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Abstract

As a multitude of capable machine learning (ML) models become widely available
in forms such as open-source software and public APIs, central questions remain
regarding their use in real-world applications, especially in high-stakes decision-
making. Is there always one best model that should be used? When are the models
likely to be error-prone? Should a black-box or interpretable model be used? In
this work, we develop a prescriptive methodology to address these key questions,
introducing a tree-based approach, Optimal Predictive-Policy Trees (OP?T), that
yields interpretable policies for adaptively selecting a predictive model or ensemble,
along with a parameterized option to reject making a prediction. We base our
methods on learning globally optimized prescriptive trees. Our approach enables
interpretable and adaptive model selection and rejection while only assuming
access to model outputs. Our approach works with structured and unstructured
datasets by learning policies over different feature spaces, including the model
outputs. We evaluate our approach on real-world datasets, including regression and
classification tasks with structured and unstructured data. We demonstrate that our
approach performs strongly against baseline methods while yielding insights that
help answer critical questions about which models to use, and when.

1 Introduction

As increasingly advanced machine learning (ML) algorithms and pre-trained models become democ-
ratized and readily available across hundreds of open-source software packages and APIs, such as
Scikit-learn [Pedregosa et al.,|2011]], PyTorch [Paszke et al.,[2019]], and HuggingFace [Wolf et al.,
2020)], central questions remain regarding their use in high-stakes decision-making.

* Given a collection of models, which should we use for our application, and when?

* Should we use a model ensemble?

* When are the models likely to be error-prone?

* Should we use a black-box model or an interpretable model?
These questions are, to some degree, open-ended and philosophical. Considerations may include
computational resources, inference time, and the qualitative importance of interpretability. To make
them more concrete, we aim to address these questions with respect to model performance. For
example, when answering whether a model ensemble should be used, we are only concerned with

whether the ensemble improves out-of-sample performance. While there is extensive literature on the
topics of model selection [Ding et al.l 2018]], ensembling [Dong et al.| 2020, and rejection learning
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[Hendrickx et al., [2021]], there lacks a comprehensive, holistic modeling framework that can provide
clear, interpretable answers to the questions we have posed.

In this work, we develop a prescriptive methodology for adaptively selecting the best model (or
ensemble) from a collection of models to make a prediction for a given input or to reject predicting
entirely if it is likely that all models will perform poorly. Our approach, which we refer to as Optimal
Predictive-Policy Trees (OP*Ts), is a tree-based method that partitions the feature space based on
the relative performance of each constituent model. By constructing an interpretable policy model,
we uncover sub-populations of the data where different models perform the best, and consequently,
sub-populations where some (or all) models are likely to fail. We can also consider a fixed set of
model ensembles, providing an interpretable and adaptive scheme for model ensembling. We also
learn optimal policies for rejection, parameterized by the tolerance for error in predictions. In this
work, by learning with rejection, we are referring to the class of learning algorithms that, in addition
to making predictions, have the option of not making a prediction. This includes algorithms that learn
to reject based on the scores of an existing model [[Chow, 1970, [Bartlett and Wegkamp), [2008]], as
well as approaches that learn a predictor and rejector jointly [Cortes et al.|[2016].

Our work is motivated by overlapping gaps in the Mixture of Experts (ME) and Rejection Learning
literature. The first is that model ensemble and ME approaches are generally not interpretable, with
most recent developments focusing on deep neural network (DNN) models and assignment modules
[Shazeer et al. 2017} Riquelme et al.l 2021}, Masoudnia and Ebrahimpour, |2014]. They cannot
tell the practitioner why a certain set of weights was assigned to each of the constituent models, or
why a certain model was selected. Recently, a framework referred to as the Interpretable Mixture
of Experts (IME) was introduced in part to address this gap [Ismail et al., 2023]. However, the
IME approach requires that all constituent models be differentiable (e.g. logistic regression, soft
decision trees, DNNs) and that all models have accessible weights that can be tuned. In contrast,
this work is motivated by the observation that in many real-world applications, practitioners already
have a collection of models under consideration, some of which may not be differentiable. Further,
there may be models that are differentiable but for privacy, cost, or licensing reasons, cannot be
further trained. In these situations, such ME approaches do not integrate with existing models, and
therefore become their own, separate modeling approach. The rise of publicly available APIs for
large, multi-modal models (e.g. GPT-4, PalLM) suggests that there will be an increasing desire to
incorporate models that either cannot practically, or in some cases legally, be fine-tuned.

Similar to the ME literature, there is also the assumption in recent rejection learning literature that the
predictor can be optimized jointly with the rejector [|Cortes et al., 2016, [Charoenphakdee et al., 2021].
Earlier literature that focused on learning a rejector for a pre-existing predictor was either primarily
concerned with learning a single predictor-rejector pair [Chow, 1970, Bartlett and Wegkamp), 2008],
or did not learn a policy over the feature space [Provost and Fawcett, 2001]]. In this work, we
incorporate rejection learning with many constituent models, assuming only query access to these
models. Further, since our approach yields interpretable policies, we can provide faithful descriptions
of the contexts in which it is better to reject, and not use any of the available models. As we discuss
in Section 3] such interpretability can be practically useful when creating real-world policies for
high-stakes decision-making with machine learning systems.

Motivated by these observations, the main contributions of our work are as follows:

1. We develop a methodology to create interpretable policies for adaptive model selection and
rejection. We do so while assuming only query access to the constituent models.

2. We develop our method for regression and classification tasks, and demonstrate empirically
that our method is comparable with or improves over baseline approaches while yielding
interpretable policies. We demonstrate how one can use the resulting policies to perform
subgroup analysis, finding subsets of the data on which different models perform well.

3. We incorporate parameterized rejection, which, within our interpretable framework, can
identify settings where all available models are likely to be error-prone.

4. We offer theoretical insights on the conditions under which the proposed approach can
learn a policy that is stronger than the best single model in hindsight, as well as alternative
approaches that do not consider the relative rewards of each model.

In Section[2] we develop our approach for adaptive model selection in the context of classification,
before introducing the addition of a parameterized rejection option. In Section |3| we evaluate



our methodology on a variety of real-world datasets and benchmark our approach against related,
predictive techniques. We provide additional experiments in Appendix [B]and our theoretical insights
as supplementary material in Appendix [C]

2 Adaptive Model Selection for Classification and Regression

In this section, we develop our Optimal Predictive-Policy Tree methodology for classification and
regression tasks. For both settings, we introduce the option for parameterized rejection and provide
an analysis of how this parameterization impacts the resulting policy model.

2.1 Adaptive Model Selection for Classification

In this section, we formalize our approach. We first consider classification tasks, where we have some
input data {z;}"_, from a feature space X and label data {y;}" , € C", where C = {1,...,K}.
We assume access to a collection of m constituent models {h1, ..., hy,}, hi : X — AKX, where AK
is the unit simplex, and all models are fit on some training set. We denote by h = [hy, ..., h;,] the
vectorized form of the constituent models such that h : X — R™*K_ Let Pijk = hi(z;)k, such
that §j;;1, is the output probability of class k for sample x; from model h;. Given a fixed, finite set
of weights W C A™ over the unit simplex, we want to learn a function f : X — W such that for
any x € &, f selects the best set of weights w € W such that the resulting model (or ensemble)
w’'h makes the best prediction on . In the case that X’ is not some real space (e.g. unstructured
language data), we instead want to learn our policy model f over some real-valued side-information
{#zi}_, € Z™, where Z could be a subset of the features space X’ or separate data entirely, including
the model outputs h(z) themselves. We can measure the quality of a model’s prediction on a given
sample, or the reward, in a few ways. For classification, we consider misclassification error and
cross-entropy, defined as follows:

K

RC’E(IjayﬁWah) = Z]]'{y] = k} log((wTh(xj))k)z (1)
k=1

Rurs(zj,yj, w,h) = 1{y; = arginax(wTh(xj))k}. 2)

Note that w = e; corresponds to selecting a single model. We introduce these reward functions
because they present inherent trade-offs. The cross-entropy reward is more informative than the
misclassification reward. Making the reasonable assumption that the model predictions are fairly
smooth over the feature space, Rc g will also form a smoother reward surface than Rj;rg. One risk
with using the cross-entropy reward is that models that are over-confident, as is often the case with
neural networks [Wang et al., [2021]], may be favored despite their ability to separate the data being
similar to, or worse than, other models available. Since our policy prescribes models, rather than
making class predictions directly, neither reward function requires committing to a threshold for class
prediction a-priori. However, using ;g requires selecting a prediction threshold for generating
the rewards, which will impact the resulting tree structure and model prescriptions. However, Rsrs
benefits from a simpler interpretation, as model prescriptions are based directly on minimizing
misclassification error.

With these definitions, we can construct our reward matrix R € R™*"™ corresponding to the reward
for using each model h; to predict the label for each sample ;. We define our action space
as the set of weights W defined above. Then, prescribing model h; corresponds to the action
e; =10,...,1,...,0] € W. Throughout this work, we assume e; € W for all ¢ € [m]. That is,
we can always take the action of prescribing an individual constituent model. As defined, any fixed
ensemble of constituent models can be included in the action space W. In Section 3| we demonstrate
this flexibility and show empirically that our approach uncovers partitions of the feature space where
different ensemble weights are better suited.

We are now able to formulate our objective as a policy-learning problem, where the set of actions
W = {w1,...,wg} is the set of weights over the constituent models that we can prescribe, our state
space is X’ (or 2), and the rewards for prescribing each model is given by our reward matrix R. We
propose learning an interpretable and adaptive policy model by using the Optimal Trees algorithm,
introduced by |Amram et al.| [2022], to produce a policy tree T that learns to prescribe constituent



models (or ensembles) given the input data by maximizing the reward R over the class of decision
trees. We fit T» using a validation dataset that is separate from the data used to train the constituent
models. Throughout this work, we refer to this general approach as Optimal Predictive-Policy Trees
(OP?Ts). We provide an overview of optimal policy trees in Appendix

We now introduce a simple extension that allows us to incorporate rejection into this framework. In
addition to the m constituent models A, ..., h,,, we introduce a dummy rejection model h, that
we add to the action space of our formulation. We must assign reward values R(-, h,.) so that our
policy learning algorithm can compare the action of rejection against the action of prescribing the
other models. One approach is to fix some constants & = (a1, ..., ax) € [0,1)¥ and suppose the
output of the rejection model is always exactly within oy, of predicting the true label k. That is, for
some input x; with label y; = k, we define §,.;r = 1 — ;.. For example, in the binary classification
setting, we define the output of the rejection model as

he(z,y) = H{y = 1}(1 — a1) + 1{y = O}ap. 3)

Therefore, if we were to set &« = (0.3,0.2), then h,.(x,y = 1) = 0.7 and h,.(x,y = 0) = 0.2. In
our experiments, we set o as a constant vector such that o;; = « for all i € [K] and generate OP>Ts
for a range of values for a. In practice, one may wish to select a non-constant « to characterize a
model that has varying performance on different classes. Notice that, if we assume oy, < % for all
k € [K], h, is a consistent classifier. That is, for any sample (z, y), we have y = arg max; h,(x);.
Therefore, to construct rewards for rejection, we assume that h,. is perfectly calibrated, such that
P(y = klh (x)r =1 — o) = 1 — .. We can then define the reward as

Reor(xj,y5, he) = log(1 — ay,;), 4)

Ryrs(wg, ys,he) =1 —ay,. (5)
The misclassification reward for the rejection model can be interpreted as the expected reward. With
the rewards defined for the rejection model, we can proceed with our approach as in Section 2] with
the action space extended to W = W U {h,.}. Since our decision tree formulation prescribes the
action that maximizes (or minimizes) the total reward in each leaf, using Rsrs, we can immediately
conclude that rejection is prescribed in a leaf if and only if the accuracy of the constituent models
is less than the accuracy of the rejection model parameterized by o. In contrast, due to the non-
linear transformation of the logarithm in the reward function R¢ g, which more severely punishes
predictions that are far from the true label, the decision to reject does not have a clear interpretation
in terms of a performance metric.

2.2 Adaptive Model Selection for Regression

In the context of regression, we assume we have some input data {z;}?" ;, € X™ and output
data {y;}"_; € R"™. We assume access to a collection of m constituent regression models
h = [hy,..., hy], such that h; : X — R. Similar to classification, given a fixed, finite set of
weights W C R™ we want to learn a function f : X — W such that for any z € X (or z € 2), f
selects the best ensemble weights w € W such that w’ h makes the best prediction on x. For this
work, we measure the reward (or loss) using the squared error:

Rsp(xj,y;,w, h) = (w'h(z;) — y;)>. (6)

Again, for this work, we assume e; € W for all ¢ € [m]. In this case, it is natural to frame the problem
in terms of minimizing the reward. To our benefit, the reward function we define for regression is
directly connected to the metrics used to evaluate regression models, namely mean squared error
(MSE). That is, since our formulation uses total reward to select a model prescription in each leaf,
the model that is prescribed in a given leaf is the one that has the minimum squared error over the
samples that fall into that leaf. Minimizing the total reward also means that the resulting tree is
directly optimizing to minimize the MSE. While we focus on squared error for this work, note that
we could also easily measure reward in terms of absolute error if that was our metric of interest.

Incorporating rejection learning for regression is simpler than in the case of classification. In this
setting, we benefit from the reward function being directly connected to the evaluation metric of
interest. Further, since the output of the models is one-dimensional, we only have to focus on a one-
dimensional parameterization, as opposed to a K -dimensional parameterization for the multi-class
classification setting with K classes. We can introduce parameterized rejection by adding a dummy



rejection model £, that is always a squared (or absolute) distance of o € R>( from any € X’ by
fixing a constant reward
R(zj,y;,hy) = a.

We treat «v as our rejection threshold parameter. We then extend our action space to W = W U {h,.}.
With the rejection model added, we can again learn a policy tree Tp that minimizes the reward.
Then, for any leaf [ € Ty, the model prescribed in [ must have an MSE less than « over the data
that falls into [. Otherwise, the leaf prescription will be to reject making a prediction. Therefore,
rejection learning can be viewed as enforcing a maximum MSE over the training dataset. Similar to
classification, for regression, as o — 0, we expect any policy model, including OP?T, to converge to
prescribing rejection always. We formalize this notion in Proposition [6]

2.3 Alternative Predictive Approaches

Having introduced our OP?T approach, we now describe two alternative approaches, which we
evaluate and compare against our method in Section 3] Central to our work is the idea of using
a prescriptive framework, measuring the relative reward of different models and ensembles, for
predictive ML. It is natural then to ask what the benefit is of taking a prescriptive approach. A simpler
alternative would be to instead treat the model prescription problem as a multi-class classification
problem. In this setting, we have M classes corresponding to each constituent model and ensemble,
and each sample is labeled by the model or ensemble with the closest prediction to the true target.

Formally, for models [h, ..., has), and data {(z;, y;) } 7, we assign sample z; a label ¢; € [M] as
i = argmin |y; — hy(z;)], (M
i€[M]

where we break ties arbitrarily (e.g. smallest index). Then the equivalent of our approach in this
setting would be a decision tree for classification, fit on the dataset {(z;, ¢;)} 1, or {(2,¢;)}*; in
case we are learning a policy over a modified feature space Z. We refer to such a classification tree
as a Meta-Tree. The Meta-Tree approach is a close comparison to our OP?>T method, as both learn
over the same hypothesis space. That is, both approaches learn decision trees over the same feature
space, with an equivalence between the M classes and the prescriptions. The difference lies in how
the tree is learned, and we demonstrate both theoretically in Appendix [C]and empirically in Section 3|
that this difference can lead to the resulting OP?Ts outperforming the Meta-Trees.

In addition to introducing a prescriptive framework to the problem of adaptive model selection, our
approach yields interpretable policies that can be used to gain insights regarding existing predictive
models. We therefore want to compare our approach against a related, black-box method. As we
are focused on learning policies over structured data, it is natural to consider boosted trees as an
alternative, black-box approach. Specifically, in the same vein as the Meta-Tree approach, we train
boosted tree models, using XGBoost [[Chen and Guestrin, 2016], on the multi-class data {(z;, ;) };,
or {(#,¢)}_,. We refer to this approach as Meta-XGB. Since boosted tree models are more
expressive than individual decision trees, this allows us to evaluate further the power of incorporating
the relative rewards of each model and ensemble in a prescriptive framework.

3 Experiments

We evaluate our methodology on a variety of real-world datasets with both structured and unstructured
data, including regression and classification tasks. For all experiments, we perform a hyperparameter
search over the tree complexity penalty A, max depth D, 4., and minimum number of samples per
leaf ¢4, To preserve interpretability, we limit the max depth to at most D, = 10. We then fit
all of the meta-learning models via k-fold cross validation (for & € {3,5}). All experiments were
performed on a private cluster of 48 Intel Xeon-P8 CPUs with 4GB of RAM per core. We benchmark
against two other predictive, tree-based methods, introduced in Section[2.3] For both approaches, we
perform hyperparameter tuning over the max depth and the minimum number of samples per leaf. In
addition, for the Meta-XGB approach, we tune the total number of estimators.

3.1 Recidivism Prediction

To investigate the benefits of our methodology in highly regulated, high-stakes decision-making,
we evaluate our framework on a real-world recidivism dataset, made publicly available through the



National Institute of Justice (NIJ) [Hunt, 2021]]. The dataset consists of covariates and recidivism
outcomes for residents in the state of Georgia. The dataset consists of n = 26761 samples, each
corresponding to a separate individual, and p = 48 features, including binary, nominal and ordinal
categorical, and continuous variables. The data was already partitioned into training and testing
sets and we use this same split, reserving 15% of the training data as a validation set. The features
contain demographic information (gender, age, residence location, education), drug-use information,
arrest and imprisonment history (offenses, sentence length, prior arrests), previous violations, and
employment history. For this experiment, we focus on predicting three-year recidivism, a binary
classification task. The dataset was included as part of a competition hosted by the NIJ, during
which the evaluation metric was the Brier score. The Brier score corresponds to the squared distance
between the true label and the predicted probability output, Brier(X,y, h) = = > (y; — h(x;))?,

3

where y; € {0,1} and h(x;) € [0, 1] is the model output. Accordingly, we fit our OP>Ts using the
reward function Rsg (X4, yi, hj) = (y; — hj(x;))?, such that minimizing the reward over the training
set is equivalent to minimizing the Brier score. For the constituent models, we fit a logistic regression
model, a CART decision tree model, an MLP model, an XGBoost model, and a Random Forest
model. We summarize our performance results in Figure[l] The best single model in hindsight on the
test dataset is the Random Forest model, which achieves a Brier score of 0.1882. The OP?T approach
improves the out-of-sample performance over selecting an individual model and outperforms the
alternative predictive meta-learning approaches. For higher levels of rejection, the Meta-XGB
approach has an advantage. This suggests that setting the rejection level to a lower Brier score induces
many regions with nonlinear boundaries over the feature space where rejection is the best option, and
the Meta-XGB approach is more capable of capturing these regions.

Model No Rejection . Rejection w/ o = 0.22 | Rejection w/ o = 0.21
Brier  Reject (%) ' Brier Reject (%) 1 Brier Reject (%)
Meta-XGB | 0.1918 0 { 0.1879 8.20 { 0.1713 29.06
Meta-Tree | 0.1896 0 1 0.1866 9.01 1 0.1776 29.95
OP’T 0.1862 0 10.1852 8.08 10.1772 28.81

Table 1: Out-of-sample Brier Score on the NTJ recidivism dataset across different rejection thresholds.

In Figures and we provide visualizations of the resulting OP?>Ts. The leaf nodes correspond
to selecting (or prescribing) the logistic regression (Ir), XGBoost (xgb), random forest (rf), multi-
layer perceptron (mlp) models, or rejecting the sample (reject) for prediction. We can see that
the trees have discovered partitions of the feature space over which different models perform the
best. Tree (a) in Figure|l|prescribes an interpretable model, logistic regression, for the majority of
samples in the dataset. Therefore, we have discovered a potential balance between interpretability
and performance, as Tree (a) outperforms the best constituent model in hindsight with respect to the
Brier score. Looking at the right subtree of Tree (a), we observe a split on the geographic location of
the person, given by the Public Use Microdata Area (PUMA). There are 25 PUMA zones included
in the dataset, and this split roughly divides the zones into the Metro Atlanta region in the right
leaf and the suburban and rural zones in the left leaf. Surprisingly, the Brier score for the XGBoost
model over the data in the right leaf is 0.16 £ 0.01, while the score for the XGBoost model over
the data in the left leaf is 0.22 &£ 0.01, highlighting a significant difference in the performance of
the XGBoost model depending on the region where the person under consideration resides. Further,
the Brier score for logistic regression is 0.20 = 0.01 over the data that falls into the leaf where
XGBoost is prescribed. Had conventional, static model selection methods been used, one might select
logistic regression for its performance over the entire validation dataset, missing this subgroup for
which another model exhibits significantly better performance. Due to the interpretable nature of our
meta-learning algorithm, we can also understand and explain what these subgroups are.

Looking at Tree (b) in Figure[I] we observe a particular subgroup, people over the age of 48 who
have been employed for less than 80% of days while on parole, has been identified for rejection.
Indeed, the Brier score for logistic regression over the general population is 0.19 4 0.01, while the
score over this subgroup is 0.25 £ 0.01, which is also the best score for this subgroup among all
the available models. While this subgroup comprises only 8.7% of the population in the dataset, we
know due to the interpretable nature of our meta-learning approach that our models are particularly
unreliable for a certain group of older people. In a real-world application, one could use this result to
inform further model training and deployment, potentially avoiding systematic algorithmic bias.
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' Prescribe Ir
n =2576
Percent.Days_Employed
<0813 =0.813
2 Prescribe Ir ° Prescribe xgb
n=1638 n=938
Age_at_Release Residence_PUMA
48 orolder 6 factors 14 factors 11 factors
3 Prescribe reject * Prescribe Ir ° Prescribe xgb ™ Prescribe rf
n=224 n=1414 n=514 n=424
Residence_ PUMA Jobs_Per_Year
15 factors 10 factors <0.5718 =0.5718
° Prescribe Ir ® Prescribe mip [ Prescribe dt ® Prescribe reject
n=79 n=618 n=59 n =365
Residence PUMA
1
5 12 factors

9

© Prescribe reject " Prescribe Ir
n=155 n=641

Figure 2: OP?T for the NIJ recidivism dataset with o = 0.21, where o corresponds to the Brier score.

In Figurewe provide a visualization of the OP?>T with o = 0.21. Consistent with our performance
results, we see that improving the Brier score for the rejection option to this level induces multiple,
separate new regions in the feature space over which rejection attains the best reward. Since the
resulting tree is shallow and relatively sparse, we are still able to clearly interpret the subgroups for
which rejection is prescribed. It is clear that model selection and rejection depend primarily on the
person’s age, location, and employment history. Again we see significant variation in performance
at the splits where rejection is prescribed in one of the leaf nodes. In the left subtree of Figure [2]
we see a split on residence zone, rejecting prediction for people living in certain counties in Metro
Atlanta and West Georgia. For the corresponding leaf node that prescribe logistic regression, the
model score is 0.15 4= 0.01, while the score for logistic regression over the population that falls into
the “reject” leaf is 0.24 £ 0.02. In the right subtree, we see a split on jobs per year while on parole
that is used to prescribe rejection. In this case, the Brier score for the decision tree over the data in the
corresponding leaf node is 0.10 £ 0.02, while the score for the decision tree over the samples falling
into the “reject” node is 0.24 £ 0.01. Therefore, the score for the decision tree doubles depending on
the employment history over this subset of the population. These results illustrate the potential of our
approach to not only increase performance, but to gain insight into the relative performance of our
models, conditioned on the data itself. To summarize, we can connect the results of this experiment
directly back to the motivating questions we posed at the beginning of the paper.

Which model should we use for our application, and when? When the person has been employed
for less than 80% of days while on parole, it is best to use logistic regression. Otherwise, if the person
is from metro Atlanta, the XGBoost model performs the best. For people outside of Atlanta who have
been employed for more than 80% of days while on parole, use the Random Forest model.

When are the models likely to be error-prone? There are a few cases. The first and most significant
is when the person has been employed for less than 80% of days and is age 48 or older. The next
is when the person has been employed less than 80% of days, is under the age of 48, and resides in



certain counties in Atlanta or west Georgia. Another case is when the person has been employed
more than 80% of days, lives outside of Atlanta, and has held more than about 0.6 jobs per year.

Should we use an interpretable model? Yes, for the population that has been employed less than
80% of days while on parole, logistic regression is the best model with respect to the Brier score.
Otherwise, the black-box models have a performance advantage. When incorporating rejection, there
are also significant portions of the population for which an interpretable model is best.

3.2 Concrete Compressive Strength

As a baseline for evaluating our OP>Ts on regression tasks, we apply our approach to the Concrete
Compressive Strength dataset (n=1080, p=8), publicly available through the UCI ML Repository
[[Yeh,[2007]]. We fit a boosted tree model (xgb), a random forest model (rf), a linear regression (Ir)
model, and an MLP model on the training data. We then create two ensembles: a mean ensemble and
aridge ensemble. The weights for the ridge ensemble are found by solving the optimization problem

w" = argmin, e —|[Wh(X)" = y[[3 + Al|wl[3,

where h(X) € R™ ™ are the predictions from the m constituent models on some input data
X € R™ ™ with n samples and y € R™. This formulation has a closed-form solution,

w* = ((X)h(X)” + AI) 'h(X))Ty

We fix A = 1 for our experiments. Then, for our experiments, our actions are the set of weights
W = (e1,...,epn, (5, ..., =), w"). For rejection, we evaluate the threshold parameter o over the
set [100, 40, 30] The 1 results ‘of this experiment are shown given in Tablel 2l Without rejection, the
best constituent model (including the ensembles) achieved an out-of-sample MSE of 39.2, while the
OP’T without rejection achieved an out-of-sample MSE of 36.13, demonstrating that this approach
can learn a simple, interpretable policy that generalizes well. We also observe that both the mean
and ridge ensemble weights are prescribed in the trees, yielding an interpretable, adaptive model
ensembling policy. Further, we gain some insight from the learned policy. In Figure 3] we provide a
visualization of three OP>T models fit with a max depth of D, = 3, for ease of interpretability. We
see that by partitioning the data based on the density of concrete in the cement mixture, splitting at
357.5 kg/m3, the XGBoost model outperforms all other constituent models when the density is less
than 357.5 kg/m?, while the random forest model performs the best when the density is greater than
or equal to 357.5 kg/m3. Looking at the statistics for the dataset, we found that the 75th percentile
for concrete density is 350 kg/m?. Therefore, we can conclude that the learned policy is to use the
random forest model when the cement density is high (above the 75th percentile), otherwise, it is best
to use the XGBoost model.

Model No Rejection | Rejection w/ o = 40 | Rejection w/ o = 30
MSE Reject (%) + MSE  Reject (%) ' MSE  Reject (%)
Meta-XGB | 39.69 0 I 37.32 18.93 I 33.58 43.20
Meta-Tree | 39.57 0 | 42.82 16.02 i 37.35 37.86
OP’T 36.13 0 ' 27.30 17.01 1125.22 37.43

Table 2: Out-of-sample MSE on the concrete compressive strength dataset across different rejection
thresholds.

With the rejection option, we see that our OP>T approach learns policies that generalize well. In each
case, we can also interpret the policies that are learned, and we observe consistency across the policy
trees. For example, in tree (b) we see that the left subtree learns a split similar to tree (a), prescribing
the random forest model when cement density is high, and prescribing the XGBoost model otherwise.
Something similar is learned in tree (c), in the left-most subtree, except when the cement density is
high, the tree opts to reject rather than prescribing the random forest model. This is due to the reward
for rejection being considerably higher in tree (c) than in trees (a) and (b). We can also observe that
Trees (b) and (c) both learn to split on Blast Furnace Slag and Water density at very similar values.
Further, both reject when Blast Furnace Slag density is high (above the 60th percentile) and Water
density is low (below the 50th percentile). Tree (d) also learns a similar split on Cement density, as
well as on Blast Furnace Slag density, except it rejects any time the Blast Furnace Slag density is
high. From these tree-based policies, we can identify clear and consistent partitions of the data within



which different models perform well and partitions under which no models perform particularly well.
To summarize, we can connect the results of this experiment directly back to the motivating questions
we posed at the beginning of the paper.

Prescribe rf
=412
" Prescribe rf Blast Furnace Slag (component 2)(kg in a mA3 mixture)
n=412 <N7.4 =174
Cement (component 1)(kg in a mA3 mixture)
<3575 23575 5 Prescribe rf * Prescribe mean_ensemble
n =286 n=126
Cement (component 1)(kg in a mA3 mixture) Water (component 4)(Kg in a mA3 mixture)
® Prescribe xgb °  Prescribe rf
n =308 n=104 <403.4 =408.4 <1718 21718
N Prescribe xgb F Prescribe rf f Prescribe reject ’ Prescribe xgb
n=233 n=53 n=22 n=104
" Prescribe reject
Blast Furnace Slag (component 2)(kg in a m"3 mixture) =412
<135 =135 Blast Furnace Slag (component 2)(kg in a mA3 mixture)
a 7 <1325 21325
=305 n=107
Blast Fumace Siag (component 2)(kg in a m*3 mixture) Water (component 4)(Kg in @ m"3 mixture) % prescribe reject b e e
<4875 24875 <1848 21848 n =303 n=109
Prescribe rf ° Prescribe ridge_ensemble ®  Prescribe reject ° Prescribe xgb Cement (component 1)(kg in a m3 mixture)
n=235 n=70 n=40 n=67 <3807 23807
Gement (component 1)(kg in a m"3 mixture)
<3807 23807 3 T
Prescribe xgb Prescribe reject
Prescribe xgb 1 I5 Prescribe reect I n=227 n=76
n=174 n=61

Figure 3: OP?>T models fit on the Concrete Compression dataset with a max depth of d = 3 (for
interpretability) and varying rewards for rejection. Tree (a) is fit without a rejection option, while
trees (b), (c), and (d) are fit with rejection parameters v = [100, 40, 25] respectively.

Should we use a model ensemble? If so, when? Yes, in some settings, the mean ensemble is the
best, while in other cases the ridge ensemble is better. For example, when the blast furnace slag
component is in the range [49, 135], tree (c) in Figure identifies the ridge ensemble to be the best
model.

When are the models likely to be error-prone? In short, when there is a high concentration of the
blast furnace slag or the cement component in the concrete mixture.

Should we use an interpretable model? In this case, when the interpretable model is linear
regression, the answer is no. Across all rejection thresholds, the OP?>Ts do not identify any partition
of the feature space where the linear regression model performs the best.

4 Conclusion

In this work, we introduce a prescriptive framework for creating interpretable and adaptive model
selection and ensembling policies, along with a parameterized rejection option. We demonstrate on
a variety of tasks, model classes, and datasets, that our approach yields strong performance while
offering interpretable policies that aid in the understanding of the efficacy of the constituent models.
In particular, our OP?T approach directly provides answers to the questions we identified in the
introduction, such as under what conditions different models should be used, and when all of the
models are likely to be error-prone. Our approach also makes minimal assumptions regarding the
constituent models, only requiring access to model outputs, increasing the applicability of our method.
In addition to empirical results, we introduce a theoretical framework for prescriptive, adaptive
model selection. We show both theoretically and empirically that our prescriptive approach can
outperform alternative, predictive methods. There are many exciting directions for future work, such
as investigating different reward functions, dynamically adapting ensemble weights, and exploring
the theoretical properties of such expert selection systems. This work takes a first step toward using
prescriptive analytics to enhance predictive models, and we hope it encourages further research in
this direction.
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A Appendix

A.1 Optimal Policy Trees

At the center of our methodology is learning interpretable, tree-based policies that are capable of
capturing nonlinear interactions and partitioning the feature space. To accomplish this, we base
our approach on the Optimal Policy Tree (OPT) formulation, introduced in |Amram et al.| [2022].
The setup is as follows. Suppose we have some dataset {z;}?_, of size n, where x; € R? along
with m possible treatments T' = {¢1, ..., ¢m }. Suppose we are given a reward for each observation
¢ and treatment ¢, denoted by R;;. In many cases, such as observational data in medicine, the
counterfactuals, the reward for sample 7 under each treatment, may not be known. In these settings,
an additional reward estimation step is required. However, as we demonstrated in Section 2} in our
approach, no reward estimation is necessary. We would like to learn a function f : R — T that
prescribes a treatment for any input sample. Specifically, we will learn this function from the class of
decision trees. Our objective is to maximize (or minimize) the total reward over all samples using the
treatments prescribed by the decision tree. Assuming we are interested in maximizing the reward, our
objective becomes

In(a)x Z Z {7 (z;) =t} R, 8)
=1 =1

where we maximize over the class of decision trees 7 up to some depth D and 7(z;) is the prescription
made by the decision tree for sample ;. To avoid overfitting, we add a penalty to the objective for
tree complexity, measured by the number of splits in the tree 7. The formulation then becomes

n m

r?(a)x Z Z 1{7(x;) = t}Rit + A - numsplits(7), )]

i=1 t=1

where A\ € R, is a parameter to control the complexity penalty. Focusing on the prescription in the
leaf nodes, we introduce the leaf assignment function v : R — L for a given tree 7 with the set of
leaf nodes L, where |L| = ¢. Denoting the prescriptions for each leaf by z = (21, . .., 7,), we can
rewrite our formulation as

n q
max Y Y 1{v(w;) = [} Rz, + X - numsplits(v). (10)
R

Notice that this problem is separable in the leaves, such that we can rewrite the formulation as

q
max Z Z Ri., + X - numsplits(v). (11)

=1 q:v(xz;)=1

Then, for any given tree structure 7 and corresponding leaf assignment function v, the optimal
prescription in each leaf is given by

2 = arg min Z Ry, (12)
teT .

v(x;)=l

which can be solved by enumerating the possible treatments. We add constraints for the maximum

depth, D, of the tree and the minimum number of samples for each leaf, c,,;,. Together, the

parameters A, ¢,,;, and D help control overfitting. Putting this together, our final formulation can be
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written as
q

max Z Z R;., + XA - numsplits(v)
o =1 i:v(z;)=l
s.t. depth(v) < D, (13)
Z Ho(z;) =1} > emin VL.

i=1

The tree 7 is then optimized using the Optimal Trees framework given in Section 8.4 of Bertsimas
and Dunn/[2019]. Specifically, rather than using a greedy heuristic, we use a global optimization
approach, based on coordinate descent, to optimize the tree structure and the prescriptions jointly.
The hyperparameters D and c,,;,, are optimized using a traditional grid search over a discrete set
of values, while X is optimized through a pruning approach that generates a sequence of trees and
identifies the value of A that minimizes the validation loss. The problem posed in Eq. was also
formulated by|Zhou et al.|[2018]] and Biggs et al.| [2021]], however, they both used greedy heuristics to
fit their policy trees. In|Amram et al.| [2022], the authors demonstrate that training policy trees using
a global optimization methodology can yield significant performance and interpretability advantages
over greedy heuristic approaches.

For this work, we focus on the class of parallel-split decision trees, but our formulation can be easily
extended to hyperplane splits, as in|Bertsimas and Dunn| [2017]]. We do this to maintain the focus
of this work, and preserve interpretability. In addition, we found in preliminary experiments that
hyperplane splits did not yield a significant change in performance for the datasets we evaluated.

A.2 A Toy 1-D Example

To validate our approach and demonstrate learning tree-based policies and the effects of varying
rejection thresholds, we provide a simple synthetic experiment with 1-dimensional data. Specifically,
we assume X = R, and there are two models, M; and M, with reward functions R(M, z,y) =
exp(—3(z —4)?) and R(M>, z,y) = exp(—3(z — 8)?). We then draw n = 500 samples uniformly
over the interval [0, 12] and fit our OP?T model to this data. In addition, we add rejection models with
a = 0.1 and o = 0.3. A visualization of the reward surfaces is given in Figure ] and a visualization
of the policy trees generated is given in Figure[5] The resulting trees match the splits we would expect
which are highlighted in the plot.

Figure 4: A simple 1-D example of synthetic model rewards with different rejection thresholds,
denoted by the red dashed horizontal lines. In this case, the feature space X = [0, 12] and the
rejection parameters are o« = 0.1 and o = 0.3.

By making a small change to the previous example, we can also construct a setting that demonstrates
the difference between learning an OP?T and a Meta-Tree. Consider now two models, M; and Mo,
over the feature space X' = [0, 18] with reward functions R(Mi,z,y) = exp(—3(z — 4)?) + 0.01
and R(M,,z,y) = exp(—3(z — 8)?). This modification creates an interval, [11, 18], over which
model M; achieves a marginally higher reward than M. A visualization of the reward surfaces is
given in Figure[6] shaded corresponding to the dominant model in each region. We sample n = 500
points uniformly over [0, 18] and generate a policy tree using our OP?T approach, given in Figure
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Figure 5: OP2T models fit on the 1-D synthetic data described in Section Tree (a) corresponds
to no rejection, (b) to rejection with o = 0.1, and (c) to rejection with o = 0.3.

[7l Notice that in the right sub-tree, the prescription at the inner node is M>, despite model M
yielding a greater reward than M, for the majority of the samples falling into this sub-tree. Were
we to take a predictive, classification approach, and label each sample by the model that maximizes
reward, the prediction at this node would be M. This would ignore the fact that the average reward
for M, over the interval [6, 18] is significantly greater than M (in this case, the difference in total
reward is 2.27, and in expectation is 0.1856). We can see this difference in Figure [/[(a), where the
Meta-Tree approach prescribes model M at the root, left, and right subtrees. Therefore, while both
trees perfectly separate the data, the depth-1 subtree of the OP?T, starting from the root, achieves a
total reward of 4.959, while the depth-1 subtree of the Meta-Tree achieves a total reward of 2.686.
The result of this example is consistent with our analysis in Section[C.2] We also observe another,
more dramatic example of this phenomenon in Section BT}

— M
M

Reward

Figure 6: A simple 1-D example of synthetic model rewards demonstrating the potential difference
between taking a prescriptive versus a predictive approach to model selection.
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Figure 7: OP?T and Meta-Tree models fit on the 1-D synthetic data corresponding to the rewards
shown in Figure 6]

B Additional Experiments

In this section, we provide two additional experiments, one for regression and one for classification.
Through the classification experiment, we demonstrate how our approach can be used for tasks with
unstructured data by using the model outputs as our feature space for learning the model selection
policy.

B.1 Projectile Motion with Drag

Motivated by recent work that has successfully combined physics-based and ML models for predicting
the dynamics of physical systems [Boussioux et al., [2022]], we develop a synthetic experiment to
demonstrate how OP*Ts can adaptively prescribe these models based on the conditions of the physical
system, significantly reducing the overall error. The setup is as follows. Suppose we are launching
a projectile in 2-D space with a fixed mass m = 1 from ground level, at the origin (0, 0), with a
launch angle ¢ and initial speed vg. Further, we are going to assume that there is some air resistance
parameterized by a scalar ¢ which we will soon define. We are interested in estimating the total
ground distance covered by the projectile as a function of 8, vy and c. Let x ¢ denote the final position
of the projectile when it hits the ground. In the absence of air resistance or other effects, this can be
found to be

v sin(26)

9

Now, we incorporate a notion of drag by assuming that air resistance occurs in the opposite direction
of the projectile’s velocity, and its magnitude is directly proportional to the current speed. The
equation of motion for the projectile is then given by

Ty = (14)

d
F:ma:m—v:mg—cv, (15)
dt
where g = (0, —g) is the gravitational force, and v is the velocity of the projectile. With these
dynamics defined, the vertical position of the projectile at time ¢ is given by

y(t) = %(vo sin(0) + v)(1 — exp(—i—f)) —_— (16)

where v; = mg/c is the terminal velocity. The horizontal position is then given by

0 t
o(t) = WO g eI a7
g UVt
Then, by finding t* > 0 such that y(¢*) = 0, we can find 2y = z(¢*). We also notice that in the limit,
as t — 0o, we have

zy = VUt Z]os(ﬁ), (18)
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which gives us an upper bound on the ground distance traveled by the projectile in the presence of this
drag force. From this analysis, we now have two closed-formed estimates of x ; as a function of 6, vy,
and ¢, namely Eqs. (T4) and (T8). For brevity, we refer to the estimate from (T4)) as & and (I8) as
Zy. We want to create a pattern-based ML model that learns to predict z y using “real-world” samples.
Assuming that, perhaps due to physical limitations, the maximum initial speed at which we can
launch the projectile is 100 m/s, we can define our feature space as X = [0,100] x [0,7/2] x [0, 1],
since vg € [0,100], 8 € [0,7/2], and ¢ € [0, 1]. We then discretize the feature space and randomly
sample n = 20k data points from &". For each sample, we find the “ground-truth” value for =y using
Egs. and (T6), and use these values as our target. Then, splitting the data into 50% training, 25%
validation, and 25% test sets, we fit an MLP model h with hidden sizes [16, 32, 16] on the training
data. We chose the MLP model class because of its ability to model smooth, nonlinear functions. Our
constituent models are then £ ¢, Zf, and h. For this experiment, we do not consider model ensembles,
so we set W = diag(1,1,1). We fit our OP?T model with the predictions from these constituent
models on the validation set. The results, without the rejection option, are given in Table ]

Model MSE
Physics (no drag) | 59098.38
Physics (drag) 188948.88
MLP 241.16

Table 3: Out-of-sample MSE for the constituent models of the projectile motion dataset. Notice how
the closed-form physics equations are extremely poor estimators on average over the entire feature
space.

Model No Rejection . Rejection w/ o = 250 | Rejection w/ a = 50
MSE  Reject (%) | MSE _ Reject (%) ' MSE _ Reject (%)
Meta-XGB | 140.85 0 I 28.65 9.96 I 5.56 31.32
Meta-Tree | 150.56 0 1 36.19 12.14 | 7.67 34.20
OPT | 14174 0 13153 1154 ' 663 32.8

Table 4: Out-of-sample MSE on the projectile motion dataset across different thresholds for rejection.

What is most surprising from these results is that despite the closed-form physics-based equations for
x ¢ performing terribly on average, as shown in Table our OP?T approach successfully uncovers
the relatively small regions of X within which these estimates are very close to the ground-truth,
and uses this to drastically reduce the MSE compared to the MLP model alone. Further, the OP>T
significantly outperforms the Meta-Tree, especially for shallow tree depths. It is also not obvious a
priori that such regions would exist. Since the MLP model has been trained on data sampled across
the entire feature space, it is possible for this model to fit all of the data quite well. In practice,
however, in minimizing the average error, the MLP has made some trade-offs and cannot compete
with the physics-based equations in some regions of X'. We also observe that for this example, the
Meta-XGB approach yields the best performance in terms of MSE and percent of samples rejected.
This agrees with our theoretical analysis in Sections [C.2]and[C.3] as the boosted tree model is more
capable of fitting complex, nonlinear boundaries, such that the relative rewards of the models in each
partition is not significant. A primary conclusion of Propositionis that the OPT has an advantage in
the non-realizable setting when we cannot perfectly separate the feature space by the best-performing
model. In this case, the Meta-XGB approach is successful in learning more complex partitions of the
feature space. However, the Meta-XGB approach lacks interpretability, so we cannot gain insights
from the resulting boosted tree model. Standard explainability methods for boosted trees, such as
plotting relative feature importance, are not particularly useful in this setting either. We aim to answer
questions regarding which model to use, and when, not which features are generally important.

We observe that the OP>T approach significantly outperforms Meta-Tree, demonstrating the impact
of taking a prescriptive approach. Further, by restricting the depth of the trees, we can observe an
even more drastic disparity between the OP>Ts and Meta-Trees. For a depth-2 tree with a minimum
leaf size of 50, our OP2T model achieved an MSE of 183.26, while the Meta-Tree achieved an MSE
of 79344.09. A visualization of these trees is given in Figure[§] This result is due to the extremely
poor accuracy of the closed-form physics equations when the conditions of the system are far from
the assumptions made for them, and the Meta-Tree only being able to consider which model is best
for each sample, rather than the relative reward for each model. The Meta-Tree finds partitions of
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Figure 8: Left: A depth-2 Meta-Tree for the projectile motion problem. Right: A depth-2 OP?T for
the same problem. The Meta-Tree achieves an out-of-sample MSE of 79344.09, while the OP>T
achieves an MSE of 183.26. The best single model in hindsight, the MLP, achieves an MSE of 241.16.
This demonstrates the benefit of prescription over prediction in this setting.

MSE
Max Depth Meta-Tree | OP’T
2 79344.09 | 183.26
3 317.13 165.95
4 216.21 162.82
5 171.307 156.21

Table 5: Out-of-sample MSE for the Meta-Tree and OP>T approaches for shallow tree depths on the
projectile motion dataset. Such shallow structures are necessary in settings where interpretability is
crucial.

the space where the physics equations perform the best for the majority of samples (minimizing
entropy), but the predicted model performs orders of magnitude worse on the remaining samples
in the partition. For example, the Meta-Tree predicts Ty, the physics equation with drag, when
vg > 13.63 and 6 > 0.538. From the data used to train the tree, 2805 samples fall into this partition,
of which a majority (N = 1664) are best predicted by Zy. However, the average reward (MSE) for
Z y over the samples in this leaf node is 135197.52, while the average reward for the MLP model is
220.38, orders of magnitude lower. The depth-3 Meta-Tree eliminates most of this error by replacing
this leaf with a split on the drag coefficient, ¢, only predicting Ty when ¢ > 0.295. In contrast, we
see in Figure [8|that the depth-2 OPT first splits on ¢ < 0.025, essentially determining if the drag
force is negligible, matching the true physical assumption made to derive Eq. (I4). We provide
a comparison of the Meta-Tree and OP?T for shallow depths in Table|5| Since trees become less
interpretable with increasing depth, the performance of shallow trees is crucial for applications that
require interpretability. For this dataset, we can see that the OP?T approach yields shallow trees that
are significantly more accurate than the Meta-Tree approach, providing a concise, interpretable policy
for selecting whether to use a physics-based model or a pattern-based deep learning model.

B.2 IMDDb Sentiment Analysis: Glass-box vs. Black-box Models

The IMDb Movie Review Dataset, introduced by [Maas et al.|[201 1], is a collection of n = 50k movie
reviews from the IMDDb website, along with binary sentiment labels, indicating positive or negative
sentiment. When Maas et al.|[2011]] introduced this dataset, they developed and trained a Word2Vec
model for sentiment prediction on this dataset. This approach preserved interpretability, allowing
for both faithful explanations of model predictions as well as the ability to investigate the learned
word embedding space. However, with the development of deep contextual encoders, such as BERT,
introduced by Devlin et al.|[2019]], along with large public model repositories like HuggingFace, it
is now possible to download a BERT model fine-tuned on this dataset in a matter of minutes that
significantly outperforms the original Word2Vec model on this dataset across every standard metric.
In the context of high-stakes decision-making problems, however, it is often the case that interpretable
models are preferred. This naturally leads to the problem of how to best balance interpretability and
performance, which has been well-studied and debated in the literature [Rudin et al.,[2021]]. In|Singh
et al.| [2023]], the authors develop an interpretable language model for sentiment analysis and explore
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Model No Rejection | Rejection (a =0.15) | Rejection (a =0.10) [ Rejection (a = 0.02)
Acc  Reject 1 Acc Reject I Acc Reject | Acc Reject
Meta-XGB | 93.44 0 ; 97.27 16.44 ; 98.04 24.43 | 98.53 49.17
Meta-Tree | 92.78 0 9722 16.66 1 98.01 25.02 1 98.50 49.30
OP’T 93.53 0 19744 15.34 ' 98.14 23.03 ' 99.13 48.63

Table 6: Out-of-sample accuracy on the IMDb Movie Review dataset across different thresholds for
rejection.

the idea of adaptively selecting either their interpretable model or a black-box, BERT model. They
do this by manually fixing confidence thresholds for deferring to a BERT model based on the output
of the interpretable model. In their experiments, they demonstrate that performance can be preserved
while using the interpretable model for a significant portion of samples across a variety of prediction
tasks. However, such a process is inefficient, as it requires manually testing various thresholds, and it
only considers the confidence of the interpretable model, rather than considering the confidence of
the interpretable model and BERT model jointly. The problem is further complicated when there are
more than two models under consideration.

In the context of natural language processing (NLP) and sentiment analysis, there are a variety of
interpretable modeling approaches. In this experiment, we consider three models: a BERT model, a
Word2Vec model, and a logistic regression model using term-frequency inverse-document-frequency
(TF-IDF) features. The latter two models are fairly interpretable, as they are linear functions over
the words contained in the reviews. All models were fit on the IMDb training dataset (n = 25k
samples). To fit the policy models, we sampled n = 10k samples from the IMDD test set, and used the
remaining n = 15k samples as our final test set. For this application, since the dataset is balanced and
the primary metric is accuracy, we use the misclassification reward Rj;;g, to fit our OP?T models.
Since we are interested in answering the question of interpretability, we only consider selecting the
individual constituent models, not ensembles, so we set W = diag(1, 1, 1). For the feature space
Z, we consider the space of constituent model outputs, which we will also refer to as the model
confidence scores. We originally considered extending this feature space with additional, structured
meta-data from the reviews (e.g. review length, keywords, negation). However, we found that for this
setup, the resulting OP?Ts never used this meta-data, so we focus instead on the feature space being
the model confidence scores alone.

The main results of our experiments are given in Table[6] The best constituent model in hindsight
was the BERT model, achieving an out-of-sample accuracy of 92.8. We can then observe that our
OP>T approach outperforms the best model in hindsight as well as the Meta-XGB and Meta-Tree
approaches across all levels of rejection. Further, the policies learned by our method find partitions of
the data where the interpretable models empirically maximize the expected reward. Therefore, with
access to model outputs alone, we can construct an interpretable policy for adaptive model selection
that outperforms the black-box baseline model and makes use of the interpretable models.

A visualization of the learned OP?Ts is given in Figure @ We see that over the space of model
confidence scores, our OP?T approach finds intersections of confidence intervals over all three of
our models to provide prescriptions that outperform the Meta-Tree and Meta-XGB approaches. For
example, in tree (a) in Figure[J] we see that the learned policy is to use the BERT model if its output
score is outside the interval (0.012,0.992), otherwise, query the interpretable models. Notice that
rather than simply deferring to one of the interpretable models, the policy looks at the confidence
scores of both interpretable models, and will still prescribe the BERT model if the TF-IDF model
is not confident the sample is positive while the Word2Vec model is not confident the sample is
negative. Similarly, tree (b) contains intersections of confidence intervals between the Word2Vec and
BERT models, prescribing rejection when the BERT model is not confident and in agreement with
the Word2Vec model. Since many of the resulting OP>Ts are composed of intersections of all three
constituent models’ confidence scores, the policies generated for model selection would not feasibly
be discovered by manually searching over confidence intervals.

In Figure we give a visualization of the OP?T and corresponding Meta-Tree generated with
a = 0.02. The OP?T achieves higher out-of-sample accuracy while rejecting fewer samples. We
provide this visualization to highlight the structural differences that can occur between Meta-Trees
and OP>Ts. By optimizing tree structure globally and considering relative rewards, the OP?T makes
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Figure 9: Visualizations of the OP?Ts fit on the IMDb dataset using the original feature space extended
with the constituent model scores. We observe that the best performing OP>Ts rely exclusively on the
model scores.
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Figure 10: Visualization of an OP?T and a Meta-Tree fit on the IMDb dataset with a high rejection
reward (o = 0.02).

use of the confidence scores of all three constituent models and identifies three separate regions within
which rejection is prescribed. In contrast, the Meta-Tree, grown using a greedy heuristic and unable
to consider the relative rewards of each model, finds simpler conditions for rejection, resulting in
lower accuracy and more samples being rejected. Our results are also consistent with our theoretical
analysis in Section as we see a smaller gap between OP?T and the alternative approaches due to
the small difference on average in relative reward between the constituent models. To summarize, we
can connect our results back to our motivating questions as follows.

Should an interpretable model be used? Yes, in many cases the interpretable models can outperform
the black-box BERT model. Specifically, when the BERT model disagrees with the predictions of
the interpretable models, and the BERT model is not very confident, using one of the interpretable
models improves performance. In Figure 0] tree (b) prescribes the Word2Vec model for 23% of
samples.

When are the models likely to be error-prone? In short, when the models disagree, and none of
the models are very confident, all of the models are likely to be error-prone. The resulting trees give
specific conditions for these cases, such as in Figure OP’T (a) prescribes rejection when the
output of the TF-IDF model is in the interval [0.082, 0.582] and the BERT model output is in the
interval [0.0015, 1].
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C Theoretical Insights

In this section, we formalize some of the concepts introduced in this work and provide theoretical
insights for our approach. We discuss sufficient conditions under which OP>T models can learn
policies that improve over the best model in hindsight, the setting where OP>Ts can outperform the
Meta-Tree and Meta-XGB approaches, and the impact of rejection learning on the resulting policies.
Throughout this section, we consider a fixed set of m constituent models H = {hy,..., hy,}. We
do not consider model ensembles separately, as any model ensemble can be represented as another
constituent model, and this simplifies our notation. Our setup consists of an original feature space X
over which the constituent models H are defined and a secondary feature space Z over which some
policy model 7 is defined. We first introduce the following definition:

Definition 1. (Informative Policy) For some policy function m : Z — H, function g : X — Z,
data distribution D over X, true target function f* : X — Y, and set of constituent models
H = [hy,. .., hp], we refer to the policy as informative if

Ep[R(z, f*(x),7(g(2)))] > max Ep[R(z, f*(x), h)]. (19)

A policy is informative if it finds a meaningful partition of the space Z such that the expected reward
under 7 is greater than the expected reward for the best single constituent model. The function g
defines the relationship between samples in the original features space X and samples in the feature
space Z. This definition is helpful for reasoning about the potential effectiveness of adaptive model
selection, regardless of the specific approach.

C.1 Sufficient Conditions for Learning an Informative Policy

Our first goal is to determine the conditions under which an informative policy exists. These conditions
help us understand when an adaptive policy can outperform static model selection. Intuitively, an
informative policy exists when there are separate regions of the feature space over which different
models perform the best in terms of relative reward. To formalize this setting, we introduce the
following definition:

Definition 2. (Dominated Subspace) Let Z C R® be the feature space used to learn some policy
function w, D some distribution over X, v : Z — 2% a function mapping elements of Z to disjoint
subsets of the original feature space X, and f* : X — ) be the true target function. Suppose there
are m constituent models H = {h1, ..., hy}. Let us define the function g : X — Z as the unique
function such that for all x € X, we have x € v(g(x)). We refer to a connected subspace A C Z as
a dominated subspace if Pp(U,cav(z)) € (0,1) and there exists a model h*, € H such that for all
heM\hy,

Ep[R(z, f*(x),h3) - H{g(x) € A}] > Ep[R(x, f*(x), h) - I{g(x) € A}].

A dominated subspace is any connected subspace over which there is a single, best-performing
model in expectation. Since we are reasoning about multiple reward surfaces jointly, it is natural
to consider partitioning the feature space into these dominated subspaces. The functions g and v
define the relationship between the feature spaces X and Z. Notice that we assume the function
v maps to disjoint subsets of X'. That is, for all z1, 2o € Z such that 21 # 29, v(21) Nv(22) = 0.
This assumption gives g the property of uniqueness. In many settings, this many-to-one relationship
between X and Z is a reasonable assumption. For example, suppose X is unstructured language
data (sequences of characters up to some maximum length) and Z is structured meta-data about
this language data, such as the length of the sequence or specific character counts. Then an element
z € Z can map to many sequences in X, but each sequence x € X" has one specific element in Z
corresponding to its meta-data. Further, the elements of Z map to disjoint subsets of X’. Another
setting with this property is when Z is the outputs of the constituent models H. With these definitions,
we can then formulate the following proposition.

Proposition 3. Let Z C R? be the feature space used to learn some policy function T, D some
distribution over X, a function v : Z — 2% mapping elements of Z to disjoint subsets of the original
Sfeature space X, and the unique function g : X — Z such that for all x € X, we have x € v(g(z)).
There exists an informative policy if there exist two disjoint dominated subspaces A, B C Z with
corresponding models by and hy;, such that by # h;.
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The proof is given in Appendix [C.4.1} This proposition gives us clear sufficient conditions for the
existence of an informative policy. Namely, given some assumptions, if there exist at least two
disjoint dominated subspaces in Z corresponding to different constituent models, then an informative
policy exists. In addition to this result, it is clear that if there exists a model h* € H such that
R(z, f*(x),h*) > maxpen R(x, f*(x),h) for all x € X, then an informative policy cannot be
found, as one model strictly dominates the rest.

Non-Convex Reward Surfaces

Reward

Figure 11: An example of two non-convex reward surfaces with a square dominated subspace.

We can apply this result to reason about the quality of OP?T models. For example, when Z = R,
connected subspaces are intervals (a,b). Any such interval can be expressed with a depth-2 tree
using parallel splits. Further, any pair of disjoint intervals, (a,b) and (¢, d), can be expressed with
a depth-3 tree using parallel splits. Therefore, it follows from Proposition [3] that if there exist
two disjoint dominated subspaces in Z = R, an informative policy can be learned by a depth-3
OP>T. More generally, it follows that if there exist two disjoint dominated subspaces that can be
formed by parallel splits of a depth D,,,,, decision tree, then OP?>Ts can recover an informative
policy. Note that the reward surfaces can be highly nonlinear as long as there exist dominated
subspaces that can be defined by parallel splits generating an informative policy. For example, in
Figure we show two non-convex reward surfaces, f1(X1, X2) = sin(5(X? + X3)) + 3 and
f2(X1, X2) = cos(5(X?+ X3))+3. Despite the surfaces being non-convex, there exists a dominated
subspace that can be constructed by a depth-4 decision tree with axis-aligned splits.

C.2 The Advantage of Prescription over Prediction

So far, we have reasoned about the combined reward surfaces for the constituent models and conditions
for learning an informative policy with decision trees. The next question is then, what is the benefit
of our prescriptive approach? In Section [2.3] we introduce two alternative approaches which we
refer to as Meta-Tree and Meta-XGB. These approaches do not consider the relative rewards of
the constituent models. Instead, the problem is framed as a multi-class classification task, where
each class corresponds to a different model or ensemble. Specifically, for models and ensembles

[h1, ..., har), and data {(z;,y;) }7-,, we assign sample x; a label ¢; € [M] as
¢i = argmin |y; — hi(;)], (20)
i€[M]

where we break ties arbitrarily (e.g. smallest index). These methods are simpler to implement, so
it is important to quantify the advantage of using our prescriptive approach instead. To answer this
question, we have the following result.

Proposition 4. Under reward maximization, suppose we have a set of constituent models H =
{h1,... hm}, data {(x;,y:) Yy € X", function g : X — Z, and a reward function R : X x
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Y x H — R with either no finite lower bound or upper bound. Then the difference in total
reward, > i R(xi,yi, To(9(x:)) — >oiy R(xi, yi, Tae(g(w;)), between the corresponding OP?T,
To, and a Meta-Tree, Ty;, can be arbitrarily large. For a fixed dataset, if we define Rpq, =
MaX;ein],(j,k)elm] [ B(Ti, Yi, hy) — R(xi,yi, hi)|, we have the upper bound

1 1 m—1
E ZR(Z'U:'JMTO(g(xl)) - ﬁ ZR(zzayuTM(g(xv)) S TRma:p

i=1 i=1

The same result holds for the corresponding Meta-XGB model.

The proof is given Appendix The key insight from the proof is that the OP?>T approach
can significantly outperform the Meta-Tree approach when the data {(z;, ¢;)}?, is not separable
such that we are in the non-realizable setting with the decision tree hypothesis class. In these
settings, a trade-off must be made between model prescriptions. The OP?>T approach considers more
information regarding the relative reward of each constituent model, resulting in a prescription that
can be arbitrarily better than the one made by the Meta-Tree approach. Note that the condition
that R must have either no finite lower bound or upper bound is satisfied by both Rcg and Rsg.
Importantly, and more practically, the difference in expected reward between the OP?T approach and
the alternative approaches is bounded by the magnitude of the relative difference in rewards between
the constituent models. When the relative difference in reward between the models and ensembles is
small, we can expect minimal differences between the approaches. However, in the non-realizable
setting, for large differences in reward, we expect the OP>T to outperform the alternative approaches.
While the same results hold for Meta-XGB, we note that boosted trees are a more expressive model
class, such that they can separate data better than decision trees. Therefore, we expect a smaller
gap between OP?Ts and the Meta-XGB approach in terms of total reward. We give an example
highlighting this phenomenon in Section[B.1I] in addition to showing a similar result on a 1-D toy
dataset in Section

C.3 The Quality of OP>T Policies and the Impact of Rejection Learning

In this section, we investigate the impact of rejection learning on adaptive model selection. We do
so through the lens of counting the number of dominated subspaces. Intuitively, as the number of
regions with different dominant models increases, more expressive policy functions are required to
partition the feature space accordingly. Conversely, rejection learning can serve as a mechanism to
decrease the number of dominated subspaces, specifically those with low expected reward. To help
reason about the number of dominated subspaces, we introduce the following definition.

Definition 5. (Maximal Dominated Subspace) A dominated subspace A is a maximal dominated
subspace if for all dominated subspaces B such that A C B, h¥ # h¥.

It is important to distinguish these dominated subspaces for the purpose of counting, as many
dominated subspaces, such as an interval (a,b) C R, a < b, may imply the existence of infinite,
nested dominated subspaces, all corresponding to the same constituent model. Even with these
conditions, there may also exist many, or even infinite, maximal dominated subspaces. In the example
depicted in Figure if we take the feature space to be all of R?, there are infinite maximal dominated
subspaces. Practically, we may not expect such a case to occur in reality, but given the likely non-
convexity of reward surfaces, it is possible that there are many maximal dominated subspaces. Given
that an informative policy exists, the quality of our tree-based approach depends on the number of
maximal dominated subspaces and the shape and dimension of these subspaces. In the case that the
set of maximal dominated subspaces, S, is small (i.e., |S| << 2Dmaz) and each subspace s € S
is representable by D,,q, parallel splits, an OP?>T model of depth D,,,, could learn a policy that
approximately recovers all of these subspaces. Conversely, if there are many maximal dominated
subspaces that are high dimensional and nonlinear, there will be a gap in expected reward between
the policy learned by an OP?T and the true optimal policy function. We note, however, that extending
our formulation to include hyperplane splits is simple, and we implemented this version of the model,
although empirically we did not see a benefit. These hyperplanes splits would allow the OP*Ts to
represent more complex dominated subspaces with fewer splits.

The inclusion of a rejection model can simplify the task of learning informative policies while adding
a form of regularization. Formally, we make the following statement:
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Proposition 6. Under reward maximization, given some data distribution D over X and reward
Sunction R : X x Y x H — R with finite upper bound Ry, such that R(-) < R, and constituent
models H = {hy,...,hm}, hi + X — Y, and true target function f* : X — Y, suppose there
exist finite maximal dominated subspaces. Further, let us define a rejection model h}* such that
R(z,y,h") = a,. We denote the set of maximal dominated subspaces, not including the regions
dominated by the rejection model h', by S™ = {s},..., sg} Given an increasing sequence of
rejection parameters {ay, } such that o, — Ry, we have the following properties:

1. If Po(R(z, f*(x),hi) = Rup) = 0 for all i € [m], then |S™| — 0 as n — oo.

7}+1)

2. For all dominated regions s7, s?“ such that s?“ C s?, we have Pp(s}) > PD(s]

and Ep[R(z, f*(z), h:?+1)|x € S;—L+1] > Ep[R(x, f*(x), hj;)|x € S;LH].

The proof of these properties is brief and is given in Appendix [C.4.3] These properties give us a
sense of the impact of rejection, specifically that increasing the reward for rejection reduces the total
number of maximal dominated subspaces in the limit while also making these subspaces smaller
and increasing their expected reward. For example, consider a pair of models that generate reward
surfaces such that there are many maximal dominated subspaces, far greater than can be partitioned
by a tree of any reasonable depth. By increasing the reward for rejection, we will likely reduce the
number of maximal dominated subspaces, allowing the tree to focus on identifying fewer, significant
partitions with high expected reward.

C.4 Proofs
C.4.1 Proof of Proposition[3]

Proof. We prove this proposition by construction. We first define the model that maximizes the
expected reward over all of X ~ D:
h* = argmax Ep[R(x, f*(x), h)] (21
heH

Let C' = Z\(AUB). There are two cases to consider. The first is when C' = () or Pp(U,eccv(2)) = 0.
In this case, we can define the following policy function:

by zeA
m(2) = {h;g. €B (22)
When C # ) and Pp(U,ecv(2)) > 0, we can define
h¢é = argmax Ep[R(z, f*(xz),h) - 1{z € g(C)}], (23)
heH

such that
Ep[R(z, f*(z),he) - H{g(z) € C}] > Ep[R(z, f*(x),h") - 1{g(x) € C}].
This model hf, does not need to be unique, and it can be that hl, = h’ or hl, = h};. Further, C' may

not be a dominated subspace, as it may not be connected. We can then define the following policy
function:

by zeA
w(z)=<hy z€B (24)
hée zel

Since h% # h};, it must be that either h* # h* or h* # h7, or both. This implies that we have either
Ep[R(z, f*(x), ) - Hg(z) € A}] > Ep[R(x, f*(x),h") - 1{g(z) € A}]
or
Ep[R(z, f*(z),hp) - L{g(x) € B}] > Ep[R(z, f*(x), k") - 1{g(z) € B}]
or both. Putting these inequalities together, we get
Ep[R(z, f*(x),7(g(x))] = Ep[R(x, f*(x),ha) - I{g(x) € A}]
+ Ep[R(x, f*(2),h) - 1{g(z) € B}]
+ Ep[R(x, f*(2),he) - 1{g(x) € C}]
> Ep[R(z, f*(x), h")]. (25)
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By construction, since we assume A and B are disjoint, we know A, B, C' are disjoint sets. Let us
define A’ = U,cav(z), B’ = U,epv(2), and C' = U,ccv(z). Since we assume the function v maps
to disjoint subsets of X', we know A’, B’, C” are disjoint. It follows that the sets {z € X : g(z) € A},
{r € X : g(z) € B}, and {x € X : g(x) € C} are disjoint. Further, since g is defined over all
x€Xand AUBUC = Z,itfollows that Pp({x € X : g(z) € A}U{x € X : g(x) € B}U{x €
X : g(z) € C}) = 1. We can therefore split the reward function as in Eq. (23] and by linearity of
expectation, we get our result. O

C.4.2 Proof of Proposition 4]

Proof. For simplicity, let us consider the case with two constituent models H = {h1, ho }, and assume
X = Z. Suppose for this set of models 7 that there exists a subset of the data A C {(z;, ¢;) }_, that
is not separable, either at all, or by parallel split decision trees up to some maximum depth D,
That is, for all decision trees up to D, .., the misclassification rate (or entropy) is greater than or
equal to the misclassification rate or entropy of A itself. Since the data in A is not separable, the best
the Meta-Tree approach can do is prescribe a single constituent model for the data in A. Let us define
Al = {(LC“C],L) € A: qgi = hl} and similarly Ay = {((ﬂ“ql) c€A: qi = hz} Suppose ‘A1| > |A2|,
such that h; corresponds to the majority class. It follows that the best a Meta-Tree can do over the set
A is prescribe the model k1, as this minimizes the misclassification error. Now, let us define

Z R(xi,yi, h1) = R,
;€A

Z R(xi,yi, h2) = Ri2,

;€AY

Z R(xi,yi, h1) = Ro1,
z;€A2

> R(xi,yi, ha) = Raa.

;€A

Then the total reward for prescribing model hs is R12+ Ro2, and the total reward for prescribing model
hiis Ri11 + Ro1. Let A1 = Ry1 — Ry2, and note that A; > 0 since R(,’Ei, Yi, hl) > R(,’El, Yi, hg)
for all i € A; by definition. Similarly, we can define Ay = Roo — Ro;. We assume R has either no
finite upper or lower bound, such that Ay can be arbitrarily large, as we can either send Roy — oo or
Rs1 — —oo. Then the difference in total reward,

Riz 4+ Ros — Ri1 — Ro1 = Ag — Aq,

can be arbitrarily large as A, — oo. Since the OP>T approach comes from the same hypothesis
class, the best an OP2T can do is prescribe a single model over A. However, the model that
maximizes total reward over A will be prescribed. Then in our example, since the total reward for
ho will be greater than h; over A as Ay — o0, an OP?T will prescribe model hy. Therefore, the
total reward for the OP?T approach can be arbitrarily greater than the reward from the Meta-Tree
approach. Next, let us consider a fixed dataset of size n with m constituent models, and define
Riaz = MaXien),(j,k)e[m] [B(Ti, ¥i, hy) — R(wi,yi, hi)|. Using our previous construction, we
know for all i € Ay that R(x;, Y, ho) — R(x4,yi, h1) < Ryae. We also observe that |Ap| < & since
we assume |A;| > |As]. It follows that Ay < & R;,4, and, noting that A; > 0, we have

n
AQ - A1 < §Rmax-

To prove this upper bound in general, suppose to the contrary that for the resulting decision trees Tp
and T; we have

n n

> R(@i,yi, To(g(x:)) = > R(ws,yi Tar(g(w:)) >

=1 i=1

n(m —1)

anax .

Since R4, is an upper bound on the difference in reward among all models for the given dataset,
we know, for all 7 € [n],

R(zi,yi, To(g(wi)) — R(wi, yi, Tar (9(2:)) < Rinaa-
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It follows that for at least n(#jl) samples, max;e(m) R(zi, i, hj) > R(wi,yi, Tar(x;)). Since,

in the Meta-Tree setup, the samples are labeled according to the constituent model achieving the
maximum reward, this implies that T, misclassifies more than n(m-1) samples. However, there
must be at least .- samples in the majority class, such that predicting the majority class alone achieves
a lower misclassification error than T3,. This leads to a contradiction, as a depth-zero decision tree
would achieve a lower misclassification error than T),. This gives us our result and provides an
intuitive upper bound on the potential gain of using relative rewards as a function of the maximum
difference in rewards between constituent models. The same argument holds if we replace the
Meta-Tree approach with Meta-XGB. In that case, we can consider a corresponding subset of the
data A C {(=z;,q;)}, that is not separable by a boosted tree model. O

C.4.3 Proof of Proposition 6]

Proof. We begin with the first property. Suppose Pp(R(z, f*(x), h;) = Rup) = 0. Then for any
connected subspace A C X with positive measure, Pp(A) > 0, we know

Ep[R(z, f*(x),h;) - 1{x € A}] < Ry Vi€ [m].
It then follows immediately that since o, — R, there exists some IV such that for alln > N,

Ep[R(z, f*(x),h}) - 1{x € A}] > I}{leaé(ED[R(fE, I (x),h) - 1{z € A}].

Since this reasoning holds for any maximal dominated subspace, we have our result.

The first part of the second statement holds by definition since we state S;H_l C s7. The second part

follows from the fact that s?“ C s7 and the expected reward for the corresponding dominant model

h:n+1 must be greater than «v, 1, which is greater than «.,. Since we can always set h:n+1 = hin,
J j J

+1

the expected reward for h’s‘nJr1 over 5;' must always be at least the same as the expected reward for

h%.. Therefore, the inequajlity holds. O
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the abstract, including methodology and experimental results,
are reflected in the paper itself.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: In addition to comparing against other approaches, we provide theoretical
results, such as Proposition 4 which explicitly provide an upper bound on the performance
gains that can be achieved by our method.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Definitions for new terminology are provided and proofs are given for each
proposition.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Section [2] provides the necessary details to implement our method, and Ap-
pendix [A.T]| provides all details and references necessary to implement the prescriptive tree
approach used in this work.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Currently, this work relies on commercial optimization software that is not
open source. We hope to soon provide an open-source version of our method, but that is not
yet available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss how we trained our models, the relevant hyperparameters, and how
they were tuned in Section 3] We also reference all public datasets used and clearly define
our setup for all synthetic experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Where relevant, we include the standard error of the rewards achieved by the
models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources are discussed in Section [3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the Code of Ethics and affirm that our work conforms to
these guidelines.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impact of deploying learning algorithms is central to the moti-
vation for our work, and we discuss these implications and how our approach can have a
positive impact on these issues.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All relevant code, models, and data have been properly cited in our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper does not release new assets.

31


paperswithcode.com/datasets

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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