
Q-Guided Flow Q-Learning

Abstract: Generative policies improve expressivity over Gaussian actors but often
come with entangled training pipelines (e.g., joint actor–critic training, student–
teacher distillation, or sequence-to-sequence planners). We introduce Q-Guided
Flow Q-Learning (QFQL), an actor–critic framework where the actor is trained
independently via conditional flow matching for behavior cloning, and the critic
is trained independently via temporal-difference (TD) learning. At inference, ac-
tions are produced by integrating the learned flow field and adding a value-seeking
correction proportional to the action-gradient of the critic, i.e., a guidance term
β∇aQ(s, a). This decoupled design simplifies optimization, reduces instability
from joint updates, and enables controllable trade-offs between behavior realism
and value seeking at test time. Empirically, QFQL achieves strong offline RL
performance and stable training across tasks without auxiliary student models or
policy regularizers, making it a strong candidate for offline reinforcement learn-
ing.

Keywords: Offline Reinforcement Learning, Flow Matching, Generative Poli-
cies, Actor–Critic, Value Guidance

1 Introduction

Generative policies—diffusion [1], flows [2], and normalizing flows [3]—have expanded the func-
tion classes available to reinforcement learning (RL) beyond unimodal Gaussians. Yet, practical
use remains complicated: many methods couple actor and critic losses tightly [4], require auxiliary
students distilled from slow samplers [5], or rely on long-horizon planners that are cumbersome for
control [6]. In parallel, Q-learning [7] remains a strong backbone for value estimation but does not
by itself provide a rich, multi-modal policy class.

In response to this challenge, we propose Q-Guided Flow Q-Learning (QFQL): a simple, robust
actor–critic method that trains the actor as a conditional vector field with flow matching using pure
behavior cloning, and trains the critic with standard temporal difference (TD) learning. At infer-
ence, we integrate the flow field and add a value guidance term β∇aQ(s, a), analogous in spirit
to classifier-free guidance [8] in generative modeling but operating in action space and driven by Q
rather than a classifier. This clean separation: (i) removes the need for joint actor–critic objectives
during training, (ii) preserves the behavioral prior learned from data, (iii) enables a tunable value
bias at test time that can be annealed or scheduled.

Contributions: We make the following contributions: (1) A decoupled training pipeline for gen-
erative actors and TD critics; (2) a value-guided sampling rule for actions requiring only ∇aQ at
inference; (3) empirical evidence that guidance improves control quality without retraining the actor.

2 Preliminaries

We consider a Markov decision process (MDP) with state space S, action spaceA, and reward space
R. A stochastic policy is a mapping π : S → ∆(A), where ∆(A) denotes the set of probability
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measures over actions. The action–value function Q : S ×A → R is defined as

Q(s, a) ≜ E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
, γ ∈ [0, 1), (1)

which evaluates the expected discounted return of starting from (s, a) and following π thereafter.

We assume an offline datasetD = {(s, a, r, s′)} collected by unknown behavior policies. Two com-
plementary approaches are standard in this setting: (i) behavior cloning [9], which directly learns
the behavior policy π from D, and (ii) Q-learning [7], which learns Q-functions to approximate
long-term returns and enable policy improvement.

In our framework, the actor is parameterized as a conditional flow-matching model vθ(s, aτ , τ),
where τ ∈ [0, 1] indexes the flow. Starting from a Gaussian noise a(0) ∼N (0, I), integrating the
vector field progressively transports the distribution toward pdata(a|s) as τ → 1. The critic Qϕ(s, a)
complements this by evaluating long-horizon value. Training both components provides a balance
between short-term imitation of demonstrated behavior and long-term value estimation.

3 Related Works

We organize related work by how the critic Q interacts with the generative policy: (i) no Q (pure
behavior cloning), (ii) Q at training time, (iii) Q at inference time, and (iv) connections to classical
policy gradients.

3.1 Generative Policies without Q

Several works use diffusion or flow-based models purely for behavior cloning. Diffusion poli-
cies [10] and flow-based policies [11] improve multimodality and calibration compared to Gaussian
actors [12]. These methods demonstrate the strength of iterative samplers but lack mechanisms for
value improvement. They provide the foundation upon which value-guided extensions are built.

3.2 Critic Used at Training Time

A large class of methods integrates Q into the training objective of the policy, which includes
Diffusion-QL [13], DIAR [14], DreamFuser [15] and QVPO [16]. These methods entangle the actor
and critic during optimization, requiring joint tuning and sometimes auxiliary losses. Furthermore,
the sampling of actions from diffusion and flow models during training introduces backpropagation
through time (BPTT), making it harder and more costly to train the model [5].

3.3 Critic Used at Inference Time

Inference-time guidance is inspired by classifier-free guidance in generative models [8]. Recent
work shows that diffusion guidance can be interpreted as controllable policy improvement [17].
Flow Q-Learning (FQL) [5] comes closest to our setting: it trains a flow-matching actor and TD
critic separately, but then distills the slow iterative sampler into a one-step policy for deployment.
In contrast, QFQL preserves the iterative sampler and introduces a direct inference-time correction
a← a+∆t(vθ + β∇aQ), making the value trade-off tunable at test time without distillation.

Most prior methods use the critic either at training time or require student distillation for fast in-
ference. QFQL occupies a distinct point: the actor and critic are trained entirely separately, and Q
influences only inference through a tunable guidance term. This reduces training instability, avoids
distillation, and exposes controllable trade-offs at test-time.
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a QFQL Training

Require: Dataset D; actor vθ; critic Qϕ; target
Q̄ϕ̄; γ, τ

1: while not converged do
2: (Actor/FM) Sample (s, a) ∼ D; t ∼
U(0, 1); ϵ∼N (0, I)

3: at←(1− t)ϵ+ ta; u⋆←a− ϵ
4: θ ← Optθ

(
θ,∇θ∥vθ(s, at, t)− u⋆∥2

)
5: (Critic/TD) Sample (s, a, r, s′) ∼ D;

ã′←ApproxDenoisedAction(s′; θ)
6: y←r + γ Q̄ϕ̄(s

′, ã′)

7: ϕ← Optϕ
(
ϕ,∇ϕ(Qϕ(s, a)− y)2

)
8: ϕ̄← τϕ+ (1− τ)ϕ̄
9: end while

b QFQL Inference (Guided Flow)

Require: State s; actor vθ; critic Qϕ; guidance
β; steps K; schedule {(tk,∆tk)}K−1

k=0

1: Initialize a(0) ∼ N (0, I)
2: for k = 0 to K − 1 do
3: g ← vθ(s, a

(k), tk);
4: ∇Q← ∇aQϕ(s, a

(k));
5: a(k+1) ← a(k) +∆tk

(
g + β∇Q

)
6: end for
7: return a(K)

(Optional): clip ∥∇Q∥, anneal β.

Figure 1: Q-Guided Flow Q-Learning (QFQL): training (left) and inference (right).

4 Q-Guided Flow Q-Learning

In this section, we present Q-Guided Flow Q-Learning, which consists of actor training with be-
havior cloning and critic training with 1-step temporal-difference learning. The full algorithm is
shown in Algorithm 1a,1b.

Actor via Conditional Flow Matching (Behavior Cloning). For (s, a) ∼ D, t ∼ U(0, 1), ϵ ∼
N (0, I), define a linear interpolation

at ≜ (1− t) ϵ+ t a, u⋆(s, at, t) ≜ a− ϵ. (2)

The actor minimizes
LFM(θ) = E

[
∥vθ(s, at, t)− u⋆(s, at, t)∥22

]
, (3)

purely from behavior data (no Q terms).

Critic via TD Learning. A target critic Q̄ϕ̄ provides bootstrapping. For (s, a, r, s′)∼D, we use
the standard TD-learning with recursive relationship as the following:

y ← r + γ Q̄ϕ̄(s
′, ã′), LQ(ϕ) = E

[
(Qϕ(s, a)− y)2

]
, ϕ̄← τϕ+ (1− τ)ϕ̄. (4)

Inference with Value Guidance. Given s, initialize a(0) ∼ N (0, I) and integrate

a(k+1) ← a(k) +∆tk

(
vθ(s, a

(k), tk) + β∇aQϕ(s, a
(k))

)
, (5)

with a schedule 0 = t0 < · · · < tK = 1 and ∆tk ≜ tk+1 − tk. The scalar β≥0 trades off behavior
adherence (β ≈ 0) and value seeking (larger β). In practice, we can anneal β or clip ∥∇aQ∥ for
stability.

5 Experimental Results

We use OGBench [18] with setups similar to Flow Q-Learning. Overall, we find that QFQL performs
strongly across 5 OGBench tasks and 3 D4RL antmaze tasks without explicit actor-critic training
as shown in Table 1. While reducing the number of parameters in comparison with FQL due to
removal of one-step actor, QFQL maintains strong performance in several tasks including antsoccer
and antmaze.
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Table 1: Performance comparison on selected environments. For OGBench, We compare performances on
default task (denoted by (*)) only. Results show mean ± standard deviation over multiple seeds for the first 5
OGBench single-task environments (marked with *) and 3 D4RL antmaze environments. We denote values at
or above 95% of the best performance in bold, following OGBench [18].

Gaussian Diffusion Flow Policies

Task BC CAC FAWAC FBRAC IFQL FQL QFQL

antmaze-large-navigate-singletask-task1-v0 (*) 0 ±0 42 ±7 1 ±1 70 ±20 24 ±17 80 ±8 84
antsoccer-arena-navigate-singletask-task4-v0 (*) 1 ±0 0 ±0 12 ±3 24 ±4 16 ±9 39 ±6 44
cube-double-play-singletask-task2-v0 (*) 0 ±0 2 ±2 2 ±1 22 ±12 9 ±5 36 ±6 8
scene-play-singletask-task2-v0 (*) 1 ±1 50 ±40 18 ±8 46 ±10 0 ±0 76 ±9 62
puzzle-3x3-play-singletask-task4-v0 (*) 1 ±1 0 ±0 1 ±1 2 ±2 0 ±0 16 ±5 0
antmaze-umaze-diverse-v2 47 66 ±11 55 ±7 82 ±9 62 ±12 89 ±5 94
antmaze-medium-diverse-v2 1 0 ±1 44 ±15 77 ±6 60 ±25 71 ±13 50
antmaze-large-diverse-v2 0 0 ±0 16 ±10 20 ±17 64 ±8 83 ±4 52

Table 2: Task-specific hyperparameters for offline RL. We individually tune the hyperparamter β for each
task on QFQL. The hyperparameters for other algorithms are taken from the original FQL paper.

CAC FAWAC FBRAC IFQL FQL QFQL
Task η α α N α β

antmaze-large-navigate-singletask-task1-v0 (*) 1 3 3 32 10 1
antsoccer-arena-navigate-singletask-task4-v0 (*) 1 10 30 64 10 1
cube-double-play-singletask-task2-v0 (*) 0.3 0.3 100 32 300 0.3
scene-play-singletask-task2-v0 (*) 0.3 0.3 100 32 300 0.3
puzzle-3x3-play-singletask-task4-v0 (*) 0.01 0.3 100 32 1000 −
antmaze-umaze-diverse-v2 0.01 3 10 32 10 0.3
antmaze-medium-diverse-v2 0.01 3 10 32 10 0.3
antmaze-large-diverse-v2 3.5 3 1 32 3 0.3

We find that β needs to be finetuned for each environment, similar to the hyperparameter α in FQL.
We swept β with values {0.3, 1, 3, 10, 30, 100} to ensure a balance in the weight of the guidance.
This is presumably due to the fact that β controls the strength of the Q-guidance term β∇aQ, similar
to how the hyperparameter α controls the distillation (and hence the guidance) strength. We list all
environment-dependent hyperparameters used for offline RL in Table 2.

We also discovered that QFQL fails to solve the puzzle-3x3 task. We provide a detailed analysis of
this failure case and its implications for Q-guidance methods in Appendix A.

6 Conclusion

We presented Q-Guided Flow Q-Learning (QFQL), a minimal actor–critic design that decouples
training: the actor learns a conditional flow via behavior cloning; the critic learns via TD. At in-
ference, a simple correction β∇aQ biases the flow integrator toward value without retraining or
distillation. This separation reduces optimization entanglement, preserves behavioral priors, and
allows controllable test-time trade-offs between realism and value. Results show that guidance con-
sistently boosts returns over unguided flow actors with small computational overhead, suggesting a
practical path to expressive, stable, and tunable policies in offline RL.

0(*) indicates OGBench single-task environments representing default tasks from their respective task
groups. The remaining environments are D4RL antmaze tasks.
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A Analysis of Puzzle Task Failure

QFQL achieves zero performance on the puzzle-3x3 task across all experimental runs. This section
presents a systematic analysis of training dynamics and evaluation behavior to identify the underly-
ing causes of this failure.

A.1 Empirical Observations

Analysis of evaluation episodes and training dynamics reveals several distinctive patterns that char-
acterize the failure mode. The policy exhibits alternating periods of minimal action output followed
by control signals of extreme magnitude that result in NaN (Not-a-Number) values during flow in-
tegration. This instability manifests during training as gradient norms reaching maximum values of
approximately 400, substantially exceeding the gradient norms observed in successful tasks which
typically remain below 10. When the policy does produce valid actions, it frequently selects actions
that leave the environment state unchanged (button states = prev button states), resulting
in no meaningful progress toward task completion. These observations suggest fundamental issues
in both the policy’s action generation mechanism and the underlying value estimation that guides it.

A.2 Causal Analysis

Two primary factors contribute to the observed failure modes. The first factor concerns reduced
model capacity for combinatorial reasoning tasks. QFQL employs approximately two-thirds the pa-
rameters of FQL due to the elimination of the distilled one-step actor component. This architectural
reduction presents particular challenges for combinatorial reasoning tasks such as the 3×3 puzzle
environment, which contains 29 = 512 possible state configurations, each requiring distinct value
estimates and action mappings. Task success requires modeling multi-step action sequences where
button press values depend on current configurations and future state transitions. Unlike continu-
ous control domains, puzzle-solving demands discrete combinatorial reasoning patterns that may
require substantial network capacity. The reduced parameter count may therefore be insufficient to
represent the complex state-action mappings necessary for effective puzzle-solving behavior.

The second factor involves Q-function learning difficulties and the resulting degradation of guidance
signals. The critic component demonstrates poor learning performance on the puzzle task, charac-
terized by critic loss magnitudes several times larger than those observed in successful tasks, high
variance in Q-value statistics (q min, q mean, q max), and lack of convergence in Q-function esti-
mates. When Qϕ(s, a) fails to provide accurate value estimates, the guidance term β∇aQϕ(s, a)
contributes negatively to policy performance through multiple mechanisms. The gradient∇aQ pro-
vides directional signals uncorrelated with true value gradients, effectively misdirecting the policy
during action generation. Large magnitude gradient signals contribute to the observed control sig-
nal explosions, while inaccurate Q-estimates compound through the guidance mechanism, further
reducing policy effectiveness.

A.3 Factor Interaction and Methodological Implications

The identified factors interact to create a degradation cycle that explains the complete failure on
puzzle tasks. Reduced network capacity constrains the critic’s ability to learn accurate Q-functions
for the combinatorial puzzle domain, leading to inaccurate Q-estimates that generate guidance gra-
dients with high norms (approximately 400). These high-magnitude guidance signals disrupt the
flow integration process, resulting in NaN values during action generation, which in turn provide
inadequate training signals that further impair both actor and critic learning. This interaction pat-
tern demonstrates that QFQL’s decoupled training approach, while effective in continuous control
domains, encounters fundamental limitations when both critic learning and network capacity are
insufficient for the task complexity.

The analysis reveals several important constraints on inference-time Q-guidance approaches.
Guidance-based methods may require increased rather than reduced model capacity for combinato-
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rial reasoning tasks, contrary to the parameter reduction achieved by eliminating distillation compo-
nents. Effective guidance depends critically on accurate Q-function learning, making the approach
unsuitable for domains where value estimation is inherently difficult. Gradient norms exceeding 100
may serve as early indicators of guidance mechanism failure, suggesting the need for adaptive mech-
anisms that reduce guidance strength when instability is detected. Finally, Q-guidance demonstrates
greater effectiveness in continuous control compared to discrete combinatorial domains, indicating
that the approach’s applicability may be fundamentally limited by the nature of the task domain
rather than implementation details.
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