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LLMCloudHunter: Harnessing LLMs for Automated Extraction of
Detection Rules from Cloud-Based CTI
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ABSTRACT
As the number and sophistication of cyber attacks have increased,
threat hunting has become a critical aspect of active security, en-
abling proactive detection and mitigation of threats before they
cause significant harm. Open-source cyber threat intelligence (OS-
CTI) is a valuable resource for threat hunters, however, it often
comes in unstructured formats that require further manual analysis.
Previous studies aimed at automating OSCTI analysis are limited
since (1) they failed to provide actionable outputs, (2) they did not
take advantage of images present in OSCTI sources, and (3) they
focused on on-premises environments, overlooking the growing im-
portance of cloud environments. To address these gaps, we propose
LLMCloudHunter, a novel framework that leverages large language
models (LLMs) to automatically generate generic-signature detec-
tion rule candidates from textual and visual OSCTI data. We evalu-
ated the quality of the rules generated by the proposed framework
using 20 annotated real-world cloud threat reports. The results
show that our framework achieved a precision of 83% and recall
of 99% for the task of accurately extracting API calls made by the
threat actor and a precision of 99% with a recall of 97% for IoCs. Ad-
ditionally, 99.18% of the generated detection rule candidates were
successfully compiled and converted into Splunk queries.

KEYWORDS
Cyber threat intelligence (CTI), Large languagemodel (LLM), Threat
hunting, Cloud, Sigma rules

1 INTRODUCTION
The rapid evolution of technology, digitization, and application
development has been accompanied by an increase in the number
of cyberattacks [27], raising concerns about the security risks as-
sociated with these advancements. In the face of these concerns,
organizations have adopted dynamic defensive strategies in addi-
tion to the traditional reactive measures employed [22]. One such
strategy is threat hunting, a proactive approach aimed at searching
for and mitigating undetected threats in a network or system [16].
Threat hunters try to minimize the damage caused by threat actors
by shortening the timewindow between intrusion and discovery [7].
In their comprehensive survey, Nour et al. [22] stated that the threat
huntingmethodology consists of threemain principles: (1) formulat-
ing and testing hypotheses about the threat actor and their actions;
(2) utilizing existing information for an intelligence-driven inves-
tigation; and (3) leveraging data analysis techniques and machine
learning algorithms to effectively handle vast amounts of data.

The second principle involves collecting and analyzing publicly
available information about potential and active threats from blogs,
forums, and other digital sources. Open-source cyber threat in-
telligence (OSCTI) is one of the most commonly used sources of
information among security personnel according to the SANS 2023
CTI survey [34]. However, various challenges arise when using

OSCTI. The first and main challenge is that OSCTI often comes
in non-uniform and unstructured formats, such as text and im-
ages, rather than more actionable information/data (e.g., detection
rules) [31]. As a result, manual analysis by human experts is re-
quired to derive meaningful and actionable insights [30]. Another
challenge is the increasing amount of available information (i.e.,
CTIs), necessitating the automation of OSCTI analysis [27].

Previous studies on threat hunting introduced various method-
ologies, some of which incorporated natural language processing
(NLP) techniques, to automate the extraction and enrichment of
information from OSCTI textual data. However, the methods pre-
sented in these studies suffer from three main limitations: (1) they
provide structured but limited insights, such as identified entities
and their relationships or attack techniques, necessitating further
processing to generate actionable outputs; an exception is the ap-
proach presented by Gao et al. [13], in which the authors developed
proprietary, non-standard graph-based queries using static rules
(regexes) that require substantial customization for application with
standard tools and on-premises environments; (2) these studies, in-
cluding the work of Gao et al., do not take advantage of visual
components, such as images, which may be present in OSCTI data;
and (3) many of these methodologies were primarily developed for
on-premise environments, limiting their effectiveness and relevance
in cloud-centric environments.

Cloud computing has become an integral component in the mod-
ern enterprise landscape, valued for its scalability, cost-effectiveness,
and flexibility [32]. It employs a shared responsibility model for
security, in which both the provider and the consumer play roles in
securing cloud infrastructure and cloud-delivered applications [3].
This model presents unique challenges in threat hunting, as tra-
ditional security methodologies often fall short in addressing the
dynamic and distributed nature of cloud environments [41]. Among
these challenges is the fact that in some cloud technologies (e.g.,
serverless), access to data for threat hunting is limited to application-
level logs (APIs, storage access, etc.), and important infrastructure-
(system)-level data (e.g., virtual machines and network) can only
be accessed by the cloud provider [42]. This is exacerbated by the
fact that the exploitation of cloud-based threat intelligence has
not yet reached maturity. The work of Fengrui and Du [11] is the
only study that extends beyond on-premise OSCTI, however rather
than providing actionable output, their framework extracts MITRE
ATT&CK tactics, techniques, and procedures (TTPs) [1]. These
gaps highlight the need for innovative OSCTI analysis approaches
suited to the unique security challenges of cloud environments;
such challenges can be addressed by integrating OSCTI analysis
results within practical, actionable security measures [17].

In this paper, we present LLMCloudHunter, a novel framework
that leverages pretrained large language models (LLMs) to generate
detection rule candidates from unstructured OSCTIs automatically.
LLMCloudHunter generates Sigma rule [38] candidates from both
textual and visual cyber threat information, using an innovative,
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automated data extraction and processing framework that leverages
LLMs and employs various techniques to address their limitations
(e.g., unstructured output and hallucinations).

Sigma rules, provided in a generic and open signature format
written in YAML, enable the creation and sharing of detection meth-
ods across security information and event management (SIEM)
systems. Fig. 1 presents our LLM pipeline for Sigma candidate gen-
eration; as can be seen, textual and visual OSCTI data is processed
first, converting it into semi-structured paragraphs in the prepro-
cessing phase. It then extracts API calls (that are unique entities to
threat hunting in cloud environments) and MITRE ATT&CK TTPs
from the paragraphs and generates initial Sigma candidates (in the
Paragraph-Level phase). Finally, it consolidates the candidates from
all paragraphs, verifies their syntactic and logical correctness, elim-
inates duplication, and enriches them with identified indicators of
compromise (IoCs) (in the OSCTI-Level phase). An example of a
Sigma rule generated by LLMCloudHunter is illustrated in Listing 1,
with a demonstration of its generation process in Appendix C.

We evaluated the efficacy and precision of the Sigma candidates
generated using 20 cloud-related OSCTI sources that we identified.
The evaluation was performed using common entity and relation-
ship extraction metrics, and the results were validated against a
ground truth carefully defined by our research team. Additionally,
we introduced a set of criteria specifically designed to test each
Sigma candidate’s functionality in the operational context of OSCTI.
This evaluation ensures that the rules generated not only meet syn-
tactic standards but are also operationally effective in addressing
the dynamic and complex nature of cloud-based cyber threats. We
also conducted an ablation study, systematically removing compo-
nents of the framework to pinpoint their individual contributions
to LLMCloudHunter’s overall efficacy. The results show that our
framework achieved a precision of 83% and recall of 99% for the task
of accurately extracting threat actors’ API calls, and a precision of
97% with a recall of 97% for IoCs. Moreover, 99.18% of the generated
Sigma candidates were successfully converted into Splunk queries.
In terms of overall performance, i.e., including the extraction of API
calls, IoCs, MITRE ATT&CK TTPs, and request parameters, our
framework achieved 85% and 88% precision and recall, respectively.

To summarize, the main contributions of this paper are: (1) A
novel LLM-based framework for the automatic generation of Sigma
candidates from unstructured OSCTI, which integrates both textual
and visual information. While our framework focuses on cloud
environments, it can be adapted for use with on-premise-related
CTI. LLMCloudHunter utilizes a pretrained LLM, thus providing
flexibility in updating the underlying LLM, and does not require
"heavy" model training. (2) An annotated dataset (used for the eval-
uation of our framework) consisting of 20 cloud-related OSCTI
posts, complete with entities and their relationships, as well as
Sigma rules. (3) Insights on the application of LLMs for complex NLP
tasks in the field of cybersecurity, pertaining to prompt engineering
techniques and the effective use of models’ features and parame-
ters. (4) A comprehensive evaluation that assesses the accuracy and
correctness of the Sigma candidates generated. (5)We make both
our code and cloud CTI dataset available to the research community
on GitHub.1

1To preserve anonymity, the code and dataset will be available upon paper acceptance.

title: Access to Terraform File from Malicious IPs
description: Detects requests for terraform.tfstate file

from known malicious IPs. This file contains sensitive
infrastructure information and secrets , indicating
potential compromise or unauthorized access.

references:
- https:// sysdig.com/blog/cloud -breach -terraform -data -

theft/
- https://docs.aws.amazon.com/AmazonS3/latest/API/

API_GetObject.html
author: LLMCloudHunter
tags:

- attack.collection
- attack.t1530

logsource:
product: aws
service: cloudtrail

detection:
selection_event:

eventSource: s3.amazonaws.com
eventName: GetObject
requestParameters.key: terraform.tfstate

selection_ip_address:
sourceIPAddress:

- 80.239.140.66
- 45.9.148.221
- 45.9.148.121
- 45.9.249.58

condition: selection_event and selection_ip_address
falsepositives:

- Automated CI/CD pipeline operations
- DevOps engineers manually running Terraform commands

level: high

Listing 1: A Sigma rule generated by LLMCloudHunter.

2 RELATEDWORK
In this section, we provide a brief overview of recent studies focused
on analyzing unstructured OSCTI analysis. A detailed description
of related work is provided in Appendix A.

Earlier works have extensively utilized NLP techniques for OS-
CTI analysis [4, 28, 35–37]. These methods leveraged advanced NLP
models to extract actionable insights from OSCTI text. However, to
adapt these models to the cyber threat domain, a significant amount
of preprocessing and fine-tuning is required. While the approach
implemented by TTPDrill [15] and THREATRAPTOR [13] reduces
the need for extensive model training, it is not flexible, and signifi-
cant customization is needed for use in cloud environments. This
is due to fundamental differences in terminology and data types
between traditional on-premise environments and cloud environ-
ments, as well as the dynamic nature of cloud architectures, which
continuously evolve with new services and configurations.

The introduction of LLMs has led to a paradigm shift in OSCTI
processing, with research demonstrating their ability to extract
meaningful and structured data from OSCTI text. Utilizing GPT-3.5,
Purba and Chu [29] and Siracusano et al. [39] addressed tasks rang-
ing from the extraction of IoCs to the generation of structured CTI
format (e.g., STIX), respectively, while Liu and Zhan [20] applied
ChatGPT to construct graphical representations of OSCTI data. Hu
et al. [14] and Fengrui and Du [11] expanded upon these capabilities
by utilizing both pretrained and fine-tuned LLM models. They em-
ployedGPT-3.5 and ChatGPT for data annotation and augmentation,
respectively, to prepare datasets for fine-tuning the LLaMA2-7B
model. Hu et al. [14] applied the fine-tuned LLaMA2-7B to construct
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knowledge graphs, while Fengrui and Du [11] focused on TTP clas-
sification. In this research, we are the first to develop an end-to-end
framework based on a pretrained LLM, demonstrating the potential
of LLMs in processing OSCTI and generating actionable Sigma rules.
Moreover, our framework integrates visual analysis capabilities, ex-
panding the scope of OSCTI analysis beyond previous text-centric
methodologies. By leveraging pretrained LLMs, we avoid the need
for rule-based methods or training customized models with dedi-
cated datasets. Our framework also focuses on generating rules for
cloud environments, which has not been addressed before.

In terms of OSCTI datasets, in contrast to prior studies that used
semi-structured and on-premise-related datasets, we use 20 unstruc-
tured, publicly available cloud-based posts and reports sourced from
various publishers. These OSCTI reports, which describe AWS cloud
incidents, were systematically annotated by our research team to
develop a robust ground truth for development and evaluation.

Previous studies produced a variety of outputs with different
levels of utility and applicability. This includes extracting IoCs [19,
29], TTPs [11], and structured representations using the STIX for-
mat [12, 15]. More advanced approaches were used to create threat
behaviour graphs [13, 37] and knowledge graphs [4, 6, 14, 20, 28,
35, 37]. While the approaches highlighted above provide valuable
contextual information, further processing is required to trans-
form the representations into actionable defense mechanisms. To
address this, in their study, Gao et al. presented a framework for
converting OSCTI data into a threat behavior graph and associated
domain-specific queries. The detection rule candidates generated by
LLMCloudHunter, however, are in the known open-source Sigma
structure. This widely used generic signature format is inherently
suitable for integration in various application environments and
SIEMs. By capturing the entities, relations, IoCs, and TTPs identi-
fied in OSCTI, LLMCloudHunter translates threat intelligence into
applicative Sigma candidates.

3 PROPOSED METHOD
In this section, we present our proposed framework, LLMCloud-
Hunter, and how it leverages OpenAI’s GPT-4o [25] model to pro-
cess cloud-based OSCTIs and generate Sigma candidates. LLM-
CloudHunter’s pipeline (see Fig. 1) consists of three main phases:
Preprocessing, Paragraph-Level Processing, and OSCTI-Level Process-
ing; these phases are described in the subsections that follow.
Relevant Entities for Threat Hunting in Cloud Environments.
The atomic units in cloud application logs are cloud API calls, which
describe system and application activities that potentially provide
traces of threat behavior. An example of an API call may be the
GetFunction action, which requests information about a function.
Therefore, the information used to generate Sigma candidates for
threat hunting in cloud environments includes entities such as IP
addresses and user agents, similar to on-premise environments, as
well as API calls that are unique to cloud environments.

We differentiate between primary (essential) entities and contex-
tual entities. Primary entities are required for the correct execution
of generated Sigma candidates in SIEM systems. A mistake in ex-
tracting a relationship that includes a primary entity will result in
incorrect “hunting” activity. Primary entities in cloud environments
include API calls (e.g.,GetFunction) as well as the request parameters
of that API call (e.g., requestParameters.functionName: respondUser),

IoCs (including IP addresses and user agents), log source (e.g., AWS
CloudTrail), and event source (e.g., lambda.amazonaws.com). Con-
textual entities do not impact the correctness of the detection rule
logic; however, they provide additional contextual information to
the threat hunter, making the investigation of a case more efficient.
Contextual entities include the title and description of the Sigma
rule, TTPs, false positives, and criticality level.

3.1 OSCTI Preprocessing
OSCTI varies in terms of the type and format, depending on the pub-
lishing platform, the author, the nature of the collected information,
and its intended purpose. Due to this lack of uniformity, prelim-
inary steps must be performed to standardize the format. Such
steps enable the data to be automatically and effectively handled
by subsequent processing components. The preprocessing converts
the HTML content into a structured markdown format, which has
been shown to improve LLM task performance [18]. Additionally,
our framework uniquely handles image extraction, classification,
and transcription—a novel approach compared to related works.
Downloader and Parser. The automated OSCTI preprocessing
phase begins by downloading and parsing the OSCTI HTML code
(A in Fig. 1), using web scraping and processing tools such as Se-
lenium [21] and BeautifulSoup [33], followed by additional refor-
matting techniques (e.g., regex) to ensure a valid OSCTI markdown
output. By examining the web page elements, LLMCloudHunter
pinpoints the beginning and end of the relevant content, excluding
irrelevant elements (such as sidebars and advertisements). In the
next step, these HTML layout elements are converted into a unified
markdown based on the following guidelines: (1) Preserve spacing
to separate content types such as paragraphs and code sections,
maintaining their original layout. (2) Mark headings (h1, h2, etc.)
to maintain the hierarchical structure of the original HTML con-
tent. (3) Parse HTML code encompassing tables and nested lists to
preserve their structural properties. For example, a tab character is
employed in lists to signify nested items, whereas in tables, the ‘|’
symbol is used to demarcate columns. (4) Identify and embed image
URLs as placeholders within the text, positioning them according
to their original placement in the report.

After converting the HTML into a markdown, we employed
a targeted approach to exclude non-essential content (including
headings, subheadings, and the corresponding paragraphs). Such
content is identified by indicative keywords that suggest repeti-
tive and redundant information. Examples of this type of content
include overviews, recommendations, and concluding paragraphs.
For instance, if a ‘recommendations’ paragraph appears under an h2
heading, we remove the paragraph and any subsequent content un-
til the next h2 (or h1) heading is encountered, as recommendations
are not part of the attack description and often include marketing
content. This approach effectively removes non-essential or dupli-
cated content nested under the identified headings. The filtered
version of the output is then passed on to the next component in
the framework. The full output, which includes all content, will be
used in the OSCTI-Level Processing phase.
Image Analysys. Continuing with the Preprocessing phase, each
image is first classified by the Image Classifier(B in Fig. 1) using a
classification prompt as either an informative image (e.g., screen-
shots, charts, diagrams, and tables containing information related
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Figure 1: Overview of the LLMCloudHunter framework.

to the OSCTI content) or non-informative one(e.g., decorative art,
advertisements, logos, or generic symbols). The prompt includes
the text of the paragraph in which the image is located in the OSCTI
as context to assist the LLM in determining its classification. Along
with the classification, we requested the LLM to explain the image
classification to facilitate human validation during testing. If an
image is classified as informative, it is then passed to Image Tran-
scriptor (C in Fig. 1). It is processed using a transcription prompt to
extract and convert its content into the most appropriate markdown
format (e.g., lists and code). The extracted text is integrated into
the OSCTI formatted text in its original location, preserving the
report’s context/flow and enhancing it with critical details, such as
API calls and IoCs. By adopting this comprehensive image process-
ing approach, the framework increases the accuracy of extracted
information and introduces a novel method in OSCTI analysis (See
ablation study 4). Unlike previous works, which have overlooked
the potential value of visual data, our framework integrates rele-
vant images into the analytical pipeline, ensuring that no critical
information is missed. The image classification and transcription
prompts are provided in Appendix F.

3.2 Paragraph-Level Processing
After preprocessing the OSCTI, the next phase in the LLMCloud-
Hunter framework is Paragraph-Level Processing. In this phase,
LLMCloudHunter first identifies key entities: API calls, MITRE
ATT&CK TTPs, and threat event criticality levels. These entities
are then used to enrich the formatted paragraphs, from which LLM-
CloudHunter generates initial Sigma candidates. To perform these
complex tasks, LLMs require carefully defined steps of accurate
information extraction and effective data linkage. Our experiments
showed that segmenting the OSCTI text into manageable chunks
(i.e., paragraphs) enhances the efficiency of the tasks involved in
Sigma candidate generation. This approach aligns with the natural
structure of writing, organizing information into semantically dis-
tinct paragraphs, which narrows the model’s focus and minimizes
errors. Additionally, we leverage parallelization by processing these
paragraphs concurrently to boost processing speed significantly.
API Call Extractor. The Paragraph-Level Processing phase starts
with the API Call Extractor (D in Fig. 1), which analyzes paragraphs
from the OSCTI formatted text that were generated in the previous
phase and extracts both explicitly mentioned and implicitly referred
API calls in each paragraph (this process is depicted in the flowchart
presented in Appendix F). To improve the model’s output reliability,
mitigate hallucinations (e.g., referencing nonexistent events), and

prevent the omission of API calls, we incorporate a majority voting
mechanism to ensure higher accuracy and confidence in identifying
and extracting relevant API calls.

The operational flow begins with the explicit API call extractor,
where a dedicated prompt instructs the LLM to extract all explicitly
mentioned API calls in the paragraph. This operation is executed
𝑁𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 times, with API calls that exceed the 𝑇𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 threshold
selected for subsequent analysis. Only paragraphs containing API
calls that meet the 𝑇𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 are kept; the rest are discarded.

Then, paragraphs that are found to contain explicit API calls
undergo more nuanced extraction by the Implicit API Call Extractor.
In this step, we utilized the LLM to perform a deeper analysis to infer
API calls suggested indirectly by the OSCTI author. For example,
operational descriptions such as performing a sync action on an
S3 bucket should be mapped to the ListBuckets and GetObject API
calls. Due to the complexity of identifying these implicit API calls,
this step is executed 𝑁implicit times, where 𝑁implicit is set to twice
the number of 𝑁explicit iterations performed. Similar to the explicit
API call extraction process, paragraphs are analyzed for implicit
API calls that meet the 𝑇𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 threshold. However, paragraphs
without any implicit API calls are not discarded, as they still have
some value due to their explicit API call content.
TTP Extractor. This component (E in Fig. 1) analyzes the extracted
API calls, mapping them to cloud-based MITRE ATT&CK tactics,
techniques, and sub-techniques. It utilizes a detailed prompt, which
includes mapping cloud tactics to techniques and techniques to
sub-techniques (in JSON format), along with illustrative examples
of effective and ineffective mappings. This integrated approach not
only enhances the accuracy of TTP assignments but also safeguards
against model hallucinations. Each API call is evaluated in its spe-
cific context to assign the most precise and relevant TTPs. While
these TTPs do not directly alter the detection logic of the Sigma
candidates, they play a critical role in understanding the structure
of the attack and classifying its various stages.
Criticality Classifier. This component (F in Fig. 1) estimates the
severity of each Sigma candidate. It uses a single prompt, which
includes the paragraph markdown along with the extracted API
calls and TTPs, to classify API calls into appropriate criticality levels
based on their context. The prompt guides the LLM by providing
examples (zero-shot learning), helping emphasize each API call’s
potential impact, malicious use, and monitoring importance.
Rule Generator. The last component in the Paragraph-Level Pro-
cessing phase (G in Fig. 1) receives as input a list of identified API
calls, their criticality, and corresponding TTP assignments, bundled
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with the paragraph markdown. The LLM processes this enriched
input using the Rule Generator prompt (the full prompt is provided
in Appendix F). This prompt defines the LLM’s role as a cyber-
security analysis tool that specializes in generating Sigma rules
from OSCTI text. This approach aims to leverage extracted AWS
API calls to enrich paragraphs and transform them into Sigma can-
didates. This, in turn, enables the detection of similar activities
or patterns in log files. The generation prompt includes several
important instructions:
• Each API call provided (along with its TTPs) must be included

in the Sigma candidates, but not more than once, to avoid the
omission of important details and duplications.

• Paying attention to small details is extremely important as they
can improve the detection specificity of the Sigma candidates.

• Sigma candidates with the same attack patterns and stages (i.e.,
their TTPs) should be merged and vice versa.

• Sigma candidates must align with the specific terminology and
functionality of AWS environments to ensure relevance.

• The output (i.e., LLM response) is required to be in a uniform and
interpretable format. We used JSON format since it is a built-in
feature available through the OpenAI API [24].

Rule Validator. Once Sigma candidates are generated, a validation
function is applied to ensure that the output complies with the
Sigma standard structure (YAML). This function is denoted as Valid
in Fig. 1, and is executed by each component that produces rules
using LLM. This validation process involves sanitizing too specific
or extraneous fields, such as errorcode, errormessage, and explicit
resource names, to enhance the applicability of the rules. It also
reformats the syntax to ensure the validity of <key:value> pairs
and verifies metadata, including author names, reference URLs,
and dates. This function safeguards the integrity and consistency
of the Sigma candidates by eliminating redundant attributes and
correcting structural flaws.

3.3 OSCTI-Level Processing
The final phase in the LLMCloudHunter framework aggregates
Sigma candidates generated from individual paragraphs to produce
a consolidated and optimized set of detection rules, enabling holistic
processing and enrichment. It takes the collected Sigma candidates
from all processed paragraphs and outputs a final, optimized set
free of redundancies and enriched with IoCs.
Rule Optimizer. The first component (H in Fig. 1) in the OSCTI-
Level Processing phase is designed to improve Sigma candidates’
detection logic. In this component, the LLM processes the validated
Sigma candidates concurrently to enhance the speed and efficiency
of the optimization process. A designated prompt, along with op-
timization examples, guides the LLM to ensure that the detection
criteria are clear and aligned with their intended purpose. The
optimization process includes the following tasks:
• Unification - merges selection fields that match identical de-

tection criteria, i.e., those sharing the same filtering logic. For
example, consider the Sigma rule in Listing 1, which detects ac-
cess to a certain file from malicious IP addresses. Assume this
Sigma rule includes another selection field with the same event
source, event name, and request parameter (s3.amazonaws.com,
GetObject, and terraform.tfstate, respectively) but adds an addi-
tional request parameter: requestParameters.bucket: Starak. When

performing the unification task, the Rule Optimizer combines
these two selection fields into a single selection that encompasses
all relevant fields: eventSource, eventName, requestParameters.key,
and requestParameters.bucket. This unification ensures that the
rules are comprehensive and free of redundancy by merging
overlapping criteria while preserving their original integrity.

• Separation - Splits disjoint selection fields that share some de-
tection criteria but have misaligned logic. For example, consider
the Sigma rule in Listing 1. Assume that the initial Sigma rule
incorrectly included two additional unrelated fields: eventSource:
iam.amazonaws.com and eventName: PutUserPolicy in the same
existing selection field. The Rule Optimizer would recognize that
these fields are unrelated to the original detection logic and
would separate them into a new selection field. Then, it would
update the condition field to search for either the first selection or
the newly created second selection. This separation ensures the
rule remains accurate and logically consistent by distinguishing
between different detection criteria.

Algorithm 1 Rule Deduplicator.
Input: A set of Sigma candidates 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠
Output: Modified 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠
1: 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼𝑠 ← ExtractAPIs(𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠)
2: for each 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼 ∈ 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼𝑠 do
3: 𝑐𝑜𝑚𝑚𝑜𝑛𝑅𝑢𝑙𝑒𝑠 ← GetCommonRules(𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠 , 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼 )
4: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑅𝑢𝑙𝑒 ← RuleSelector(𝑐𝑜𝑚𝑚𝑜𝑛𝑅𝑢𝑙𝑒𝑠 , 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼 )
5: 𝑟𝑢𝑙𝑒𝑠𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 ← 𝑐𝑜𝑚𝑚𝑜𝑛𝑅𝑢𝑙𝑒𝑠 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑅𝑢𝑙𝑒
6: for each 𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 ∈ 𝑟𝑢𝑙𝑒𝑠𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 do
7: 𝑟𝑢𝑙𝑒𝐴𝑃𝐼𝑠 ← ExtractAPIs(𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 )
8: if |𝑟𝑢𝑙𝑒𝐴𝑃𝐼𝑠 | = 1 then
9: 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠 ← 𝑜𝑠𝑐𝑡𝑖𝑅𝑢𝑙𝑒𝑠 − 𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡
10: else
11: APICallRemover(𝑟𝑢𝑙𝑒𝑇𝑜𝐴𝑑 𝑗𝑢𝑠𝑡 , 𝑜𝑠𝑐𝑡𝑖𝐴𝑃𝐼 )
12: end if
13: end for
14: end for

Rule Selector. This component (J in Fig. 1) refines the Sigma candi-
date set by selecting the most suitable rule among those containing
the same API call. It uses prompts to evaluate the specificity and
context of each rule, prioritizing those with detailed criteria directly
linked to the API call. If multiple rules are equally specific, the con-
text (the paragraph of which they have been generated) is used to
make the final selection.
API Call Remover. Following the Rule Selector’s identification of
the best rule, the API Call Remover (K in Fig. 1) edits other rules
containing the same API call. It systematically preserves each rule’s
structure while removing the redundant API call. If a rule solely
depends on the API call being removed, it is discarded entirely.
Rule Deduplicator.Working with the Rule Selector and API Call
Remover, the Rule Deduplicator (I in Fig. 1) finalizes the Sigma can-
didate set by eliminating overlaps as the depicted in Algorithm 1.
It maps event names to rule indices and retains only the most com-
prehensive rule for each detection scenario, resulting in a precise
and non-overlapping set of Sigma candidates.
IoC Extractor. This component (L in Fig. 1) parses OSCTI texts
to identify and extract explicit IoCs, notably IP addresses and user
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agents pertinent to AWS CloudTrail logs. Its input is the full mark-
down of the OSCTI created by the Downloader and Parser, along
with an instruction prompt. This prompt guides the LLM to focus
on paragraphs typically containing IoCs (e.g., conclusion, findings,
or IoC sections). Additionally, the LLM is instructed to ensure that
all IoCs are identified and to convert obfuscated IP addresses and
user agents to standardized formats.
IoC Enhancer. Following the extraction of IoCs by the IoC Ex-
tractor, this component (M in Fig. 1) integrates the extracted IoCs
into all Sigma candidates, enhancing their detection capabilities
while maintaining flexibility for analysts. The IoCs (IP addresses
and user agents) associated with the threat actor are added to each
Sigma candidate as optional detection filters. The IoC Enhancer in-
troduces new selection fields for each type of IoC. For instance, when
an IP address is extracted (198.51.100.1), the selection_ioc_ip field
is added: selection_ioc_ip: sourceIPAddress: 198.51.100.1. Similarly,
when a user agent is extracted (Mozilla/5.0), the selection_ioc_ua
field is introduced: selection_ioc_ua: userAgent|contains: Mozilla/5.0.
The |contains operator is used to improve string matching flexibil-
ity, allowing for variations (e.g., different versions). After adding
these IoC selections, the IoC Enhancer updates the condition field
of each Sigma candidate to include the IoCs as optional criteria.
If the original condition was: condition: selection, it is modified to:
selection and (selection_ioc_ip or selection_ioc_ua). This ensures that
an event must meet the original detection criteria (e.g., specific API
calls and event sources) and either the IP address or user agent IoC.
By integrating IoCs in this way, the rules become more accurate in
detecting activities associated with the threat actor. Importantly,
since the IoCs are added as optional filters, analysts can easily ad-
just the rules to suit their needs. If the IoCs lead to false positives or
become irrelevant, analysts can remove or modify these conditions
without altering the core detection logic. This approach maintains
transparency of information passed from OSCTI to the Sigma rules
while ensuring the Sigma candidates remain adaptable for various
use cases.

4 EVALUATION
In this section, we describe the creation of an annotated benchmark
dataset and present the methodology and metrics used to evaluate
the efficacy and accuracy of the Sigma candidates generated by
LLMCloudHunter. We present the results of our evaluation, which
also includes an ablation study in which we analyze the impact of
each of the framework’s components on the overall performance.

4.1 Dataset
We collected 20 cloud environment OSCTIs published by different
vendors. Table 6 in Appendix 6 provides a description of the OSCTIs,
including the number of images, token sizes, number of API calls,
and their technical complexity. To establish the dataset’s ground
truth, a team of threat hunting and cloud security experts thor-
oughly analyzed each OSCTI’s content. The team (1) identified and
extracted the entities described in the OSCTI and (2) identified the
relevant inter-entity relationships essential for creating coherent
and meaningful Sigma candidates. The list of extracted entities and
inter-entity relationships is provided in Table 1. We categorized the
entities and relationships into two main groups:

(1) Detection: These are essential elements required to form a
correct Sigma rule for detecting threat actor actions. This category
includes detection entities and their associatedDetection Field Name
relationships, which are crucial for measuring key:value placements
in rule generation.
(2) Informative (MITRE ATT&CK Tags): Entities not directly
involved in detection logic but relevant for adding context to the
alerts raised by the rules, based on associated TTPs.

Entity Relationship
Detection Entities and Relationships

API Call Detection Field Name↔ Detection Entity
Log Source API Call↔ Log Source
API Source API Call↔ API Source

IoC API Call↔ IoC
Other API Call↔ Other
MITRE ATT&CK Entities and Relationships

Technique API Call↔ Technique
Sub-Technique API Call↔ Sub-Technique

Table 1: Entity types and relationships.

4.2 Evaluation Metrics
We evaluated our framework’s performance using a comprehensive
set of metrics designed to assess both the extraction of entities and
relationships from OSCTIs and the functionality of the generated
Sigma candidates.
Entity and Relationship Extraction Metrics: We utilized com-
mon entity and relationship extraction metrics, as done in prior
studies [4, 6, 11–13, 20, 28, 29, 35–37, 39], to assess our framework’s
performance, validating the results against the ground truth defined
by our research team. Themetrics used to assess LLMCloudHunter’s
performance in extracting and identifying the entities and inter-
entity relationships in the OSCTI are the precision (P), recall (R),
and F1 score (F1) weighted by the total number of entities/relation-
ships of each type, denoted as ‘#’ (since each OSCTI has a different
number of entities/relationships). By calculating these metrics sep-
arately for each entity and relationship type, we can pinpoint areas
of strength and identify opportunities for improvement.

To evaluate the functionality, logical validity, and relevance of
the Sigma candidates generated by LLMCloudHunter, we defined
the following criteria. Thesemetrics were calculated by our research
team for each Sigma candidate generated:
• Syntax Correctness - Assesses whether the generated Sigma

candidates are syntactically correct and properly formatted, en-
suring that a given rule is operational in a SIEM system. We
used Sigma CLI [2] for compilation and conversion into query
languages (e.g., Splunk).

• Detection Condition Accuracy - Focuses on the correctness
of the condition fields, which specify the relationship between
various selection fields.

• CriticalityAccuracy -Measures the accuracy of the level field of
each Sigma candidate, which represents the level of importance
and urgency of the rule.

• Descriptive Metadata Alignment - Evaluates whether the title,
description, and falsepositives fields accurately reflect the rule’s
intended purpose and context.
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4.3 Results
The results (averaged over all evaluated OSCTIs) of our entity and
relationship extraction evaluation are presented in Tables 2 and 3,
respectively (detailed results are provided in Appendix B).
Detection.We consider API calls and IoCs to be the most important
entities for generating practical and relevant Sigma candidates.
For these two entity types, LLMCloudHunter achieved a weighted
precision of 83% with a recall of 99% for the API calls and a precision
of 99%with a recall of 97% for the IoCs. In the ’Other’ entity category,
which includes various entities (e.g., request parameters and IP
address), resulted in precision and recall values of 75% and 61%,
respectively. The relationship extraction results, which represent
LLMCloudHunter’s ability to interrelate detection entities to the
appropriate fields in Sigma rules, achieved an F1 score of 96% for
the Detection Field Name↔ Detection Entity relationship.
Informative (MITRETags). For the extraction ofMITREATT&CK
TTPs, which is known to be a challenging task [8], LLMCloud-
Hunter achieved an F1 score of 74% for technique and 81% for
sub-technique. Since each technique and sub-technique directly
maps to one or more known tactics, this entity becomes redundant.
For instance, ‘Cloud Service Discovery (T1526)’ maps to the ‘Discov-
ery’ tactic, illustrating how tactics can be directly inferred from
techniques, rendering the explicit identification of tactics redundant.
These results are notable compared to similar works; for instance,
Daniel et al. [10] reported a highest F1 score of 0.49 in MITRE tags
extraction. The relationship identification results, which represent
LLMCloudHunter’s ability to interrelate the detection entities to
the relevant key in the Sigma candidates (Detection Field Name
↔ Detection Entity), achieved an F1-score of 96%. Regarding the
extraction of MITRE ATT&CK TTPs, LLMCloudHunter achieved
an F1 score of 74% for Techniques and 81% for Sub-Techniques,
with notably high recall rates of 82% and 90%, respectively. The
precision was impacted due to LLMCloudHunter generating more
Sigma candidates than the ground truth, leading to the creation of
additional, more specific tags. This increase in the number of tags
stems from LLMCloudHunter’s strategy to extract all the threat
actor actions, resulting in a higher number of API Calls and, thus,
a higher number of false positives when compared to the ground
truth, thus lowering the precision. Similarly, in the relationship ex-
traction task, the low precision for MITRE-related relationships can
be attributed to the model associating more specific Techniques and
Sub-Techniques with the API Calls, which were not always present
in the ground truth. While this affects the precision metric, the
high recall indicates that LLMCloudHunter successfully captures
the relevant TTPs, providing valuable context for threat detection.

In summary, LLMCloudHunter demonstrates strong performance
in extracting and identifying key entities and their relationships
within OSCTI.While the frameworkwas shown to excel in handling
API calls, IoCs, and request parameters, achieving high precision
and recall for this, it faces challenges with MITRE ATT&CK TTPs,
which impacts the overall performance but does not affect the de-
tection capabilities of the Sigma candidates generated.

The results of our Sigma candidate evaluation are presented in
Table 4. Out of 260 generated candidates, an impressive 99.18%
were syntactically correct and operational, showcasing high syntax

correctness. The detection condition accuracy was equally note-
worthy, with all but one candidate correctly specifying the logical
relationships between selection fields, resulting in an accuracy
rate exceeding 99%. While the criticality accuracy varied between
75% and 100% across different OSCTIs—with an average of approxi-
mately 88% — this suggests that LLMCloudHunter generally assigns
appropriate importance levels, though there is room for improve-
ment in aligning more closely with expert assessments. Lastly, the
descriptive metadata alignment was exceptional, with most OSCTIs
scoring above 95%, demonstrating that LLMCloudHunter effectively
generates titles, descriptions, and false positive information that
accurately reflect each rule’s intended purpose and context.

Entity # P R F1

Detection

Field Name 8.20 0.85 0.85 0.85
API Call 18.75 0.83 0.99 0.90
IoC 9.50 0.99 0.97 0.98
Log Source 2.00 1.00 1.00 1.00
Other 3.45 0.75 0.61 0.67

MITRE Technique 6.25 0.67 0.82 0.74
ATT&CK Sub-Technique 3.00 0.73 0.90 0.81

Table 2: Entity extraction results.

Relationship # P R F1

Detection

Field Name↔ Detection Entity 33.00 1.00 0.93 0.96
API Call↔ API Source 17.60 1.00 0.82 0.90
API Call↔ IoC 31.20 1.00 0.99 0.99
API Call↔ Other 5.90 0.92 0.55 0.69
API Call↔ Log Source 31.20 1.00 0.99 0.99

MITRE API Call↔ Technique 16.85 0.61 0.47 0.53
ATT&CK API Call↔ Sub-technique 5.15 0.92 0.69 0.79

Table 3: Relationship extraction results.

OSCTI ID #Rules Executability
Condition Criticality Descriptive

Field Accuracy Metadata
Accuracy Alignment

1 10 9 (90%) 9 (90%) 87.50% 93.75%
2 15 15 (100%) 15 (100%) 90.00% 95.00%
3 15 15 (100%) 15 (100%) 83.33% 90.00%
4 9 9 (100%) 9 (100%) 83.33% 100.00%
5 18 18 (100%) 18 (100%) 86.11% 100.00%
6 14 14 (100%) 14 (100%) 92.86% 100.00%
7 7 7 (100%) 7 (100%) 85.71% 100.00%
8 9 9 (100%) 9 (100%) 83.33% 100.00%
9 4 4 (100%) 4 (100%) 75.00% 87.50%
10 15 15 (100%) 15 (100%) 96.43% 100.00%
11 14 14 (100%) 14 (100%) 82.14% 96.43%
12 18 13 (100%) 13 (100%) 93.75% 100.00%
13 24 24 (100%) 24 (100%) 97.92% 96.88%
14 6 6 (100%) 6 (100%) 83.33% 100.00%
15 4 4 (100%) 4 (100%) 87.50% 100.00%
16 39 39 (100%) 39 (100%) 90.38% 98.08%
17 6 6 (100%) 6 (100%) 90.00% 100.00%
18 6 6 (100%) 6 (100%) 83.33% 100.00%
19 12 12 (100%) 12 (100%) 91.67% 95.83%
20 15 15 (100%) 15 (100%) 100.00% 96.67%

Weighted Avg. 15 99.18% 100.00% 88.18% 97.50%

Table 4: Sigma candidate evaluation results.

Ablation Study Results. We conducted an ablation study to bet-
ter understand the impact of LLMCloudHunter’s components on
its performance. We created three variations of LLMCloudHunter
by systematically removing key components and evaluating the
performance of each variant. Table 11 in Appendix D summarizes
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the different configurations used in the ablation study. The Blind-
Hunter variation evaluates the impact of the image processing by
Image Classifier and Image Transcriptor. The NoAPIHunter varia-
tion is designed to evaluate the impact of the API Call Extractor
and TTP Classifier components (D and F in Fig. 1, respectively); ;the
UnoptimizedHunter variation aims to evaluate the Rule Optimizer
component (H in Fig. 1); and the CritLessHunter is used variation
evaluates the impact of the Criticality Classifier component (F in
Fig. 1). When the Criticality Classifier was omitted (CritLessHunter
variation), we observedminimal impact on entity extractionmetrics.
However, this component is vital for assigning appropriate threat
levels and aiding in the prioritization of Sigma candidates. Table 12
in Appendix D presents the results for each of the variations in the
previously evaluated entity and relationship identification tasks.

The results obtained with the BlindHunter variation show a 7%
decrease in the F1 score for the API Call entity extraction task,
with the recall dropping to 82%. Additionally, the weighted average
precision and recall for Detection Field Name↔ Detection Entity re-
lationship identification were reduced by 17% and 21%, respectively.
This significant reduction in accuracy, especially in extraction cov-
erage (API Calls), highlights the importance of the Image Classifier
and Image Transcriptor components in extracting information from
images that may not be available elsewhere.

The NoAPIHunter variation, with the API Call Extractor and
TTP Extractor components removed, resulted in significantly worse
performance compared to the other variations. For the task of entity
extraction, we observed a 22% drop in the average precision and
a 7% drop in the average recall. Performance on the relationship
extraction metrics was even more affected, with a 42% reduction in
the average precision and a 14% reduction in the average recall.

These findings highlight the importance of dedicated compo-
nents for entity extraction, such as the API Call Extractor and TTP
Classifier, which allow the model to focus on accurate extraction
before rule generation. Specifically, the API Call Extractor and TTP
Extractor components proved essential to LLMCloudHunter’s over-
all performance. In contrast, less dramatic differences in the per-
formance were seen with the UnoptimizedHunter variation, which
assesses the impact of omitting the Rule Optimizer component. In
the relationship extraction task, there was a 17% reduction in aver-
age precision and a 9% decrease in average recall. Although these
declines are not as great as those seen in the previous variation in
terms of API Call extraction, the decrease in the relationship iden-
tification indicates that syntax and executability will be affected.

To summarize, the ablation study highlights the essential roles
of the Image Classifier, Image Transcriptor, API Call Extractor, and
TTP Extractor components in maintaining high precision and recall
in both entity and relationship extraction tasks. The Rule Optimizer
also plays a valuable role, though its impact is less pronounced
compared to the other components.

5 DISCUSSION
Our experiments highlighted the effectiveness of various techniques
applied throughout LLMCloudHunter’s pipeline. These techniques,
along with the purpose and specific settings for each component,
are summarized in Table 13 in Appendix E and described below:
Majority Rule in Entity Extraction Using LLMs. We used a
majority voting mechanism in the API Call Extractor to address

LLM inconsistencies and hallucinations. While identical extraction
requests generally produced similar results, occasional variations
may occur due to the LLM’s generative nature. To ensure accuracy,
only API calls meeting a set majority threshold were retained. We
experimented with the number of runs and threshold size to bal-
ance runtime, cost, and accuracy. This approach effectively reduced
erroneous results in ambiguous cases.
Structured Response Format. For each LLM request, we use the
JSON output format LLM via the request setting [24]. This struc-
tured format enables automatic validation and processing. It also
allows direct access to values without additional post-processing.
LLM Temperature Settings. The temperature setting of an LLM
influences the creativity and randomness of its outputs, and its val-
ues range between zero and two [23]. By adjusting the temperature
for different tasks, we can improve the results. For example, in the
API Call Extractor component, where extracting the information
accurately is crucial, we use a low temperature of zero to ensure
more accurate responses. In contrast, for the Rule Generator compo-
nent, we set the temperature to 0.7 to allow the model to generate
conditions for Sigma rules, which require some ‘creativity.’
Leveraging the Few-shot Learning Technique. Providing in-
structions and input-output examples can significantly improve
model performance [9, 26]. By dividing the OSCTI analysis into
smaller tasks, we provided specific instructions for each. Using few-
shot learning with a small number of examples further enhanced
the model’s ability to generate accurate outputs.
Parallel LLM Requests. We leveraged independent LLM prompts
to perform parallel execution, resulting in improved speed and ef-
ficiency. We identified two key scenarios where parallel requests
were particularly beneficial. First, in preprocessing, we translated
all images into text simultaneously, accelerating this step. Second,
in paragraph-level processing, we processed each paragraph in par-
allel, reducing overall processing time by threefold. This approach
reduces the runtime and improves scalability for larger datasets,
allowing for more efficient handling of extensive text corpora.
Limitations. Using a commercial LLM model (OpenAI’s GPT-4o),
known for its performance [5, 43], adds a cost factor that needs
to be considered (approximately 25 cents per OSCTI). In addition,
while we used pretrained LLMs, fine-tuning open-source models,
may have an advantage in performing specific tasks correctly.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented LLMCloudHunter, an end-to-end frame-
work that analyzes textual and visual OSCTI using a pretrained
LLMmodel when provided a URL. Our framework offers significant
flexibility by allowing easy updates to newer and improved models
without the need for fine-tuning, and it demonstrates scalability
by running independently across multiple OSCTI images and para-
graphs. By using the Sigma format, LLMCloudHunter’s output can
be seamlessly integrated into existing SIEM systems. Future work
can focus on extending LLMCloudHunter to on-premise environ-
ments, increasing its applicability in diverse organizational settings
and environments. Additionally, we plan to enhance our framework
by equipping it with playbook automation capabilities, which will
improve its ability to mitigate detected threats and provide more
robust support for threat hunters.
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A RELATEDWORK
In this section, we provide an overview of recent studies focused
on unstructured OSCTI analysis (also summarized in Table 5).

OSCTI Analysis Techniques. The development of efficient
threat hunting mechanisms that leverage OSCTI has resulted in
a wide range of research methodologies, each using different ap-
proaches to analyze and interpret OSCTI data. Within each OSCTI,
key information (e.g., IoC or TTPs) is often implicit and requires
the use of a different extraction approach.

NLP techniques have been utilized extensively for OSCTI analy-
sis inmethods including: Casie [37], Extractor [36], Open-CyKG [35],
SecIE [28], and CyberEntRel [4]. Thesemethods leveraged advanced
NLP models (e.g., BiLSTM, BERT, RoBERTa) to extract actionable
insights from OSCTI text. However, to adapt these models to the
cyber threat domain, a significant amount of preprocessing and
fine-tuning is required. TTPDrill [15] and THREATRAPTOR [13]
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Reference Year Technique Dataset Target Image Output
Extraction

Environment Processing Entities Relations IoCs TTPs Detection
Queries/Rules

TTPDrill [15] 2017 Unsupervised NLP Symantec On-premise × STIX ✓ ✓ ✓ ✓
Casie [37] 2020 BiLSTM CyberWire On-premise × Knowledge Graph ✓ ✓ ✓
Extractor [36] 2021 BERT-BiLSTM APT Repository, On-premise × Threat Behavior Graph ✓ ✓ ✓

Microsoft, Symantec,
Threat Encyclopedia,
Virus Radar

Open-CyKG [35] 2021 BiLSTM MalwareDB On-premise × Knowledge Graph ✓ ✓
ThreatRaptor [13] 2021 Unsupervised NLP DARPA TC On-premise × Threat Behavior Graph, ✓ ✓ ✓ ✓ ✓

TBQL Queries
SecIE [28] 2022 BERT CVE On-premise × Knowledge Graph ✓ ✓ ✓
CyNER [12] 2022 BERT Custom On-premise × STIX ✓ ✓ ✓
TriCTI [19] 2022 BERT Custom On-premise × Labeled IoCs ✓ ✓
LADDER [6] 2023 BERT Custom On-premise × Knowledge Graph ✓ ✓ ✓ ✓
Purba and Chu [29] 2023 GPT-3.5 Twitter Posts On-premise × Labeled IoCs ✓ ✓
aCTIon [39] 2023 GPT-3.5 Custom On-premise × STIX ✓ ✓ ✓ ✓
Liu and Zhan [20] 2023 ChatGPT Custom On-premise × Knowledge Graph ✓ ✓ ✓
LLM-TIKG [14] 2023 Fine-tuned LLaMA-2-7B Custom On-premise × Knowledge Graph ✓ ✓ ✓ ✓
CyberEntRel [4] 2024 RoBERTa-BiGRU-CRF Custom On-premise × Knowledge Graph ✓ ✓
Fengrui and Du [11] 2024 Fine-tuned LLaMA-2-7B ATT&CK STIX Data On-premise, × MITRE ATT&CK TTPs ✓

Cloud
Our Framework 2024 GPT-4o Custom Cloud ✓ Sigma Rules ✓ ✓ ✓ ✓ ✓

Table 5: Comparison of studies utilizing OSCTI inputs.

implement an unsupervised NLP pipeline that employs rule-based
and information retrieval techniques. While this approach reduces
the need for extensive model training, it is not flexible, and signifi-
cant customization is needed for use in cloud environments. This
is due to fundamental differences in terminology and data types
between traditional on-premise environments and cloud environ-
ments, as well as the dynamic nature of cloud architectures, which
continuously evolve with new services and configurations.

The introduction of LLMs has led to a paradigm shift in OSCTI
processing, with research demonstrating their ability to extract
meaningful and structured data from OSCTI text. Utilizing GPT-3.5,
Purba and Chu [29] and Siracusano et al. [39] addressed tasks rang-
ing from the extraction of IoCs to the generation of structured CTI
format (e.g., STIX), respectively, while Liu and Zhan [20] applied
ChatGPT to construct graphical representations of OSCTI data. Hu
et al. [14] and Fengrui and Du [11] expanded upon these capabilities
by utilizing both pretrained and fine-tuned LLM models. They em-
ployedGPT-3.5 and ChatGPT for data annotation and augmentation,
respectively, to prepare datasets for fine-tuning the LLaMA2-7B
model. Hu et al. [14] applied the fine-tuned LLaMA2-7B to construct
knowledge graphs, while Fengrui and Du [11] focused on TTP clas-
sification. In this research, we are the first to develop an end-to-end
framework based on a pretrained LLM, demonstrating the potential
of LLMs in processing OSCTI and generating actionable Sigma rules.
Moreover, our framework integrates visual analysis capabilities, ex-
panding the scope of OSCTI analysis beyond previous text-centric
methodologies. By leveraging pretrained LLMs, we avoid the need
for rule-based methods or training customized models with dedi-
cated datasets. Our framework also focuses on generating rules for
cloud environments, which has not been addressed before.

Datasets. In terms of OSCTI datasets, the study introducing
TTPDrill [15] used a dataset of semi-structured Symantec threat
reports, from which threat actions were manually extracted. Simi-
larly, Satyapanich et al. [37] employed cybersecurity news articles

published on CyberWire,2 which were annotated before evaluation.
The study presenting Extractor [36] usedmultiple structured OSCTI
sources, including Microsoft, Symantec, Threat Encyclopedia, and
Virus Radar. Open-CyKG [35] used a structured OSCTI database
focusing on malware. ThreatRaptor [13] utilized the DARPA TC
dataset, incorporating semi-structured OSCTIs, along with IoCs
and relevant event log entries for each attack incident. SecIE [28]
used 133 unstructured labeled threat reports from various threat in-
telligence vendors. CyNer [12] and TriCTI [19] developed a custom
web crawler to retrieve unstructured OSCTIs across selected high-
quality websites (e.g., Kaspersky, Symantec, and Fireye) and manu-
ally annotated a subset for evaluation purposes. LLM-TIKG [14] also
developed a custom web crawler to collect OSCTIs from selected
platforms, but this study differs from the study presenting CyNer
in that it utilizes an LLM (GPT) for annotation. Liu and Zhan [20]
manually collected OSCTIs from public sites, and for each OSCTI,
they selected the paragraphs that refer to the target technique to
increase information density. LADDER [6] used OSCTI reports re-
lated to a specific set of malware, employing the BRAT [40] NLP
method to annotate the concepts and their relationships in the text.
Purba and Chu [29] analyzed a dataset comprising 150 cyber threat
related tweets. aCTIon [39] manually collected OSCTI posts and
their respective STIX bundles and used expert-based annotation
to create the ground truth. CyberEntRel [4] collected OSCTI re-
ports from high-quality vendors (e.g., Microsoft, Cisco, McAfee, and
Kaspersky) and performed keyword-based data extraction. Fengrui
and Du [11] used the MITRE ATT&CK dataset, structured in STIX
2.1 JSON format, which is a tagged and organized collection of
adversary tactics and techniques.

In contrast to prior studies that primarily used semi-structured
and on-premise-related datasets, we use 20 unstructured, publicly
available cloud-based posts and reports sourced from various pub-
lishers. These OSCTI reports, which describe AWS cloud incidents,

2https://thecyberwire.com/
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were systematically annotated by our research team to develop a
robust ground truth for development and evaluation.

Extractions and Outputs. Previous studies produced a vari-
ety of outputs with different levels of utility and applicability. Liu
et al. [19] and Purba and Chu [29] focused on extracting IoCs, while
Fengrui and Du [11] extracted TTPs. The studies presenting TTP-
Drill [15], Cyner [12], and aCTIon [39] converted unstructured
OSCTIs into structured representations using the STIX format,
which facilitates the systematic sharing and analysis of threat in-
formation. A more advanced approach was used in Extractor [37]
and ThreatRaptor [13], in which threat behavior graphs are cre-
ated; and in Casie [37], Open-CyKG [35], SecIE [28], LADDER [6],
aCTIon [20], LLM-TIKG [14], CyberEntRel [4], in which knowl-
edge graphs are generated. Both approaches interrelate entities
with associated actions and artifacts (i.e., IoCs and TTPs), provid-
ing structured insights into attack strategies through graph-based
representations. While the approaches highlighted above provide
valuable contextual information, further processing is required to
transform the representations into actionable defense mechanisms.

To address this, in their study, Gao et al. presented a frame-
work for converting OSCTI data into a threat behavior graph and
associated domain-specific queries. Both frameworks go beyond
simply identifying and contextualizing threat data, by developing
operational detection rules and queries. The detection rule candi-
dates generated by LLMCloudHunter, however, are in the known
open-source Sigma structure. This widely used generic signature
format is inherently suitable for integration in various application
environments and SIEMs. By capturing the entities, relations, IoCs,
and TTPs identified in OSCTI, LLMCloudHunter translates threat
intelligence into applicative Sigma candidates.

B OSCTI SOURCES USED IN OUR RESEARCH
Table 6 presents the list of OSCTI sources used in the development
and evaluation of LLMCloudHunter. For each source, we provide
the number of images included, the number of tokens (which serve
as input to the LLM), the number of API calls, and our rating of the
OSCTI’s technical complexity. The complete results of the entity
and relationship extraction are presented in the following tables:
detection entities and relationships in Tables 7 and 8, and MITRE
ATT&CK entities and relationships in Tables 9 and 10.

C RUNNING EXAMPLE
This section provides a step-by-step demonstration of the LLM-
CloudHunter framework in action. The example uses an actual OS-
CTI source, specifically a Sysdig blog post titled “SCARLETEEL: Op-
eration leveraging Terraform, Kubernetes, and AWS for data theft”3,
which describes a cloud infrastructure exploit. This demonstration
focuses on specific paragraphs relevant to the Sigma rule being
generated, leading to the rule presented in Listing 1.

Step 1 (Preprocessing Phase). The initial phase involves pre-
processing unstructured OSCTI data, which can be seen in Fig. 2a.
In this phase, the website content is downloaded and parsed by the
Downloader and Parser component, which converts HTML code
into a markdown format. The Image Analyzer component processes

3https://sysdig.com/blog/cloud-breach-terraform-data-theft/

the embedded images to extract relevant text. This phase results in
the formatted textual output shown in Fig. 2b.

Step 2 (Paragraph-Level Processing Phase). In this phase, we
first extract API calls and then classify each one according to its
corresponding MITRE ATT&CK TTPs and criticality level. These
extractions are then attached to the formatted paragraph content to
enrich it with additional context. Fig. 3 demonstrates how the API
calls ‘ListBuckets’ and ‘GetObject’, along with their event sources
and TTPs, are added to the output in our example. This enriched
paragraph is then fed to the Rule Generator component to generate
an initial Sigma rule, as shown in Listing 2.

title: Access to Terraform File
description: Detects requests for terraform.tfstate file.

This file contains sensitive infrastructure information
and secrets , indicating potential compromise or
unauthorized access.

references:
- https:// sysdig.com/blog/cloud -breach -terraform -data -

theft/
- https://docs.aws.amazon.com/AmazonS3/latest/API/

API_GetObject.html
author: LLMCloudHunter
tags:

- attack.collection
- attack.t1530

logsource:
product: aws
service: cloudtrail

detection:
selection_event:

eventSource: s3.amazonaws.com
eventName: GetObject
requestParameters.key: terraform.tfstate

condition: selection_event
falsepositives:

- Automated CI/CD pipeline operations
- DevOps engineers manually running Terraform commands

level: high

Listing 2: The initial generated Sigma rule.

Step 3 (OSCTI-Level Processing Phase). The Rule Optimizer
component refines the detection logic of each rule. In our case,
it finds no faults to fix and leaves the initial rule as it is. The Set
Refiner removes duplicates in the overall set; here, there is no du-
plication of the ‘GetObject’ API call. The IoC Enhancer then uses
the extracted IoCs in the IoC paragraph (Fig. 2) to enhance the rule
with suspicious IP addresses. This results in the final Sigma rule
presented in Listing 1.

D ABLATION STUDY
In this section, we present the configurations used in the ablation
study and our results. Table 11 lists the different configurations,
indicating which components were used in each variation.

Table 12 contains the results of the experiments performed in the
ablation study, presenting the weighted average precision, recall,
and F1 score for each variation and extraction type.

E COMPONENT CONFIGURATIONS
In this section, we provide details on the configuration of each com-
ponent in the LLMCloudHunter framework. For each component,
Table 13 lists the purpose, techniques, and parameters.
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(a) Screenshots of two paragraphs from the OSCTI

## Credential access – Terraform state files

Terraform is an open source infrastructure as code (IaC) tool used to deploy, change,
or create infrastructures in cloud environments. 
In order for Terraform to know which resources are under its control and when
to update and destroy them, it uses a state file named terraform.tfstate by default. When
Terraform is integrated and automated in continuous integration/continuous delivery (CI/CD)
pipelines, the state file needs to be accessible with proper permissions. In particular, the
service principal running the pipeline needs to be able to access the storage account
container that holds the state file. This makes shared storage like Amazon S3 buckets a
perfect candidate to hold the state file.
However, Terraform state files contain all data in plain text, which may contain secrets.
Storing secrets anywhere other than a secure location is never a good idea, and definitely
should not be put into source control! 
The attacker was able to list the bucket available and retrieve all of the data. Examining
the data with different tools such as Pacu and TruffleHog during the incident investigation,
it was possible to find both a clear-text IAM user access key and secret key in the
terraform.tfstate file inside of an S3 bucket. Here is a screenshot from TruffleHog.

[Image Info:
- Alt Text: Terraform s3 bucket leak credentials
- Description: The image shows a screenshot of a command line interface output related to a
cybersecurity investigation or monitoring tool.
- Trancription:
*Found verified result 🐷🔑*
*Detector Type:* AWS
*Decoder Type:* PLAIN
*Raw result:* AKIA2
*Bucket:* [Obscured]
*Email:* [Obscured]
*File:* terraform/terraform.tfstate
*Link:* https://[Obscured]/terraform/terraform.tfstate

From the details above:
- The "Bucket" might be an Amazon S3 bucket which is a part of AWS (Amazon Web Services).
- The "Raw result" starting with "AKIA2" suggests the presence of an AWS Access Key ID.
- The link indicated ("https:/ /terraform/terraform.tfstate") suggests that Terraform, an
infrastructure as code software tool, is being used, and the specific file mentioned
is "terraform.tfstate," a file used by Terraform to store state data which can
include sensitive information.]

These IAM credentials are for a second connected AWS account, giving the attacker the
opportunity to move laterally to spread their attack throughout the organization.

## IoCs

### IP Addresses:

- 80[.]239[.]140[.]66
- 45[.]9[.]148[.]221
- 45[.]9[.]148[.]221
- 45[.]9[.]249[.]58

(b) Corresponding preprocessed output

Figure 2: OSCTI Preprocessing phase.

CTI Paragraph: """
preprocessed_paragraph_here
"""

Identified API Calls: """
[
    {
        "eventName": "ListBuckets",
        "eventSource": "s3.amazonaws.com",
        "tags": {
            "tactic_name": "attack.discovery",
            "technique_id": "attack.t1580"
        },
        "level": "low"
    },
    {
        "eventName": "GetObject",
        "eventSource": "s3.amazonaws.com",
        "tags": {
            "tactic_name": "attack.collection",
            "technique_id": "attack.t1530"
        },
        "level": "medium"
    }
]
"""

Figure 3: Formatted and enriched paragraph (input for the Rule Generator component).
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OSCTI OSCTI Name #Images #Tokens #API Technical
ID No Images Images Calls Complexity

1 Anatomy of an Attack:
Exposed keys to Crypto Mining 1 1254 1511 11 High

2 Behind the scenes in the Expel SOC:
Alert-to-fix in AWS 7 3136 4892 11 Medium

3 Bling Libra’s Tactical Evolution:
The Threat Actor Group Behind ShinyHunters Ransomware 20 6414 11391 20 High

4 CloudKeys in the Air:
Tracking Malicious Operations of Exposed IAM Keys 10 5792 10884 21 Low

5 Compromised Cloud Compute Credentials:
Case Studies From the Wild (Case 1) 1 2448 2718 51 Low

6 Detecting AI resource-hijacking
with Composite Alerts 4 2952 4078 22 Medium

7 Finding evil in AWS:
A key pair to remember 7 2852 3814 11 Medium

8 Incident report: From CLI to console,
chasing an attacker in AWS 1 2326 3504 11 Medium

9 Incident report:
stolen AWS access keys 4 1984 3998 7 Medium

10 LUCR-3: Scattered Spider
Getting SaaS-y in the Cloud 2 3666 4143 20 Low

11 Ransomware
in the cloud 7 4743 5931 17 High

12 SCARLETEEEL: Operation leveraging Terraform,
Kubernetes, and AWS for data theft 12 3671 9764 26 Medium

13 Tales from the cloud trenches:
Amazon ECS is the new EC2 for crypto mining 2 4784 5209 23 Medium

14 Tales from the cloud trenches: Raiding for
AWS vaults, buckets and secrets 2 2027 2310 9 Medium

15 Tales from the cloud trenches: Using AWS CloudTrail
to identify malicious activity and spot phishing campaign 8 3602 5187 6 Medium

16 The curious case of
DangerDev@protonmail.me 31 7541 14465 60 Medium

17 Two real-life examples of why limiting permissions works:
Lessons from AWS CIRT (Case 1) 0 2160 2160 9 Low

18 Two real-life examples of why limiting permissions works:
Lessons from AWS CIRT (Case 2) 0 2059 2059 7 Low

19 Unmasking GUI-Vil:
Financially Motivated Cloud Threat Actor 7 7604 9018 13 High

20 When a Zero Day and Access Keys Collide in the Cloud:
Responding to the SugarCRM Zero-Day Vulnerability 6 4922 5743 20 High

Table 6: OSCTI sources used in our research.

F PROMPTS
In this section, we provide the various prompts utilized throughout
our proposed method in the LLMCloudHunter framework. The
prompts associated with each component are described below:

• API Call Extractor (D in Fig. 1): This component extracts ex-
plicit and implicit API calls from the dataset. The methodology
employed in this component is illustrated in Fig. 4. The explicit
and implicit API call extraction prompts are shown in Figures 5
and 6, respectively. Additionally, the prompts used for the image
classification and transcription sub-components are provided in
Figures 7 and 8.

• TTP Classifier (E in Fig. 1): The prompt used for classifying
threat tactics, techniques, and procedures (TTPs) is detailed in
Figure 9.

• Criticality Classifier (F in Fig. 1): The prompt used to evaluate
the criticality of specific elements is shown in Figure 10.

• Rule Generator (G in Fig. 1): The prompt used for generating
Sigma rules is provided in Figure 11.

• Rule Optimizer (H in Fig. 1): The prompt used for the rule
optimization process is outlined in Figure 12.

• Rule Selector (J in Fig. 1): The prompt for selecting the most
suitable rules is shown in Figure 13.
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Detection Field Name Log Source API Call IoC OtherOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score
1 16 0.6 0.38 0.46 2 1 1 1 11 0.85 1 0.92 2 0.67 1 0.8 9 1 0.22 0.36
2 8 1 0.88 0.93 2 1 1 1 11 0.92 1 0.96 3 1 1 1 2 1 0.5 0.67
3 8 0.86 0.75 0.8 2 1 1 1 20 0.74 1 0.85 5 1 0.6 0.75 2 0 0 0
4 7 1 0.86 0.92 2 1 1 1 21 1 0.95 0.98 2 1 1 1 9 1 0.56 0.71
5 6 1 0.83 0.91 2 1 1 1 51 0.82 1 0.9 1 1 1 1 2 0 0 0
6 6 1 1 1 2 1 1 1 22 0.85 1 0.92 50 1 1 1 0 1 1 1
7 6 0.75 1 0.86 2 1 1 1 11 0.85 1 0.92 2 1 1 1 0 1 1 1
8 11 1 0.73 0.84 2 1 1 1 11 0.92 1 0.96 5 1 1 1 4 1 0.25 0.4
9 5 1 1 1 2 1 1 1 7 1 1 1 3 0.75 1 0.86 0 1 1 1
10 6 1 0.83 0.91 2 1 1 1 20 0.74 1 0.85 3 1 0.67 0.8 1 0 0 0
11 7 0.88 1 0.93 2 1 1 1 17 0.89 1 0.94 67 1 1 1 5 0.83 1 0.91
12 6 1 0.83 0.91 2 1 1 1 26 1 0.96 0.98 4 1 1 1 1 0 0 0
13 10 0.5 1 0.67 2 1 1 1 23 0.66 1 0.79 0 1 1 1 4 0.31 1 0.47
14 6 0.86 1 0.92 2 1 1 1 9 0.64 1 0.78 10 1 1 1 0 1 1 1
15 6 1 0.83 0.91 2 1 1 1 6 1 1 1 2 1 1 1 1 0 0 0
16 15 0.72 0.87 0.79 2 1 1 1 60 0.77 1 0.87 8 1 1 1 17 0.7 0.82 0.76
17 6 0.83 0.83 0.83 2 1 1 1 9 0.64 1 0.78 0 1 1 1 2 1 0.5 0.67
18 6 0.83 0.83 0.83 2 1 1 1 7 0.78 1 0.88 0 1 1 1 3 1 0.67 0.8
19 11 0.92 1 0.96 2 1 1 1 13 0.81 1 0.9 10 1 1 1 3 0.75 1 0.86
20 12 0.86 1 0.92 2 1 1 1 20 0.86 0.95 0.9 13 1 0.77 0.87 4 0.8 1 0.89

Weighted
Average 8.20 0.85 0.85 0.84 2.00 1.00 1.00 1.00 18.75 0.83 0.99 0.90 9.50 0.99 0.97 0.98 3.45 0.75 0.61 0.61

Table 7: Detection entity results.

Detection Field Name↔ Detection Entity API Call↔ API Source API Call↔ Log Source API Call↔ IoC API Call↔ OtherOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score
1 24 1 0.62 0.77 8 1 1 1 16 1 1 1 15 0.94 1 0.97 9 1 0.22 0.36
2 18 1 0.94 0.97 9 1 1 1 18 1 1 1 27 1 1 1 7 1 0.14 0.25
3 29 1 0.86 0.93 12 1 1 1 36 1 1 1 54 1 1 1 2 0 0 0
4 34 1 0.85 0.92 8 1 1 1 32 1 0.94 0.97 18 1 1 1 9 1 0.56 0.71
5 56 1 0.96 0.98 72 1 0.6 0.75 90 1 1 1 45 1 1 1 4 0 0 0
6 87 1 0.95 0.98 60 1 0.83 0.91 96 1 1 1 384 1 1 1 20 1 0.8 0.89
7 15 1 1 1 14 1 0.71 0.83 16 1 1 1 14 1 1 1 0 1 1 1
8 22 1 0.82 0.9 8 1 1 1 16 1 1 1 13 0.52 1 0.68 4 1 0.25 0.4
9 12 0.92 1 0.96 4 1 1 1 8 1 1 1 12 0.8 1 0.89 0 1 1 1
10 26 1 0.92 0.96 14 1 1 1 28 1 1 1 23 1 0.96 0.98 1 0 0 0
11 91 1 1 1 13 0.92 0.92 0.92 26 1 1 1 804 0.99 1 0.99 5 1 1 1
12 6 1 0.83 0.91 2 1 1 1 26 1 0.96 0.98 4 1 1 1 1 0 0 0
13 29 1 1 1 16 1 1 1 32 1 1 1 0 1 1 1 4 1 1 1
14 21 1 1 1 13 1 0.62 0.76 10 1 1 1 37 0.82 1 0.9 0 1 1 1
15 11 1 0.91 0.95 4 1 1 1 8 1 1 1 6 1 1 1 2 0 0 0
16 87 1 0.95 0.98 60 1 0.83 0.91 96 1 1 1 384 1 1 1 20 1 0.8 0.89
17 13 1 0.92 0.96 8 1 1 1 16 1 1 1 0 1 1 1 16 1 0.38 0.55
18 12 1 0.75 0.86 4 1 0.5 0.67 8 1 0.5 0.67 0 1 1 1 7 1 0.29 0.44
19 28 1 1 1 9 1 1 1 18 1 1 1 90 1 1 1 3 1 1 1
20 39 1 0.97 0.99 14 1 0.93 0.96 28 1 0.93 0.96 104 0.77 0.92 0.84 4 1 1 1

Weighted
Average 33.00 1.00 0.93 0.97 17.60 1.00 0.82 0.89 31.20 1.00 0.99 0.99 101.70 0.98 1.00 0.98 5.90 0.92 0.55 0.65

Table 8: Detection relationships results.

Technique Sub-TechniqueOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score
1 5 0.83 1 0.91 4 0.8 1 0.89
2 6 0.83 0.83 0.83 3 0.67 0.67 0.67
3 8 0.64 0.88 0.74 3 0.6 1 0.75
4 8 0.71 0.62 0.67 2 0.67 1 0.8
5 5 0.27 0.6 0.37 1 0.2 1 0.33
6 7 0.67 0.86 0.75 3 0.75 1 0.86
7 4 0.2 0.25 0.22 0 0 0 0
8 5 0.83 1 0.91 4 0.8 1 0.89
9 3 1 1 1 1 1 1 1
10 6 0.67 1 0.8 8 1 1 1
11 6 0.67 1 0.8 2 0.5 1 0.67
12 9 0.78 0.78 0.78 6 1 0.83 0.91
13 11 0.85 1 0.92 6 1 1 1
14 3 0.75 1 0.86 1 1 1 1
15 4 0.67 0.5 0.57 2 0 0 0
16 14 0.76 0.93 0.84 7 0.58 1 0.74
17 4 0.17 0.25 0.2 0 0 0 0
18 5 0.67 0.8 0.73 0 0 0 0
19 6 0.5 0.67 0.57 5 0.43 0.6 0.5
20 6 0.5 0.83 0.62 2 0.25 1 0.4

Weighted
Average 6.25 0.67 0.82 0.73 3.00 0.73 0.90 0.79

Table 9: MITRE entity results.

• API Call Remover (K in Fig. 1): The prompt used to refine
detection accuracy by removing redundant API calls is illustrated
in Figure 14.

• IoC Extractor (L in Fig. 1): The prompt for extracting indicators
of compromise (IoCs) is displayed in Figure 15.
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API Call↔ Technique API Call↔ Sub-techniqueOSCTI
ID Support Precision Recall F1-score Support Precision Recall F1-score
1 8 0.88 0.88 0.88 6 1 0.83 0.91
2 9 1 0.89 0.94 4 1 0.75 0.86
3 25 0.91 0.84 0.87 6 1 0.83 0.91
4 17 0.54 0.41 0.47 4 1 0.75 0.86
5 45 0.5 0.07 0.12 2 1 1 1
6 54 0.4 0.35 0.38 13 0.89 0.62 0.73
7 10 0 0 0 0 1 1 1
8 8 0.88 0.88 0.88 6 1 0.67 0.8
9 4 1 1 1 2 1 1 1
10 14 1 1 1 12 0.75 0.75 0.75
11 12 0.9 0.75 0.82 6 1 0.83 0.91
12 9 0.78 0.78 0.78 6 1 0.83 0.91
13 16 0.87 0.81 0.84 7 1 0.86 0.92
14 9 1 0.89 0.94 1 1 1 1
15 5 0.67 0.4 0.5 2 0 0 0
16 54 0.4 0.35 0.38 13 0.89 0.62 0.73
17 10 0.25 0.1 0.14 0 1 1 1
18 7 1 0.29 0.44 0 1 1 1
19 13 0.71 0.38 0.5 11 1 0.27 0.43
20 8 0.5 0.5 0.5 2 1 1 1

Weighted
Average 16.85 0.61 0.47 0.51 5.15 0.92 0.69 0.77

Table 10: MITRE relationships results.

BlindHunter NoAPIHunter UnoptimizedHunter CritLessHunter LLMCloudHunter
Downloader and
Parser (A) ✓ ✓ ✓ ✓ ✓

Image
Classifier (B) ✓ ✓ ✓ ✓

Image
Transcriptor (C) ✓ ✓ ✓ ✓

API Call
Extractor (D) ✓ ✓ ✓ ✓

TTP
Classifier (E) ✓ ✓ ✓ ✓

Criticality
Classifier (F) ✓

Rule
Generator (G) ✓ ✓ ✓ ✓ ✓

Rule
Optimizer (H) ✓ ✓ ✓ ✓

Rule
Deduplicator (I) ✓ ✓ ✓ ✓ ✓

Rule
Selector (J) ✓ ✓ ✓ ✓ ✓

API Call
Remover (K) ✓ ✓ ✓ ✓ ✓

IoC
Extractor (L) ✓ ✓ ✓ ✓ ✓

IoC
Enhancer (M) ✓ ✓ ✓ ✓ ✓

Table 11: Ablation study configurations.
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Extraction
Weighted

LLMCloudHunter CritLessHunter BlindHunter NoAPIHunter UnoptimizedHunterAverage
Measure

API Call
Precision 0.83 0.88 0.85 0.61 0.88
Recall 0.99 0.95 0.82 0.92 0.92
F1 Score 0.90 0.91 0.83 0.73 0.90

Technique
Precision 0.67 0.62 0.58 0.24 0.57
Recall 0.82 0.75 0.59 0.27 0.62
F1 Score 0.73 0.68 0.57 0.24 0.58

Sub-technique
Precision 0.73 0.65 0.50 0.29 0.63
Recall 0.90 0.71 0.53 0.24 0.64
F1 Score 0.79 0.67 0.50 0.25 0.62

IoC
Precision 0.99 0.99 0.93 0.96 0.96
Recall 0.97 0.98 0.90 0.98 0.97
F1 Score 0.98 0.98 0.90 0.97 0.96

Other
Precision 0.75 0.77 0.74 0.37 0.75
Recall 0.61 0.70 0.51 0.47 0.67
F1 Score 0.67 0.73 0.56 0.39 0.69

Detection Field Name↔ Detection Entity
Precision 1.00 0.87 0.83 0.58 0.83
Recall 0.93 0.90 0.72 0.79 0.84
F1 Score 0.97 0.88 0.75 0.65 0.83

API Call↔ Technique
Precision 0.61 0.56 0.44 0.10 0.46
Recall 0.47 0.64 0.42 0.13 0.49
F1 Score 0.51 0.59 0.42 0.11 0.47

API Call↔ Sub-technique
Precision 0.92 0.56 0.36 0.09 0.53
Recall 0.69 0.58 0.35 0.11 0.54
F1 Score 0.77 0.56 0.35 0.09 0.51

API Call↔ IoC
Precision 0.98 0.92 0.94 0.70 0.88
Recall 1.00 0.91 0.75 0.93 0.87
F1 Score 0.98 0.92 0.83 0.78 0.87

API Call↔ Other
Precision 0.92 0.84 0.74 0.41 0.72
Recall 0.55 0.85 0.61 0.41 0.76
F1 Score 0.65 0.84 0.65 0.39 0.72

Table 12: Ablation study results.

Component Purpose LLM Structured Leverage Temperature Parallel
Utilization Response Few-Shot Requests

A HTML downloading and parsing
B Image Classification ✓ ✓ 1 ✓
C Image Transcription ✓ ✓ 1 ✓

D Explicit API call extracting ✓ ✓ 0 ✓
Implicit API call extracting ✓ ✓ ✓ 0.9 ✓

E TTPs extracting ✓ ✓ ✓ 0.5 ✓
F Assessing Criticality ✓ ✓ ✓ ✓
G Initial candidates generating ✓ ✓ 0.7 ✓
H Candidates validating ✓ ✓ ✓ 0.5 ✓
I Duplicates extracting
J Candidate selecting ✓ ✓ ✓ 0.5
K API call removing ✓ ✓ ✓ 0.5
L IoC extracting ✓ ✓ 0.5
M Candidates IoC-enhancing

Table 13: Configuration of LLMCloudHunter’s components.
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Figure 4: Threat actors’ API call extraction process.

System: You are an expert in extracting explicit AWS API calls
from Cyber Threat Intelligence (OSCTI) texts. Your task is to
analyze a provided paragraph text from a OSCTI text, and
search for AWS API calls explicitly mentioned in it.
Important Notes:
1. Extract only genuine AWS API calls and ignore any other
commands, tools, or generic terms (e.g., Curl, Enumerate).
2. Focus only on the events conducted by threat actors, avoiding
those that pertain to other aspects like remediation actions.
3. Do not assume or infer information not directly stated in the
text.
4. If no AWS API calls are found, return an empty JSON object.
For each identified AWS API call, infer its corresponding
CloudTrail's eventSource (only one eventSource).
<Response Configuration>

User: Extract explicitly-mentioned AWS API calls from the
following OSCTI paragraph text. OSCTI Paragraph: 
<OSCTI Paragraph>

Figure 5: Explicit API Call Extraction Prompt
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System:You are an expert in extracting implicit AWS API calls
from Cyber Threat Intelligence (CTI) texts. Your task is to
analyze a given paragraph from a CTI text, focusing on the
narrative to infer any AWS API calls that are implicit, based on
the actions described by threat actors.
Important Notes:
1. Identify underlying AWS API calls implied by the described
activities, even if these API calls are not explicitly mentioned in
the text.
2. Focus solely on the events conducted by the threat actors,
avoiding those that pertain to other aspects like remediation
actions.
3. Provide your inferences based solely on the detailed context
provided, without making broad assumptions beyond the scope
of the described activities.
4. If no API calls are found, return an empty JSON object ({}).
<3 Examples of Correct Implicit API Calls Inference>
<1 Example of Incorrect Implicit API Calls Inference>
<Response Configuration>

User: Infer implicit AWS API calls from the actions described
in the following OSCTI paragraph:
 <OSCTI Paragraph>

Figure 6: Implicit API Call Extraction Prompt

System: You are an expert in analyzing images from Cyber
Threat Intelligence (CTI) blogs/posts. Your task is to classify
each image as either informative or non-informative and
provide a concise but detailed description of the image.
1. *Classify the Image*:
    - Informative: This includes images like screenshots, charts,
diagrams, lists, tables, or any content that provides valuable,
specific information relevant to the CTI content (e.g., technical
data, attack details).
    - Non-Informative: This includes images that serve an
aesthetic purpose, advertising, visual metaphors/abstractions, or
do not add detailed, technical value to the CTI content (e.g.,
decorative art, photos of people, generic symbols).
2. *Description*: Provide a textual description of the image,
summarizing what is depicted in the image.

User: Analyze the given CTI image.
<Image URL>
For context, here is the paragraph from which the image was
extracted ({number_of_images} images in the paragraph, and
this is image number {image_index + 1}):
<Paragraph>

Figure 7: Image Classification Prompt
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Clssify

System: You are an advanced cybersecurity analysis tool
specialized in extracting text from images provided in CTI
reports. Your task is to transcribe the image content
accurately and provide a brief summary of its significance
within the CTI context.

User: Please transcribe the content of the CTI image.
For context, here is the paragraph from which the image was
extracted ({number_of_images} images in the paragraph,
and this is image number {image_index + 1}):
<paragraph>
<image_url>

Figure 8: Image Transcription Prompt

System: You are an expert in mapping threat actors' API calls to
cloud-based MITRE ATT&CK TTPs. Given AWS API calls and
the Cyber Threat Intelligence (CTI) text paragraph from which
they were extracted, your task is to identify the most relevant
cloud-based MITRE ATT&CK TTPs that best represent the
threat actors’ actions depicted by the API calls, and assign
appropriate cloud-based MITRE ATT&CK TTPs to each.
Maintain a clear and concise mapping, avoiding overly broad or
non-specific TTP assignments.
Important Notes: 1. Use the provided CTI paragraph context to
refine TTP assignments when it offers additional insights. If the
context just repeats the API call, make your decisions based
only on the API call itself. 2. Map techniques and sub-
techniques only when you are highly confident in their
relevance, as not every API call corresponds to a technique or
sub-technique. If you are unsure, leave the field null/empty.
<Response Configuration>

User: Map each of the following AWS API calls to the relevant
cloud-based MITRE ATT&CK TTPs.
<OSCTI Paragraph>

Figure 9: TTP Classifier Prompt
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System; You are an expert in classifying threat actors' API calls
based on their criticality. Your task is to analyze a provided list
of AWS API calls along with the context from which they were
extracted, and classify each API call's criticality level in terms of
detection rules.
Criticality Levels: 1. informal 2. low 3. medium 4. high 5.
critical
Important Notes:
1. Base your classification on the potential impact and
importance of each API call in the context of threat detection
and response. 2. Consider factors such as the severity of the
action, its potential use in malicious activities, and the
importance of monitoring the specific API call for security
purposes. 3. Do not assume or infer information not directly
provided. 4. Do not add comments, explanations, or
justifications in the response.
<2 Examples of Good Mapping>
<1 Example of Bad Mapping>
<Response Configuration>

User: Classify the following AWS API calls based on their
criticality level. 
API calls:
<API Calls>
For context, here is the paragraph from which the API calls were
extracted:
<CTI Paragraph>

Figure 10: Criticality Classifier Prompt

System:You are an expert in generating accurate Sigma rules
from paragraphs of Cyber Threat Intelligence (CTI) texts. Your
task is to transform a CTI paragraph, followed by a list of
identified AWS eventNames, grouped by their eventSources, and
mapped to their cloud-based MITRE ATT&CK tags and
criticality level, into corresponding Sigma rules. These rules will
be used to detect the activities and patterns described in the
paragraph within log files of real AWS environments.
Important Notes:
1. Use all the provided eventNames, eventSources, tags, and
levels to prevent overlooking any critical information. 2. Ensure
each eventName is included in only one Sigma rule to avoid
duplication. 3. Pay attention to explicitly-written details that can
be used as requestParameters.
4. Consolidate Sigma rules that share the same tags and vice
versa, to maintain clarity, organization, and prevent
redundancy. 5. Ensure the Sigma rules are aligned with the
actual capabilities and terminologies of AWS environments.
 <Response Configuration>

User: Analyze the following CTI paragraph and generate
corresponding Sigma rules.
<CTI Paragraph>
<Identified Event Names>

Figure 11: Rule Generator Prompt
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System: You are an expert in optimizing Sigma rules. Your task
is to analyze and refine a Sigma rule to enhance its correctness,
accuracy, effectiveness, and efficiency. Perform optimizations
only when possible and necessary; if the Sigma rule is already
fault-free, leave it unchanged.
Sigma Rules Optimization Guidelines:
1. Ensure the rule's structure is complete, including all necessary
fields, such as the 'condition' field in the 'detection' section.
2. Ensure the rule's logic is accurate and aligned with event
types and detection parameters.
3. Look for ways to enhance precision, such as tailoring
conditions to specific events, or combining similar selections,
while avoiding oversimplification.
4. Ensure optimization do not compromise the rule's original
detection capabilities.
<5 Examples of Good Optimization>
<Response Configuration>

User: Optimize the following Sigma rules if possible.
Sigma Rules:
<Sigma Rule Candidates>

Figure 12: Rule Optimizer Prompt

System: You are an expert in selecting one Sigma rule from a
set of several, according to certain criteria. Given a set of Sigma
rules and one or more common eventNames, your task is to
select the most appropriate Sigma rule for keeping these
specific common eventNames.
Your selection is primarily based on the criteria of details and
specificity:
1. Focus on the depth and specificity of the conditions and
parameters within each rule's criteria that are directly associated
with the common eventName. Assess the complexity, precision,
and comprehensiveness of these conditions and parameters.
Select the rule that offers the most comprehensive, specific, and
nuanced criteria related to the common eventName, as we don't
want to lose all this important information.
In cases where multiple rules have a similar level of detail and
specificity, specifically associated with the common
eventName, use the following secondary criterion:
2. Context Relevance: Assess how well the rule's overall context
and scenarios align with the common eventName.
<2 Examples of a Sigma rule selection>
<Response Configuration>

User: Select the most appropriate Sigma rule from the provided
set for keeping the specified eventNames.
<Common Event Names>
<Sigma Rule Candidates>

Figure 13: Rule Selector Prompt
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System: You are an expert in removing specific eventNames
from a provided Sigma rule while preserving its logical structure
and format. Your task is to carefully edit the provided Sigma
rule to exclude all given eventNames, ensuring that the rule
remains coherent, functional, and properly formatted after the
removal.
Important Note: Do not add any additional annotations or
explanatory notes within the rule description or elsewhere.
<Response Configuration>

User: Select the most appropriate Sigma rule from the provided
set for keeping the specified eventNames.
<Common Event Names>
<Sigma Rule Candidates>

Figure 14: API Call Remover Prompt

System: You are an expert in extracting Indicators of
Compromise (IoCs) from Cyber Threat Intelligence (CTI) texts.
Your task is to analyze the provided CTI text and extract
explicitly mentioned IoCs that are associated with the threat
actor and directly related to cloud environment logs: IP
addresses and user-agents.
Important Notes:
1. Focus on the paragraph usually located at the end of the
document under a corresponding heading, where IoCs are listed.
2. Ensure that the extracted IoCs match the format (or part of it)
found in AWS log records. For example, convert general terms
like "AWS Golang SDK" to "aws-sdk-go/".
3. Avoid extracting duplications or redundant versions of the
same IoC.
4. Be thorough and ensure that no IoC is missed.
<Response Configuration>

User: Extract the IoCs from the following CTI text. CTI Text:
<Full OSCTI text>

Figure 15: IoC Extractor Prompt
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