragraphs to produce
a consolidated and optimized set of detection rules, enabling holistic
processing and enrichment. It takes the collected Sigma candidates
from all processed paragraphs and outputs a final, optimized set
free of redundancies and enriched with IoCs.
Rule Optimizer. The first component (H in Fig. 1) in the OSCTI-
Level Processing phase is designed to improve Sigma candidates’
detection logic. In this component, the LLM processes the validated
Sigma candidates concurrently to enhance the speed and efficiency
of the optimization process. A designated prompt, along with op-
timization examples, guides the LLM to ensure that the detection
criteria are clear and aligned with their intended purpose. The
optimization process includes the following tasks:
• Unification - merges selection fields that match identical de-

tection criteria, i.e., those sharing the same filtering logic. For
example, consider the Sigma rule in Listing 1, which detects ac-
cess to a certain file from malicious IP addresses. Assume this
Sigma rule includes another selection field with the same event
source, event name, and request parameter (s3.amazonaws.com,
GetObject, and terraform.tfstate, respectively) but adds an addi-
tional request parameter: requestParameters.bucket: Starak. When

performing the unification task, the Rule Optimizer combines
these two selection fields into a single selection that encompasses
all relevant fields: eventSource, eventName, requestParameters.key,
and requestParameters.bucket. This unification ensures that the
rules are comprehensive and free of redundancy by merging
overlapping criteria while preserving their original integrity.

• Separation - Splits disjoint selection fields that share some de-
tection criteria but have misaligned logic. For example, consider
the Sigma rule in Listing 1. Assume that the initial Sigma rule
incorrectly included two additional unrelated fields: eventSource:
iam.amazonaws.com and eventName: PutUserPolicy in the same
existing selection field. The Rule Optimizer would recognize that
these fields are unrelated to the original detection logic and
would separate them into a new selection field. Then, it would
update the condition field to search for either the first selection or
the newly created second selection. This separation ensures the
rule remains accurate and logically consistent by distinguishing
between different detection criteria.

Algorithm 1 Rule Deduplicator.
Input: A set of Sigma candidates 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠
Output: Modified 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠
1: 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼𝑠 ← ExtractAPIs(𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠)
2: for each 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼 ∈ 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼𝑠 do
3: 𝑐𝑜𝑚𝑚𝑜𝑛𝑅𝑢𝑙𝑒𝑠 ← GetCommonRules(𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠 , 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼)
4: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑅𝑢𝑙𝑒 ← RuleSelector(𝑐𝑜𝑚𝑚𝑜𝑛𝑅𝑢𝑙𝑒𝑠 , 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼)
5: 𝑟𝑢𝑙𝑒𝑠𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 ← 𝑐𝑜𝑚𝑚𝑜𝑛𝑅𝑢𝑙𝑒𝑠 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑅𝑢𝑙𝑒
6: for each 𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 ∈ 𝑟𝑢𝑙𝑒𝑠𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 do
7: 𝑟𝑢𝑙𝑒𝐴𝑃𝐼𝑠 ← ExtractAPIs(𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡)
8: if |𝑟𝑢𝑙𝑒𝐴𝑃𝐼𝑠 | = 1 then
9: 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠 ← 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠 − 𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡
10: else
11: APICallRemover(𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 , 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼)
12: end if
13: end for
14: end for

Rule Selector. This component (J in Fig. 1) refines the Sigma candi-
date set by selecting the most suitable rule among those containing
the same API call. It uses prompts to evaluate the specificity and
context of each rule, prioritizing those with detailed criteria directly
linked to the API call. If multiple rules are equally specific, the con-
text (the paragraph of which they have been generated) is used to
make the final selection.
API Call Remover. Following the Rule Selector’s identification of
the best rule, the API Call Remover (K in Fig. 1) edits other rules
containing the same API call. It systematically preserves each rule’s
structure while removing the redundant API call. If a rule solely
depends on the API call being removed, it is discarded entirely.
Rule Deduplicator.Working with the Rule Selector and API Call
Remover, the Rule Deduplicator (I in Fig. 1) finalizes the Sigma can-
didate set by eliminating overlaps as the depicted in Algorithm 1.
It maps event names to rule indices and retains only the most com-
prehensive rule for each detection scenario, resulting in a precise
and non-overlapping set of Sigma candidates.
IoC Extractor. This component (L in Fig. 1) parses OSCTI texts
to identify and extract explicit IoCs, notably IP addresses and user

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

agents pertinent to AWS CloudTrail logs. Its input is the full mark-
down of the OSCTI created by the Downloader and Parser, along
with an instruction prompt. This prompt guides the LLM to focus
on paragraphs typically containing IoCs (e.g., conclusion, findings,
or IoC sections). Additionally, the LLM is instructed to ensure that
all IoCs are identified and to convert obfuscated IP addresses and
user agents to standardized formats.
IoC Enhancer. Following the extraction of IoCs by the IoC Ex-
tractor, this component (M in Fig. 1) integrates the extracted IoCs
into all Sigma candidates, enhancing their detection capabilities
while maintaining flexibility for analysts. The IoCs (IP addresses
and user agents) associated with the threat actor are added to each
Sigma candidate as optional detection filters. The IoC Enhancer in-
troduces new selection fields for each type of IoC. For instance, when
an IP address is extracted (198.51.100.1), the selection_ioc_ip field
is added: selection_ioc_ip: sourceIPAddress: 198.51.100.1. Similarly,
when a user agent is extracted (Mozilla/5.0), the selection_ioc_ua
field is introduced: selection_ioc_ua: userAgent|contains: Mozilla/5.0.
The |contains operator is used to improve string matching flexibil-
ity, allowing for variations (e.g., different versions). After adding
these IoC selections, the IoC Enhancer updates the condition field
of each Sigma candidate to include the IoCs as optional criteria.
If the original condition was: condition: selection, it is modified to:
selection and (selection_ioc_ip or selection_ioc_ua). This ensures that
an event must meet the original detection criteria (e.g., specific API
calls and event sources) and either the IP address or user agent IoC.
By integrating IoCs in this way, the rules become more accurate in
detecting activities associated with the threat actor. Importantly,
since the IoCs are added as optional filters, analysts can easily ad-
just the rules to suit their needs. If the IoCs lead to false positives or
become irrelevant, analysts can remove or modify these conditions
without altering the core detection logic. This approach maintains
transparency of information passed from OSCTI to the Sigma rules
while ensuring the Sigma candidates remain adaptable for various
use cases.

4 EVALUATION
In this section, we describe the creation of an annotated benchmark
dataset and present the methodology and metrics used to evaluate
the efficacy and accuracy of the Sigma candidates generated by
LLMCloudHunter. We present the results of our evaluation, which
also includes an ablation study in which we analyze the impact of
each of the framework’s components on the overall performance.

4.1 Dataset
We collected 20 cloud environment OSCTIs published by different
vendors. Table 6 in Appendix 6 provides a description of the OSCTIs,
including the number of images, token sizes, number of API calls,
and their technical complexity. To establish the dataset’s ground
truth, a team of threat hunting and cloud security experts thor-
oughly analyzed each OSCTI’s content. The team (1) identified and
extracted the entities described in the OSCTI and (2) identified the
relevant inter-entity relationships essential for creating coherent
and meaningful Sigma candidates. The list of extracted entities and
inter-entity relationships is provided in Table 1. We categorized the
entities and relationships into two main groups:

(1) Detection: These are essential elements required to form a
correct Sigma rule for detecting threat actor actions. This category
includes detection entities and their associatedDetection Field Name
relationships, which are crucial for measuring key:value placements
in rule generation.
(2) Informative (MITRE ATT&CK Tags): Entities not directly
involved in detection logic but relevant for adding context to the
alerts raised by the rules, based on associated TTPs.

Entity Relationship
Detection Entities and Relationships

API Call Detection Field Name↔ Detection Entity
Log Source API Call↔ Log Source
API Source API Call↔ API Source

IoC API Call↔ IoC
Other API Call↔ Other
MITRE ATT&CK Entities and Relationships

Technique API Call↔ Technique
Sub-Technique API Call↔ Sub-Technique

Table 1: Entity types and relationships.

4.2 Evaluation Metrics
We evaluated our framework’s performance using a comprehensive
set of metrics designed to assess both the extraction of entities and
relationships from OSCTIs and the functionality of the generated
Sigma candidates.
Entity and Relationship Extraction Metrics: We utilized com-
mon entity and relationship extraction metrics, as done in prior
studies [4, 6, 11–13, 20, 28, 29, 35–37, 39], to assess our framework’s
performance, validating the results against the ground truth defined
by our research team. Themetrics used to assess LLMCloudHunter’s
performance in extracting and identifying the entities and inter-
entity relationships in the OSCTI are the precision (P), recall (R),
and F1 score (F1) weighted by the total number of entities/relation-
ships of each type, denoted as ‘#’ (since each OSCTI has a different
number of entities/relationships). By calculating these metrics sep-
arately for each entity and relationship type, we can pinpoint areas
of strength and identify opportunities for improvement.

To evaluate the functionality, logical validity, and relevance of
the Sigma candidates generated by LLMCloudHunter, we defined
the following criteria. Thesemetrics were calculated by our research
team for each Sigma candidate generated:
• Syntax Correctness - Assesses whether the generated Sigma

candidates are syntactically correct and properly formatted, en-
suring that a given rule is operational in a SIEM system. We
used Sigma CLI [2] for compilation and conversion into query
languages (e.g., Splunk).

• Detection Condition Accuracy - Focuses on the correctness
of the condition fields, which specify the relationship between
various selection fields.

• CriticalityAccuracy -Measures the accuracy of the level field of
each Sigma candidate, which represents the level of importance
and urgency of the rule.

• Descriptive Metadata Alignment - Evaluates whether the title,
description, and falsepositives fields accurately reflect the rule’s
intended purpose and context.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4.3 Results
The results (averaged over all evaluated OSCTIs) of our entity and
relationship extraction evaluation are presented in Tables 2 and 3,
respectively (detailed results are provided in Appendix B).
Detection.We consider API calls and IoCs to be the most important
entities for generating practical and relevant Sigma candidates.
For these two entity types, LLMCloudHunter achieved a weighted
precision of 83% with a recall of 99% for the API calls and a precision
of 99%with a recall of 97% for the IoCs. In the ’Other’ entity category,
which includes various entities (e.g., request parameters and IP
address), resulted in precision and recall values of 75% and 61%,
respectively. The relationship extraction results, which represent
LLMCloudHunter’s ability to interrelate detection entities to the
appropriate fields in Sigma rules, achieved an F1 score of 96% for
the Detection Field Name↔ Detection Entity relationship.
Informative (MITRETags). For the extraction ofMITREATT&CK
TTPs, which is known to be a challenging task [8], LLMCloud-
Hunter achieved an F1 score of 74% for technique and 81% for
sub-technique. Since each technique and sub-technique directly
maps to one or more known tactics, this entity becomes redundant.
For instance, ‘Cloud Service Discovery (T1526)’ maps to the ‘Discov-
ery’ tactic, illustrating how tactics can be directly inferred from
techniques, rendering the explicit identification of tactics redundant.
These results are notable compared to similar works; for instance,
Daniel et al. [10] reported a highest F1 score of 0.49 in MITRE tags
extraction. The relationship identification results, which represent
LLMCloudHunter’s ability to interrelate the detection entities to
the relevant key in the Sigma candidates (Detection Field Name
↔ Detection Entity), achieved an F1-score of 96%. Regarding the
extraction of MITRE ATT&CK TTPs, LLMCloudHunter achieved
an F1 score of 74% for Techniques and 81% for Sub-Techniques,
with notably high recall rates of 82% and 90%, respectively. The
precision was impacted due to LLMCloudHunter generating more
Sigma candidates than the ground truth, leading to the creation of
additional, more specific tags. This increase in the number of tags
stems from LLMCloudHunter’s strategy to extract all the threat
actor actions, resulting in a higher number of API Calls and, thus,
a higher number of false positives when compared to the ground
truth, thus lowering the precision. Similarly, in the relationship ex-
traction task, the low precision for MITRE-related relationships can
be attributed to the model associating more specific Techniques and
Sub-Techniques with the API Calls, which were not always present
in the ground truth. While this affects the precision metric, the
high recall indicates that LLMCloudHunter successfully captures
the relevant TTPs, providing valuable context for threat detection.

In summary, LLMCloudHunter demonstrates strong performance
in extracting and identifying key entities and their relationships
within OSCTI.While the frameworkwas shown to excel in handling
API calls, IoCs, and request parameters, achieving high precision
and recall for this, it faces challenges with MITRE ATT&CK TTPs,
which impacts the overall performance but does not affect the de-
tection capabilities of the Sigma candidates generated.

The results of our Sigma candidate evaluation are presented in
Table 4. Out of 260 generated candidates, an impressive 99.18%
were syntactically correct and operational, showcasing high syntax

correctness. The detection condition accuracy was equally note-
worthy, with all but one candidate correctly specifying the logical
relationships between selection fields, resulting in an accuracy
rate exceeding 99%. While the criticality accuracy varied between
75% and 100% across different OSCTIs—with an average of approxi-
mately 88% — this suggests that LLMCloudHunter generally assigns
appropriate importance levels, though there is room for improve-
ment in aligning more closely with expert assessments. Lastly, the
descriptive metadata alignment was exceptional, with most OSCTIs
scoring above 95%, demonstrating that LLMCloudHunter effectively
generates titles, descriptions, and false positive information that
accurately reflect each rule’s intended purpose and context.

Entity # P R F1

Detection

Field Name 8.20 0.85 0.85 0.85
API Call 18.75 0.83 0.99 0.90
IoC 9.50 0.99 0.97 0.98
Log Source 2.00 1.00 1.00 1.00
Other 3.45 0.75 0.61 0.67

MITRE Technique 6.25 0.67 0.82 0.74
ATT&CK Sub-Technique 3.00 0.73 0.90 0.81

Table 2: Entity extraction results.

Relationship # P R F1

Detection

Field Name↔ Detection Entity 33.00 1.00 0.93 0.96
API Call↔ API Source 17.60 1.00 0.82 0.90
API Call↔ IoC 31.20 1.00 0.99 0.99
API Call↔ Other 5.90 0.92 0.55 0.69
API Call↔ Log Source 31.20 1.00 0.99 0.99

MITRE API Call↔ Technique 16.85 0.61 0.47 0.53
ATT&CK API Call↔ Sub-technique 5.15 0.92 0.69 0.79

Table 3: Relationship extraction results.

OSCTI ID #Rules Executability
Condition Criticality Descriptive

Field Accuracy Metadata
Accuracy Alignment

1 10 9 (90%) 9 (90%) 87.50% 93.75%
2 15 15 (100%) 15 (100%) 90.00% 95.00%
3 15 15 (100%) 15 (100%) 83.33% 90.00%
4 9 9 (100%) 9 (100%) 83.33% 100.00%
5 18 18 (100%) 18 (100%) 86.11% 100.00%
6 14 14 (100%) 14 (100%) 92.86% 100.00%
7 7 7 (100%) 7 (100%) 85.71% 100.00%
8 9 9 (100%) 9 (100%) 83.33% 100.00%
9 4 4 (100%) 4 (100%) 75.00% 87.50%
10 15 15 (100%) 15 (100%) 96.43% 100.00%
11 14 14 (100%) 14 (100%) 82.14% 96.43%
12 18 13 (100%) 13 (100%) 93.75% 100.00%
13 24 24 (100%) 24 (100%) 97.92% 96.88%
14 6 6 (100%) 6 (100%) 83.33% 100.00%
15 4 4 (100%) 4 (100%) 87.50% 100.00%
16 39 39 (100%) 39 (100%) 90.38% 98.08%
17 6 6 (100%) 6 (100%) 90.00% 100.00%
18 6 6 (100%) 6 (100%) 83.33% 100.00%
19 12 12 (100%) 12 (100%) 91.67% 95.83%
20 15 15 (100%) 15 (100%) 100.00% 96.67%

Weighted Avg. 15 99.18% 100.00% 88.18% 97.50%

Table 4: Sigma candidate evaluation results.

Ablation Study Results. We conducted an ablation study to bet-
ter understand the impact of LLMCloudHunter’s components on
its performance. We created three variations of LLMCloudHunter
by systematically removing key components and evaluating the
performance of each variant. Table 11 in Appendix D summarizes

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

the different configurations used in the ablation study. The Blind-
Hunter variation evaluates the impact of the image processing by
Image Classifier and Image Transcriptor. The NoAPIHunter varia-
tion is designed to evaluate the impact of the API Call Extractor
and TTP Classifier components (D and F in Fig. 1, respectively); ;the
UnoptimizedHunter variation aims to evaluate the Rule Optimizer
component (H in Fig. 1); and the CritLessHunter is used variation
evaluates the impact of the Criticality Classifier component (F in
Fig. 1). When the Criticality Classifier was omitted (CritLessHunter
variation), we observedminimal impact on entity extractionmetrics.
However, this component is vital for assigning appropriate threat
levels and aiding in the prioritization of Sigma candidates. Table 12
in Appendix D presents the results for each of the variations in the
previously evaluated entity and relationship identification tasks.

The results obtained with the BlindHunter variation show a 7%
decrease in the F1 score for the API Call entity extraction task,
with the recall dropping to 82%. Additionally, the weighted average
precision and recall for Detection Field Name↔ Detection Entity re-
lationship identification were reduced by 17% and 21%, respectively.
This significant reduction in accuracy, especially in extraction cov-
erage (API Calls), highlights the importance of the Image Classifier
and Image Transcriptor components in extracting information from
images that may not be available elsewhere.

The NoAPIHunter variation, with the API Call Extractor and
TTP Extractor components removed, resulted in significantly worse
performance compared to the other variations. For the task of entity
extraction, we observed a 22% drop in the average precision and
a 7% drop in the average recall. Performance on the relationship
extraction metrics was even more affected, with a 42% reduction in
the average precision and a 14% reduction in the average recall.

These findings highlight the importance of dedicated compo-
nents for entity extraction, such as the API Call Extractor and TTP
Classifier, which allow the model to focus on accurate extraction
before rule generation. Specifically, the API Call Extractor and TTP
Extractor components proved essential to LLMCloudHunter’s over-
all performance. In contrast, less dramatic differences in the per-
formance were seen with the UnoptimizedHunter variation, which
assesses the impact of omitting the Rule Optimizer component. In
the relationship extraction task, there was a 17% reduction in aver-
age precision and a 9% decrease in average recall. Although these
declines are not as great as those seen in the previous variation in
terms of API Call extraction, the decrease in the relationship iden-
tification indicates that syntax and executability will be affected.

To summarize, the ablation study highlights the essential roles
of the Image Classifier, Image Transcriptor, API Call Extractor, and
TTP Extractor components in maintaining high precision and recall
in both entity and relationship extraction tasks. The Rule Optimizer
also plays a valuable role, though its impact is less pronounced
compared to the other components.

5 DISCUSSION
Our experiments highlighted the effectiveness of various techniques
applied throughout LLMCloudHunter’s pipeline. These techniques,
along with the purpose and specific settings for each component,
are summarized in Table 13 in Appendix E and described below:
Majority Rule in Entity Extraction Using LLMs. We used a
majority voting mechanism in the API Call Extractor to address

LLM inconsistencies and hallucinations. While identical extraction
requests generally produced similar results, occasional variations
may occur due to the LLM’s generative nature. To ensure accuracy,
only API calls meeting a set majority threshold were retained. We
experimented with the number of runs and threshold size to bal-
ance runtime, cost, and accuracy. This approach effectively reduced
erroneous results in ambiguous cases.
Structured Response Format. For each LLM request, we use the
JSON output format LLM via the request setting [24]. This struc-
tured format enables automatic validation and processing. It also
allows direct access to values without additional post-processing.
LLM Temperature Settings. The temperature setting of an LLM
influences the creativity and randomness of its outputs, and its val-
ues range between zero and two [23]. By adjusting the temperature
for different tasks, we can improve the results. For example, in the
API Call Extractor component, where extracting the information
accurately is crucial, we use a low temperature of zero to ensure
more accurate responses. In contrast, for the Rule Generator compo-
nent, we set the temperature to 0.7 to allow the model to generate
conditions for Sigma rules, which require some ‘creativity.’
Leveraging the Few-shot Learning Technique. Providing in-
structions and input-output examples can significantly improve
model performance [9, 26]. By dividing the OSCTI analysis into
smaller tasks, we provided specific instructions for each. Using few-
shot learning with a small number of examples further enhanced
the model’s ability to generate accurate outputs.
Parallel LLM Requests. We leveraged independent LLM prompts
to perform parallel execution, resulting in improved speed and ef-
ficiency. We identified two key scenarios where parallel requests
were particularly beneficial. First, in preprocessing, we translated
all images into text simultaneously, accelerating this step. Second,
in paragraph-level processing, we processed each paragraph in par-
allel, reducing overall processing time by threefold. This approach
reduces the runtime and improves scalability for larger datasets,
allowing for more efficient handling of extensive text corpora.
Limitations. Using a commercial LLM model (OpenAI’s GPT-4o),
known for its performance [5, 43], adds a cost factor that needs
to be considered (approximately 25 cents per OSCTI). In addition,
while we used pretrained LLMs, fine-tuning open-source models,
may have an advantage in performing specific tasks correctly.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented LLMCloudHunter, an end-to-end frame-
work that analyzes textual and visual OSCTI using a pretrained
LLMmodel when provided a URL. Our framework offers significant
flexibility by allowing easy updates to newer and improved models
without the need for fine-tuning, and it demonstrates scalability
by running independently across multiple OSCTI images and para-
graphs. By using the Sigma format, LLMCloudHunter’s output can
be seamlessly integrated into existing SIEM systems. Future work
can focus on extending LLMCloudHunter to on-premise environ-
ments, increasing its applicability in diverse organizational settings
and environments. Additionally, we plan to enhance our framework
by equipping it with playbook automation capabilities, which will
improve its ability to mitigate detected threats and provide more
robust support for threat hunters.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2024. ATT&CK Matrix for Enterprise. https://attack.mitre.org/. Accessed:

2024-05-14.
[2] 2024. Sigma Command Line Interface. https://github.com/SigmaHQ/sigma-cli/.

Accessed: 2024-05-27.
[3] Sina Ahmadi. 2024. Systematic Literature Review on Cloud Computing Security:

Threats and Mitigation Strategies. International Journal of Information Security
15, 02 (2024), 148–167.

[4] Kashan Ahmed, Syed Khaldoon Khurshid, and Sadaf Hina. 2024. CyberEntRel:
Joint extraction of cyber entities and relations using deep learning. Computers &
Security 136 (2024), 103579.

[5] Anita Kirkovska Akash Sharma, Sidd Seethepalli. 2024. Analysis: GPT-4o vs GPT-
4 Turbo. https://www.vellum.ai/blog/analysis-gpt-4o-vs-gpt-4-turbo/. Accessed:
2024-05-27.

[6] Md Tanvirul Alam, Dipkamal Bhusal, Youngja Park, and Nidhi Rastogi. 2023.
Looking beyond IoCs: Automatically extracting attack patterns from external
CTI. In Proceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses. 92–108.

[7] Masumi Arafune, Sidharth Rajalakshmi, Luigi Jaldon, Zahra Jadidi, Shantanu Pal,
Ernest Foo, and Nagarajan Venkatachalam. 2022. Design and development of
automated threat hunting in industrial control systems. In 2022 IEEE International
Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops). IEEE, 618–623.

[8] AttackIQ. 2022. What is the Pyramid of Pain? https://www.attackiq.com/
glossary/pyramid-of-pain/. Accessed: 2024-05-27.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[10] Nir Daniel, Florian Klaus Kaiser, Anton Dzega, Aviad Elyashar, and Rami Puzis.
2023. Labeling NIDS Rules with MITRE ATT &CK Techniques Using ChatGPT.
In European Symposium on Research in Computer Security. Springer, 76–91.

[11] Yu Fengrui and Yanhui Du. 2024. Few-Shot Learning of TTPs Classification
Using Large Language Models. (2024).

[12] Shota Fujii, Nobutaka Kawaguchi, Tomohiro Shigemoto, and Toshihiro Yamauchi.
2022. Cyner: Information extraction from unstructured text of cti sources with
noncontextual iocs. In International Workshop on Security. Springer, 85–104.

[13] Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Zheng Qin, Fengyuan Xu,
PrateekMittal, Sanjeev R Kulkarni, andDawn Song. 2021. Enabling efficient cyber
threat hunting with cyber threat intelligence. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 193–204.

[14] Yuelin Hu, Futai Zou, Jiajia Han, Xin Sun, and Yilei Wang. 2023. Llm-Tikg: Threat
Intelligence Knowledge Graph Construction Utilizing Large Language Model.
Available at SSRN 4671345 (2023).

[15] Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, and Xi Niu. 2017.
Ttpdrill: Automatic and accurate extraction of threat actions from unstructured
text of cti sources. In Proceedings of the 33rd annual computer security applications
conference. 103–115.

[16] IBM. 2024. What is threat hunting? https://www.ibm.com/qradar/threat-hunting.
Accessed: 2024-05-08.

[17] Ramanpreet Kaur, Dušan Gabrijelčič, and Tomaž Klobučar. 2023. Artificial in-
telligence for cybersecurity: Literature review and future research directions.
Information Fusion (2023), 101804.

[18] Hanbum Ko, Hongjun Yang, Sehui Han, Sungwoong Kim, Sungbin Lim, and
Rodrigo Hormazabal. 2024. Filling in the Gaps: LLM-Based Structured Data
Generation from Semi-Structured Scientific Data. In ICML 2024 AI for Science
Workshop.

[19] Jian Liu, Junjie Yan, Jun Jiang, Yitong He, Xuren Wang, Zhengwei Jiang, Peian
Yang, and Ning Li. 2022. TriCTI: an actionable cyber threat intelligence discovery
system via trigger-enhanced neural network. Cybersecurity 5, 1 (2022), 8.

[20] Jiehui Liu and Jieyu Zhan. 2023. Constructing Knowledge Graph from Cyber
Threat Intelligence Using Large Language Model. In 2023 IEEE International
Conference on Big Data (BigData). IEEE, 516–521.

[21] Baiju Muthukadan. 2024. Selenium. https://selenium-python.readthedocs.io/.
Accessed: 2024-05-12.

[22] Boubakr Nour, Makan Pourzandi, and Mourad Debbabi. 2023. A survey on
threat hunting in enterprise networks. IEEE Communications Surveys & Tutorials
(2023).

[23] OpenAI. 2024. How should I set the temperature parameter?
https://platform.openai.com/docs/guides/text-generation/how-should-i-
set-the-temperature-parameter. Accessed: 2024-05-12.

[24] OpenAI. 2024. JSON mode. https://platform.openai.com/docs/guides/text-
generation/json-mode. Accessed: 2024-05-12.

[25] OpenAI. 2024. Models. https://platform.openai.com/docs/models. Accessed:
2024-05-12.

[26] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.

Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730–27744.

[27] Merve Ozkan-Ozay, Erdal Akin, Ömer Aslan, Selahattin Kosunalp, Teodor Iliev,
Ivaylo Stoyanov, and Ivan Beloev. 2024. A Comprehensive Survey: Evaluating
the Efficiency of Artificial Intelligence and Machine Learning Techniques on
Cyber Security Solutions. IEEE Access (2024).

[28] Youngja Park and Taesung Lee. 2022. Full-Stack Information Extraction System
for Cybersecurity Intelligence. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing: Industry Track. 531–539.

[29] Moumita Das Purba and Bill Chu. 2023. Extracting Actionable Cyber Threat Intel-
ligence from Twitter Stream. In 2023 IEEE International Conference on Intelligence
and Security Informatics (ISI). IEEE, 1–6.

[30] Md Rayhanur Rahman, Rezvan Mahdavi Hezaveh, and Laurie Williams. 2023.
What are the attackers doing now? Automating cyberthreat intelligence extrac-
tion from text on pace with the changing threat landscape: A survey. Comput.
Surveys 55, 12 (2023), 1–36.

[31] Md Rayhanur Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2020.
A literature review on mining cyberthreat intelligence from unstructured texts.
In 2020 International Conference on Data Mining Workshops (ICDMW). IEEE,
516–525.

[32] Kent Ramchand, Mohan Baruwal Chhetri, and Ryszard Kowalczyk. 2021. En-
terprise adoption of cloud computing with application portfolio profiling and
application portfolio assessment. Journal of Cloud Computing 10, 1 (2021), 1.

[33] Leonard Richardson. 2024. Beautiful Soup. https://www.crummy.com/software/
BeautifulSoup/. Accessed: 2024-05-12.

[34] SANS. 2023. SANS 2023 CTI Survey: Keeping Up with a Changing Threat
Landscape. https://www.sans.org/white-papers/2023-cti-survey-keeping-up-
changing-threat-landscape/.

[35] Injy Sarhan andMarco Spruit. 2021. Open-cykg: An open cyber threat intelligence
knowledge graph. Knowledge-Based Systems 233 (2021), 107524.

[36] Kiavash Satvat, Rigel Gjomemo, and VN Venkatakrishnan. 2021. Extractor:
Extracting attack behavior from threat reports. In 2021 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 598–615.

[37] Taneeya Satyapanich, Francis Ferraro, and Tim Finin. 2020. Casie: Extracting
cybersecurity event information from text. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 34. 8749–8757.

[38] SigmaHQ. 2024. About Sigma. https://sigmahq.io/docs/guide/about.html.
[39] Giuseppe Siracusano, Davide Sanvito, Roberto Gonzalez, Manikantan Srinivasan,

Sivakaman Kamatchi, Wataru Takahashi, Masaru Kawakita, Takahiro Kakumaru,
and Roberto Bifulco. 2023. Time for aCTIon: Automated Analysis of Cyber
Threat Intelligence in the Wild. arXiv preprint arXiv:2307.10214 (2023).

[40] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, TomokoOhta, Sophia Ananiadou,
and Jun’ichi Tsujii. 2012. BRAT: aweb-based tool for NLP-assisted text annotation.
In Proceedings of the Demonstrations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics. 102–107.

[41] Hamed Tabrizchi and Marjan Kuchaki Rafsanjani. 2020. A survey on security
challenges in cloud computing: issues, threats, and solutions. The journal of
supercomputing 76, 12 (2020), 9493–9532.

[42] Damian A Tamburri, Marco Miglierina, and Elisabetta Di Nitto. 2020. Cloud ap-
plications monitoring: An industrial study. Information and Software Technology
127 (2020), 106376.

[43] Jiayin Wang, Fengran Mo, Weizhi Ma, Peijie Sun, Min Zhang, and Jian-Yun Nie.
2024. A User-Centric Benchmark for Evaluating Large Language Models. arXiv
preprint arXiv:2404.13940 (2024).

A RELATEDWORK
In this section, we provide an overview of recent studies focused
on unstructured OSCTI analysis (also summarized in Table 5).

OSCTI Analysis Techniques. The development of efficient
threat hunting mechanisms that leverage OSCTI has resulted in
a wide range of research methodologies, each using different ap-
proaches to analyze and interpret OSCTI data. Within each OSCTI,
key information (e.g., IoC or TTPs) is often implicit and requires
the use of a different extraction approach.

NLP techniques have been utilized extensively for OSCTI analy-
sis inmethods including: Casie [37], Extractor [36], Open-CyKG [35],
SecIE [28], and CyberEntRel [4]. Thesemethods leveraged advanced
NLP models (e.g., BiLSTM, BERT, RoBERTa) to extract actionable
insights from OSCTI text. However, to adapt these models to the
cyber threat domain, a significant amount of preprocessing and
fine-tuning is required. TTPDrill [15] and THREATRAPTOR [13]

9

https://attack.mitre.org/
https://github.com/SigmaHQ/sigma-cli/
https://www.vellum.ai/blog/analysis-gpt-4o-vs-gpt-4-turbo/
https://www.attackiq.com/glossary/pyramid-of-pain/
https://www.attackiq.com/glossary/pyramid-of-pain/
https://www.ibm.com/qradar/threat-hunting
https://selenium-python.readthedocs.io/
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/text-generation/json-mode
https://platform.openai.com/docs/guides/text-generation/json-mode
https://platform.openai.com/docs/models
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.sans.org/white-papers/2023-cti-survey-keeping-up-changing-threat-landscape/
https://www.sans.org/white-papers/2023-cti-survey-keeping-up-changing-threat-landscape/
https://sigmahq.io/docs/guide/about.html

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Reference Year Technique Dataset Target Image Output
Extraction

Environment Processing Entities Relations IoCs TTPs Detection
Queries/Rules

TTPDrill [15] 2017 Unsupervised NLP Symantec On-premise × STIX ✓ ✓ ✓ ✓
Casie [37] 2020 BiLSTM CyberWire On-premise × Knowledge Graph ✓ ✓ ✓
Extractor [36] 2021 BERT-BiLSTM APT Repository, On-premise × Threat Behavior Graph ✓ ✓ ✓

Microsoft, Symantec,
Threat Encyclopedia,
Virus Radar

Open-CyKG [35] 2021 BiLSTM MalwareDB On-premise × Knowledge Graph ✓ ✓
ThreatRaptor [13] 2021 Unsupervised NLP DARPA TC On-premise × Threat Behavior Graph, ✓ ✓ ✓ ✓ ✓

TBQL Queries
SecIE [28] 2022 BERT CVE On-premise × Knowledge Graph ✓ ✓ ✓
CyNER [12] 2022 BERT Custom On-premise × STIX ✓ ✓ ✓
TriCTI [19] 2022 BERT Custom On-premise × Labeled IoCs ✓ ✓
LADDER [6] 2023 BERT Custom On-premise × Knowledge Graph ✓ ✓ ✓ ✓
Purba and Chu [29] 2023 GPT-3.5 Twitter Posts On-premise × Labeled IoCs ✓ ✓
aCTIon [39] 2023 GPT-3.5 Custom On-premise × STIX ✓ ✓ ✓ ✓
Liu and Zhan [20] 2023 ChatGPT Custom On-premise × Knowledge Graph ✓ ✓ ✓
LLM-TIKG [14] 2023 Fine-tuned LLaMA-2-7B Custom On-premise × Knowledge Graph ✓ ✓ ✓ ✓
CyberEntRel [4] 2024 RoBERTa-BiGRU-CRF Custom On-premise × Knowledge Graph ✓ ✓
Fengrui and Du [11] 2024 Fine-tuned LLaMA-2-7B ATT&CK STIX Data On-premise, × MITRE ATT&CK TTPs ✓

Cloud
Our Framework 2024 GPT-4o Custom Cloud ✓ Sigma Rules ✓ ✓ ✓ ✓ ✓

Table 5: Comparison of studies utilizing OSCTI inputs.

implement an unsupervised NLP pipeline that employs rule-based
and information retrieval techniques. While this approach reduces
the need for extensive model training, it is not flexible, and signifi-
cant customization is needed for use in cloud environments. This
is due to fundamental differences in terminology and data types
between traditional on-premise environments and cloud environ-
ments, as well as the dynamic nature of cloud architectures, which
continuously evolve with new services and configurations.

The introduction of LLMs has led to a paradigm shift in OSCTI
processing, with research demonstrating their ability to extract
meaningful and structured data from OSCTI text. Utilizing GPT-3.5,
Purba and Chu [29] and Siracusano et al. [39] addressed tasks rang-
ing from the extraction of IoCs to the generation of structured CTI
format (e.g., STIX), respectively, while Liu and Zhan [20] applied
ChatGPT to construct graphical representations of OSCTI data. Hu
et al. [14] and Fengrui and Du [11] expanded upon these capabilities
by utilizing both pretrained and fine-tuned LLM models. They em-
ployedGPT-3.5 and ChatGPT for data annotation and augmentation,
respectively, to prepare datasets for fine-tuning the LLaMA2-7B
model. Hu et al. [14] applied the fine-tuned LLaMA2-7B to construct
knowledge graphs, while Fengrui and Du [11] focused on TTP clas-
sification. In this research, we are the first to develop an end-to-end
framework based on a pretrained LLM, demonstrating the potential
of LLMs in processing OSCTI and generating actionable Sigma rules.
Moreover, our framework integrates visual analysis capabilities, ex-
panding the scope of OSCTI analysis beyond previous text-centric
methodologies. By leveraging pretrained LLMs, we avoid the need
for rule-based methods or training customized models with dedi-
cated datasets. Our framework also focuses on generating rules for
cloud environments, which has not been addressed before.

Datasets. In terms of OSCTI datasets, the study introducing
TTPDrill [15] used a dataset of semi-structured Symantec threat
reports, from which threat actions were manually extracted. Simi-
larly, Satyapanich et al. [37] employed cybersecurity news articles

published on CyberWire,2 which were annotated before evaluation.
The study presenting Extractor [36] usedmultiple structured OSCTI
sources, including Microsoft, Symantec, Threat Encyclopedia, and
Virus Radar. Open-CyKG [35] used a structured OSCTI database
focusing on malware. ThreatRaptor [13] utilized the DARPA TC
dataset, incorporating semi-structured OSCTIs, along with IoCs
and relevant event log entries for each attack incident. SecIE [28]
used 133 unstructured labeled threat reports from various threat in-
telligence vendors. CyNer [12] and TriCTI [19] developed a custom
web crawler to retrieve unstructured OSCTIs across selected high-
quality websites (e.g., Kaspersky, Symantec, and Fireye) and manu-
ally annotated a subset for evaluation purposes. LLM-TIKG [14] also
developed a custom web crawler to collect OSCTIs from selected
platforms, but this study differs from the study presenting CyNer
in that it utilizes an LLM (GPT) for annotation. Liu and Zhan [20]
manually collected OSCTIs from public sites, and for each OSCTI,
they selected the paragraphs that refer to the target technique to
increase information density. LADDER [6] used OSCTI reports re-
lated to a specific set of malware, employing the BRAT [40] NLP
method to annotate the concepts and their relationships in the text.
Purba and Chu [29] analyzed a dataset comprising 150 cyber threat
related tweets. aCTIon [39] manually collected OSCTI posts and
their respective STIX bundles and used expert-based annotation
to create the ground truth. CyberEntRel [4] collected OSCTI re-
ports from high-quality vendors (e.g., Microsoft, Cisco, McAfee, and
Kaspersky) and performed keyword-based data extraction. Fengrui
and Du [11] used the MITRE ATT&CK dataset, structured in STIX
2.1 JSON format, which is a tagged and organized collection of
adversary tactics and techniques.

In contrast to prior studies that primarily used semi-structured
and on-premise-related datasets, we use 20 unstructured, publicly
available cloud-based posts and reports sourced from various pub-
lishers. These OSCTI reports, which describe AWS cloud incidents,

2https://thecyberwire.com/

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

were systematically annotated by our research team to develop a
robust ground truth for development and evaluation.

Extractions and Outputs. Previous studies produced a vari-
ety of outputs with different levels of utility and applicability. Liu
et al. [19] and Purba and Chu [29] focused on extracting IoCs, while
Fengrui and Du [11] extracted TTPs. The studies presenting TTP-
Drill [15], Cyner [12], and aCTIon [39] converted unstructured
OSCTIs into structured representations using the STIX format,
which facilitates the systematic sharing and analysis of threat in-
formation. A more advanced approach was used in Extractor [37]
and ThreatRaptor [13], in which threat behavior graphs are cre-
ated; and in Casie [37], Open-CyKG [35], SecIE [28], LADDER [6],
aCTIon [20], LLM-TIKG [14], CyberEntRel [4], in which knowl-
edge graphs are generated. Both approaches interrelate entities
with associated actions and artifacts (i.e., IoCs and TTPs), provid-
ing structured insights into attack strategies through graph-based
representations. While the approaches highlighted above provide
valuable contextual information, further processing is required to
transform the representations into actionable defense mechanisms.

To address this, in their study, Gao et al. presented a frame-
work for converting OSCTI data into a threat behavior graph and
associated domain-specific queries. Both frameworks go beyond
simply identifying and contextualizing threat data, by developing
operational detection rules and queries. The detection rule candi-
dates generated by LLMCloudHunter, however, are in the known
open-source Sigma structure. This widely used generic signature
format is inherently suitable for integration in various application
environments and SIEMs. By capturing the entities, relations, IoCs,
and TTPs identified in OSCTI, LLMCloudHunter translates threat
intelligence into applicative Sigma candidates.

B OSCTI SOURCES USED IN OUR RESEARCH
Table 6 presents the list of OSCTI sources used in the development
and evaluation of LLMCloudHunter. For each source, we provide
the number of images included, the number of tokens (which serve
as input to the LLM), the number of API calls, and our rating of the
OSCTI’s technical complexity. The complete results of the entity
and relationship extraction are presented in the following tables:
detection entities and relationships in Tables 7 and 8, and MITRE
ATT&CK entities and relationships in Tables 9 and 10.

C RUNNING EXAMPLE
This section provides a step-by-step demonstration of the LLM-
CloudHunter framework in action. The example uses an actual OS-
CTI source, specifically a Sysdig blog post titled “SCARLETEEL: Op-
eration leveraging Terraform, Kubernetes, and AWS for data theft”3,
which describes a cloud infrastructure exploit. This demonstration
focuses on specific paragraphs relevant to the Sigma rule being
generated, leading to the rule presented in Listing 1.

Step 1 (Preprocessing Phase). The initial phase involves pre-
processing unstructured OSCTI data, which can be seen in Fig. 2a.
In this phase, the website content is downloaded and parsed by the
Downloader and Parser component, which converts HTML code
into a markdown format. The Image Analyzer component processes

3https://sysdig.com/blog/cloud-breach-terraform-data-theft/

the embedded images to extract relevant text. This phase results in
the formatted textual output shown in Fig. 2b.

Step 2 (Paragraph-Level Processing Phase). In this phase, we
first extract API calls and then classify each one according to its
corresponding MITRE ATT&CK TTPs and criticality level. These
extractions are then attached to the formatted paragraph content to
enrich it with additional context. Fig. 3 demonstrates how the API
calls ‘ListBuckets’ and ‘GetObject’, along with their event sources
and TTPs, are added to the output in our example. This enriched
paragraph is then fed to the Rule Generator component to generate
an initial Sigma rule, as shown in Listing 2.

title: Access to Terraform File
description: Detects requests for terraform.tfstate file.

This file contains sensitive infrastructure information
and secrets , indicating potential compromise or
unauthorized access.

references:
- https:// sysdig.com/blog/cloud -breach -terraform -data -

theft/
- https://docs.aws.amazon.com/AmazonS3/latest/API/

API_GetObject.html
author: LLMCloudHunter
tags:

- attack.collection
- attack.t1530

logsource:
product: aws
service: cloudtrail

detection:
selection_event:

eventSource: s3.amazonaws.com
eventName: GetObject
requestParameters.key: terraform.tfstate

condition: selection_event
falsepositives:

- Automated CI/CD pipeline operations
- DevOps engineers manually running Terraform commands

level: high

Listing 2: The initial generated Sigma rule.

Step 3 (OSCTI-Level Processing Phase). The Rule Optimizer
component refines the detection logic of each rule. In our case,
it finds no faults to fix and leaves the initial rule as it is. The Set
Refiner removes duplicates in the overall set; here, there is no du-
plication of the ‘GetObject’ API call. The IoC Enhancer then uses
the extracted IoCs in the IoC paragraph (Fig. 2) to enhance the rule
with suspicious IP addresses. This results in the final Sigma rule
presented in Listing 1.

D ABLATION STUDY
In this section, we present the configurations used in the ablation
study and our results. Table 11 lists the different configurations,
indicating which components were used in each variation.

Table 12 contains the results of the experiments performed in the
ablation study, presenting the weighted average precision, recall,
and F1 score for each variation and extraction type.

E COMPONENT CONFIGURATIONS
In this section, we provide details on the configuration of each com-
ponent in the LLMCloudHunter framework. For each component,
Table 13 lists the purpose, techniques, and parameters.

11

https://sysdig.com/blog/cloud-breach-terraform-data-theft/

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

(a) Screenshots of two paragraphs from the OSCTI

Credential access – Terraform state files

Terraform is an open source infrastructure as code (IaC) tool used to deploy, change,
or create infrastructures in cloud environments.
In order for Terraform to know which resources are under its control and when
to update and destroy them, it uses a state file named terraform.tfstate by default. When
Terraform is integrated and automated in continuous integration/continuous delivery (CI/CD)
pipelines, the state file needs to be accessible with proper permissions. In particular, the
service principal running the pipeline needs to be able to access the storage account
container that holds the state file. This makes shared storage like Amazon S3 buckets a
perfect candidate to hold the state file.
However, Terraform state files contain all data in plain text, which may contain secrets.
Storing secrets anywhere other than a secure location is never a good idea, and definitely
should not be put into source control!
The attacker was able to list the bucket available and retrieve all of the data. Examining
the data with different tools such as Pacu and TruffleHog during the incident investigation,
it was possible to find both a clear-text IAM user access key and secret key in the
terraform.tfstate file inside of an S3 bucket. Here is a screenshot from TruffleHog.

[Image Info:
- Alt Text: Terraform s3 bucket leak credentials
- Description: The image shows a screenshot of a command line interface output related to a
cybersecurity investigation or monitoring tool.
- Trancription:
Found verified result 🐷🔑
Detector Type: AWS
Decoder Type: PLAIN
Raw result: AKIA2
Bucket: [Obscured]
Email: [Obscured]
File: terraform/terraform.tfstate
Link: https://[Obscured]/terraform/terraform.tfstate

From the details above:
- The "Bucket" might be an Amazon S3 bucket which is a part of AWS (Amazon Web Services).
- The "Raw result" starting with "AKIA2" suggests the presence of an AWS Access Key ID.
- The link indicated ("https:/ /terraform/terraform.tfstate") suggests that Terraform, an
infrastructure as code software tool, is being used, and the specific file mentioned
is "terraform.tfstate," a file used by Terraform to store state data which can
include sensitive information.]

These IAM credentials are for a second connected AWS account, giving the attacker the
opportunity to move laterally to spread their attack throughout the organization.

IoCs

IP Addresses:

- 80[.]239[.]140[.]66
- 45[.]9[.]148[.]221
- 45[.]9[.]148[.]221
- 45[.]9[.]249[.]58

(b) Corresponding preprocessed output

Figure 2: OSCTI Preprocessing phase.

CTI Paragraph: """
preprocessed_paragraph_here
"""

Identified API Calls: """
[
 {
 "eventName": "ListBuckets",
 "eventSource": "s3.amazonaws.com",
 "tags": {
 "tactic_name": "attack.discovery",
 "technique_id": "attack.t1580"
 },
 "level": "low"
 },
 {
 "eventName": "GetObject",
 "eventSource": "s3.amazonaws.com",
 "tags": {
 "tactic_name": "attack.collection",
 "technique_id": "attack.t1530"
 },
 "level": "medium"
 }
]
"""

Figure 3: Formatted and enriched paragraph (input for the Rule Generator component).

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

OSCTI OSCTI Name #Images #Tokens #API Technical
ID No Images Images Calls Complexity

1 Anatomy of an Attack:
Exposed keys to Crypto Mining 1 1254 1511 11 High

2 Behind the scenes in the Expel SOC:
Alert-to-fix in AWS 7 3136 4892 11 Medium

3 Bling Libra’s Tactical Evolution:
The Threat Actor Group Behind ShinyHunters Ransomware 20 6414 11391 20 High

4 CloudKeys in the Air:
Tracking Malicious Operations of Exposed IAM Keys 10 5792 10884 21 Low

5 Compromised Cloud Compute Credentials:
Case Studies From the Wild (Case 1) 1 2448 2718 51 Low

6 Detecting AI resource-hijacking
with Composite Alerts 4 2952 4078 22 Medium

7 Finding evil in AWS:
A key pair to remember 7 2852 3814 11 Medium

8 Incident report: From CLI to console,
chasing an attacker in AWS 1 2326 3504 11 Medium

9 Incident report:
stolen AWS access keys 4 1984 3998 7 Medium

10 LUCR-3: Scattered Spider
Getting SaaS-y in the Cloud 2 3666 4143 20 Low

11 Ransomware
in the cloud 7 4743 5931 17 High

12 SCARLETEEEL: Operation leveraging Terraform,
Kubernetes, and AWS for data theft 12 3671 9764 26 Medium

13 Tales from the cloud trenches:
Amazon ECS is the new EC2 for crypto mining 2 4784 5209 23 Medium

14 Tales from the cloud trenches: Raiding for
AWS vaults, buckets and secrets 2 2027 2310 9 Medium

15 Tales from the cloud trenches: Using AWS CloudTrail
to identify malicious activity and spot phishing campaign 8 3602 5187 6 Medium

16 The curious case of
DangerDev@protonmail.me 31 7541 14465 60 Medium

17 Two real-life examples of why limiting permissions works:
Lessons from AWS CIRT (Case 1) 0 2160 2160 9 Low

18 Two real-life examples of why limiting permissions works:
Lessons from AWS CIRT (Case 2) 0 2059 2059 7 Low

19 Unmasking GUI-Vil:
Financially Motivated Cloud Threat Actor 7 7604 9018 13 High

20 When a Zero Day and Access Keys Collide in the Cloud:
Responding to the SugarCRM Zero-Day Vulnerability 6 4922 5743 20 High

Table 6: OSCTI sources used in our research.

F PROMPTS
In this section, we provide the various prompts utilized throughout
our proposed method in the LLMCloudHunter framework. The
prompts associated with each component are described below:

• API Call Extractor (D in Fig. 1): This component extracts ex-
plicit and implicit API calls from the dataset. The methodology
employed in this component is illustrated in Fig. 4. The explicit
and implicit API call extraction prompts are shown in Figures 5
and 6, respectively. Additionally, the prompts used for the image
classification and transcription sub-components are provided in
Figures 7 and 8.

• TTP Classifier (E in Fig. 1): The prompt used for classifying
threat tactics, techniques, and procedures (TTPs) is detailed in
Figure 9.

• Criticality Classifier (F in Fig. 1): The prompt used to evaluate
the criticality of specific elements is shown in Figure 10.

• Rule Generator (G in Fig. 1): The prompt used for generating
Sigma rules is provided in Figure 11.

• Rule Optimizer (H in Fig. 1): The prompt used for the rule
optimization process is outlined in Figure 12.

• Rule Selector (J in Fig. 1): The prompt for selecting the most
suitable rules is shown in Figure 13.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Detection Field Name Log Source API Call IoC OtherOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score
1 16 0.6 0.38 0.46 2 1 1 1 11 0.85 1 0.92 2 0.67 1 0.8 9 1 0.22 0.36
2 8 1 0.88 0.93 2 1 1 1 11 0.92 1 0.96 3 1 1 1 2 1 0.5 0.67
3 8 0.86 0.75 0.8 2 1 1 1 20 0.74 1 0.85 5 1 0.6 0.75 2 0 0 0
4 7 1 0.86 0.92 2 1 1 1 21 1 0.95 0.98 2 1 1 1 9 1 0.56 0.71
5 6 1 0.83 0.91 2 1 1 1 51 0.82 1 0.9 1 1 1 1 2 0 0 0
6 6 1 1 1 2 1 1 1 22 0.85 1 0.92 50 1 1 1 0 1 1 1
7 6 0.75 1 0.86 2 1 1 1 11 0.85 1 0.92 2 1 1 1 0 1 1 1
8 11 1 0.73 0.84 2 1 1 1 11 0.92 1 0.96 5 1 1 1 4 1 0.25 0.4
9 5 1 1 1 2 1 1 1 7 1 1 1 3 0.75 1 0.86 0 1 1 1
10 6 1 0.83 0.91 2 1 1 1 20 0.74 1 0.85 3 1 0.67 0.8 1 0 0 0
11 7 0.88 1 0.93 2 1 1 1 17 0.89 1 0.94 67 1 1 1 5 0.83 1 0.91
12 6 1 0.83 0.91 2 1 1 1 26 1 0.96 0.98 4 1 1 1 1 0 0 0
13 10 0.5 1 0.67 2 1 1 1 23 0.66 1 0.79 0 1 1 1 4 0.31 1 0.47
14 6 0.86 1 0.92 2 1 1 1 9 0.64 1 0.78 10 1 1 1 0 1 1 1
15 6 1 0.83 0.91 2 1 1 1 6 1 1 1 2 1 1 1 1 0 0 0
16 15 0.72 0.87 0.79 2 1 1 1 60 0.77 1 0.87 8 1 1 1 17 0.7 0.82 0.76
17 6 0.83 0.83 0.83 2 1 1 1 9 0.64 1 0.78 0 1 1 1 2 1 0.5 0.67
18 6 0.83 0.83 0.83 2 1 1 1 7 0.78 1 0.88 0 1 1 1 3 1 0.67 0.8
19 11 0.92 1 0.96 2 1 1 1 13 0.81 1 0.9 10 1 1 1 3 0.75 1 0.86
20 12 0.86 1 0.92 2 1 1 1 20 0.86 0.95 0.9 13 1 0.77 0.87 4 0.8 1 0.89

Weighted
Average 8.20 0.85 0.85 0.84 2.00 1.00 1.00 1.00 18.75 0.83 0.99 0.90 9.50 0.99 0.97 0.98 3.45 0.75 0.61 0.61

Table 7: Detection entity results.

Detection Field Name↔ Detection Entity API Call↔ API Source API Call↔ Log Source API Call↔ IoC API Call↔ OtherOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score
1 24 1 0.62 0.77 8 1 1 1 16 1 1 1 15 0.94 1 0.97 9 1 0.22 0.36
2 18 1 0.94 0.97 9 1 1 1 18 1 1 1 27 1 1 1 7 1 0.14 0.25
3 29 1 0.86 0.93 12 1 1 1 36 1 1 1 54 1 1 1 2 0 0 0
4 34 1 0.85 0.92 8 1 1 1 32 1 0.94 0.97 18 1 1 1 9 1 0.56 0.71
5 56 1 0.96 0.98 72 1 0.6 0.75 90 1 1 1 45 1 1 1 4 0 0 0
6 87 1 0.95 0.98 60 1 0.83 0.91 96 1 1 1 384 1 1 1 20 1 0.8 0.89
7 15 1 1 1 14 1 0.71 0.83 16 1 1 1 14 1 1 1 0 1 1 1
8 22 1 0.82 0.9 8 1 1 1 16 1 1 1 13 0.52 1 0.68 4 1 0.25 0.4
9 12 0.92 1 0.96 4 1 1 1 8 1 1 1 12 0.8 1 0.89 0 1 1 1
10 26 1 0.92 0.96 14 1 1 1 28 1 1 1 23 1 0.96 0.98 1 0 0 0
11 91 1 1 1 13 0.92 0.92 0.92 26 1 1 1 804 0.99 1 0.99 5 1 1 1
12 6 1 0.83 0.91 2 1 1 1 26 1 0.96 0.98 4 1 1 1 1 0 0 0
13 29 1 1 1 16 1 1 1 32 1 1 1 0 1 1 1 4 1 1 1
14 21 1 1 1 13 1 0.62 0.76 10 1 1 1 37 0.82 1 0.9 0 1 1 1
15 11 1 0.91 0.95 4 1 1 1 8 1 1 1 6 1 1 1 2 0 0 0
16 87 1 0.95 0.98 60 1 0.83 0.91 96 1 1 1 384 1 1 1 20 1 0.8 0.89
17 13 1 0.92 0.96 8 1 1 1 16 1 1 1 0 1 1 1 16 1 0.38 0.55
18 12 1 0.75 0.86 4 1 0.5 0.67 8 1 0.5 0.67 0 1 1 1 7 1 0.29 0.44
19 28 1 1 1 9 1 1 1 18 1 1 1 90 1 1 1 3 1 1 1
20 39 1 0.97 0.99 14 1 0.93 0.96 28 1 0.93 0.96 104 0.77 0.92 0.84 4 1 1 1

Weighted
Average 33.00 1.00 0.93 0.97 17.60 1.00 0.82 0.89 31.20 1.00 0.99 0.99 101.70 0.98 1.00 0.98 5.90 0.92 0.55 0.65

Table 8: Detection relationships results.

Technique Sub-TechniqueOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score
1 5 0.83 1 0.91 4 0.8 1 0.89
2 6 0.83 0.83 0.83 3 0.67 0.67 0.67
3 8 0.64 0.88 0.74 3 0.6 1 0.75
4 8 0.71 0.62 0.67 2 0.67 1 0.8
5 5 0.27 0.6 0.37 1 0.2 1 0.33
6 7 0.67 0.86 0.75 3 0.75 1 0.86
7 4 0.2 0.25 0.22 0 0 0 0
8 5 0.83 1 0.91 4 0.8 1 0.89
9 3 1 1 1 1 1 1 1
10 6 0.67 1 0.8 8 1 1 1
11 6 0.67 1 0.8 2 0.5 1 0.67
12 9 0.78 0.78 0.78 6 1 0.83 0.91
13 11 0.85 1 0.92 6 1 1 1
14 3 0.75 1 0.86 1 1 1 1
15 4 0.67 0.5 0.57 2 0 0 0
16 14 0.76 0.93 0.84 7 0.58 1 0.74
17 4 0.17 0.25 0.2 0 0 0 0
18 5 0.67 0.8 0.73 0 0 0 0
19 6 0.5 0.67 0.57 5 0.43 0.6 0.5
20 6 0.5 0.83 0.62 2 0.25 1 0.4

Weighted
Average 6.25 0.67 0.82 0.73 3.00 0.73 0.90 0.79

Table 9: MITRE entity results.

• API Call Remover (K in Fig. 1): The prompt used to refine
detection accuracy by removing redundant API calls is illustrated
in Figure 14.

• IoC Extractor (L in Fig. 1): The prompt for extracting indicators
of compromise (IoCs) is displayed in Figure 15.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

API Call↔ Technique API Call↔ Sub-techniqueOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score
1 8 0.88 0.88 0.88 6 1 0.83 0.91
2 9 1 0.89 0.94 4 1 0.75 0.86
3 25 0.91 0.84 0.87 6 1 0.83 0.91
4 17 0.54 0.41 0.47 4 1 0.75 0.86
5 45 0.5 0.07 0.12 2 1 1 1
6 54 0.4 0.35 0.38 13 0.89 0.62 0.73
7 10 0 0 0 0 1 1 1
8 8 0.88 0.88 0.88 6 1 0.67 0.8
9 4 1 1 1 2 1 1 1
10 14 1 1 1 12 0.75 0.75 0.75
11 12 0.9 0.75 0.82 6 1 0.83 0.91
12 9 0.78 0.78 0.78 6 1 0.83 0.91
13 16 0.87 0.81 0.84 7 1 0.86 0.92
14 9 1 0.89 0.94 1 1 1 1
15 5 0.67 0.4 0.5 2 0 0 0
16 54 0.4 0.35 0.38 13 0.89 0.62 0.73
17 10 0.25 0.1 0.14 0 1 1 1
18 7 1 0.29 0.44 0 1 1 1
19 13 0.71 0.38 0.5 11 1 0.27 0.43
20 8 0.5 0.5 0.5 2 1 1 1

Weighted
Average 16.85 0.61 0.47 0.51 5.15 0.92 0.69 0.77

Table 10: MITRE relationships results.

BlindHunter NoAPIHunter UnoptimizedHunter CritLessHunter LLMCloudHunter
Downloader and
Parser (A) ✓ ✓ ✓ ✓ ✓

Image
Classifier (B) ✓ ✓ ✓ ✓

Image
Transcriptor (C) ✓ ✓ ✓ ✓

API Call
Extractor (D) ✓ ✓ ✓ ✓

TTP
Classifier (E) ✓ ✓ ✓ ✓

Criticality
Classifier (F) ✓

Rule
Generator (G) ✓ ✓ ✓ ✓ ✓

Rule
Optimizer (H) ✓ ✓ ✓ ✓

Rule
Deduplicator (I) ✓ ✓ ✓ ✓ ✓

Rule
Selector (J) ✓ ✓ ✓ ✓ ✓

API Call
Remover (K) ✓ ✓ ✓ ✓ ✓

IoC
Extractor (L) ✓ ✓ ✓ ✓ ✓

IoC
Enhancer (M) ✓ ✓ ✓ ✓ ✓

Table 11: Ablation study configurations.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Extraction
Weighted

LLMCloudHunter CritLessHunter BlindHunter NoAPIHunter UnoptimizedHunterAverage
Measure

API Call
Precision 0.83 0.88 0.85 0.61 0.88
Recall 0.99 0.95 0.82 0.92 0.92
F1 Score 0.90 0.91 0.83 0.73 0.90

Technique
Precision 0.67 0.62 0.58 0.24 0.57
Recall 0.82 0.75 0.59 0.27 0.62
F1 Score 0.73 0.68 0.57 0.24 0.58

Sub-technique
Precision 0.73 0.65 0.50 0.29 0.63
Recall 0.90 0.71 0.53 0.24 0.64
F1 Score 0.79 0.67 0.50 0.25 0.62

IoC
Precision 0.99 0.99 0.93 0.96 0.96
Recall 0.97 0.98 0.90 0.98 0.97
F1 Score 0.98 0.98 0.90 0.97 0.96

Other
Precision 0.75 0.77 0.74 0.37 0.75
Recall 0.61 0.70 0.51 0.47 0.67
F1 Score 0.67 0.73 0.56 0.39 0.69

Detection Field Name↔ Detection Entity
Precision 1.00 0.87 0.83 0.58 0.83
Recall 0.93 0.90 0.72 0.79 0.84
F1 Score 0.97 0.88 0.75 0.65 0.83

API Call↔ Technique
Precision 0.61 0.56 0.44 0.10 0.46
Recall 0.47 0.64 0.42 0.13 0.49
F1 Score 0.51 0.59 0.42 0.11 0.47

API Call↔ Sub-technique
Precision 0.92 0.56 0.36 0.09 0.53
Recall 0.69 0.58 0.35 0.11 0.54
F1 Score 0.77 0.56 0.35 0.09 0.51

API Call↔ IoC
Precision 0.98 0.92 0.94 0.70 0.88
Recall 1.00 0.91 0.75 0.93 0.87
F1 Score 0.98 0.92 0.83 0.78 0.87

API Call↔ Other
Precision 0.92 0.84 0.74 0.41 0.72
Recall 0.55 0.85 0.61 0.41 0.76
F1 Score 0.65 0.84 0.65 0.39 0.72

Table 12: Ablation study results.

Component Purpose LLM Structured Leverage Temperature Parallel
Utilization Response Few-Shot Requests

A HTML downloading and parsing
B Image Classification ✓ ✓ 1 ✓
C Image Transcription ✓ ✓ 1 ✓

D Explicit API call extracting ✓ ✓ 0 ✓
Implicit API call extracting ✓ ✓ ✓ 0.9 ✓

E TTPs extracting ✓ ✓ ✓ 0.5 ✓
F Assessing Criticality ✓ ✓ ✓ ✓
G Initial candidates generating ✓ ✓ 0.7 ✓
H Candidates validating ✓ ✓ ✓ 0.5 ✓
I Duplicates extracting
J Candidate selecting ✓ ✓ ✓ 0.5
K API call removing ✓ ✓ ✓ 0.5
L IoC extracting ✓ ✓ 0.5
M Candidates IoC-enhancing

Table 13: Configuration of LLMCloudHunter’s components.

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Paragraph p

Explicit API Calls Extractor

i≥Nexplicit

i=i+1

count>Texplicit

For each API call:

Discard
API call

Add to Explicits

|Explicits|>0

Extract implicit
API calls

C1

i=0

Discard p

(a) Explicit API calls

Paragraph p
+ Explicits
+ Implicits

Implicit API Calls Extractor

i≥Nimplicit

i=i+1

count>Timplicit
Discard
API call

C2

Add to Implicits

For each API call ∉ Explicits:

|Implicits|>0

Paragraph p
+ Explicits

Paragraph p

i=0

(b) Implicit API calls

Figure 4: Threat actors’ API call extraction process.

System: You are an expert in extracting explicit AWS API calls
from Cyber Threat Intelligence (OSCTI) texts. Your task is to
analyze a provided paragraph text from a OSCTI text, and
search for AWS API calls explicitly mentioned in it.
Important Notes:
1. Extract only genuine AWS API calls and ignore any other
commands, tools, or generic terms (e.g., Curl, Enumerate).
2. Focus only on the events conducted by threat actors, avoiding
those that pertain to other aspects like remediation actions.
3. Do not assume or infer information not directly stated in the
text.
4. If no AWS API calls are found, return an empty JSON object.
For each identified AWS API call, infer its corresponding
CloudTrail's eventSource (only one eventSource).
<Response Configuration>

User: Extract explicitly-mentioned AWS API calls from the
following OSCTI paragraph text. OSCTI Paragraph:
<OSCTI Paragraph>

Figure 5: Explicit API Call Extraction Prompt

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

System:You are an expert in extracting implicit AWS API calls
from Cyber Threat Intelligence (CTI) texts. Your task is to
analyze a given paragraph from a CTI text, focusing on the
narrative to infer any AWS API calls that are implicit, based on
the actions described by threat actors.
Important Notes:
1. Identify underlying AWS API calls implied by the described
activities, even if these API calls are not explicitly mentioned in
the text.
2. Focus solely on the events conducted by the threat actors,
avoiding those that pertain to other aspects like remediation
actions.
3. Provide your inferences based solely on the detailed context
provided, without making broad assumptions beyond the scope
of the described activities.
4. If no API calls are found, return an empty JSON object ({}).
<3 Examples of Correct Implicit API Calls Inference>
<1 Example of Incorrect Implicit API Calls Inference>
<Response Configuration>

User: Infer implicit AWS API calls from the actions described
in the following OSCTI paragraph:
 <OSCTI Paragraph>

Figure 6: Implicit API Call Extraction Prompt

System: You are an expert in analyzing images from Cyber
Threat Intelligence (CTI) blogs/posts. Your task is to classify
each image as either informative or non-informative and
provide a concise but detailed description of the image.
1. *Classify the Image*:
 - Informative: This includes images like screenshots, charts,
diagrams, lists, tables, or any content that provides valuable,
specific information relevant to the CTI content (e.g., technical
data, attack details).
 - Non-Informative: This includes images that serve an
aesthetic purpose, advertising, visual metaphors/abstractions, or
do not add detailed, technical value to the CTI content (e.g.,
decorative art, photos of people, generic symbols).
2. *Description*: Provide a textual description of the image,
summarizing what is depicted in the image.

User: Analyze the given CTI image.
<Image URL>
For context, here is the paragraph from which the image was
extracted ({number_of_images} images in the paragraph, and
this is image number {image_index + 1}):
<Paragraph>

Figure 7: Image Classification Prompt

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Clssify

System: You are an advanced cybersecurity analysis tool
specialized in extracting text from images provided in CTI
reports. Your task is to transcribe the image content
accurately and provide a brief summary of its significance
within the CTI context.

User: Please transcribe the content of the CTI image.
For context, here is the paragraph from which the image was
extracted ({number_of_images} images in the paragraph,
and this is image number {image_index + 1}):
<paragraph>
<image_url>

Figure 8: Image Transcription Prompt

System: You are an expert in mapping threat actors' API calls to
cloud-based MITRE ATT&CK TTPs. Given AWS API calls and
the Cyber Threat Intelligence (CTI) text paragraph from which
they were extracted, your task is to identify the most relevant
cloud-based MITRE ATT&CK TTPs that best represent the
threat actors’ actions depicted by the API calls, and assign
appropriate cloud-based MITRE ATT&CK TTPs to each.
Maintain a clear and concise mapping, avoiding overly broad or
non-specific TTP assignments.
Important Notes: 1. Use the provided CTI paragraph context to
refine TTP assignments when it offers additional insights. If the
context just repeats the API call, make your decisions based
only on the API call itself. 2. Map techniques and sub-
techniques only when you are highly confident in their
relevance, as not every API call corresponds to a technique or
sub-technique. If you are unsure, leave the field null/empty.
<Response Configuration>

User: Map each of the following AWS API calls to the relevant
cloud-based MITRE ATT&CK TTPs.
<OSCTI Paragraph>

Figure 9: TTP Classifier Prompt

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

System; You are an expert in classifying threat actors' API calls
based on their criticality. Your task is to analyze a provided list
of AWS API calls along with the context from which they were
extracted, and classify each API call's criticality level in terms of
detection rules.
Criticality Levels: 1. informal 2. low 3. medium 4. high 5.
critical
Important Notes:
1. Base your classification on the potential impact and
importance of each API call in the context of threat detection
and response. 2. Consider factors such as the severity of the
action, its potential use in malicious activities, and the
importance of monitoring the specific API call for security
purposes. 3. Do not assume or infer information not directly
provided. 4. Do not add comments, explanations, or
justifications in the response.
<2 Examples of Good Mapping>
<1 Example of Bad Mapping>
<Response Configuration>

User: Classify the following AWS API calls based on their
criticality level.
API calls:
<API Calls>
For context, here is the paragraph from which the API calls were
extracted:
<CTI Paragraph>

Figure 10: Criticality Classifier Prompt

System:You are an expert in generating accurate Sigma rules
from paragraphs of Cyber Threat Intelligence (CTI) texts. Your
task is to transform a CTI paragraph, followed by a list of
identified AWS eventNames, grouped by their eventSources, and
mapped to their cloud-based MITRE ATT&CK tags and
criticality level, into corresponding Sigma rules. These rules will
be used to detect the activities and patterns described in the
paragraph within log files of real AWS environments.
Important Notes:
1. Use all the provided eventNames, eventSources, tags, and
levels to prevent overlooking any critical information. 2. Ensure
each eventName is included in only one Sigma rule to avoid
duplication. 3. Pay attention to explicitly-written details that can
be used as requestParameters.
4. Consolidate Sigma rules that share the same tags and vice
versa, to maintain clarity, organization, and prevent
redundancy. 5. Ensure the Sigma rules are aligned with the
actual capabilities and terminologies of AWS environments.
 <Response Configuration>

User: Analyze the following CTI paragraph and generate
corresponding Sigma rules.
<CTI Paragraph>
<Identified Event Names>

Figure 11: Rule Generator Prompt

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

System: You are an expert in optimizing Sigma rules. Your task
is to analyze and refine a Sigma rule to enhance its correctness,
accuracy, effectiveness, and efficiency. Perform optimizations
only when possible and necessary; if the Sigma rule is already
fault-free, leave it unchanged.
Sigma Rules Optimization Guidelines:
1. Ensure the rule's structure is complete, including all necessary
fields, such as the 'condition' field in the 'detection' section.
2. Ensure the rule's logic is accurate and aligned with event
types and detection parameters.
3. Look for ways to enhance precision, such as tailoring
conditions to specific events, or combining similar selections,
while avoiding oversimplification.
4. Ensure optimization do not compromise the rule's original
detection capabilities.
<5 Examples of Good Optimization>
<Response Configuration>

User: Optimize the following Sigma rules if possible.
Sigma Rules:
<Sigma Rule Candidates>

Figure 12: Rule Optimizer Prompt

System: You are an expert in selecting one Sigma rule from a
set of several, according to certain criteria. Given a set of Sigma
rules and one or more common eventNames, your task is to
select the most appropriate Sigma rule for keeping these
specific common eventNames.
Your selection is primarily based on the criteria of details and
specificity:
1. Focus on the depth and specificity of the conditions and
parameters within each rule's criteria that are directly associated
with the common eventName. Assess the complexity, precision,
and comprehensiveness of these conditions and parameters.
Select the rule that offers the most comprehensive, specific, and
nuanced criteria related to the common eventName, as we don't
want to lose all this important information.
In cases where multiple rules have a similar level of detail and
specificity, specifically associated with the common
eventName, use the following secondary criterion:
2. Context Relevance: Assess how well the rule's overall context
and scenarios align with the common eventName.
<2 Examples of a Sigma rule selection>
<Response Configuration>

User: Select the most appropriate Sigma rule from the provided
set for keeping the specified eventNames.
<Common Event Names>
<Sigma Rule Candidates>

Figure 13: Rule Selector Prompt

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Anon.

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

System: You are an expert in removing specific eventNames
from a provided Sigma rule while preserving its logical structure
and format. Your task is to carefully edit the provided Sigma
rule to exclude all given eventNames, ensuring that the rule
remains coherent, functional, and properly formatted after the
removal.
Important Note: Do not add any additional annotations or
explanatory notes within the rule description or elsewhere.
<Response Configuration>

User: Select the most appropriate Sigma rule from the provided
set for keeping the specified eventNames.
<Common Event Names>
<Sigma Rule Candidates>

Figure 14: API Call Remover Prompt

System: You are an expert in extracting Indicators of
Compromise (IoCs) from Cyber Threat Intelligence (CTI) texts.
Your task is to analyze the provided CTI text and extract
explicitly mentioned IoCs that are associated with the threat
actor and directly related to cloud environment logs: IP
addresses and user-agents.
Important Notes:
1. Focus on the paragraph usually located at the end of the
document under a corresponding heading, where IoCs are listed.
2. Ensure that the extracted IoCs match the format (or part of it)
found in AWS log records. For example, convert general terms
like "AWS Golang SDK" to "aws-sdk-go/".
3. Avoid extracting duplications or redundant versions of the
same IoC.
4. Be thorough and ensure that no IoC is missed.
<Response Configuration>

User: Extract the IoCs from the following CTI text. CTI Text:
<Full OSCTI text>

Figure 15: IoC Extractor Prompt

22

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 OSCTI Preprocessing
	3.2 Paragraph-Level Processing
	3.3 OSCTI-Level Processing

	4 Evaluation
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Results

	5 Discussion
	6 Conclusions and Future Work
	References
	A Related Work
	B OSCTI Sources Used in our Research
	C Running Example
	D Ablation study
	E Component Configurations
	F Prompts

