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Abstract: Trajectory prediction modules are key enablers for safe and efficient
planning of autonomous vehicles (AVs), particularly in highly interactive traffic
scenarios. Recently, learning-based trajectory predictors have experienced con-
siderable success in providing state-of-the-art performance due to their ability to
learn multimodal behaviors of other agents from data. In this paper, we present an
algorithm called multi-predictor fusion (MPF) that augments the performance of
learning-based predictors by imbuing them with motion planners that are tasked
with satisfying logic-based rules. MPF probabilistically combines learning- and
rule-based predictors by mixing trajectories from both standalone predictors in ac-
cordance with a belief distribution that reflects the online performance of each
predictor. In our results, we show that MPF outperforms the two standalone pre-
dictors on various metrics and delivers the most consistent performance.

Keywords: trajectory prediction, rule-based planning

1 Introduction
The behavior of a traffic agent can depend on a very large number of factors such as the desired nav-
igation goal, personal driving style, local driving customs, etc., therefore, predicting future trajecto-
ries of traffic agents is a fundamentally challenging task. Deep learning-based approaches [1, 2, 3]
have emerged as front runners in this task due to their ability to extract patterns from complex high-
dimensional data and generate multimodal predictions. However, improving the interpretability of
these predictors and endowing them with ability to reason about the traffic law and nuanced traffic
scenarios remains an open challenge. Forcing the learned predictor to strictly conform with a spe-
cific set of logic rules can make the predictions brittle and sensitive to the completeness of the rules;
for instance, when an agent violates the traffic rules, a strict traffic-law abiding predictor would
forecast incorrect trajectories. In this paper, we present an approach to bake rules in the predictor
while retaining the flexibility afforded by a data-driven only approach and demonstrate its ability to
perform well on various real-world trajectory prediction datasets and metrics.

We introduce multi-predictor fusion (MPF) that combines learning-based trajectory predictors with
planning-based predictors using Bayesian belief updates. We maintain a belief distribution over
the standalone predictors. The probability assigned to each predictor by the belief distribution is
updated by monitoring their individual performance online; the belief probability mass is iteratively
shifted towards the better-performing predictor. Through this approach, MPF is able to relax the use
of rules if the data-driven approach is performing better, and vice-versa.

MPF provides various benefits: First, we observe that learning-based predictors and rule-based pre-
dictors perform well on complementary data regimes. Learning-based predictors perform better in
scenarios where multiple future outcomes are feasible due to their ability to reason about multi-
modality. On the other hand, rule-based planners can incorporate traffic laws and perform better
when the agent’s intended goal is unambiguous or the scene is out-of-distribution. The scatter plot
in Fig. 1(a) illustrates the complementary performance on different data: the average displacement
error (ADE) for a large number of scenes lies far away from the identity line, suggesting that one
of the two predictors is performing much better on them. Therefore, soft switching between the
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Figure 1: Motivation for predictor fusion and the architecture for multi-predictor fusion. (a) The scatter plot
depicts the Average Displacement Error (ADE) for each agent-centric prediction in the nuPlan-mini dataset for
learned (Trajectron++ [1]) and rule-hierarchy (RH) planner based predictor. (b) Architecture of MPF predictor.

predictors via the belief distribution can improve the overall prediction performance, and, in fact it
does, as we will discuss later in Section 4. Second, MPF is highly modular and can be used with any
off-the-shelf predictors1 without re-training them. This ability to “plug-and-play” predictors facili-
tates easier updates to the prediction module, e.g., adaptation to traffic laws in different geographical
regions. Finally, MPF is backpropagatable which facilitates end-to-end data-driven training / fine
tuning of the AV stack.

MPF includes three key components: a learned trajectory predictor, a rule-based trajectory predictor,
and a fuser (see Fig. 1(b)). We can use any learned trajectory predictor in MPF. For the rule-based
predictor we design a motion planner that plans for the agent that we are predicting for according to
a hierarchy of rules [4, 5, 6]. Rule hierarchies mirror the tendency of human drivers to relax lower
priority rules (e.g., speed limit) in favor of higher priority rules (e.g., collision avoidance),which is
the key to realizing realistic driving behaviors [7]. Furthermore, they can be encoded as a scalar
reward that can be used for fast online planning [6]. The fuser compares the performance of all
predictors according to some task-specific metric (e.g., displacement error, planning cost, etc.) and
maintains a belief distribution on the standalone predictors using η-generalized Bayes updates [8].

Statement of Contributions. The contributions of this paper are threefold: (i) We present a new
method for fusing learned and rule-based trajectory predictors such that they operate within the
data regime that they are proficient at. (ii) We develop a rule-based trajectory predictor using rule
hierarchies [6] that achieves a level of performance comparable to Trajectron++ [1]. (iii) Finally, we
demonstrate that MPF delivers more consistent performance across various prediction metrics and
on multiple trajectory prediction datasets than the learning- and rule-based predictors alone.

2 Related Works
Rule-based Trajectory Prediction. Human behavior typically conforms to a set of broad rules,
customs, and norms. Thus, many works on trajectory prediction have relied on building rule-based
models, with the underlying assumption that agents will act in compliance with a specified rule
set. Rules can range from simple heuristics [9], to enforcing physical constraints, or rules encoding
semantic traffic rules and norms, such as lane following [10]. We refer to [11] for a thorough survey
on such methods. The prediction quality of such models is generally limited by the rigidity or
incompleteness of rulesets. While recent work has demonstrated that appropriately designed rules
can be competitive in structured environments [7], such models still struggle in corner cases.

Learning-based Trajectory Prediction. These challenges has led to a proliferation of learning-
based approaches which aim to sidestep these issues by learning directly from datasets of observed
agent behavior. In particular, many deep learning architectures have been developed for this task,
varying in how they encode temporal sequences of data (e.g. using recurrent neural network (RNN)
[12, 13] or Transformer architectures [3]), how they reason about agent interactions (e.g. using pool-
ing operations [12], graph neural networks (GNNs) [2, 1], or attention mechanisms [3]), and how

1MPF can be used for any number and type of predictors (learning- or rule-based); however, in this paper,
we will limit our scope to fusing a learning- and a rule-based predictor.
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they represent their predictions (e.g. a single deterministic prediction [12], a probability distribution
over future trajectories [1, 14], or a set of samples [15]). Much of the focus of this research area
has been in ensuring that these models are able to condition on all available contextual cues, such
as lane geometry and semantic map information. Advances in model architectures paired with the
availability of high-quality large-scale datasets [16, 17, 18, 19] have led to impressive performance,
especially when evaluated on held-out test splits.

Fusing Learned and Rule-based Trajectory Prediction. Pure learning-based approaches can
struggle in corner cases, producing predictions that fail to obey common-sense road rules, e.g.,
drifting outside the road boundaries. To address such issues, recent work has considered fusing
some rule-driven structure into learning-based trajectory prediction models. One style of approach
is to first generate a set of candidate plans that satisfy kinematic feasibility and semantic traffic rules
via explicit rules-based motion planning, before using a learned model to subselect from these fixed
“anchors” to produce predictions [20, 21]. Alternatively, [22] consider applying rules, encoded in
the form of signal-temporal-logic specifications, as a post-processing step to “correct” the predic-
tions made by a learning-based model. These approaches connect learned prediction and rule-based
reasoning in series; in contrast, we propose an architecture which puts the two in parallel, dynam-
ically switching between the two on a per-agent basis. As such, it is trivial to alter one component
(e.g. adjusting the rules for the rule-based model) without retraining the learning-based components.
The closest work in the literature to our parallel architecture is [23]. However, [23] uses a different
approach than us to fuse the learning- and planning-based predictors. Furthermore, unlike us, [23]
assumes a priori availability of the agent’s ground-truth intent; we present a thorough comparison
with the fusion approach in [23, Section II-F] in Appendix C provided in the supplementary.

Recursive Bayesian Multi-Model Filtering. Our approach builds on core ideas of recursive
Bayesian filtering, a cornerstone of probabilistic robotics. In particular, our approach is similar
in spirit to early work in human trajectory forecasting which leveraged an interacting multiple mod-
els (IMM) filter [24, 25] to fuse predictions between basic single-rule models (constant velocity,
constant acceleration, constant turning) [26]. Similar ideas have been applied for vehicle prediction,
fusing simple kinodynamics based predictions with semantic map-based predictions (lane follow-
ing, lane changing, etc.) [27]. In this work, we take a similar approach to fuse predictions from a
learning-based model with a novel, more-expressive, rule-based prediction model.

3 Multi-Predictor Fusion
In this section, we will discuss the key building blocks of MPF, shown in Fig. 1(b). First, we define
our notation: Let x ∈ X be the state of the traffic agent for which we are predicting and y ∈ Y
be the joint state of all traffic agents in the scene. Let xt:t+τ and yt:t+τ be the discrete-time state
trajectories over some time duration from t to t + τ that lie in the space denoted by X ′ and Y ′,
respectively. The scene map is described by a vector m that lies in the space of map features M.

3.1 Learning-Based Trajectory Predictor

Learning-based trajectory predictors, denoted by l, typically take the form of generative networks
that produce a probability distribution P(xt+1:t+T |yt−H:t,m, l) on future trajectories over a horizon
of length T , conditioned on the historical state trajectories of all agents in the scene and the map.
For the sake of exposition, we have included the map information in the learning-based predictor,
however, this is not strictly needed; learned predictors that do not use map information can also be
used in our approach. At each prediction run, we sample N trajectories from the learned predictor,
i.e., {xl

t+1:t+T,i}Ni=1 ∼ P(xt+1:t+T |yt−H:t,m, l), and pass them to the fuser, as shown in Fig. 1(b).

3.2 Rule-based Trajectory Predictor

To complement the learned predictor, we propose a rule-based trajectory prediction model which
predicts agent behavior based on a specified traffic code. Importantly, rather than forcing agents to
satisfy a strict set of rules, we specify this code in the form of a rule-hierarchy, allowing agents to
relax satisfaction of less important rules (e.g., speed limit) if needed to ensure satisfaction of more
important rules (e.g. collision avoidance). This flexibility allows for handling edge-case scenarios
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in a scalable manner due to its ability to naturally adapt to exceptional scenarios without additional
supervision and has been shown to produce realistic driving behaviors [7].

Rules. We express the rules that we want a vehicle to satisfy as boolean expressions ϕ : X ′ × Y ×
M → {True, False} in the form of Signal Temporal Logic (STL) [28] using STLCG [29]. Each
STL rule is equipped with a robustness metric ρ : X ′×Y×M → R which returns positive values if
the rule is satisfied and negative values otherwise; larger positive robustness values indicate greater
satisfaction of the rule while smaller negative values indicate greater violation.

Rule Hierarchy. A rule hierarchy φ := {ϕi}ni=1 is defined as a sequence of rules indexed in
decreasing order of importance. The robustness vector ρ ∈ Rn of the rule hierarchy is defined as the
vector ρ := (ρ1, · · · , ρn) of the individual robustness of each rule ϕi. The rule hierarchy induces a
ranking of trajectories in accordance with the importance of the rules they satisfy; trajectories that
satisfy more important rules receive a superior rank than those that satisfy less important rules. For
instance, for a 2-rule hierarchy {ϕi}2i=1, trajectories that: satisfy both rules have rank 1, satisfy ϕ1

but violate ϕ2 have rank 2, satisfy ϕ2 but violate ϕ1 have rank 3, and violate both rules have rank 4;
see [6, Defintion 1] for a formal definition of the rank of a trajectory.

Planner. The planner first chooses the nearest lane to the agent (in terms of the Cartesian distance
as well as the orientation) as the lane for the agent to follow; the desired lane is denoted by the black
dashed line in Figs. 2(a) and 2(b). The rule hierarchy we use in this paper is presented in Fig. 2(c)
which contains four rules in decreasing importance: collision avoidance, follow the center polyline
of the lane to be followed, orient along the center polyline of the lane to be followed, and speed
limit. The planner is tasked with selecting trajectories with the highest possible rank. This can be
achieved efficiently by leveraging the rank-preserving reward function R : ρ 7→ R(ρ) ∈ R of a rule
hierarchy that embodies the property: trajectories with a higher rank receive a higher reward than
trajectories with a lower rank. We borrow the rank-preserving reward function from [6, Theorem 1]:

R(ρ) =

n∑
i=1

(
an−i+1step(ρi) +

1

n
ρi

)
, (1)

where a > 2. We generate a trajectory tree with K branches {x1
t+1,:t+T , · · · , xK

t+1:t+T } using
splines [14] in the same manner as described in [30] and compute the rank-preserving rewards
{R1, · · · , RK} for each trajectory; trajectory tree generation and reward computation are paral-
lelized on the GPU. The trajectory tree and the rewards of the branches can be visualized in Figs. 2(a)
and 2(b); trajectory tree branches with warmer colors receive a higher reward while branches with
cooler colors receive a lower reward. All vehicles, other than the one for which we are predicting,
are assumed to move with a constant velocity over the prediction horizon for computing the reward.
We adopt the constant-velocity prediction model for two main reasons: (i) Its computational effi-
ciency allows batching predictions for all traffic agents, enabling fast online runtimes; see Section 4.
(ii) The constant-velocity predictor has been shown to perform reasonably well [31].

Trajectory Prediction. Rather than choosing the trajectory with the highest reward, we transform
the trajectory tree to a discrete Boltzmann distribution P(xt+1:t+T |yt−H:t,m, r) by viewing the
rewards as the negative of the Boltzmann energy as follows:

pi =
exp(Ri/ζ)∑K
i=1 exp(Ri/ζ)

, (2)

where ζ > 0 is the temperature of the Boltzmann distribution, controlling the degree of opti-
mality we expect from real-world agents with respect to the chosen rule hierarchy. At each pre-
diction run, we sample N trajectories from the rule-hierarchy predictor, i.e., {xr

t+1:t+T,i}Ni=1 ∼
P(xt+1:t+T |yt−H:t,m, r), and pass them to the fuser, as shown in Fig. 1(b).

3.3 Fuser

To fuse the learned trajectory predictor with the rule-based predictor, we propose a recursive
Bayesian filtering scheme, similar to the interacting multiple model (IMM) filter. At a high level,
our approach maintains a belief over which of the learned and rule-based models best fits a particular
agent’s behavior, and fuses their predictions according to this belief. During runtime, as we observe
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Figure 2: Demonstration of the rule-hierarchy planner. In the first two figures, the pink vehicle is the agent we
are planning for. (a) Planning on a straight road. (b) Planning on a turn. (c) Rule hierarchy used in this paper.

agent behavior, we measure the performance of each individual model, and use this estimate to re-
cursively update this belief. In the rest of this section, we will discuss the mechanics of the belief
update and the building blocks of the fuser (shown in Fig. 1(b)) in more detail.

3.3.1 Performance Metric

The performance metric Γ : XN × X → [0,∞) can be any function that assesses how well the
observed state of the agent xt+1 conforms to the past predictions {xl

t+1,i}Ni=1 and {xr
t+1,i}Ni=1. This

block, effectively, serves as a run-time monitor on the “quality” of both the individual predictors.
Examples of performance metrics include average displacement error, final displacement error, like-
lihood of a kernel density estimate, downstream planning cost, or any other task-specific metric.

3.3.2 Belief Update

We follow a Bayesian approach to update the belief distribution. At the beginning of each episode
we choose a prior belief b0, e.g., an uninformed prior (0.5, 0.5), that reflects our initial knowledge
about the correctness of the two models. Each belief update consists of two parts: (i) the observation
step, and (ii) the mixing step. In the observation step, we collect the observed agent state xt+1, and
use Bayes rule to obtain the conditional probabilities

blt+1 = P(l | xt+1, yt−H:t,m) =
P(xt+1 | yt−H:t,m, l)blt

P(xt+1)
, (3)

brt+1 = P(r | xt+1, yt−H:t,m) =
P(xt+1 | yt−H:t,m, r)brt

P(xt+1)
. (4)

Using the above, we can express blt+1 in terms of brt+1 as follows:

blt+1 = αbrt+1, where α :=

(
P(xt+1 | yt−H:t,m, l)blt
P(xt+1 | yt−H:t,m, r)brt

)
. (5)

is the ratio of the likelihoods. In practice, we only obtain samples from each trajectory predictor, and
cannot directly evaluate a likelihood of the trajectories2. Instead, we can estimate the likelihoods in
α by using the performance metrics Γl := Γ({xl

t+1,i}Ni=1, xt+1) and Γr := Γ({xr
t+1,i}Ni=1, xt+1)

as the likelihood of observing xt+1, i.e., α = Γl/Γr. Intuitively, a high performance metric corre-
sponds to the predictor doing well at predicting the agent trajectory, and hence a high performance
metric should correspond to a high likelihood of observing the agent’s trajectory. Mathematically,
the only condition we need to ensure about Γ is that it should be integrable over its domain. This
can always be achieved for positive performance metrics (e.g., ADE) by defining Γ as the compo-
sition of the performance metric with a negative exponential. Rather than using the standard Bayes
update directly, we use the η-generalized Bayes update [8] here which introduces a scalar parameter
η ∈ (0, 1) in (5):

blt+1 = αηbrt+1. (6)

2We found that non-parametric likelihood estimation, e.g. using a kernel density estimation, led to numerical
instability
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The parameter η is called the learning rate and controls how fast the belief is updated on encountering
new “evidence”, i.e., xt+1. Choosing an η < 1 has been shown to produce better performance when
the probabilistic mechanism that generates the evidence is inconsistent with all models [8]; indeed,
this is likely the case in real-world trajectory predictions, because no learned or rule-based model
can describe all real-world agent behavior.

After factoring in the observation, we next account for the chance that the optimal model for a
particular agent might switch, e.g. if an agent switches their behavior. To account for this, we
update the belief by mixing it with the prior, analogous to the mixing step in an IMM. Thus, the full
belief update which we perform is given by:

bt+1 = (1− γ)

[
αη

1+αη

1
1+αη

]
+ γb0, (7)

where γ ∈ (0, 1) is a small positive constant close to zero (e.g., 0.1) representing the chance that the
agent behavior switches at any given timestep. Note that this corresponds to a geometric distribution
over the duration that a given model describes agent behavior; the mean time between switching
corresponds to 1/γ.

3.3.3 Belief Sampler

Finally, to make predictions, we sample predictions from both models according to the current be-
lief. As shown in Fig. 1(b), the belief sampler receives a set of N trajectories from each model, i.e.,
{xl

t+1:t+T,i}Ni=1 ∼ P(xt+1:t+T |yt−H:t,m, l) and {xr
t+1:t+T,i}Ni=1 ∼ P(xt+1:t+T |yt−H:t,m, r).

The belief sampler makes N draws from the belief distribution b to identify which predictor to
sample from. Let the number of draws from the learned predictor be N l and the number of draws
from the rule-based predictor be Nr, where N l + Nr = N . Then, the belief sampler draws N l

trajectories from {xl
t+1:t+T,i}Ni=1 and Nr trajectories from {xr

t+1:t+T,i}Ni=1 to construct the predic-
tions of MPF. These trajectory can either be re-sampled uniformly or we can choose the first N l or
Nr trajectories from {xl

t+1:t+T,i}Ni=1 or {xr
t+1:t+T,i}Ni=1, respectively, since the trajectories drawn

from the predictors are independent identically distributed (i.i.d.); we use the latter approach.

A complete algorithm for MPF is provided in Algorithm 1 in Appendix A.

4 Experimental Evaluation
In this section, we demonstrate MPF’s ability to deliver consistent performance across predic-
tion metrics and datasets. All experiments were conducted on a desktop computer with an AMD

Threadripper Pro 3975WX CPU and an NVIDIA RTX 3090 GPU.

Datasets. We test MPF on three AV datasets: nuPlan-mini [32], nuScenes [18], and Lyft [17]. In
particular, we use the validation splits of each of these datasets. For nuPlan-mini and nuScenes we
use the entire validation dataset while for Lyft we use 10% of the validation dataset. The data is
loaded in an agent-centric manner using trajdata [19]. The number of prediction scenes (scene
information for predicting the trajectory of an agent) and episodes (continuous sequence of agent
trajectory rollout) for each dataset are provided in Table 2 in Appendix B.2.

Predictors. In the results, we compare Trajectron++ [1], the rule hierarchy (RH) predictor that we
developed in Section 3.2, and MPF that probabilistically fuses both the former models using the
Bayesian belief approach discussed in Section 3.3.2.

Metrics. For each frame and agent in the dataset, we sample N trajectory predictions from each
predictor denoted by {xp

t+1:t+T,i}Ni=1 (where the superscript p denotes the predictor from which
the trajectories are sampled). Let {xt+1:t+T }Ti=1 be the ground truth future trajectory of the agent
for which we are predicting. We compute the following metrics: (i) Average Displacement Error
(ADE) is average of the mean distance error across all N predicted trajectories and the ground truth
future trajectory: 1

NT

∑N
i=1

∑T
τ=1 ∥x

p
t+τ,i −xt+τ∥. (ii) Final Displacement Error (FDE) is average

of the distance error between the last time step of all N predicted trajectories and the last time-
step of the ground truth future trajectory: 1

N

∑N
i=1 ∥x

p
t+T,i − xt+T ∥. (iii) minADE is the small-

est mean distance error across all N predicted trajectories and the ground truth future trajectory:
mini=1,··· ,N

1
T

∑T
τ=1 ∥x

p
t+τ,i − xt+τ∥. (iv) minFDE is the smallest distance error between the last
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NuPlan mini
Predictor Mean (m) CVaR0.1 (m) Mean Diff From

ADE FDE minADE minFDE ADE FDE minADE minFDE Best (MDB) (%)
Traj++ 2.38± 0.01 5.31± 0.01 0.87± 0.01 1.07± 0.01 5.42± 0.07 11.10± 0.10 3.05± 0.07 4.45± 0.10 39.64

RH Pred (ours) 1.66± 0.01 3.87± 0.02 0.96± 0.01 2.12± 0.02 5.05± 0.04 11.74± 0.08 3.94± 0.04 9.10± 0.09 70.96
MPF (ours) 1.95± 0.01 4.53± 0.02 0.54± 0.00 0.80± 0.01 4.34± 0.02 10.04± 0.06 1.74± 0.01 3.41± 0.03 4.36

NuScenes

Predictor Mean (m) CVaR0.1 (m) Mean Diff From
ADE FDE minADE minFDE ADE FDE minADE minFDE Best (MDB) (%)

Traj++ 2.40± 0.01 5.48± 0.02 0.81± 0.00 1.06± 0.01 4.56± 0.04 10.08± 0.07 2.16± 0.03 3.49± 0.05 18.17
RH Pred (ours) 1.82± 0.01 4.24± 0.03 0.95± 0.01 2.05± 0.02 5.32± 0.05 11.76± 0.11 4.07± 0.05 9.11± 0.11 64.68

MPF (ours) 2.09± 0.01 4.85± 0.02 0.54± 0.01 0.83± 0.01 4.70± 0.04 10.34± 0.08 2.04± 0.03 3.73± 0.05 5.17

Lyft

Predictor Mean (m) CVaR0.1 (m) Mean Diff From
ADE FDE minADE minFDE ADE FDE minADE minFDE Best (MDB) (%)

Traj++ 2.78± 0.00 6.04± 0.01 1.05± 0.00 1.30± 0.00 6.23± 0.01 13.20± 0.03 3.12± 0.01 5.07± 0.02 8.44
RH Pred (ours) 2.36± 0.01 5.36± 0.01 1.53± 0.00 3.30± 0.01 7.94± 0.02 18.23± 0.05 6.54± 0.02 14.93± 0.06 79.09

MPF (ours) 2.55± 0.00 5.69± 0.01 0.85± 0.00 1.25± 0.00 6.63± 0.02 14.74± 0.03 2.87± 0.01 5.18± 0.02 4.28

Table 1: Results for 4 second prediction horizon with N = 20 rounded to the nearest second decimal.

time step of all N predicted trajectories and the last time-step of the ground truth future trajectory:
mini=1,··· ,N ∥xp

t+T,i − xt+T ∥. For all the above metrics, we report their mean and the 0.1-level
conditional value-at-risk (CVaR) [33, 34] across all prediction scenes. CVaR0.1 is the mean of the
top-10% tail of the histogram for each metric and provides insights about the “tail” performance.

Figure 3: Incorrect lane choice.

The last metric we present is the Mean Difference from
Best (MDB) which combines all the above metrics to pro-
vide a comparative performance measure. MDB com-
putes the average percentage difference between a pre-
dictor’s performance on a metric from that of the best per-
forming predictor on the same metric. Let there be J met-
rics for each predictor p, denoted by µp

j , and let µ∗
j be the

metric value for the best performing predictor on that met-
ric. Then, MDB is computed as: 1

J

∑J
j=1

µp
j−µ∗

j

µ∗
j

× 100.
If a predictor is the best at all metrics, then it will have
an MDB of 0%. We report MDB across all eight met-
rics discussed above, i.e., the mean and CVaR0.1 of ADE,
minADE, FDE, and minFDE.

Results and Discussion. We report the performance of our predictors on all datasets in Table 1
along with 95% confidence intervals. MPF performs well on various metrics across all datasets. In
particular, MPF demonstrates the lowest MDB across all datasets, highlighting its consistency across
all metrics: Low MDB indicates that even if MPF is not the best predictor on a metric, it is at least
close to the best performing predictor. For example, MPF does not have the best Mean ADE and
FDE in all the three tables, but its performance is closer to RH predictor’s than that of Trajectron++.

Remarkably, the handcrafted RH predictor with a very simple rule hierarchy (Fig. 2(c)) has a per-
formance comparable to Trajectron++; in fact, MPF prefers RH predictor over Trajectron++, as
indicated by the average belief for the RH predictor being greater than 0.5 across all datasets in
Table 4 provided in Appendix B.4. RH predictor has the best mean ADE and mean FDE among all
predictors, but has a higher mean minADE and mean minFDE. The violin plots in Fig. 4 plot the
spread of ADE, FDE, minADE, and minFDE across all scenes in each dataset. In Fig 4 we observe
that Trajectron++ yields metrics which follow a unimodal distribution smoothly tapering to the tail.
In contrast, the RH predictor performs well on a majority of scenes (a large mode near lower metric
values), but also has a distinct mode with poor performance. This behavior can be attributed the
RH predictor’s limited ability to reason about multimodality in the agent’s goal. As an example, in
Fig. 3, the RH planner assumes the agent aims to follow the lane corresponding to the black dashed
curve which turns right. However, in this case there are other plausible options as well, including the
ground truth in this scenario where the agent turns to the left, shown in the pink curve. By switching
between the Trajectron++ and RH predictors, we are able to take advantage of the RH predictor’s
superior performance when it predicts the correct lane line to follow and Trajectron++’s better per-
formance when the RH predictor gets the desired lane line wrong. The improvement by MPF can be
visually observed in Fig. 4 where the distribution for MPF mitigates the second mode of poor per-
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Figure 4: Violin plots for visualizing the spread of the metrics on the datasets for all three predictors.

formance by the RH predictor and shifts the entire distribution towards lower metric values relative
to Trajectron++. Furthermore, we observe that our η-generalized Bayes filter approach performs
better than the thresholded-likelihood approach in [23]; more details are provided in Appendix C.

Runtime Considerations. The average time for MPF to predict for a single agent at a given time-
step is ≈ 0.08665 seconds. Of this, the bulk of the time is spent in querying the standalone predictors
and a very minuscule amount of time is spent on the fuser: on average, 0.06994 seconds are spent
on querying trajectories from the rule hierarchy predictor, 0.01671 seconds from Trajectron++, and
0.013 milliseconds on the belief update and re-sampling from the fuser. The speed of MPF can be
attributed to the high degree of parallelization on the GPU. There is scope for further computational
speed improvement by parallelizing the querying of the standalone predictors.

5 Conclusion, Limitations, and Future Work
Conclusion. In this work, we demonstrated that a cost function constructed by encoding traffic
code in the form of a rule-hierarchy can be leveraged to produce competitive future predictions
for vehicles in traffic. Furthermore, we proposed MPF, a method to fuse the predictions from the
rule-hierarchy planner with predictions from a learned trajectory forecaster to yield a prediction
framework which plays to the complementary strengths of each model. We evaluated the fusion
approach on real-world trajectory prediction datasets and demonstrated the yields improved predic-
tions relative to a learned baseline across a suite of metrics.

Limitations. Our approach has two main limitations. The first limitation is the additional compu-
tational expense of querying an ensemble of predictors as compared to running a single predictor.
This challenge can be mitigated by parallelizing the predictor querying; however, it still involves
some parallelization overhead and greater memory requirement on the GPU. The second limitation
of MPF is the lack of multimodal behavior exhibited by the RH predictor, as discussed in Fig. 3. Fi-
nally, we remark that MPF shares the limitation of all agent-centric predictors: the need to parallelize
predictions queries across all agents to ensure feasible computational run times.

Future Work. This work provides various exciting opportunities for future work. On the practical
front, we will explore methods, such as [21], for introducing better multimodal behaviors for the
planner in the rule hierarchy predictor, perform a closed-loop evaluation of MPF, parallelize predic-
tions for all agents in a scene, and develop a more detailed rule hierarchy. On the theoretical front,
we will explore the use of online learning techniques that provide convergence guarantees for the
belief distribution.
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A Algorithm for MPF
The algorithm for MPF is provided in Alg. 1. We use the agent-centric dataloader generated by
trajdata [19] to access various prediction datasets ([32, 18, 17]) in a unified representation. In
lines 15-16, trajectories from the standalone predictors are sampled, and in lines 8-13, the belief
update discussed in Section 3.3.2 is performed.

Algorithm 1 Multi-Predictor Fusion (MPF)
1: Input: learn predictor, rule predictor, dataloader (agent-centric)
2: Output: pred MPF← [] (list of MPF predictions)
3: Hyperparameters: number of trajectory samples per scene N , prediction horizon T , Bayes learning rate

η, convex combination factor with prior γ in (7), belief prior b0.
4: for episode in dataloader do
5: t← 0, b← b0
6: learn predictor history← ∅, rule predictor history← ∅,
7: for scene in episode do
8: if t > 0 then
9: xt ← observe current agent state()

10: likelihood learn← get likelihood(learn predictor history, xt)
11: likelihood rule← get likelihood(rule predictor history, xt)
12: α← (likelihood learn∗bl)/(likelihood rule∗br)

13: new belief←
[

αη

1+αη

1
1+αη

]
14: b← (1− γ)new belief + γb0
15: end if
16: {xl

t+1:t+T,i}Ni=1 ← learn predictor.sample(scene,N,T)

17: {xr
t+1:t+T,i}Ni=1 ← rule predictor.sample(scene,N,T)

18: learn predictor history← {xl
t+1,i}Ni=1

19: rule predictor history← {xr
t+1,i}Ni=1

20: pred MPF.append(belief sampler({xl
t+1:t+T,i}Ni=1, {xr

t+1:t+T,i}Ni=1, b)
21: t+ = 1
22: end for
23: end for
24: return pred MPF

B Further Details on Experimental Evaluation
B.1 Hyperparameters

In our experimental evaluation we set the hyperparameters in line 3 of Alg. 1 as N = 20, T = 8,
η = 0.1, γ = 0.1, and an uninformed prior b0 = [0.5, 0.5]. The time dt between two timesteps is
0.5 seconds.

B.2 Dataset Details

The number of scenes and episodes per dataset are provided in Table 2 below:

Dataset Scenes Episodes

nuPlan-mini val 118030 6814
nuScenes val 66620 4140
Lyft val 10% 744448 49196

Table 2: Dataset Details

B.3 η and γ study

We first set η = 0.1 and vary γ in (7). The mean difference from best (MDB) for MPF, compared
against Trajectron++ and RH Predictor, for different choices of γ are reported on the left-hand side
of Table 3. As can be noted from the last row, the performance of MPF is not very sensitive to the
choice of γ. Then we choose the smallest best performing γ (i.e., 0.1) and sweep across four values
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of η. The results for that are reported on the right-hand side of Table 3. With η we see a clear trend
that smaller η perform better than larger η when MDB is averaged across all datasets. A large η
updates the belief more aggressively based on the past evidence, potentially making more mistakes
compared to a smaller η that results in more cautious belief updates.

Dataset MDB (%) @η = 0.1 MDB (%) @γ = 0.1
@γ = 0.05 @γ = 0.1 @γ = 0.15 @γ = 0.20 @η = 0.1 @η = 0.4 @η = 0.7 @η = 1.0

NuPlan-mini 4.31 4.36 4.41 4.46 4.36 4.29 4.18 3.72
NuScenes 5.19 5.17 5.16 5.16 5.17 5.23 5.42 6.45

Lyft 4.32 4.28 4.24 4.21 4.28 4.53 5.18 8.68

Avg. MDB on Datasets 4.61 4.60 4.60 4.61 4.60 4.68 4.93 6.28

Table 3: MDB for different η and γ in Bayes update.

B.4 Belief statistics

For the MPF results presented in Table 1, we additionally provide statistics on the belief distribution
between the RH predictor and Trajectron++ in Table 4. We observe that the mean belief for RH
predictor is greater than 0.5, indicating that on-average, MPF relies more on RH predictor than
Trajectron++ across all datasets. We note that the standard deviation for the belief of both predictors
is always the same because they are related by bl = 1 − br, where bl and br are the belief for
Trajectron++ and RH predictor, respectively.

Dataset Predictor Mean Std Min Max

NuPlan-mini RH Pred 0.53 0.06 0.26 0.95
Traj++ 0.47 0.06 0.05 0.74

NuScenes RH Pred 0.54 0.03 0.07 0.92
Traj++ 0.46 0.03 0.08 0.93

Lyft RH Pred 0.54 0.05 0.05 0.94
Traj++ 0.46 0.05 0.06 0.95

Table 4: Belief statistics for MPF results in Table 1.

C Comparison with [23]
In this section we compare the performance of our η-generalized Bayes filter used in MPF with the
thresholded-likelihood approach in [23, Section II-F]. We compute the likelihood of the observation
given Trajectron++, i.e., P(xt+1 | yt−H:t,m, l) and switch to the RH predictor when it dips below a
threshold ν as follows: {

RH Predictor, P(xt+1 | yt−H:t,m, l) < ν,

Trajectron++, otherwise
(8)

Since it is not clear what the best threshold should be, we sweep ν across 0.1, 0.2, 0.3, 0.4, and
0.5 and report all of them in Table 5. To further mimic the approach in [23], we use the same
historical buffer window (i.e., time delay in switching) of 3-seconds; [23] uses 30-timesteps which
corresponds to a 3-second window according to their dataset.

In Table 5, we notice that [23] serves as a strong baseline which results in a mixed model that does
better than Trajectron++ and RH predictor on many metrics (compare with Table 1). However,
overall MPF outperforms the switching approach of [23], as summarized by the lowest MDB3 for
all three datasets in Table 5. The reason behind this is MPF’s ability to mix trajectories at every
time-step which allows it to rapidly respond to performance degradation by a predictor. MPF is able
to achieve this because it maintains a belief distribution over the standalone predictors, unlike [23].

3In Table 5, MDB is computed across six predictors: five predictors based on [23] with varying ν and MPF.
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NuPlan mini
Predictor Mean (m) CVaR0.1 (m) Mean Diff From

ADE FDE minADE minFDE ADE FDE minADE minFDE Best (MDB) (%)
ν = 0.1 2.28± 0.01 5.18± 0.01 0.78± 0.00 0.97± 0.01 4.51± 0.04 9.88± 0.06 2.23± 0.04 3.44± 0.06 16.42
ν = 0.2 2.27± 0.01 5.16± 0.01 0.77± 0.00 0.97± 0.01 4.42± 0.04 9.77± 0.06 2.17± 0.04 3.42± 0.06 15.26
ν = 0.3 2.26± 0.01 5.16± 0.01 0.77± 0.00 0.97± 0.01 4.38± 0.04 9.74± 0.06 2.14± 0.03 3.41± 0.06 14.68
ν = 0.4 2.26± 0.01 5.16± 0.01 0.77± 0.00 0.97± 0.01 4.36± 0.04 9.74± 0.06 2.14± 0.04 3.46± 0.06 14.80
ν = 0.5 2.26± 0.01 5.16± 0.01 0.77± 0.00 0.98± 0.01 4.37± 0.04 9.78± 0.07 2.15± 0.04 3.55± 0.06 15.53

MPF (ours) 1.95± 0.01 4.53± 0.02 0.54± 0.00 0.80± 0.01 4.34± 0.02 10.04± 0.06 1.74± 0.01 3.41± 0.03 0.40

NuScenes

Predictor Mean (m) CVaR0.1 (m) Mean Diff From
ADE FDE minADE minFDE ADE FDE minADE minFDE Best (MDB) (%)

ν = 0.1 2.40± 0.01 5.48± 0.02 0.81± 0.00 1.06± 0.01 4.56± 0.04 10.07± 0.07 2.16± 0.03 3.49± 0.05 14.07
ν = 0.2 2.40± 0.01 5.48± 0.02 0.81± 0.00 1.06± 0.01 4.56± 0.04 10.08± 0.07 2.17± 0.03 3.50± 0.05 14.17
ν = 0.3 2.40± 0.01 5.48± 0.02 0.82± 0.00 1.07± 0.01 4.57± 0.04 10.09± 0.07 2.18± 0.03 3.53± 0.06 14.42
ν = 0.4 2.40± 0.01 5.48± 0.02 0.82± 0.00 1.07± 0.01 4.57± 0.04 10.11± 0.07 2.20± 0.03 3.60± 0.06 15.03
ν = 0.5 2.41± 0.01 5.50± 0.02 0.83± 0.01 1.12± 0.01 4.64± 0.04 10.26± 0.08 2.31± 0.03 3.94± 0.07 18.22

MPF (ours) 2.09± 0.01 4.85± 0.02 0.54± 0.01 0.83± 0.01 4.70± 0.04 10.34± 0.08 2.04± 0.03 3.73± 0.05 1.58

Lyft

Predictor Mean (m) CVaR0.1 (m) Mean Diff From
ADE FDE minADE minFDE ADE FDE minADE minFDE Best (MDB) (%)

ν = 0.1 2.78± 0.00 6.03± 0.01 1.05± 0.00 1.30± 0.00 6.23± 0.01 13.19± 0.03 3.12± 0.01 5.07± 0.02 6.46
ν = 0.2 2.78± 0.00 6.03± 0.01 1.05± 0.00 1.31± 0.00 6.23± 0.01 13.21± 0.03 3.14± 0.01 5.13± 0.02 6.75
ν = 0.3 2.78± 0.00 6.04± 0.01 1.06± 0.00 1.33± 0.00 6.23± 0.01 13.28± 0.03 3.19± 0.01 5.31± 0.03 7.78
ν = 0.4 2.78± 0.00 6.06± 0.01 1.07± 0.00 1.40± 0.01 6.33± 0.02 13.57± 0.03 3.38± 0.01 5.88± 0.03 11.47
ν = 0.5 2.80± 0.00 6.14± 0.01 1.12± 0.00 1.57± 0.01 6.59± 0.02 14.31± 0.04 3.83± 0.02 7.22± 0.05 20.66

MPF (ours) 2.55± 0.00 5.69± 0.01 0.85± 0.00 1.25± 0.00 6.63± 0.02 14.74± 0.03 2.87± 0.01 5.18± 0.02 2.53

Table 5: Results comparison between MPF and the Bayesian failure monitoring approach in [23, Section II-F]
for 4-second prediction horizon with N = 20 rounded to the nearest second decimal.
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