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A B S T R A C T

Multi-view bipartite graph clustering methods select a few representative anchors and then establish a
connection with original samples to generate the bipartite graphs for clustering, which maintains impressive
performance while reducing time and space complexities. Despite their effectiveness in large-scale applications,
few of them focus on cross-view anchor misalignment (CAM) problem. Then, misaligned anchor sets could
destroy the consistent graph semantic structure of bipartite graphs across different views, thus hindering sub-
sequent graph fusion and degrading the clustering performance. Especially when it comes to incomplete data,
solving CAM problem becomes an intractable challenge. To address this challenge, we propose a novel Cross-
view Graph Matching guided Anchor Alignment (CGMAA) for incomplete multi-view bipartite clustering.
Specifically, we first propose a novel CGMAA framework to address CAM problem by predefining an anchor
graph according to the prior anchor information. In addition, we unify CGMAA and bipartite graph tensor
learning for incomplete multi-view clustering. Extensive experiments on ten complete/incomplete benchmark
datasets demonstrate the effectiveness, efficiency, and superiority of the proposed CGMAA framework.
. Introduction

Multi-view graph clustering has attracted intensive attention by
ptimally integrating heterogeneous and homogeneous properties to
roup unlabeled multi-view data into different clusters [1–4]. By as-
uming that all views are complete, massive multi-view graph cluster-
ng methods [5–9] have been presented due to their validity of captur-
ng the paired similarities between samples and views. Nevertheless,
he existing methods usually involve quadratic or cubic complexities
ith respect to sample number 𝑛, hindering the existing mainstream
pplication of large-scale clustering task [10–12].

To effectively alleviate the large-scale problem, a bipartite graph
trategy is proposed to merely select 𝑚 (𝑚 ≪ 𝑛) anchors from different
iews to approximatively describe the whole dataset [13]. Therefore,
oth the computational and memory complexity can be reduced into
inear for the number of samples since the graph size reduces from 𝑛×𝑛
ffinity graph to 𝑚 × 𝑛 bipartite graph [14,15]. To achieve this goal,
ome scholars [16,17] commonly select anchors by using the 𝑘-means
r random sampling strategies. For instance, [16] first leverages the
enters of 𝑘-means on each view as anchors to separately generate the
ipartite graphs. However, 𝑘-means and random sampling may cause
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inferior representational anchors. To select the high representational
ability of anchors, [17] proposes a directly alternate sampling strategy
for bipartite graph clustering. Although the above methods can achieve
large-scale multi-view bipartite graph clustering, the flexibility and
effectiveness of anchor sets are greatly limited, since the discarded
unselected samples also contain a lot of useful information. Besides,
the anchor sets selection and bipartite graph learning are separate,
lacking mutual negotiation. Recently, some methods [14,18] attempt
to learn anchors rather than sampling, demonstrating the validity of
learning flexible anchors. Concretely, all of them learn a consensus
anchor matrix to exploit the homogeneous property for multi-view
clustering. In fact, different view data may collect from different sen-
sors or different sources. For instance, the three views of the same
Web page or news can be originated from text, images, and videos.
The heterogeneous property between these multi-view data can cause
the different distribution properties, such that forced learning of con-
sensus anchor matrix would cause partial view failure or not full
effectiveness.

Most recently, to better capture the heterogeneous property hidden
in data, multi-view anchor-correspondence clustering (FMVACC) is the
vailable online 26 July 2023
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Fig. 1. Motivation of our CGMAA. Fig. 1 takes two views as an example, each
view has two classes, where each class contains two anchors. Different colors denote
different categories of the learned virtual anchors. The dotted line represents the desired
correlation between cross-view anchors. (a) cross-view anchor-level misalignment
(CAM): as showcased in Fig. 1(a), the number and order of cross-view anchors are
not aligned. For one thing, view 1 learns two blue anchors while view 2 learns three
blue anchors, so the anchor number of the blue cluster is not aligned for two views.
For another, both view 1 and view 2 learn a wathet blue star, but its order arranges in
the second row of view 1 while in the fourth row of view 2, such that the anchor order
of the green cluster is not aligned for two views. (b) cross-view cluster-level alignment
(CCA): as showcased in Fig. 1(b), each pair is composed of the virtual anchors belonging
to the same class. The problem of CAM can be transformed into easier CCA.

first study to learn view-specific anchors from the different views
for multi-view bipartite clustering. Although FMVACC has achieved
promising improvement, it still suffers from the challenging problem as
mentioned in Fig. 1(a). Concretely, view 1 respectively learns 2 green
anchors and 2 blue anchors in two different clusters, while for view 2, 3
green anchors and 1 blue anchor are obtained in two different clusters.
Note that using these two-view anchors to build the bipartite graphs for
subsequent graph fusion is not reasonable, since the graph structure of
two bipartite graphs is inconsistent with each other. In this paper, we
call this problem a cross-view anchor-level misalignment (CAM) prob-
lem. Overall, FMVACC cannot handle the anchor number misalignment
problem of CAM, moreover, it only works when the view is complete.
Compared to complete multi-view data clustering, a random sample
missing not simply results in the loss of view information, but also
destroys the paired similarity between views and samples. Thus, the
CAM problem will become a trickier challenge for incomplete multi-
view data clustering due to the influence of missing information. In this
paper, we attempt to address the proposed CAM problem for incom-
plete multi-view bipartite graph clustering. Specifically, we solve the
CAM problem by enforcing anchors of the same cluster to be similar.
By this way, the problem of CAM in Fig. 1(a) can be transformed into
an easier cross-view cluster-level alignment problem in Fig. 1(b). The
detailed illustration is provided in Fig. 1.

To achieve cross-view cluster-level alignment, in this paper, we
propose Cross-view Graph Matching guided Anchor Alignment (CG-
MAA) framework to achieve the cross-view cluster-level alignment
for incomplete multi-view bipartite clustering. To our knowledge, this
paper is the first study of the CAM problem at the cluster level, more
importantly, we attempt to address the CAM problem for incomplete
multi-view data, further greatly increasing the challenge of CAM. As
mentioned in Fig. 2, we first predefine an anchor graph matrix, which
can depict and determine the similarity between two bipartite graphs
according to the prior information of anchor number choice for each
cluster. Then, we use this predefined anchor graph to form the CGMAA
framework by directly achieving the column-wisely matching between
cross-view bipartite graphs. Meanwhile, graph column-wisely matching
can indirectly supervise the learned anchors to achieve the cross-view
2

cluster-level alignment. Finally, by feeding into incomplete multi-view
data, CGMAA framework and a high-order bipartite graph tensor learn-
ing are jointly performed. After that, multiple bipartite graphs are
obtained to generate a fusion graph, whose left singular vector is fed
into 𝑘-means to get the final clustering result. Main contributions are
as follows.

• We observe a significant CAM problem, and transform this tricky
problem from CAM to an easier CCA problem. The study of CAM
is a pioneering work for multi-view bipartite graph clustering and
further benefits the research community.

• We propose a novel Cross-view Graph Matching guided Anchor
Alignment (CGMAA) framework to address the proposed CCA
problem.

• We employ the proposed CGMAA framework to perform incom-
plete multi-view bipartite graph clustering, where the superiority
and efficiency are all verified compared to the existing advances.

2. Related work

In this section, we introduce the existing work most related to our
proposed method, including Incomplete Multi-view Clustering (IMVC)
and bipartite graph clustering. The main used notations for the whole
paper are listed in Table 1.

2.1. Incomplete multi-view clustering

Recently, IMVC has attracted intensive attention since multimodal
data collected from real applications tend to be inherently incomplete,
where incompleteness leads to severe performance degradation and
even execution failure. Consequently, how to cluster with multi-view
partial data becomes a challenging and valuable issue. To effectively al-
leviate this issue, a series of pioneer works have been proposed, and are
able to roughly fall into three classes. For the first category, some schol-
ars [19–23] employ matrix factorization to synergistically generate a
consistent representation matrix among incomplete multi-view data.
After that, the observed data from different views can be aggregated
into a single representation, making it possible to describe the informa-
tion from multiple incomplete views. Then, consensus representation
is put into 𝑘-means operation to gain the ultimate results. Secondly,
different from sharing consensus representation, kernel-based IMVC
methods [24–28] perform IMVC by synergistically learning a consistent
kernel or consistent partition across incomplete views to discover the
nonlinear information of incomplete views. For the third class, other
scholars employ different graph learning techniques to synergistically
generate a consensus graph across multiple incomplete views [26,
29–31]. Such as [31,32] use self-representation subspace learning or
adaptive neighborhood graph learning to generate a shared similar-
ity graph for spectral clustering. In addition, [31,33] use incomplete
multi-view data to construct the graph tensor to explore the high-
order correlations hidden in the incomplete data, achieving promising
performance. Although effective, the cubic computational complexity
and quadratic memory complexity have limited their application for
large-scale tasks.

2.2. Bipartite graph clustering

Bipartite graph learning is deemed a very effective strategy to
handle large-scale data by selecting a relatively small proportion of
representative anchors to establish a connection with original samples.
This idea of a multi-view framework can be traditionally expressed as

min
𝐙𝑝

‖𝐗𝑝 − 𝐙𝑝𝐁𝑝‖2𝐅 s.t. 𝐙𝑝 ≥ 0,𝐙𝑝𝟏 = 𝟏 (1)

where 𝐗𝑝 ∈ R𝑛×𝑑𝑝 and 𝐁𝑝 ∈ R𝑚×𝑑𝑝 represent complete data and its 𝑚
selected or sampled anchors corresponding to 𝑝th view [16,17]. Eq. (1)
can reduce both computational and space complexity since the size of
traditional 𝑛 × 𝑛 similarity graph is decreased to 𝑛 × 𝑚 bipartite graph
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Fig. 2. Overview of the proposed CGMAA method. Two views are employed for ease of understanding. From the left part, original incomplete data 𝐗𝑝 of two views are fed into
the middle bipartite graph learning, where red ‘cross’ denotes the missing samples and 𝐆𝑝𝐗𝑝 denotes the observed data of 𝐗𝑝. For the middle part, the predefined anchor graph
𝐒 guides the learning of the cross-view anchors and bipartite graphs, and then these bipartite graphs are fed into the bipartite graph tensor learning of the right part.
Table 1
Detailed information of notations.

Notations Definitions

𝐗𝑝 ∈ R𝑑×𝑛 The 𝑝th incomplete multi-view data matrix
𝐁𝑝 ∈ R𝑚×𝑑𝑝 The 𝑝th selected anchor matrix in original space
𝐏𝑝 ∈ R𝑚×𝑘 The 𝑝th learned anchor matrix in the latent space
𝐙𝑝 ∈ R𝑚×𝑛 The 𝑝th bipartite graph matrix
 ∈ R𝑉 ×𝑚×𝑛 Bipartite graph tensor
𝐆𝑝 ∈ R𝑛×𝑛𝑝 The 𝑝th indicator matrix for missing data
𝐒 ∈ R𝑚×𝑚 A predefined anchor graph according to the prior information of anchor setting.
𝑛 The number of samples
𝑑𝑝 The dimension of samples for 𝑝th view
𝑐 The number of clusters
𝑘 The dimension of latent space
𝐙𝑝 ∈ R𝑚×𝑛. A bipartite graph 𝐙𝑝 can characterize the relationship
between the anchors and the original data. Considering that 𝑘-means or
sampling may destroy the flexibility of anchors, some methods [14,18]
attempt to learn anchors and bipartite graphs in a unified framework.
Then, [34] proposes a graph matching framework to address the order
misalignment problem of bipartite graphs. However, [34] cannot ad-
dress our observed CAM problem. We will address this CAM problem
in the next section for more difficult incomplete data.

3. Formulation

This section proposes the Cross-view Graph Matching guided An-
chor Alignment (CGMAA) framework to handle the cross-view anchor
misalignment (CAM) problem proposed in Fig. 1(a), then we employ
this framework for incomplete multi-view bipartite graph clustering.

3.1. Learning model of CGMAA

Given 𝑑𝑝 dimensions and 𝑛 samples of complete multi-view data
𝐗𝑝 for multi-view bipartite graph clustering, although learning anchors
can enhance the flexibility and effectiveness compared to selecting or
sampling the fixed anchors in Eq. (1), these learned anchors commonly
3

suffer from the CAM problem as mentioned in Fig. 1(a). CAM problem
could cause low-quality fused bipartite graphs to further reduce the
clustering performance. In general, the main challenges of handling
CAM problem include two aspects: (1) For each cluster of different
views, how to ensure the learned number of anchors equal; we take
the blue category of Fig. 1(a) as an example, view 1 learns two blue
anchors while view 2 learns three blue anchors in the same cluster,
which results in an inconsistent bipartite graph structure, hindering
subsequent graph fusion; (2) Assuming the anchor number of each
category is equal, for different views, how to make the anchors of
same category enjoy consistent order correspondence; in Fig. 1(a),
the wathet blue star arranges in a second order for view 1 while it
arranges in fourth order for view 2. Both problems (1) and (2) could
greatly decrease the final clustering performance.

To address this tricky CAM problem, we transform this problem
from Fig. 1(a) to an easier cross-view cluster-level alignment (CCA)
problem of Fig. 1(b). The basic idea of achieving CCA is shown in
Fig. 3. From Fig. 3, we predefine a 𝑚 × 𝑚 anchor graph matrix 𝐒 ∈
R𝑚×𝑚 to reduce the cross-cluster similarity (red dotted line) between
two views while enlarging the intra-cluster similarity (green and blue
dotted lines) between two views. In the ideal case, the edges of full-
connection anchor similarity can be decreased to the edges of ideal
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Fig. 3. The basic idea of achieving CCA: A prior anchor graph matrix is predefined to remove the inter-cluster anchor similarity (red dotted lines) of full-connection anchor
similarity across views, while enlarging the intra-cluster anchor similarity. The ultimate goal is to obtain an ideal anchor similarity.
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anchor similarity with the help of the predefined 𝐒. Concretely, we use
the predefined anchor graph to construct the prior cross-view bipartite
graph matching term. Unlike selecting or sampling the fixed anchors
𝐁𝑝 ∈ R𝑚×𝑑𝑝 of Eq. (1) in the original space, we impose this prior term
on the Eq. (1) to dynamically learn anchors 𝐏𝑝 ∈ R𝑚×𝑘 in the latent
embedding spaces. The above idea can be formalized into

min
𝐖𝑝 ,𝐏𝑝 ,𝐙𝑝

𝑣
∑

𝑝=1
‖𝐗𝑝𝐖𝑝 − 𝐙𝑝𝐏𝑝‖2𝐹 + 𝛽

𝑣
∑

𝑝=1

𝑣
∑

𝑟≠𝑝,𝑟=1

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1
‖𝐳𝑟𝑖 − 𝐳𝑝𝑗 ‖

2
𝐹 𝐒𝑖𝑗

s.t. 𝐙𝑝 ≥ 0,𝐙𝑝𝟏 = 𝟏, (𝐖𝑝)⊺𝐖𝑝 = 𝐈𝑘,𝐏𝑝(𝐏𝑝)
⊺ = 𝐈𝑚

(2)

where 𝐖𝑝 ∈ R𝑑𝑝×𝑘 is the projection matrix with orthogonal constraint,
and 𝛽 is a parameter to control the influence of the prior cross-view
bipartite graph matching term. Anchor matrices are imposed on orthog-
onal constraints to make the anchors more diverse and discriminative.
Note herein that the predefined anchor graph is denoted as

𝐒𝑖𝑗 =
{ 1

𝑛𝑚
, if 𝐩𝑝𝑖 and 𝐩𝑟𝑗 in same cluster (𝑝 ≠ 𝑟)

0, otherwise.
(3)

here 𝑛𝑚 is the predefined anchor number of each cluster. 1
𝑛𝑚

encodes
he desired similarity between the same clusters of two cross-view
nchors. That is, if an anchor 𝐩𝑝𝑖 in the 𝑝th view is in the same cluster
ith an anchor in 𝑟th view, the similarity between these two anchors

hould be 1
𝑛𝑚

. Inversely, if these two anchors are in different clusters,
their similarities should be zeros. Taking the data with two views and
two clusters as an example, all the zeros in 𝐒 encode the similarities of
different clusters of two views, while non-zero values of 𝐒 encode the
similarities of same clusters. According to similarities with nonzero and
zero of anchor prior information, we can predefine the ideal predefined
anchor graph 𝐒 of Fig. 3. In fact, 1

𝑛𝑚
is adjustable, but for convenience,

the anchor number of each cluster is fixed to be equal. By this way,
Eq. (2) can indirectly achieve the ideal anchor similarity via the prior
cross-view bipartite graph matching term. The reason is that the closer
cross-view anchors in the latent feature space have the closer cross-
view bipartite graph representations in the graph semantic space, i.e.,
the smaller ‖𝐩𝑝𝑖 − 𝐩𝑟𝑗‖𝐹 can promote to the smaller ‖𝐳𝑝𝑖 − 𝐳𝑟𝑗‖𝐹 , vice
versa. Inspired by this, according to the predefined anchor graph 𝐒,
the predefined prior cross-view matching term can directly make the
intra-cluster two columns of two cross-view bipartite graphs become
closer, meanwhile making inter-cluster two columns become bigger.
Additionally, this predefined matching term can indirectly make intra-
cluster rows of the learned anchor matrices across different views
become closer, meanwhile making inter-cluster anchors become bigger.
For the ideal case, only the intra-cluster anchors have bigger affinity
values than zero while the affinity values between inter-cluster anchors
are all zeros as mentioned in the right of Fig. 3. By this way, Eq. (2)
can technically handle the proposed CAM problem.

3.2. CGMAA for incomplete multi-view bipartite graph clustering

With the CGMAA framework at hand, we employ it to perform
incomplete multi-view bipartite graph clustering. First, we introduce
the index matrices {𝐆𝑝}𝑣𝑝=1 ∈ R𝑛𝑝×𝑛 into Eq. (2) to prevent the nega-
ive impact of missing samples on anchor learning. 𝑛 is the number
4

𝑝

f observed data of 𝑝th view. Then, a 𝑡-SVD based tensor low-rank
constraint is imposed on bipartite graphs to deeply investigate the high-
order correlations of data. So far, the ultimate objective function can
be mathematically fulfilled as

min
𝐏𝑝 ,𝐖𝑝 ,𝐙𝑝 ,

𝑣
∑

𝑝=1
‖𝐆𝑝𝐗𝑝𝐖𝑝 −𝐆𝑝𝐙𝑝𝐏𝑝‖2𝐹

+ 𝛽
𝑣
∑

𝑝=1

𝑣
∑

𝑟≠𝑝,𝑟=1

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1
‖𝐳𝑟𝑖 − 𝐳𝑝𝑗 ‖

2
𝐹 𝐒𝑖𝑗 + 𝛾‖‖⊛

.t. 𝐙𝑝 ≥ 0,𝐙𝑝𝟏 = 𝟏, (𝐖𝑝)⊺𝐖𝑝 = 𝐈𝑘,𝐏𝑝(𝐏𝑝)
⊺ = 𝐈𝑚

(4)

here the function 𝛹 (⋅) stacks 𝑝 bipartite graph into a third-order
ensor, i.e.,  = 𝛹 (𝐙1,… ,𝐙𝑚). 𝛾 is a regularization parameter. And 𝐆𝑝

𝑖𝑗
s 𝑝th index matrix and defined as

𝑝
𝑖𝑗 =

{

1, if the entry 𝑔𝑝𝑖,𝑗 = 𝑖, ∀𝑗 = 1, 2,… , 𝑛𝑝

0, otherwise.
(5)

here 𝐠𝑝 is the indicator vector of 𝑛𝑝 observed samples to report the
orted index. 𝑔𝑝𝑖,𝑗 denotes 𝑖th column and 𝑗th row element of 𝐠𝑝 for 𝑝th
iew. {𝐆𝑝𝐗𝑝 ∈ R𝑛𝑝×𝑑𝑝}𝑣𝑝=1 are the sorted observed samples of 𝑣 views,
here 𝑛𝑝 is the observed sample number.

.3. Optimization

In this subsection, we can observe that the alternating direction
ethod of multipliers (ADMM) can be used to solve Eq. (4) since it is

onvex. We first introduce an auxiliary variable  to make Eq. (4) sepa-
able according to the principle of ADMM [35,36]. Further, by denoting

be dot product between two matrices, we find that (𝐆𝑝)⊺𝐆𝑝𝐗𝑝 =
𝑝 ⊗ 𝐗𝑝, where 𝐀𝑝 = 𝐠𝑝𝟏𝑑𝑝 and (𝐠𝑝)⊺ =

[

𝑔𝑝1 ,… , 𝑔𝑝𝑛
]

with 𝑔𝑝𝑗 =
∑𝑛𝑝
𝑙=1 𝐆

𝑝
𝑗,𝑙,

hich can make 
(

𝑣𝑛2
)

space complexity reduce to (𝑑𝑛). Finally, the
ugmented Lagrangian function of Eq. (4) is

min
𝐏𝑝,𝐖𝑝,
𝐙𝑝, ,

𝑣
∑

𝑝=1
‖𝐆𝑝𝐗𝑝𝐖𝑝 −𝐆𝑝𝐙𝑝𝐏𝑝‖2𝐹 + 𝛾‖‖⊛

+ 𝛽
𝑣
∑

𝑝=1
𝚃𝚛(

𝑣
∑

𝑟=1,𝑟≠𝑝
(𝐙𝑟)⊺𝐋𝑆𝐙𝑝) +

𝜇
2
‖ − + 

𝜇
‖

2
𝐹

.t. 𝐙𝑝 ≥ 0,𝐙𝑝𝟏 = 𝟏, (𝐖𝑝)⊺𝐖𝑝 = 𝐈𝑘,𝐏𝑝(𝐏𝑝)
⊺ = 𝐈𝑚

(6)

where Laplacian matrix 𝐋𝑆 = 𝐓 − 𝐒, and the degree matrix 𝐓 is a
diagonal matrix with 𝑇𝑖𝑖 =

∑

𝑗=1 𝐒𝑖𝑗 . Eq. (6) can be solved separately
as follows.
▶ Step-1 update 𝐙: Ignoring the irrelevant items w.r.t 𝐙 in Eq. (6),
updating 𝐙 changes to

By eliminating the irrelevant variables of 𝐙 involved in Eq. (6),
𝐙-subproblem becomes to

min
𝐙𝑝

‖𝐙𝑝 − 𝐙̂𝑝‖2𝐹 s.t. 𝐙𝑝 ≥ 0,𝐙𝑝𝟏 = 𝟏, (7)

where 𝐙̂𝑝 = (𝐏𝑝)⊺(𝐖𝑝)⊺(𝐀𝑝⊗𝐗𝑝)−0.5𝛽𝐃𝑝+0.5𝜇𝐇𝑝−0.5𝐘𝑝
(1+0.5𝜇)𝐈 and 𝐃𝑝 = 𝐋⊺

𝑆
∑𝑣
𝑟=1,𝑟≠𝑝 𝐙

𝑟.
he 𝑗th column vector of 𝐙̂𝑝 is defined as 𝐳̂𝑝𝑗 , whose 𝑖th element is 𝑧̂𝑝𝑖,𝑗 .
or each view, we can update 𝐙𝑝 column by column as follows.

in ‖‖𝐳𝑗 − 𝐳̂𝑗
‖

‖

2
, s.t. 𝐳𝑗𝟏 = 1, 𝐳𝑖𝑗 ≥ 0 (8)
𝐳𝑗 ‖ ‖𝐅
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Such a subproblem can be solved by following Theorem 1.

Theorem 1. For any 𝑟 vectors {𝐳̂}𝑟𝑗=1, a closed-form solution 𝐳∗𝑗 can be
achieved as

𝐳∗ = arg min
𝐳

‖𝐳 − 𝐳̂‖2𝐹 , s.t. 𝐳
⊺𝟏 = 1, 𝐳 ≥ 0 (9)

whose specific proof can be found in Theorem 2 of [37]. The time complexity
of optimizing 𝐙 is (𝑛𝑚𝑑) with the close-form solution.

▶ Step-2 update 𝐏𝑝: Optimizing 𝐏 with the irrelevant variables fixed
is equivalent to the following optimization problem

max
𝐏𝑝

𝚃𝚛(𝐏𝑝(𝐂𝑝)⊺),𝐏𝑝(𝐏𝑝)⊺ = 𝐈𝑚, (10)

where 𝐂𝑝 = 𝐙𝑝(𝐀𝑝 ⊗ 𝐗𝑝)𝐖𝑝. The optimal solution of optimizing 𝐏𝑝 is
gained by performing singular value decomposition (SVD) on 𝐂𝑝 [38]
with complexity (𝑣(𝑛𝑑𝑘+𝑛𝑚𝑘+𝑚2𝑘)) per iteration, where 𝑑 =

∑𝑣
𝑝=1 𝑑

𝑝.
▶ Step-3 update 𝐖: Optimizing 𝐖 with the irrelevant variables fixed
can be written as

max
𝐖𝑝

𝚃𝚛((𝐖𝑝)⊺𝐄𝑝), (𝐖𝑝)⊺𝐖𝑝 = 𝐈𝑘, (11)

where 𝐄𝑝 = (𝐀𝑝 ⊗ 𝐗𝑝)⊺𝐏𝑝𝐙𝑝. The optimal solution of optimizing 𝐖𝑝 is
gained by performing SVD 𝐄𝑝 with complexity (𝑣𝑑(𝑛𝑚+ 𝑘𝑚+ 𝑘2)) per
iteration.
▶ Step-4 update : Ignoring the irrelevant items w.r.t , updating 
can be rewritten as

min


𝛾‖‖⊛ +
𝜇
2
‖ − ( + 

𝜇
)‖2𝐹 (12)

Denoting  =  + 
𝜇 ,  can be solved via the tensor tubal-shrinkage

f the below Theorem 2.

heorem 2. Give two 3-order tensor  ∈ R𝑛1×𝑛2×𝑛3 and  ∈ R𝑛1×𝑛2×𝑛3
with a scalar, the global optimal solution to the following problem

min

𝜌‖‖⊛ + 1

2
‖ −‖

2
𝐹 (13)

is given by the tensor tubal-shrinkage operator.

 = 𝑛3𝜌() =  ∗ 𝑛3𝜌() ∗ ⊺ (14)

where  =  ∗  ∗ ⊺ and 𝑛3𝜌() =  ∗ .  ∈ R𝑛1×𝑛2×𝑛3 denotes a
𝑓 -diagonal tensor and each diagonal element of  is defined as 𝑓 (𝑖, 𝑗, 𝑝) =
(1 − 𝑛3𝜌

𝑝(𝑖,𝑗) )+. The complexity of updating  is 
(

𝑣𝑛𝑚 log(𝑛) + 𝑣2𝑛𝑚
)

.

Updating ADMM variables are written as

=  + 𝜇( −)

= 𝑚𝑖𝑛(𝜌𝜇, 𝜇𝑚𝑎𝑥)
(15)

here 𝜇 = 1𝑒−4 and 𝜇𝑚𝑎𝑥 = 1010, and the complexity is (𝑛). Algorithm
reports the optimization process of Eq. (6), and 𝑜𝑏𝑗𝑡 is the objective

value of Algorithm 1 to check its convergence at the 𝑡th iteration.

Algorithm 1 The algorithm of CGMAA
Input: 𝑣 complete/incomplete multi-view data {𝐗𝑝}𝑣𝑝=1, cluster num-

ber 𝑐, latent space dimension 𝑘, and parameters 𝛽 and 𝛾.
Initialize 𝐒 via Eq. (3), 𝐆𝑝 via Eq. (5), 𝐖𝑝 = 𝐈𝑘, and the others
matrices as 𝟎.

1: repeat
2: Update 𝐙𝑝 by using Eq. (7);
3: Update 𝐏𝑝, 𝐖𝑝, and  via Eqs. (10)–(12);
4: Update ADMM variables via Eq. (15);
5: until Satisfy (𝑜𝑏𝑗(𝑡) − 𝑜𝑏𝑗(𝑡−1))∕𝑜𝑏𝑗(𝑡) ≤ 1𝑒 − 4.
6: Perform SVD on the averaged graph 𝐙∗ =

∑𝑣
𝑝=1 𝐙

𝑝∕𝑣 to obtain left
singular value matrix 𝐔𝐙∗ ∈ R𝑛×𝑚.

Output: Perform 𝑘-means on 𝐔𝐙∗ to obtain final results.
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Table 2
Complexity analysis of SOTA competitors.

Method Space cost Time complexity

BSV [39] 𝑣𝑛2 
(

𝑛3
)

MIC [19] 𝑣𝑛2 + 𝑛𝑑 + 𝑛𝑣𝑘 + 𝑣𝑑𝑘 
(

𝑛3 + 𝑛2𝑑𝑘
)

DAIMC [20] 𝑣𝑛2 + 𝑛𝑑 + 𝑛𝑘 + 𝑑𝑘 
(

𝑛𝑑3 + 𝑛𝑑𝑘
)

APMC [40] 𝑛𝑑 + 𝑣𝑛𝑚 + 𝑛𝑘 
(

𝑛3 + 𝑛𝑚𝑑 + 𝑚3)

UEAF [23] 𝑣𝑛2 + 𝑑𝑛 + 𝑛𝑣𝑘 + 𝑑𝑘 
(

𝑛3 + 𝑑𝑘2
)

MKKM-IK [26] 𝑣𝑛2 + 𝑣𝑛𝑘 
(

𝑣𝑛3
)

EEIMVC [27] 𝑣𝑛2 + 𝑣𝑛𝑘 + 𝑣𝑘2 
(

𝑛𝑘2 + 𝑣𝑘3
)

FLSD [22] 𝑣𝑛2 + 𝑑𝑛𝑘 + 𝑛𝑘 
(

𝑛𝑑2
)

UTF [31] 𝑣𝑛2 + 𝑣(𝑛 − 𝑛𝑝)𝑑 (𝑣𝑛3 + 𝑣𝑛2𝑙𝑜𝑔(𝑛) + 𝑣2𝑛2)
IMVC-CBG [41] 𝑚𝑛 + (𝑑 + 𝑚)𝑘 (𝑛𝑑𝑘 + 𝑛𝑚𝑑 + 𝑚𝑑𝑘)
HCP-IMSC [33] 𝑣𝑛2 + 𝑣(𝑛 − 𝑛𝑝)𝑑 + 𝑑𝑘 (𝑣𝑛3 + 𝑣(𝑛 − 𝑛𝑝)3 + 𝑘𝑛2𝑣)
Ours 𝑚(𝑛 + 𝑘) + 𝑑(𝑛 + 𝑚) + 3𝑚𝑛𝑣 (𝑣𝑛𝑚𝑑 + 𝑣𝑚𝑛 log(𝑛))

3.4. Complexity analysis

The computational complexity of Algorithm 1 has been given from
Step-1 to Step-4, separately. We first recall the four constants, i.e.,
ample number 𝑛, cluster number 𝑐, anchor number 𝑚, and latent
pace dimension 𝑘. Then, for each iteration, Step-1 requires (𝑣𝑛𝑚𝑑)

to update column by column. Step-2 and Step-3 involves matrix multi-
plication and SVD operation with complexity (𝑣(𝑛𝑑𝑘+𝑛𝑚𝑘+𝑚2𝑘)) and
(𝑣𝑑(𝑛𝑚+𝑘𝑚+𝑘2)), respectively. Step-4 needs 

(

𝑣𝑛𝑚 log(𝑛) + 𝑣2𝑛𝑚
)

to
complete the tensor calculation. And updating ADMM variables require
(𝑣) complexity. After obtaining 𝐙∗, it costs (𝑛𝑚2) complexity to
perform 𝑘-means. Thus, Algorithm 1 involves the total complexity as
(𝑡(𝑣𝑛𝑚𝑑+𝑣(𝑛𝑑𝑘+𝑛𝑚𝑘+𝑚2𝑘)+𝑣𝑑(𝑛𝑚+𝑘𝑚+𝑘2)+𝑣𝑛𝑚 log(𝑛)+𝑣2𝑛𝑚+𝑛𝑚2)),
which approximates to (𝑣𝑛𝑚𝑑 + 𝑣𝑚𝑛 log(𝑛)).

For another, space complexity of Algorithm 1 mainly involves the
following matrices 𝐖𝑝 ∈ R𝑑𝑝×𝑚, 𝐗𝑝 ∈ R𝑛×𝑑𝑝 , 𝐏𝑝 ∈ R𝑚×𝑘, 𝐙𝑝 ∈ R𝑛×𝑚,
 ∈ R𝑚×𝑛×𝑣,  ∈ R𝑚×𝑛×𝑣, and  ∈ R𝑚×𝑛×𝑣, where 𝑑 =

∑𝑣
𝑝=1 𝑑𝑝. Thus, the

major involved space complexity of CGMAA is 𝑚(𝑛+𝑘)+𝑑(𝑛+𝑚)+3𝑚𝑛𝑣.
ue to 𝑐 < 𝑘, 𝑘 ≪ 𝑛, 𝑚 ≪ 𝑛, and 𝑑 ≪ 𝑛, Algorithm 1 approximates

o linear time and space complexities with respect to the number of
amples. Table 2 reports the main time and space complexity of all
ompared methods.

. Experiments

.1. Incomplete datasets and experimental setting

Following the approach in [41], we generate incomplete datasets
y setting missing ratio 𝜓 from 0.1 to 0.9 with step of 0.1, i.e., 𝜓 =
𝑛𝑝
𝑛 ∈ [0.1 ∶ 0.1 ∶ 0.9]. Ten widely used benchmark datasets are

employed, including: Cifar10, Cifar100,1 NUSWIDE, 2 SUNRGBD,3 UCI-
Digit,4 Caltech-20,5 NGs,6 ORL,7 BDGP,8 and MNIST.9 Detailed informa-
tion on these datasets is provided in Table 3. Concretely, Cifar100, Ci-
far10, NUSWIDE, SUNRGBD, Caltech-20, BDGP, UCI-Digit, MNIST, and
ORL are the image datasets. NGs is the web page dataset. Note that the
number of samples in these datasets ranges from 400 to 60,000. This
span is already relatively large in existing complete/incomplete multi-
view clustering. All evaluated complete/incomplete datasets in this
paper are collected from the publicly published in the literatures [31,
34,41].

1 http://cs.toronto.edu/kriz/cifar.html
2 https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/

uswide/NUS-WIDE.html
3 https://rgbd.cs.princeton.edu/
4 http://archive.ics.uci.edu/ml/datasets/Multiple+Features
5 http://www.vision.caltech.edu/ImageDatasets/Caltech101/
6 https://lig-membres.imag.fr/grimal/data.html
7 https://www.cl.cam.ac.uk/research/dtg/attarchive/facedataset.html
8 https://www.fruitfly.org/
9
 http://yann.lecun.com/exdb/mnist/

http://cs.toronto.edu/kriz/cifar.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://rgbd.cs.princeton.edu/
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
https://lig-membres.imag.fr/grimal/data.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedataset.html
https://www.fruitfly.org/
http://yann.lecun.com/exdb/mnist/
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Fig. 4. The averaged ACC variation with missing ratios from 0.1 to 0.9 on six benchmark datasets are reported.
Table 3
The number of samples, classes, views, and dimensionality of the used datasets.

Dataset Sample Classes Views Dimensionality

ORL 400 40 3 4096 /3304/6750
NGs 500 5 3 500/500/500
Caltech-20 2386 20 6 48/40/254/198/512/928
SUNRGBD 10335 45 2 4096/4096
NUSWIDE 30000 31 5 65/226/145/74/129
Cifar10 50000 10 3 2048/512/1024
Cifar100 50000 100 3 2048/512/1024
UCI-Digit 2000 10 3 240/76/6
BDGP 2500 5 3 1000/500/250
MNIST 60000 10 3 342/64/1024

One baseline and ten state-of-the-art (SOTA) IMVC methods are
mployed for comparison, including, BSV [39] (the optimal value with

single view mean imputation), MIC [19], APMC [40], FLSD [22],
AIMC [20], UEAF [23], IMKKM-IK [26], EEIMVC [27], UTF [31],
CP-IMSC [33], IMVC-CBG [41], and our CGMAA. The computing
latform is an Intel Core i9 CPU and 64 GB RAM and codes from their
ublic homepage. Most of the codes come from the pages of Jie Wen10

nd Xinwang Liu.11

.2. Experiment results for incomplete datasets

To demonstrate the superiority of our CGMAA, four common met-
ics [27] i.e., Fscore (FSC), Purity (PUR), normalized mutual infor-
ation (NMI), and Accuracy (ACC) are employed to compare with
1 state-of-the-art incomplete multi-view clustering methods on seven
ncomplete multi-view datasets. The average clustering performance
nd standard deviations (Each experiment is repeated 20 times.) on all
valuated datasets are reported in Table 4. The best and second-best
verages are marked in bold and underlined, respectively. Meanwhile,
igs. 4–7 present the variation for our method with different missing
atios on all evaluated metrics. From these tables and figures, we can
bserve that:
Effectiveness. Some IMVC methods are worse than single-view

ethod BSV, while our CGMAA not only consistently outperforms the
ingle-view incomplete clustering, but outperforms all the recently pro-
osed IMVC methods in most cases. This demonstrates the effectiveness
f our method in IMVC.
Superiority over graph tensor based methods, i.e., UTF and HCP-

MSC, which have been regarded as the strongest graph tensor based
MVC methods. For datasets under 30,000 samples (i.e., ORL, NGs,

Caltech-20, and SUNRGBD), except NMI on the Caltech-20 dataset, our
method has a significant improvement in all evaluated metrics and also

10 https://sites.google.com/view/jerry-wen-hit/publications
11 https://xinwangliu.github.io/
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takes a lot less time cost. For datasets from 30,000 to 50,000 samples
(i.e., NUSWIDE, Cifar10, and Cifar100), UTF and HCP-IMSC fail due
to their quadratic memory complexity and cubic time complexity.
Comparatively, even when the missing ratio is 0.9, the performance
of our method is close to 100% on the Cifar10 and Cifar100 datasets.
Overall, our method outperforms UTF and HCP-IMSC by a large margin,
achieving less time cost.

Superiority over anchor learning based method, i.e., IMVC-CBG,
which first attempts to joint learn a shared anchor matrix and a con-
sensus bipartite graph for IMVC, obtaining promising results recently.
Regrettably, it can only capture the view-consistent information of data,
ignoring the view-specific information. Contrastively, our CGMAA can
simultaneously capture view-consistent, view-specific, and high-order
graph information. Therefore, although both IMVC-CBG and CGMAA
have similar low time consumption in Table 7, the clustering results of
CGMAA consistently outperform IMVC-CBG on all datasets and metrics.

4.3. Ablation analysis

To demonstrate the significance and effectiveness of cross-view
graph matching term, we remove the second cross-view graph matching
term of Eq. (4) by setting 𝛽 = 0 (i.e., CGMAA𝛽=0) on all the evaluated
datasets and metrics. The results are recorded in Table 5. Further, to
make a more visual comparison in Fig. 8, we visualize 𝑝 embedding rep-
resentations 𝐏𝑝𝐙𝑝 with their anchors 𝐏𝑝 on the NGs dataset for CGMAA
and CGMAA𝛽=0, respectively. Table 5 indicates that CGMAA enjoys
better clustering results with the help of cross-view graph matching
term. Meanwhile, Fig. 8 also demonstrates that the cross-view graph
matching term can make the anchor number of each cluster of different
views equal, and the anchor order of different views is also aligned.
Thus, the learned data of CGMAA enjoy the clearer cluster discriminant.

4.4. Experiment results for complete datasets

This section compares the SOTA competitor FMVACC [34] and
our CGMAA on the ORL, NUSWIDE, UCI-Digit, BDGP, SUNRGBD, and
MNIST datasets. Both FMVACC [34] and our CGMAA are multi-view
bipartite graph clustering methods to address bipartite graph matching
problems for the first practice. The results reported in Table 6 indicate
that CGMAA has a considerable improvement over FMVACC. The main
reason is that FMVACC cannot address the intractable CAM problem,
while CGMAA can alleviate this problem technically. Concretely, FM-
VACC can only handle the problem that the anchor number of each
cluster for different views is equal. While our CGMAA can simultane-
ously make the anchor number and anchor order in each cluster align.
In fact, the anchor number learned from FMVACC are usually not equal
like in Fig. 8(a)–(c), thus resulting in less clustering performance.

https://sites.google.com/view/jerry-wen-hit/publications
https://xinwangliu.github.io/
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Table 4
Average clustering comparison of 0.1 to 0.9 missing ratios on the seven datasets. The best results are marked in bold and the second-best results are marked in underline. ‘‘-’’
means out of the storage memory or out of the CPU memory.

Dataset BSV MIC DAIMC APMC UEAF IMKKM-IK EEIMVC FLSD UTF IMVC-CBG HCP-IMSC Our

ACC

ORL 25.18 ± 0.73 44.94 ± 1.50 69.45 ± 2.16 65.80 ± 1.75 61.49 ± 2.34 60.41 ± 2.73 74.36 ± 2.38 50.33 ± 1.69 85.57 ± 0.16 71.65 ± 2.53 81.88 ± 0.03 92.95 ± 0.02
NGs 42.37 ± 1.83 24.86 ± 0.26 73.31 ± 9.07 89.89 ± 0.01 89.89 ± 0.03 50.36 ± 0.13 78.37 ± 0.12 85.47 ± 0.03 91.13 ± 0.09 89.26 ± 0.02 89.11 ± 0.00 99.57 ± 0.00
Caltech-20 39.91 ± 0.23 26.69 ± 1.68 45.72 ± 1.93 – 39.71 ± 1.38 32.21 ± 1.66 41.33 ± 1.29 43.45 ± 1.82 49.48 ± 2.09 50.56 ± 1.32 50.05 ± 0.46 56.38 ± 0.01
SUNRGBD 8.49 ± 0.06 13.84 ± 0.48 17.01 ± 0.76 17.93 ± 0.55 15.80 ± 0.39 17.06 ± 0.36 16.97 ± 0.46 14.82 ± 0.39 22.04 ± 1.67 18.05 ± 0.18 20.76 ± 0.06 22.96 ± 0.01
NUSWIDE 10.76 ± 0.20 – 13.89 ± 0.18 – – – 12.86 ± 0.26 – – 12.56 ± 0.13 – 18.81 ± 0.01
Cifar10 – – 90.81 ± 0.45 – – – – – – 96.19 ± 0.13 – 99.99 ± 0.00
Cifar100 – – 89.71 ± 1.00 – – – – – – 93.09 ± 1.18 – 99.24 ± 0.00

NMI

ORL 48.92 ± 0.75 57.44 ± 0.84 82.44 ± 0.9 81.10 ± 0.66 77.58 ± 1.09 79.60 ± 1.10 85.93 ± 1.16 68.07 ± 1.12 92.98 ± 0.08 80.61 ± 1.46 90.85 ± 0.02 93.99 ± 0.01
NGs 22.79 ± 1.17 9.28 ± 0.29 58.93 ± 6.28 73.73 ± 0.03 73.73 ± 0.08 33.49 ± 0.11 58.92 ± 0.18 66.48 ± 0.03 75.92 ± 0.15 73.90 ± 0.06 72.90 ± 0.00 98.68 ± 0.00
Caltech-20 25.58 ± 0.83 30.66 ± 1.13 55.70 ± 1.36 – 50.90 ± 0.92 40.09 ± 0.98 54.74 ± 0.61 52.33 ± 0.90 72.31 ± 1.32 52.86 ± 1.61 60.37 ± 0.53 67.62 ± 0.01
SUNRGBD 6.31 ± 0.06 21.02 ± 0.28 21.34 ± 0.35 21.83 ± 0.22 21.21 ± 0.28 20.95 ± 0.28 20.86 ± 0.24 20.86 ± 0.19 35.00 ± 1.32 23.92 ± 0.16 33.72 ± 0.08 36.52 ± 0.00
NUSWIDE 3.39 ± 0.06 – 11.34 ± 0.39 – – – 10.52 ± 0.09 – – 10.40 ± 0.03 – 17.66 ± 0.00
Cifar10NMI – – 90.47 ± 0.55 – – – – – – 90.89 ± 0.27 – 99.96 ± 0.00
Cifar100 – – 98.26 ± 0.16 – – – – – – 98.63 ± 0.29 – 99.78 ± 0.00

PUR

ORL 26.34 ± 0.76 41.17 ± 1.24 73.83 ± 1.63 70.18 ± 1.32 64.05 ± 1.75 61.56 ± 2.47 76.82 ± 2.03 51.49 ± 1.56 88.13 ± 0.12 71.65 ± 2.02 84.44 ± 0.03 90.51 ± 0.01
NGs 44.37 ± 1.31 25.79 ± 0.22 73.31 ± 9.07 89.89 ± 0.01 89.89 ± 0.03 51.23 ± 0.10 78.37 ± 0.12 85.47 ± 0.03 91.13 ± 0.09 89.26 ± 0.02 89.11 ± 0.00 99.57 ± 0.00
Caltech-20 48.70 ± 0.69 55.89 ± 1.13 74.89 ± 0.88 – 70.90 ± 0.74 60.14 ± 1.38 72.28 ± 0.79 73.37 ± 0.53 82.22 ± 1.76 71.04 ± 0.93 76.55 ± 0.45 73.77 ± 0.01
SUNRGBD 13.22 ± 0.18 32.58 ± 0.64 34.90 ± 0.81 34.99 ± 0.39 34.78 ± 0.62 34.51 ± 0.86 34.42 ± 0.37 32.66 ± 0.34 42.55 ± 1.64 33.55 ± 0.28 41.27 ± 0.03 44.56 ± 0.01
NUSWIDE 14.75 ± 0.08 – 23.69 ± 0.32 – – – 21.88 ± 0.23 – – 21.01 ± 0.15 – 27.61 ± 0.01
Cifar10 – – 95.81 ± 0.45 – – – – – – 96.19 ± 0.26 – 99.99 ± 0.00
Cifar100 – – 92.60 ± 0.54 – – – – – – 94.98 ± 0.82 – 99.26 ± 0.00

FSC

ORL 9.86 ± 0.53 18.80 ± 1.02 56.97 ± 2.71 50.73 ± 2.39 40.23 ± 2.58 45.20 ± 2.91 64.52 ± 2.69 31.91 ± 1.84 79.10 ± 0.06 47.05 ± 3.83 75.42 ± 0.01 91.42 ± 0.02
NGs 32.97 ± 0.88 33.27 ± 0.13 74.11 ± 7.29 81.29 ± 0.02 81.29 ± 0.06 42.84 ± 0.09 64.00 ± 0.14 72.02 ± 0.03 80.04 ± 0.11 81.23 ± 0.03 80.04 ± 0.00 99.15 ± 0.00
Caltech-20 32.74 ± 0.29 24.46 ± 1.26 40.46 ± 2.19 – 33.34 ± 1.49 29.18 ± 1.65 40.70 ± 1.43 41.50 ± 1.56 43.56 ± 2.62 44.59 ± 2.32 44.81 ± 0.68 54.67 ± 0.01
SUNRGBD 7.18 ± 0.02 9.53 ± 0.18 10.66 ± 0.32 10.98 ± 0.28 9.50 ± 0.14 10.11 ± 0.19 10.02 ± 0.22 11.45 ± 0.01 16.16 ± 1.19 10.51 ± 0.38 14.88 ± 0.05 16.38 ± 0.00
NUSWIDE 10.75 ± 0.05 – 8.62 ± 0.59 – – – 8.01 ± 0.06 – – 7.91 ± 0.03 – 10.37 ± 0.00
Cifar10 – – 92.16 ± 0.68 – – – – – – 92.67 ± 0.13 – 99.98 ± 0.00
Cifar100 – – 90.82 ± 0.94 – – – – – – 90.87 ± 2.97 – 99.16 ± 0.00
Fig. 5. The averaged NMI variation with missing ratios from 0.1 to 0.9 on six benchmark datasets are reported.
Fig. 6. The averaged PUR variation with missing ratios from 0.1 to 0.9 on six benchmark datasets are reported.
.5. Parameter validity analysis

Our Algorithm 1 is involved in three parameters required to be set
uitably, i.e., parameters 𝛽, 𝛾, and anchor number 𝑚. From Fig. 9, we

perform grid search on the large-scale Cifar10 dataset, we first vary
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parameter 𝛽 and 𝛾 in 2[−5∶1∶5] with the fixed 𝑚 = 2𝑐. Then, we tune
𝑚 in [2𝑐, 3𝑐, 5𝑐, 7𝑐, 10𝑐] with the fixed 𝛽 = 2−4 and 𝛾 = 23. Fig. 9(a)
indicates that our CGMAA enjoys a satisfying clustering performance
in a large scope w.r.t 𝛽 and 𝛾. Thus, Algorithm 1 is insensitive to 𝛽 and
𝛾. And Fig. 9(b) shows the excellent and stable clustering performance
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Fig. 7. The averaged FSC variation with missing ratios from 0.1 to 0.9 on six benchmark datasets are reported.
Table 5
Clustering comparison of CGMAA and CGMAA𝛽=0 on the NGs dataset w.r.t different missing ratios.

Method 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

ACC

CGMAA𝛽=0 89.79 ± 0.01 90.68 ± 0.00 94.60 ± 0.01 91.80 ± 0.01 94.40 ± 0.00 95.27 ± 0.00 94.20 ± 0.00 95.40 ± 0.00 95.00 ± 0.00
CGMAA 99.20 ± 0.00 99.60 ± 0.00 99.60 ± 0.00 98.36 ± 0.01 100.00 ± 0.00 99.40 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

NMI

CGMAA𝛽=0 74.05 ± 0.01 75.69 ± 0.00 84.42 ± 0.00 80.78 ± 0.01 85.13 ± 0.00 86.42 ± 0.00 85.18 ± 0.00 86.81 ± 0.00 85.81 ± 0.00
CGMAA 97.62 ± 0.00 98.61 ± 0.00 98.77 ± 0.00 94.99 ± 0.01 100.00 ± 0.00 98.08 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Fig. 8. The anchor distribution of the proposed CGMAA𝛽=0 and CGMAA is visualized with 𝑡-SNE [42] on NGs datasets (𝜓=0.2).
when 𝑚 in range [2𝑐, 3𝑐, 5𝑐, 7𝑐, 10𝑐]. This demonstrates the validity of
ross-view graph matching guided anchor learning.

The running time of IMVC methods on the incomplete benchmark
atasets is reported in Table 7. Table 7 and Fig. 10 demonstrate that our
GMAA can achieve very competitive computational efficiency on all
valuated datasets and competitors. Overall, CGMAA achieves a lower
ime cost and space complexity, as well as a very competitive clustering
erformance.
8

4.6. Conclusion

In this paper, we observe a cross-view anchor misalignment (CAM)
problem in the process of anchor learning. And then, a novel CGMAA
framework is proposed to handle the observed CAM problem for com-
plete/incomplete multi-view bipartite graph clustering. Whether the
data is missing or not, CGMAA can efficiently and flexibly address
the CAM problem. Besides, CGMAA has great potential for large-scale
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Table 6
The performance comparison w.r.t FMVACC and our CGMAA. Best results are marked in bold.

Samples 2000 2500 10335 60000 400 30000
Method UCI-Digit BDGP SUNRGBD MNIST ORL NUSWIDE

ACC

FMVACC 83.59 ± 7.16 59.51 ± 4.00 21.95 ± 0.73 94.39 ± 6.64 74.86 ± 2.36 15.35 ± 0.68
CGMAA 99.40 ± 0.00 95.08 ± 0.00 25.06 ± 0.01 97.62 ± 0.01 97.58 ± 0.03 25.27 ± 0.01

NMI

FMVACC 81.13 ± 3.79 35.55 ± 4.53 19.22 ± 0.77 95.11 ± 2.52 86.26 ± 2.08 21.42 ± 0.91
CGMAA 98.48 ± 0.00 88.58 ± 0.00 24.35 ± 0.00 96.33 ± 0.01 98.81 ± 0.02 40.33 ± 0.01
Fig. 9. ACC w.r.t 𝛼, 𝛽, and 𝑚 on the Cifar10 dataset (𝜓=0.2).
Fig. 10. Objection function value over the Cifar10, Cifar100, and ORL datasets (𝜓=0.2).
Table 7
Running time on the different incomplete benchmarks. And ’’-’’ means out of the storage memory or out of the CPU memory.

Method ORL NGs Caltech-20 SUNRGBD NUSWIDE Cifar10 Cifar100

BSV 0.97 0.29 2.32 2361.05 9624.38 – –
MIC 418.37 143.94 2847.45 6107.6 – – –
DAIMC 1205.6 42.61 69.88 184.06 1667.67 29948.48 26349.92
APMC 0.58 0.61 – 156.37 – – –
UEAF 14.3 2.36 26.63 89.61 – – –
IMKKM-IK 0.58 1.47 126.15 309.29 – – –
EE-R-IMVC 0.73 0.57 3.96 5.68 1872.44 – –
FLSD 87.44 3.41 54.04 130.79 – – –
UTF 10.72 6.32 60.38 209.34 – – –
IMVC-CBG 1.63 1.42 5.39 8.61 22.54 69.18 155.62
HCP-IMSC 8.37 6.32 157.38 358.34 – – –

Our 2.45 1.24 5.99 16.19 39.65 57.25 146.86
9
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multi-view clustering tasks. Comprehensive experiments are performed
to show the efficiency and superiority of cross-view anchor alignment
and the proposed CGMAA framework. CAM is a pioneering problem for
view-specific anchor learning, and the study of CAM can further benefit
the multi-view bipartite graph clustering and research community.
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