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ABSTRACT

Understanding proteins based on tertiary structures is foundational in protein sci-
ence, such as figuring out protein functions and enzyme-catalyzed reactions, as
highlighted in this study. Accurate prediction is essential for elucidating the bio-
logical roles of proteins, advancing disease research, drug discovery, deciphering
metabolic pathways and designing enzymes for medical and biotechnological ap-
plications. However, traditional methods often struggle to integrate these tasks
effectively, especially when solely relying on structural data. Furthermore, these
approaches typically lack the ability to incorporate iterative feedback from domain
experts—a critical aspect of the complex and evolving nature of protein research. To
address these challenges, we present STELLA, a multimodal large language model
(LLM) that leverages structural representations to enhance protein understanding.
By bridging the gap between structural representations and the contextual knowl-
edge encoded within LLMs, STELLA harnesses the capabilities of LLMs enriched
with structural information, offering interactive and versatile predictions across
protein-related tasks. This approach provides a novel paradigm for understanding
proteins, extending the limits of capabilities of LLM-based approaches in protein
biology. Comprehensive experimental evaluations demonstrate STELLA’s superior
performance in both tasks, signalling as a potential approach in these domains.
This study underscores the effectiveness of integrating structural data with LLMs,
highlighting the transformative potential of multimodal LLMs for future research
in protein biology, and affirming the value of continued exploration in this field.
To foster collaboration and drive further innovation, we provide open access to the
code, datasets, and pre-trained models. Please visit the anonymous GitHub reposi-
tory via https://anonymous.4open.science/r/STELLA-DFO0O0.

1 INTRODUCTION

Protein biology revolves around the interplay of three data modalities: sequence, structure, and
function (text). The principle “sequence determines structure, and structure determines function”
underscores the critical link between a protein’s amino acid sequence, its tertiary structure, and its
biological role, such as its function or enzyme-catalyzed reactions. The sequence dictates protein
folding and overall structure, and understanding this structure is essential for accurate function and
enzyme reaction prediction. Structural data provide insights into how a protein’s conformation,
including active sites or binding pockets, facilitates its function. Accurate knowledge of a protein’s
structure, especially the key features involved in catalysis, is pivotal for predicting its biochemical role
and advancing research in areas such as disease understanding, drug discovery, enzyme engineering.

Despite the availability of large-scale structure databases, including the RCSB Protein Data Bank
(PDB) E] (Berman et al.,|2000) and the AlphaFold Protein Structure Database (AFDB) E] (Varadi et al.}
2021) resulted from the computational tool AlphaFold 2 (AF2) (Jumper et al.| 2021)), challenges
remain in fully leveraging structural data for protein understanding, such as function and enzyme-
catalyzed reaction prediction. The PDB, one of the most comprehensive repositories of experimentally
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determined protein structures, has been instrumental in advancing structural biology. However, the
PDB entries still lack detailed functional annotations except for function keywords, and the sheer
volume of data makes manual annotation impractical. Similarly, while AFDB significantly expands
the availability of predicted structures, these predictions often lack the functional and biochemical
context required for practical applications. This creates a gap that limits the utility of structural data
in biological research and industrial processes.

Current function prediction methods often rely on clustering by protein structure similarity (Barrio-
Hernandez et al.| 2023; Huang et al.| 2023), which may not fully capture the complexity of protein
structure-function relationships. Moreover, these methods rarely incorporate iterative feedback
from domain experts, a critical factor for refining predictions and improving their accuracy. Pre-
dicting enzyme-catalyzed reactions adds another layer of complexity, which has attracted plentiful
research (Derevyanko et al.l 2018} Steinegger et al.||2019; Hermosilla et al., [2021; Zhang et al.| 2022
Hermosilla and Ropinskil, 2022} [Fan et al.|2022). Understanding the specific residues involved in
catalysis, their spatial arrangement, and how these features relate to reaction mechanisms is crucial.
Traditional methods often struggle to integrate the fine-grained structural details needed for accurate
enzyme prediction, particularly when trying to model the influence of both local and global structural
factors. These models need to account for the complexities of enzyme active sites, substrate binding,
and reaction kinetics, all of which are heavily dependent on detailed structural information.

To address these challenges, innovative approaches that combine protein structural data with advanced
computational models are essential. Large language models (LLMs) offer a promising solution by
integrating structural data with vast biochemical knowledge, enabling them to learn complex structure-
function relationships from large datasets. LLMs can capture long-range dependencies and patterns
in protein data without the need for manually designed features, and their ability to iteratively process
feedback makes them ideal for improving the accuracy of protein function and enzyme-catalyzed
reaction predictions.

This study introduces STELLA, a multimodal LLM designed to bridge machine-readable protein lan-
guage and human-readable natural language. STELLA leverages protein structural representations to
enhance protein understanding through the strengths of LLMs, enabling it to interpret protein tertiary
structures and predict protein functions and enzyme-catalyzed reactions from diverse user inputs.
Comprehensive experiments were conducted in protein function prediction and enzyme-catalyzed
reaction prediction. By integrating structural data and LLM capabilities, STELLA significantly
enhances our ability to predict protein functions and enzyme activities, addressing key challenges
in protein biology. The architecture, methodology, and performance of STELLA are presented,
alongside open access to the code, data, and pre-trained models to foster collaboration and further
research in the field. Key contributions of this study include:

1. STELLA, a unified multimodal LLM for protein function and enzyme-catalyzed reaction prediction,
integrates tertiary structure representations with advanced LLM capabilities, offering a novel approach
for accurate protein understanding.

2. STELLA surpasses existing tools in versatility by combining structural insights with LLM
inference, efficiently handling large-scale structures for function and enzyme reaction predictions,
overcoming limitations of traditional methods.

3. The study provides open access to the code, data, and pre-trained models, fostering collaboration
and enabling further exploration in protein science, contributing robust tools for future research.

We anticipate that this study will contribute to advancing the field of protein science and computational
biology driven by multimodal LLMs, fostering further innovation and collaboration within the
community.

2 RELATED WORK

2.1 PROTEIN-TEXT MODELING

The long-term goal of protein representation learning is to extract biologically relevant information
from diverse data modalities, including amino acid sequences and tertiary structures (i.e., protein
language) as well as relevant texts in natural language that encapsulate protein related knowledge.
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Aligning the protein language and natural language has emerged as a crucial aspect of advancing
protein representation learning, and attracted much attention in the research community. For in-
stances, ProtST (Xu et al.| 2023) utilizes contrastive learning to align amino acid sequences with
biomedical texts, aiming to obtain biologically informative protein embeddings that can be applied
to various downstream tasks. Besides protein representation learning, ProteinDT (Liu et al., 2023a)
leverages textual data to enhance protein design in text-to-sequence generation tasks. Additionally,
Prot2Text (Abdine et al.l 2023) proposes a method of aligning protein structures and function de-
scription texts by using a fused multimodal encoder-decoder framework. In Prot2Text, the encoder
is composed of a Relational Graph Convolutional Neural Network (RGCN) for encoding protein
structures and a ESM2-35M (Lin et al.,[2022) for encoding amino acid sequences and the decoder is
a pretrained GPT-2 model to generate protein function annotations. Before the prevalence of LLMs,
protein representation learning mainly focuses on single modality like amino acid sequences, or
sequence-text alignment by contrastive learning. Hardly any research engages in how to effectively
bridge biological language (e.g., protein tertiary structures) to the massive knowledge embedded in
natural language that plays a pivotal role in both scientific communication and discovery. As we all
know, the process of scientific discovery is a procedure propelled by communication among domain
experts and iterative experimentation. Therefore, the excellent conversation and reasoning abilities of
LLMs are highly expected to empower the process of scientific discovery.

2.2 LLMS FOR PROTEIN BIOLOGY

Recent studies have highlighted the potential of LLMs in advancing biomedical research, spanning
molecules, proteins, and RNA. In the specific domain of protein biology, several notable develop-
ments have emerged. ProTokens (Lin et al.,2023)) employs discrete and compressed protein tokens
that encode rich structural information for LLMs. These tokens are learned through an autoencoder
framework, with both the input and output consisting of 3D protein structures. InstructProtein(Wang
et al.;,|2023) constructs instruction datasets derived from a knowledge graph to address the annota-
tion imbalance present in previous protein-text datasets. This dataset is utilized to fine-tune LLMs
for aligning protein sequences with natural language, enabling bidirectional tasks such as predict-
ing functions from sequences and generating protein sequences from natural language prompts.
BioMedGPT (Luo et al.| 2023) employs a fully-connected layer to connect an amino acid sequence
encoder, ESM-2-3B (Lin et al.||[2022), and Llama2-Chat-7B (Touvron et al.,[2023)), which has been
incrementally pretrained on biomedical literature from S20RC (Lo et al.}2020). ProteinChat (Huo
et al., 2024) represents a more recent multi-modal LLM designed to predict protein functions. It
integrates a protein sequence encoder, XTrimoPGLM (Chen et al.| |2024), with the Vicuna-13B
model (Zheng et al.,[2023)) through a linear layer adapter. Trained on over 1.5 million protein-related
(protein, prompt, answer) triplets from the Swiss-Prot dataset, ProteinChat covers a wide range of
protein functions. By taking an amino acid sequence as input, it generates comprehensive narratives
detailing the functional properties of the given protein.

3 A FIRST LOOK AT STELLA’S CAPABILITIES THROUGH CASE STUDIES

STELLA demonstrates outstanding performance in protein understanding by integrating structural
representations into LLMs. As illustrated in Fig. [T] (left), STELLA excels in following natural
language instructions and providing responses that align with the research goals of human specialists.
During the interaction, STELLA correctly identified the primary function of the newly reviewed
protein G1TFEOQ in the Swiss-Prot database, accurately recognizing it as a component of the large
ribosomal subunit. As the dialogue progressed, STELLA elaborated on the core constituents of the
ribonucleoprotein complex, highlighting its extensive domain knowledge. Additionally, STELLA
showcased its reasoning capabilities by linking the loss of ribosomal function to cellular dysfunctions,
demonstrating its ability to establish connections between complex biological processes. In the right
panel of Fig. |1} STELLA accurately predicted the function of another newly characterized protein,
AOA1DOBR98. Upon further inquiry from the user, it explained details about the mechanisms of
the toxin and provided practical treatments. Both case studies illustrate STELLA’s ability to predict
protein functions from structural data and to deliver informative, contextually relevant responses
tailored to diverse research objectives. Moreover, STELLA’s robust reasoning abilities enable it to
assist domain experts in uncovering connections between protein functions and disease mechanisms,
further highlighting its potential to drive scientific discovery and innovation.
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Function of this protein (SwissProt ID: G1TFEQ, release date is 27-Mar- Function of this protein (SwissProt ID: AOA1DOBR98, release date is
2024): 27-Mar-2024):

Component of the large ribosomal subunit. The ribosome is a large

ribonucleoprotein complex responsible for the synthesis of proteins Probable ion channel inhibitor.

in the cell.

Could you predict the function of this protein? %%@ﬁ What is the function of this protein?
\

[AFDB_ID: AF-G1TFEQ-F1-model_v4.pdb] il [AFDB_ID: AF-AOA1DOBR98-F1-model_v4.pdb]

Sure! This protein is a component of the large ribosomal
subunit, which is responsible for the synthesis of proteins in
the cell.

The protein is a probable ion channel inhibitor.

e f : i o
G What are the main components of a large ribonucleoprotein OB Soitisa possible kind of toxin?
F fi complex? e ]
\ VAL
The large ribonucleoprotein complex is composed of several 7 Yes, it is possible that this protein could be used as a toxin,
proteins and ribonucleotides. The protein we're looking at is i perhaps to disrupt the normal functioning of ion channels in
one of the components of this complex.

the body and cause harm.

What is the possible result if this function is lost? What are the possible treatments?

If this function is lost, the large ribonucleoprotein complex may
not be able to function properly, leading to errors in protein
synthesis and potentially affecting cellular function.

Well, if this protein is found to be a toxin, then the best course
of treatment would be to neutralize it, either by binding to it
or by breaking it down into smaller pieces.

Figure 1: STELLA’s ability to engage in conversation (Model used: STELLA-ESM3-Llama-
3.1-8B-Instruct). The protein G1TFEO and AOA1DOBR9S are from newly release 2024_02 of the
Swiss-Prot database. Left: protein G1TFEO. Right: protein AOA1DOBR9S. Orange box: ground
truth of the function. Blue Box: inquiry from the user. Green box: output of the model. Images
indicating the user and assistant were generated by Al tools.

4 METHODOLOGY

4.1 TASK DEFINITION

Function Prediction (FP). Through multimodal instruction tuning, STELLA effectively aligns
protein structural representations with natural language, enabling the accurate prediction of protein
functions from tertiary structures. By leveraging multimodal instruction data, STELLA can uncover
novel functional associations, substantially reducing the labor-intensive process of manual annotation.
This approach offers a powerful and flexible tool for protein function prediction. Furthermore,
the integration of LLM-based multi-turn dialogues supports iterative interactions with researchers,
facilitating continuous refinement of predictions. This adaptive learning process, driven by expert
feedback, not only enhances the model’s performance but also allows for tailored adjustments to meet
specific research objectives.

Enzyme Name Prediction (EP). Predicting enzyme-catalyzed reactions aim at forecasting the
biochemical outcomes facilitated by enzymes. Enzymes, as protein-based biological catalysts,
are essential for accelerating chemical reactions by lowering activation energy barriers. Accurate
prediction of enzyme-catalyzed reactions holds substantial value across various domains, including
drug discovery, metabolic engineering, and synthetic biology. In this study, enzyme-catalyzed
reactions were mapped to their corresponding enzyme names, which serve as proxies for the reactions
in which the associated proteins are involved. This approach allows for more seamless integration
with LLMs, ensuring that the task of enzyme name prediction effectively captures the biological
functions of enzymes in a way that aligns with the capabilities of LLMs.

4.2 STELLA MODEL ARCHITECTURE

Overview. STELLA is a multimodal model for protein modeling, drawing inspiration from
LLaVA (Liu et al. 2023b), a prominent multimodal architecture designed for vision-language
tasks that integrates vision encoders with LLMs. As illustrated in Fig.[2] STELLA is composed of
three key components: a protein structure encoder, a modality connector, and a LLM. Similar
to the typical two-stage training paradigm employed by LLaVA and other multimodal LLMs such
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as Bunny (He et al.l [2024), STELLA adopts a two-stage multimodal instruction tuning (MMIT)
approach, which has proven effective in this study. What differs is that STELLA’s two stages of
training utilize the same datasets, due to the extreme scarcity of protein instruction data. The prompt
templates for training are provided in[A.T] and hyperparameters in Table[7] (Appendix [A.2).

Protein structure encoder. The protein structure encoder is responsible for translating protein tertiary
structures into high-dimensional structural representations. In this study, we utilize ESM3 (Hayes
et al.|2024), a leading model pretrained on multiple modalities, including sequence, structure, and
function tokens. ESM3 encodes these distinct modalities as discrete token tracks and integrates them
into a unified representation space through transformer blocks. Notably, the model incorporates
geometric attention in its initial transformer block, effectively capturing atomic-level details of
proteins.

Modality connector. The modality connector acts as a bridge between the structural representations
derived from the protein structure encoder and the natural language embeddings, such as function
descriptions. In this implementation, a simple linear layer is employed as the adapter, which has
proven effective, as demonstrated in previous works like LLaVA (Liu et al.}[2023b).

LLM. The LLM integrated into STELLA is Llama-3.1-8B-Instruct (Dubey et al., 2024), a highly
capable model that excels across multiple benchmarks, including general knowledge (Hendrycks
et al., 2021a; [Wang et al., 2024} Zhou et al.| |2023), mathematics (Cobbe et al., 2021} [Hendrycks
et al.;,2021b} [Rein et al.| 2023} |Clark et al.| |2018)), code generation (Chen and et al.||2021} |Liu et al.,
2023c), tool-use (Yan et al.,|2024; Srinivasan et al., 2023)), long context tasks (Zhang et al., [2024)
and multilingual ability (Shi et al., 2022). Additionally, the model exhibits strong safety features,
supported by Llama Guard 3, ensuring reliable performance across sensitive applications.

User prompt
Is it within your capacity to .
offer a detailéd eIuc[i)datign of Tokenizer L Output
the functlzr:oatse?r[]g?ned to the Embedding z; Disea_se resi_stance
o protein required for
o incompatible
2 interactions with
— = — avirulent strains of
& Hyaloperonospora
; arabidopsidis (downy
! . 3 n_wilde\{v), isolate Hp.:a-
F . stucture Modality | o Hiks1 in cv. Columbia.
Do Encoder Connector
> 6 Stagel 3?:
; Stage2 6

Figure 2: The architecture of STELLA. Stagel of MMIT: to fine-tune the modality connector
using the OPI-Struc dataset by freezing the protein structure encoder and LLM. Stage2 of MMIT: to
continually fine-tune the modality connector and the LLM simultaneously with different learning
rates, by freezing the protein structure encoder. Flame: model is trainable; Snowflake: model is
frozen. Protein image credits: AFDB.

4.3  OPI-STRUC DATASET

Overview. The Open Protein Instructions for Structures (OPI-Struc) dataset was specifically de-
veloped to facilitate multimodal instruction tuning (MMIT) for the FP and EP tasks in this study,
by integrating both protein structural and textual modalities. The dataset was organized into two
primary categories: Function and Enzyme (see Appendix example @), each further divided
into corresponding training and testing sets. Notably, the Function dataset was subdivided into two
distinct subcategories: Functionp7g 4 (see Appendix example @) and Function,;cga (see Ap-
pendix example @), which were differentiated by their label formats: free-text question-answer
(FTQA) and multiple-choice question-answer (MCQA), respectively. Additionally, to reflect the
iterative nature of scientific discovery, 20% (49,663 samples) of the Function;, ., _rrq4 dataset were
randomly selected to be augmented with enriched function annotations generated through conver-



Under review as a conference paper at ICLR 2025

sations using Llama-2-13B-Chat, forming the Function-aug;,.:n_rrqQa dataset (see Appendix @,
example @).

Data explanation. Each sample of the OPI-Struc dataset consists of a protein tertiary structure
(sourced from either AFDB or PDB), task-specific natural language instructions formatted as con-
versations, and corresponding labels. In the Function dataset, protein structures are derived from
AFDB, while the labels (i.e., protein function descriptions) are curated from UniProtKB/Swiss-Prot
specifically release 2022_04[| In addition, when preparing Function,;c 4, the four answer options
(A, B, C, D) were randomly permuted within the training set to introduce variability and mitigate
answer bias. For the testing set, two versions were generated: one without permuted answer options
(MCQA_1X) and another with permutation (MCQA_4X), ensuring a more robust evaluation by
accounting for both consistent and variable answer configurations. The Enzyme dataset was obtained
from the SIFTS database (Dana et al.,2018)), and the original labels, defined by Enzyme Commission
(EC) numbers, were mapped to enzyme names using the BRENDA Enzyme DatabaseE](e.g., 1.1.1.10
— L-xylulose reductase). To ensure consistency and accuracy, OPI-Struc underwent a rigorous
preprocessing pipeline following established data cleaning protocols. The dataset’s statistics are
presented in Table[I] Furthermore, Fig. [3]illustrates distinct differences in protein sequence length dis-
tributions within the dataset. These variations in sequence length, which correlate with the complexity
of protein structures, underscore the dataset’s comprehensive coverage of a wide range of structure
complexity. Such diversity may influence model performance, as models trained predominantly
on simple structures may struggle to generalize to complicated ones. Therefore, ensuring that the
model demonstrates robustness across the full spectrum of protein structure complexity is critical for
achieving reliable and consistent performance during evaluation. In addition, analysis of the label
distribution, including the length distribution of function description and enzyme name frequency in
the dataset, is provided in Fig. 5| (Appendix [A.3).

Instruction preparation. The raw data were transformed into an instruction-based format to support
learning tasks by providing diverse and structured task instructions. To achieve variation in instruction
phrasing, ChatGPT (GPT-3.5) was employed via a web interface to generate rephrased instructions.
For instance, using the query: “Could you provide 100 alternative ways to rephrase the prompt ‘Please
describe the function of the protein’?”, approximately 100 distinct variations of task instructions were
produced (see Appendix[A.4]for a detailed list). Each generated instruction was carefully reviewed
for accuracy and relevance, ensuring that only high-quality variations were included in the final
Function dataset. During the augmentation process for the Function-aug;,q:»_rrga dataset, the
Llama-2-13B-Chat model (Touvron et al.,[2023)) was utilized to generate dialogic interactions based
on protein function descriptions sourced from Swiss-Prot. The prompt used for this augmentation
was: “Given a functional description of the protein, design two or three rounds of questions and
answers based on this description. Ensure the content is detailed. The output format is: [‘Q’:,
‘A’:, ‘Q’:, ‘A’:].” By integrating diverse and interactive instructions, this approach facilitated a more
dynamic and engaging bridge between protein structural and textual modalities, thereby enriching the
OPI-Struc dataset and improving its adaptability and effectiveness for addressing a wide range of
research objectives.

Data split. (1) The Function dataset was divided according to the data split method used in (Abdine
et al., [2023)), maintaining less than 40% sequence similarity between the protein sequences in the
training and testing sets to ensure a rigorous evaluation. (2) The Enzyme dataset was partitioned
following the same split method as in (Hermosilla et al., 2021).

5 EVALUATION OF STELLA MODEL

This study is critical for advancing our understanding of how multimodal LLMs can effectively
leverage protein structural representations to address protein-related tasks and extend beyond these
applications. By systematically evaluating the STELLA model across the FP and EP tasks, we seek
to elucidate both the strengths and limitations of structural representations in the context of building
multimodal LLMs for protein modeling. For these tasks, we designed five distinct assessments based

Shttps://www.uniprot.org/uniprotkb?query=reviewed:true
‘https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/

release-2022_04/knowledgebase/UniProtKB_SwissProt-relstat.html
>https://www.brenda-enzymes.org/
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Table 1: Statistics of OPI-Struc. For the FPrrga task, besides the hold-out testing set,
Functionycs;_prqa, a newer release of Swiss-Prot, v2024_01 (v2401), was utilized to construct
Function¢cst FrQA v2401. This dataset aims to assess the inference performance of STELLA
on unseen data. For the FPy;cq4 task, the Function,.s; dataset was designed with two version:
Functionsest_amrcga_1x (options w/o permutation) and Functionses:_arcga_ax (options w/ permuta-
tion). See Appendix [A.6|for data examples @, @, ® and @.

Task Training set Training set size Testing set Testing set size Metrics Protein source
. BLEU-4
. Function g 4,203
FPprga  Functioneim_prga (+aug) 248,315 (+49,663) . test FTQA BERT-score AFDB
- Functionyest_rrqQA_v2401 270
ROUGE
. Functiongess_nrca_1x 4,203
FPyoqQa Function,qin_nmcqga 24,000 Functionyes: Ao 4x 16.812 Accuracy AFDB
EP Enzyme;,qin 29,205 Enzyme;cst 5,651 Accuracy PDB
Function Prediction Enzyme Name Prediction
= train 1 train
0.00200 0 test 0.0030 4 test
£ testv2401
0.00175
0.0025 4
0.00150
0.0020 4
5, 0.00125 >
& 0.00100 & 0.0015 |
0.00075 | |
0.0010 |
0.00050 |
0.0005 4
0.00025 |
— 0.0000 \

0.00000 = — =
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 3500
Protein Sequence Length Protein Sequence Length

Figure 3: Distribution of protein sequence lengths across the FP (left) and EP (right) tasks for
training and testing sets. The variation in sequence length distribution between the training and
testing sets ensures model robustness across proteins with diverse structural complexities.

on the corresponding testing sets detailed in Table (I} including FPcyq;_r7QA> FPevai_FTQA_v2401,
FP.yai vc@a 1x, FPevai_mcQa_ax, EPeyqr. The hyperparameters for evaluation are presented in
Appendix [A.2] while the user prompts for evaluation are listed in Table[§] (Appendix [A.5).

Experimental results demonstrate that STELLA is a robust and highly adaptable multimodal LLM.
By integrating protein structural representations and LLMs, STELLA exhibits enhanced flexibility
and scalability across diverse protein-related tasks, consistently delivering accurate and contextually
appropriate outputs. In addition to these strengths, STELLA achieves competitive performance in
function and enzyme prediction tasks, rivalling existing specialized models. These results underscore
STELLA’s potential as a powerful tool for advancing protein science, offering new possibilities for
the broader field of computational biology.

5.1 EVALUATION METRICS

BLEU, BERT-score, and ROUGE were employed as evaluation metrics for FP.,q rroa and
FPcyai_FrQA v2401, While Accuracy was utilized for FPeyui vcga 1x, FPeva_mcga_ax and
EP.,.;. BLEU, typically applied in machine translation, is used to assess the similarity between two
sequences. Particularly, BLEU-4, which measures the overlap of 4-grams between the generated and
reference text, was adopted in this study. BERT-score evaluates the token-level similarity between
a generated sentence and a reference sentence. ROUGE, a set of metrics traditionally used for
automatic text summarization and machine translation, compares generated text to reference texts
to calculate the degree of overlap. It includes ROUGE-1, ROUGE-2, and ROUGE-L, which are
based on different n-gram methods. ROUGE-L, which focuses on the longest common subsequence,
is particularly effective in evaluating summarization and translation quality by considering overall
sentence structure.
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5.2 EVALUATION RESULTS

5.2.1 RESULTS OF FP.y4_r7rQa AND FPoyui FTQA_v2401 FOR FUNCTION PREDICTION

In the FP.,q;_rrqa evaluation, we assessed STELLA’s capability to predict protein function based
on tertiary structures using the hold-out testing set, Function;.,; rrg4, which was also utilized
for evaluation in (Abdine et al., 2023). Furthermore, FP.,q; r7QA_v2401 Was designed to assess
STELLA’s predictive capability on newly released protein entries. As shown in Table 2] while
STELLA did not exceed the performance of Prot2Text; 4 rg g in terms of BERT and ROUGE score
metrics, it demonstrated highly competitive overall performance in function prediction. Additionally,
STELLA exhibited excellent scalability by integrating ESM3 as its protein encoder, a model that, in
its vanilla form, lacks the ability to predict protein function directly from tertiary structures.

Table 2: Evaluation results of FP.,,; rrg4 and FP.,,; r7QA_v2401, cOmparing with existing
work. Training recipes for STELLA-ESM3-Llama-3.1-8B-Instruct: Function,.q;,_r7ga dataset,
epochs of two stages (e3+e3). Bold and underline indicate the best and the runner-up performance.

ROUGE Score 1
Evaluation Model BLEU-41 BERT Score T
ROUGE-1 ROUGE-2 ROUGE-L

Prot2Textp ase (Abdine et al.[|2023) 0.3511 0.8430 0.5059 0.4271 0.4849

FPe'val,FTQA Prot2Text;, 4 rcr (Abdine et al.[[2023) 0.3629 0.8520 0.5368 0.4560 0.5140
STELLA-ESM3-Llama-3.T-8B-Instruct 0.4024 0.8496 0.5218 0.4487 0.5041

Prot2Textp asx (Abdine et al.|[2023) 0.0496 0.7571 0.2199 0.0997 0.1812

FPeyai FTQA_v2401  Prot2Texty arar (Abdine et al.[|2023) 0.0443 0.7588 0.2401 0.1032 0.1926
STELLA-ESM3-Llama-3.1-8B-Instruct 0.0489 0.7565 0.2210 0.1085 0.1867

5.2.2 RESULTS OF FPeyai_nmrcQa_1x AND FPeyai pmrcQa_ax FOR FUNCTION PREDICTION

FPeyai_FrQA and FPeyqi FTQA_v2401 May be impacted by linguistic variability, where model-
generated answers with correct meanings differ in expression from the reference answers. In contrast,
FPcyai_mcqa eliminates ambiguity by providing predefined answer choices, enabling more objective
and standardized evaluation. This method requires the model to not only identify the correct answer
but also engage in reasoning and option filtering based on contextual knowledge, thus providing a
more comprehensive assessment of its reasoning capabilities. This ensures a more robust evaluation
of the model’s abilities. As demonstrated in Table 3] STELLA exhibits strong reasoning capabilities
by achieving high accuracy of multiple-choice Q&A. Notably, without the integration of LLMs,
baseline models like vanilla ESM3 and Prot2Text are unable to produce outputs in a multiple-choice
Q&A format.

Table 3: Evaluation results of FP.,,; rrcoa_1x and FPeyq prcga_ax. ESM3 and Prot2Text
cannot handle multiple-choice Q&A. mix2: Functiony,q;n_r7rQA4 + Functionyqin_srcqa-

Model acc@MCQA_IX T acc@MCQA_4X 1
ESM3 N/A N/A
Prot2Textp a5 (Abdine et al.|[2023) N/A N/A
Prot2Text;, 4 rcr (Abdine et al.[[2023) N/A N/A
STELLA-ESM3-Llama-3.1-8B-Instruct (mix2,two-stage,e3+e3) 0.8056 0.7618

5.2.3 RESULTS OF EP.,,; FOR ENZYME NAME PREDICTION

EP.,, aims to assess STELLA’s ability in enzyme name prediction. On top of the original
Enzyme;,.;, set, we excluded 10 samples due to their associated PDB files lacking certain atom co-
ordinates necessary for feature extraction with the Prot2Text encoder. As shown in Table[d, STELLA
achieved performance (0.8809) very close to that of previous state-of-the-art (0.8850).

5.3 ABLATION STUDY
5.3.1 ABLATION OF PROTEIN ENCODERS AND LLMS

To further investigate the representative ability of different protein encoders, we visualized
4,203 protein structure embeddings from the testing set, Function;cs; rrqa, generated by ESM3,
Prot2Text (Abdine et al., 2023), and SaProt (Su et al.} 2023)), using UMAP, as illustrated in Fig.
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Table 4: Evaluation results of EP.,,;. Accuracy is a metric that means the predict answer totally
matches the target. Single: Enzyme;, 4, dataset, mix3: Functions,qin_rrga + Functionyrqin_nrca

+ Enzyme,, ;.. Bold and underline indicate the best and the runner-up performance.

Model Training manner acc@EP 1
DeepFRI (Gligorijevic et al.|[2021) w/ pretrain 0.6330
UniRep (Alley et al./2019) w/o pretrain 0.7290
3DCNN (Derevyanko et al.||2018) w/o pretrain 0.7880
HH-suite3 (Steinegger et al.|[2019) w/o pretrain 0.8260
ESM-1b (Rives et al.|[2021) w/ pretrain 0.8310
GearNet-Edge-IEConv (Zhang et al.|[2022) w/o pretrain 0.8530
IEConv (Hermosilla et al.||2021) w/o pretrain 0.8720
GearNet-Multiview-Contrast (Zhang et al.|[2022) w/ pretrain 0.8750
New IEConv (Hermosilla and Ropinski![2022) w/ pretrain 0.8810
CDConv (Fan et al.[[2022) w/o pretrain 0.8850
STELLA-ESM3-Llama-3.1-8B-Instruct(single,two-stage,e3+e3) MMIT 0.8806
STELLA-ESM3-Llama-3.1-8B-Instruct (mix3,two-stage,e3+e3) MMIT 0.8809

The visualization reveals that for the five most frequently occurring functions in the testing set,
proteins with the same function tend to form more compact clusters in the ESM3 representation
space compared to the other two encoders. A detailed description of the three encoders is provided in
Table[9] (Appendix [A.7). Furthermore, several leading LLMs, outlined in Table [I0] (Appendix [A.§),
were integrated into the STELLA framework, enabling an analysis of their impact on STELLA’s
performance. The ablation results in Table 5 indicate that the combination of the ESM3 encoder with
the Llama-3.1 model yielded the best performance in protein function prediction tasks. Moreover,
the results underscore the strong overall performance of Llama models across various encoders,
reaffirming the effectiveness of combining protein structural information with LLM-based reasoning
capabilities.

*  May be involved in transcriptional regulation. (Number of Samples: 16)
Produces ATP from ADP in the presence of a proton gradient across the membrane. (Number of Samples: 13)
Has a role in meiosis. (Number of Samples: 12)

Cell wall formation. (Number of Samples: 9)
Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0). (Number of Samples: 9)

UMAP Visualzation of 4203 Structure Embeddings from ESMS3 on Functionis rron UMAP Visualization of 4203 Structure Embeddings from Prot2Text on Functionas o 'UMAP Visualzation of 4203 Structure Embeddings from SaProt on Functionie sron

Ty

Figure 4: UMAP visualization of 4,203 protein structure embeddings in the testing set
Function,..: rrga generated by ESM3, Prot2Text, and SaProt. Each plot illustrates the cluster-
ing of protein structures based on their embeddings, revealing the representational differences among
the three encoders. The highlighted proteins belong to specific functions as detailed in the legend.
ESM3 demonstrates the strongest representative ability.

5.3.2 ABLATION OF TRAINING DATA MIX AND TRAINING EPOCHS

An ablation study was conducted to evaluate model performance across varying training data mixes
and training epochs. The results, presented in Table [6] indicate that increasing training epochs
consistently enhances performance across all data mix configurations. Notably, the model trained
exclusively on the Function,.q;,_r7¢g 4 dataset achieved the highest evaluation scores when trained for
three epochs (e3+e3), suggesting that a longer training duration significantly improves its capability to
generate accurate and contextually relevant responses. Incorporating the Function,qin_arcqa dataset
endowed STELLA with multi-choice Q&A capabilities, while causing only a slight decline in its
predictive performance on FP.,q;_F70Q A, as both datasets belong to the same overarching task domain.
However, the inclusion of the Enzyme,,.;,, dataset in the mix3 configuration led to superior enzyme
prediction performance but caused a noticeable decline in function prediction capability, highlighting



Under review as a conference paper at ICLR 2025

Table 5: Ablation of protein encoders and LLMs in the FP,,,; rrg4. Training recipes: single
Functiony,.qin_rrqa dataset, epochs of two stages (e3+€3). Bold and underline indicate the best and
the runner-up performance.

ROUGE Score 1
Evaluation Model BLEU-41 BERT Score 1
ROUGE-1 ROUGE-2 ROUGE-L

STELLA-ESM3-Llama-3.1-8B-Instruct 0.4024 0.8496 0.5218 0.4487 0.5041
STELLA-ESM3-Llama-3-8B-Instruct 0.4020 0.8503 0.5138 0.4478 0.5001
STELLA-ESM3-Phi-3-mini-128k-instruct 0.3807 0.8435 0.4991 0.4273 0.4839
STELLA-Prot2Text-Llama-3.1-8B-Instruct 0.4009 0.8497 0.5284 0.4454 0.5031
STELLA-Prot2Text-Llama-3-8B-Instruct 0.3892 0.8456 0.5177 0.4329 0.4915

FPevai_rrQA STELLA-Prot2Text-Phi-3-mini-128k-instruct 0.3771 0.8426 0.5058 0.4210 0.4799
STELLA-Prot2Text-Mistral-7B-Instruct-v0.2 0.3889 0.8525 0.5224 0.4359 0.4949
STELLA-Prot2Text-BioMedGPT-LM-7B 0.3999 0.8488 0.5282 0.4447 0.5020
STELLA-Prot2Text-BioMistral-7B-DARE 0.3870 0.8533 0.5241 0.4357 0.4980
STELLA-SaProt-Llama-3-8B-Instruct 0.3588 0.8276 0.4685 0.3965 0.4523
STELLA-SaProt-Mistral-7B-Instruct-v0.2 0.3514 0.8251 0.4607 0.3894 0.4455
STELLA-ESM3-Llama-3.1-8B-Instruct 0.0489 0.7565 0.2210 0.1085 0.1867

FP STELLA-Prot2Text-Llama-3.1-8B-Instruct 0.0425 0.7555 0.2454 0.1020 0.1919
eval FTQAv2401  §TELLA-Prot2Text-Llama-3-8B-Instruct 0.0510 0.7605 0.2486 0.1062 0.1918
STELLA-Prot2Text-Mistral-7B-Instruct-v0.2 0.0440 0.7685 0.2529 0.1046 0.1975

the challenges inherent in designing high-quality multitask datasets. Furthermore, during the mix3
training, all metrics demonstrated consistent improvement with extended training, progressing from
(e3+el) to (e3+e3), as illustrated in Fig. @ (Appendix[@[). This trend underscores the positive effect
of prolonged training on model performance and emphasizes the significance of meticulous dataset
selection and appropriate training duration to optimize predictive performance.

Table 6: Ablation of training data mix and training epochs across four evaluations
(FPevai rTqQas FPevai_nvcqa_1xs FPevai_vcga_ax and EPyy) for STELLA-ESM3-Llama-
3.1-8B-Instruct. single: Functions,qin_rrqAa, Mix2: Functionsqn_rrga + Functionrqin_nmrcga,
mix3: Functiony,qin_rrQAa + Functiongqin_amrcqa + Enzymey,qin. The 2nd column indicates the
training epochs of two stages. Bold indicates the best performance in each configuration.

. o ROUGE Score 1 acc@FPprcqa T
Data mix Training epochs BLEU-4 1 BERT Score 1 acc@EP 1
ROUGE-1 ROUGE-2 ROUGE-L 1X 4X

(e3+el) 0.2653 0.8065 0.3938 0.3097 0.3770 - - -

single (e3+e2) 0.3574 0.8363 0.4790 0.4028 0.4617 - - -
(e3+e3) 0.4024 0.8496 0.5218 0.4487 0.5041 - - -
(e3+el) 0.2397 0.8003 0.3624 0.2861 0.3505 0.6936  0.5893 -

mix2 (e3+e2) 0.3411 0.8330 0.4554 0.3878 0.4428 0.7940  0.7428 -
(e3+e3) 0.4020 0.8491 0.5119 0.4465 0.4980 0.8056 0.7618 -
(e3+el) 0.1092 0.7665 0.1749 0.1352 0.1747 0.7345  0.6460 0.7972

mix3 (e3+e2) 0.1948 0.7898 0.2754 0.2254 0.2687 0.7904  0.7307 0.8666
(e3+e3) 0.2394 0.8025 0.3233 0.2720 0.3151 0.7956  0.7402 0.8809

6 CONCLUSION AND FUTURE WORK

In this study, we introduced STELLA, a novel multimodal LLM designed to integrate protein
structural representations with natural language. Trained on the OPI-Struc dataset using a two-
stage paradigm, STELLA achieves accurate predictions of protein functions and enzyme-catalyzed
reactions. By bridging the gap between structural representations and the contextual knowledge
condensed in LLMs, STELLA not only excels in protein understanding but also demonstrates strong
conversational and reasoning abilities. This highlights the potential of multimodal LLMs to serve as
powerful research assistants in life sciences, offering faster and more precise insights into protein
biology. This work underscores the value of integrating structural data with LLMs and paves the way
for future advancements in protein science. Moving forward, future research should prioritize the
expansion of the OPI-Struc dataset to incorporate more diverse domain-specific data and explore
advanced techniques such as retrieval-augmented generation (RAG) and agent-based systems. These
advancements will further enhance STELLA'’s potential as a transformative Al tool in computational
biology, solidifying its role in driving innovations in protein science and beyond.
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A APPENDIX

A.1 PROMPT TEMPLATE FOR TRAINING

The prompt template of STELLA-Prot2Text-Llama-3.1-8B-Instruct

<Ibegin_of_textl><Istart_header_idlI>user<lend_header_idI>

<structure>

May I request a comprehensive breakdown outlining the function linked to the protein?
<leot_idI><Istart_header_idl>assistant<lend_header_idl>

Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone
phosphate (DHAP) to D-glyceraldehyde-3-phosphate (G3P). <leot_idI><lend_of_textl>

The prompt template of STELLA-Prot2Text-Mistral-7B-Instruct-v0.2

<s>[INST] <structure>

May I request a comprehensive breakdown outlining the function linked to the protein? [/INST]Involved
in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate
(DHAP) to D-glyceraldehyde-3-phosphate (G3P)</s>

A.2 HYPERPARAMETERS FOR TRAINING AND EVALUATION

Stagel aims to align a protein structure embedding space and a plain-text embedding space. In this
stage, the modality connector trainable, while both the protein structure encoder and the LLM are
frozen. Stage?2 is dedicated to teach STELLA to follow complicated natural language instructions
and generate response dedicated to protein tasks. In this stage, both the modality connector and the
LLM are trainable with different learning rates, while the protein structure encoder is still frozen.
Both stages use the same training datasets. The prompts templates for training follow the examples
shown in Appendix [A-T]

Hyperparameters in PT stage and IT stage are summarized in Table[7] It is noteworthy that we
adopt different learning rates for each different components of STELLA to finely control the training
process. Especially, in the IT stage, we set the learning rate of the modality connector larger than
LLM backbone, to improve LLMs’ training convergence.

Table 7: Hyperparameters for stagel training, stage2 training and testing. FFT: Full Fine-tuning;
LoRA: LoRA Tuning

Config Stagel Stage2 Testing
DeepSpeed ZeRO Stage 2 3 NA
optimizer AdamW AdamW NA
optimizer hyperparameters (81,P2)=(0.9, 0.999), eps=1e-8  (51.82)=(0.9, 0.999), eps=1e-8 NA
per_device_train_batch_size 2 1(FFT)/2(LoRA) NA
gradient_accumulation_steps 4 2(FFT)/4(LoRA) NA
gradient_checkpointing True True NA
learning rate (Ir) 2e-5 (Connector) 2e-4 (Connector), 2e-5 (LLM) NA
weight decay 0.0 0.0 NA
warmup steps 48 - NA
warmup ratio - 0.03 NA
Ir scheduler type cosine cosine NA
training epochs 3 3 NA
GPU 4*A100 8*A100(FFT)/4*A100(LoRA) 1*A100
temperature NA NA 0.2
top_k NA NA 50
top_p NA NA 0.75
num_beams NA NA 1
max_new_tokens NA NA 1000
use_cache NA NA True
do_sample NA NA True
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A.3 ANALYSIS OF DATA LABEL DISTRIBUTION OF THE OPI-STRUC DATASET

The enzyme label distribution in the training set follows a long-tailed pattern, but the label distribution
in the test set differs significantly from that in the training set.

Function Prediction Distribution of Enzyme Names
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Figure 5: [5(a)} Distribution of the number of words in function description of function prediction
task. 5(b)} Distribution of the enzyme labels in the enzyme name prediction task.

A.4 EXPANDED INSTRUCTIONS BY CHATGPT (GPT-3.5)

Expanded instructions by ChatGPT (GPT-3.5)

* May I request an elaborate overview of the function linked to the protein?

* Is it within your capacity to provide a comprehensive overview of the function associated
with the protein?

* Can you supply a detailed breakdown of the function ascribed to the protein?
* May I request a comprehensive depiction of the function pertaining to the protein?
* May I request a comprehensive account outlining the function of the protein?

* Is it possible for you to furnish a comprehensive breakdown of the function associated with
the protein?

* May I request a comprehensive breakdown outlining the function linked to the protein?”’
* Could you share a detailed elucidation of the function assigned to the protein?’

* Would you mind giving me a detailed breakdown of the function associated with the
protein?

* Is it within your capacity to provide a comprehensive overview of the function linked to the
protein?

* Could you supply an extensive description of the function ascribed to the protein?
* Can you furnish a comprehensive elucidation of the function ascribed to the protein?
* Is it feasible for you to offer a comprehensive analysis regarding the function of the protein?

* Would it be possible for you to offer a thorough breakdown of the function ascribed to the
protein?

* Can you furnish a comprehensive explanation regarding the function of the protein?

* Can you furnish a comprehensive analysis of the function encompassing the protein?

* May I inquire about a comprehensive explanation encompassing the function of the protein?
* Can you furnish a comprehensive description of the function ascribed to the protein?

* Would you mind providing a comprehensive overview of the function attributed to the
protein?
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* Could you share an elaborate overview of the function linked to the protein?
* Could you share a comprehensive overview of the function encompassing the protein?
* Could you offer a comprehensive elucidation of the function assigned to the protein?

* May I request a comprehensive breakdown outlining the function associated with the
protein?

* Would you mind giving me a comprehensive analysis of the function attributed to the
protein?

* Is it within your capacity to offer a detailed elucidation of the function assigned to the
protein?

* Can you supply a comprehensive explanation of the function related to the protein?

» Can you give me a comprehensive explanation of the function ascribed to the protein?

* Is it possible for you to provide a detailed description of the function ascribed to the protein?
* Could you share a comprehensive description of the function encompassing the protein?
* Would you mind providing a thorough explanation of the function related to the protein?
» Can you offer a comprehensive analysis of the function attributed to the protein?

» Can you supply a comprehensive depiction of the function related to the protein?

* May I request a detailed overview of the function associated with the protein?

* May I request a comprehensive analysis of the function attributed to the protein?

* Would you mind giving me a comprehensive description of the function attributed to the
protein?

* Is it feasible for you to offer a comprehensive explanation regarding the function of the
protein?

* Is it within your capacity to provide a comprehensive explanation of the function related to
the protein?

* Would it be possible for you to provide a comprehensive analysis of the function attributed
to the protein?

* May I inquire about a thorough account of the function related to the protein?

* May I request a comprehensive account of the function pertaining to the protein?

* Is it feasible for you to give an extensive overview of the function linked to the protein?
* Could you provide a detailed elucidation of the function encompassing the protein?

* Would it be possible for you to offer a comprehensive depiction encompassing the function
of the protein?

* Is it feasible for you to offer a comprehensive account of the function ascribed to the
protein?

* Is it within your capacity to provide a comprehensive breakdown of the function linked to
the protein?

* Could you share a comprehensive breakdown of the function linked to the protein?
* May I inquire about a comprehensive depiction of the function encompassing the protein?

* Is it within your capacity to provide a comprehensive overview of the function assigned to
the protein?

* May I inquire about a comprehensive account of the function associated with the protein?
* Could you provide a detailed account of the function assigned to the protein?

* Could you furnish a detailed depiction of the function encompassing the protein?

* Can you provide a detailed description of the function ascribed to the protein?

* May I inquire about a comprehensive explanation outlining the function of the protein?
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* May I request a comprehensive overview of the function ascribed to the protein?
* Could you provide a detailed elucidation outlining the function associated with the protein?
* Can you provide a comprehensive elucidation of the function assigned to the protein?

* Would it be possible for you to offer a comprehensive explanation of the function associated
with the protein?

* Would you mind giving me a comprehensive account of the function attributed to the
protein?

* May I inquire about a comprehensive breakdown of the function assigned to the protein?
* Can you give me a detailed breakdown of the function linked to the protein?
» Can you give me a detailed depiction of the function encompassing the protein?

* Is it possible for you to furnish a comprehensive depiction of the function encompassing
the protein?

* Can you supply a comprehensive breakdown of the function associated with the protein?
* Can you furnish a detailed overview of the function linked to the protein?

* May I inquire about a thorough explanation of the function related to the protein?

* Could you share a detailed analysis of the function attributed to the protein?

* Would you be able to furnish a detailed explanation of the function encompassing the
protein?

* Isit feasible for you to provide an elaborate account of the function attributed to the protein?
* May I inquire about a comprehensive analysis of the function assigned to the protein?

* Would you be able to provide a detailed elucidation of the function assigned to the protein?
* May I request a detailed breakdown of the function associated with the protein?

* Would it be possible for you to offer a comprehensive depiction of the function ascribed to
the protein?

* May I inquire about a detailed account of the function assigned to the protein?
* Could you provide an in-depth explanation of the function associated with the protein?
* May I inquire about a detailed description of the function ascribed to the protein?

* Would you be able to provide a comprehensive account of the function pertaining to the
protein?

* Can you furnish a comprehensive description outlining the function associated with the
protein?

* Can you supply a comprehensive analysis of the function linked to the protein?

* Would it be possible for you to offer a comprehensive analysis of the function related to the
protein?

* Could you offer a comprehensive breakdown of the function associated with the protein?
e Could you supply a thorough explanation of the function related to the protein?

* Is it feasible for you to supply a thorough explanation of the function related to the protein?
* Would it be possible for you to offer an in-depth description of the function of the protein?

* Is it within your capacity to provide a comprehensive depiction of the function related to
the protein?

* Could you provide a detailed description outlining the function of the protein?
* Can you share a comprehensive account of the function pertaining to the protein?

* Would it be possible for you to provide an extensive description of the function ascribed to
the protein?

* Could you share a comprehensive depiction of the function pertaining to the protein?
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* Could you provide a detailed analysis of the function ascribed to the protein?

* Is it within your capacity to provide a comprehensive elucidation of the function associated
with the protein?

* Would you mind giving me a comprehensive depiction of the function pertaining to the
protein?

* Could you share a comprehensive overview of the function ascribed to the protein?

* Is it within your capability to offer a detailed account of the function pertaining to the
protein?

 Can you supply a comprehensive account of the function linked to the protein?
e Could you share a comprehensive breakdown of the function ascribed to the protein?

* Would it be possible for you to offer a comprehensive account linked to the function of the
protein?

* Can you supply a comprehensive explanation of the function assigned to the protein?

* Is it possible for you to provide a comprehensive analysis of the function attributed to the
protein?

* Is it feasible for you to offer a comprehensive description of the function attributed to the
protein?

A.5 PROMPT TEMPLATE FOR EVALUATION

Table [§] presents the user prompts used in the evaluation of three tasks. Notably, we designed the
prompt to ensure that the model outputs only one of the four options (A, B, C, or D) in the FPy;cq 4
task, facilitating assessment.

Table 8: User prompts for evaluation.

Task Testing set Answer formatting prompts

Function;esr rroa

. . . -

FPrroa Functionsest F704 2401 What are the main functions of this protein?

Fp Functiones;_mcga_1x Answer with the option’s letter from the given choices directly. Please
McQA Functionges:_arcga_ax  respond to the question with an answer choice, which is either A, B, C or D.
EP Enzyme;.s; What is the enzyme name linked to this protein?

A.6 EXAMPLES OF INSTRUCTION DATA

@ An example of Function,qin_rrga data

[
{

"swissprot_id": "QOBWM9",

"sequence": "
MENKQSVSLEWAGRTLTIETGQVARQADGAVMVQYGDTIVLATAVFAKEAKPGODFEFPLTV
NYQEKYFASGRIPGGFFKREGRPTEKETLTSRLIDRPIRPLFVDGFKHEVQVVVTTLSYDL
ENDADITIALVGASAALVLSGAPFMGPIGAARVGYKDGQYIINPTIAELEESELDLVVAGTT
DAVMMVESQAAELSEDVMLGAVVAGHDAMQPVIDAITALAEKAAKEPFAYEPPDHSAALKS
VIDTVGADLSKAYKITAKGERYAAIGAAKDKAKAALLGTDEAPGVMTPEVFKTVEKEAEAS
VVRGDILKTGQRIDGRKLDQIRPIVAEAGFLPRTHGSSLETRGETQAICVATLGTSDDEQY
IDGLDGTKKEKFMLHYNFPPYSVGETGRMGGAGRREIGHGKLAWRALKAVLPKHEDFPYTI
RMVSEITESNGSSSMATVCGCSLAMMDAGVPLTRPVSGIAMGLILEGSEFAVLSDILGDED
HLGDMDEFKVAGTENGVTSLOMDIKVAGITKDIMGKALEQAKGGRMHILGEMGKALTASRGQO
LSENAPQMEITIKVPTDKIRDVIGSGGKVIRGIVDETGAKVNIDDDGTVQISAMDRKSIDAA
IKMIKGITAEAEVGEIYEGKVVSMKDFGIFVNEFGPKDGLVHVSQMANKRIGHPKEMVKEG
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DKVWVKLMGFDERGKVRLSMKVVDQETGKELAEEAGDDASED",

"conversations": [
{
"from": "human",
"value": "Can you furnish a comprehensive description
outlining the function associated with the protein?\n<
structure>"

by
{

Ilfromll . llgptll,

"value": "Involved in mRNA degradation. Catalyzes the
phosphorolysis of single-stranded polyribonucleotides
processively in the 3'- to 5'-direction."

}
I
"AFDB_id": "AF-QO0BWM9-Fl-model_v4"
}o

]

@ An example of Function-aug,qin_rrg4 dataset

[
{
"swissprot_id": "QlWT60",
"sequence": "
MENKKLHTALLFGGNSSEHDVSKRSAHNIYDALDKDKYDVSVEMEFTKKGFLLGNKDSMRIF
DGENEDDVVTEVIKDVDESNPLANIQONLAEVKDVDVEYPVIHGNMGEDGTVQGLFRLLNKPW
IGSGVASSGVSFDKDLTKKLLTLNGIRNTKYVLVTPENKADYPYAKVAEELGETLEVKPARQ
GSSVGIHKVRNEEEYNAALEDGFKYDYKILVEEAIKNPREVECSVLGNRDIKASKLGAIRIP
ESDDFYDYNNKFVDASGVVFEMPIKLPEKLTKEIQQOMSLDAFRALDNRGLARMDFLVDKNDV
PYFGEVNTLPGFTNISLYPQLWEVSGISYSELIDQLIQLAIDEFNDNAKIHYDFTKLGTEKV
GKKIIGE",
"conversations": [
{
"from": "human",
"value": "What is the main function of this protein?\n<
structure>"
by
{

"from": "gpt"/

"value": "The main function of this protein is cell wall
formation."
b
{
"from": "human",
"value": "Can you explain the process of cell wall formation

n
s
{

n fromll . llgptll’

"value": "Certainly! The protein helps to synthesize and
modify the cell wall, which is a critical structure that
provides support, protection, and cell-to-cell interaction

The cell wall is composed of various components,
including polysaccharides, proteins, and other molecules.
Our protein plays a key role in the synthesis and
modification of these components to form a strong and
stable cell wall."
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"from": "human",
"value": "How does the protein contribute to the synthesis of
the cell wall?"
by
{

n fromll . llgpt n ,

"value": "The protein helps to catalyze the formation of
glycosidic bonds between the cell wall components. These
bonds are crucial for the stability and integrity of the
cell wall. Additionally, the protein can also modify
existing glycosidic bonds to further strengthen the cell
wall."

}
i
"AFDB_id": "AF-QlWT60-Fl-model_v4"
}y
]

® An example of Function,qn_arcga data

"swissprot_id": "P62877",

"sequence": "
MAAAMDVDTPSGTNSGAGKKRFEVKKWNAVALWAWDIVVDNCAICRNHIMDLCIECQANQ

ASATSEECTVAWGVCNHAFHFHCISRWLKTRQVCPLDNREWEFQKYGH",

"conversations": [
{
"from": "human",
"value": "<structure>\nWhat are the main functions of this

protein?\nA. E3 ubiquitin ligase component of multiple
cullin-RING-based E3 ubiquitin-protein ligase (CRLs)
complexes which mediate the ubiquitination and subsequent
proteasomal degradation of target proteins, including
proteins involved in cell cycle progression, signal
transduction, transcription and transcription-coupled
nucleotide excision repair. CRLs complexes and ARIHI
collaborate in tandem to mediate ubiquitination of target
proteins, ARIH] mediating addition of the first ubiquitin
on CRLs targets. The functional specificity of the E3
ubiquitin-protein ligase complexes depends on the variable
substrate recognition components. As a component of the
CSA complex promotes the ubiquitination of ERCC6 resulting
in proteasomal degradation. Recruits the E2 ubiquitin-
conjugating enzyme CDC34 to the complex and brings it into
close proximity to the substrate. Probably also
stimulates CDC34 autoubiquitination. May be required for
histone H3 and histone H4 ubiquitination in response to
ultraviolet and for subsequent DNA repair. Promotes the
neddylation of CUL1l, CUL2, CUL4 and CUL4 via its
interaction with UBE2M. Involved in the ubiquitination of
KEAP1, ENC1 and KLHL41l. In concert with ATF2 and CUL3,
promotes degradation of KATS5 thereby attenuating its
ability to acetylate and activate ATM.\nB. Part of the
MIS12 complex which is required for normal chromosome
alignment and segregation and kinetochore formation during
mitosis.\nC. Catalyzes the cyanide-resistant oxidation of
ubiquinol and the reduction of molecular oxygen to water,
but does not translocate protons and consequently is not
linked to oxidative phosphorylation. May increase
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respiration when the cytochrome respiratory pathway is
restricted, or in response to low temperatures.\nD. Pair-—
rule protein expressed in a segmentally repeating pattern
to define the polarity of embryonic segments. Capable of
sequence-specific DNA-binding.\nAnswer with the option's
letter from the given choices directly."

by

{

"from" : "gpt",
"yalue": "A"
}
1,
"AFDB_id": "AF-P62877-Fl-model_v4"

by
]

@ An example of Enzymey;.q;,, data

[
{

"PDB_id": "5ivp.A",
"conversations": [
{
"from": "human",
"value": "Could you inform me of the enzyme name tagged to

this protein?<structure>\n"
b
{

llfrom": "gpt",
"value": "aminoacyl-tRNA hydrolase"

by

A.7 COMPARISON OF PROTEIN STRUCTURE ENCODERS

Difference among three representative protein structure encoders employed in this study, ESM3,
Prot2Text and SaProt, are presented in Table E[

A.8 DIFFERENT COMPOSITION OF PROTEIN STRUCTURE ENCODERS AND LLMS

According to the architecture of STELLA, it is flexible and customizable to integrate various protein
encoders and LLMs to form STELLA variants. In order to delve into the effectiveness of different
composition of protein encoders and LL.Ms, we elaborately choose different protein encoders and
foundation LLMs, as shown in Table [10}

A.9 ABLATION OF TRAINING EPOCHS FOR MIX3 TRAINING

Each graph in Fig. [f]shows how the scores for BLEU-4, BERT Score, ROUGE Scores, and Accuracy
change over the training periods labeled as (e3+el), (e3+e2), and (e3+e3). All the metrics improve as
training epochs increase, suggesting better performance with more training.
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Table 9: Comparison of three representative protein structure encoders.

Modality

Protein encoder Modality fusion methods

ESM3 is a multimodal model pretrained on mas-
sive sequence, structure and function tokens via
masked language modeling (MLM). It encodes
these modalities as discrete token tracks, which are
fused into a unified representation space using sev-
eral transformer blocks, with geometric attention
in the first block to incorporate atomic information.

Sequence,
Structure,
Function

ESM3

Prot2Text is a multimodal model incorporating a
Relational Graph Convolution Network (RGCN),
ESM-2 and GPT-2 to generate protein function an-
notation. It is designed to integrate information
from two sources: the output of the RGCN and
the protein sequence data processed by ESM-2.
The RGCN receives all-atom protein structures as
its input, providing detailed structural information.
Subsequently, the Prot2Text encoder aligns this in-
tegrated data with functional annotation through a
generative alignment approach using a text decoder.
Prot2Text serve as a method for protein structure-
text feature alignment.

Sequence,
Structure,
Function

Prot2Text

SaProt is a large-scale pre-trained model using
about 40 million protein sequences and structures
with structure-aware vocabulary which integrates
residue tokens with structure tokens simultane-
ously. It adopts an ESM-based architecture that
takes inputs as structure-aware protein sequences,
which combine the protein sequence residue tokens
and discrete structural tokens encoded using folk-
seek. This encoder is not aligned with functional
annotation text.

Sequence,

SaProt Structure

Table 10: Specifications of STELLA composition of various protein structure encoders and
foundation LL.Ms.

Protein encoder

Foundation LLM Note Composed STELLA variant

Llama-3.1-8B-Instruct (AI@Meta! 2024}
Llama-3-8B-Instruct (Al@Metal[2024)
ESM3 (Hayes et al.{|2024)

BioMistral-7B-DARE *
BioMedGPT-LM-7B *|Luo et al.|(2023)

Mistral-7B-Instruct-v0.2 (Jiang et al.[[2023)
Phi-3-mini-128k-instruct (Abdin et al.[[2024]

Open source model by Meta

Open source model by Meta

Open source model by Mistral AT
Open source model by Microsoft
Tailored model for biomedical domain
Tailored model for biomedical domain

STELLA-ESM3-Llama-3.1-8B-Instruct
STELLA-ESM3-Llama-3-8B-Instruct
STELLA-ESM3-Mistral-7B-Instruct-v0.2
STELLA-ESM3-Phi-3-mini-128k-instruct
STELLA-ESM3-BioMistral-7B-DARE
STELLA-ESM3-BioMedGPT-LM-7B

Llama-3.1-8B-Instruct
Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct
BioMistral-7B-DARE
BioMedGPT-LM-7B

Prot2Text (Abdine et al.}[2023}

Open source model by Meta

Open source model by Meta

Open source model by Mistral AT
Open source model by Microsoft
Tailored model for biomedical domain
Tailored model for biomedical domain

STELLA-Prot2Text-Llama-3.1-8B-Instruct
STELLA-Prot2Text-Llama-3-8B-Instruct
STELLA-Prot2Text-Mistral-7B-Instruct-v0.2
STELLA-Prot2Text-Phi-3-mini- 128k-instruct
STELLA-Prot2Text-BioMistral-7B-DARE
STELLA-Prot2Text-BioMedGPT-LM-7B

Llama-3.1-8B-Instruct
Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct
BioMistral-7B-DARE
BioMedGPT-LM-7B

SaProt (Su et al.|[2023)

Open source model by Meta

Open source model by Meta

Open source model by Mistral Al
Open source model by Microsoft
Tailored model for biomedical domain
Tailored model for biomedical domain

STELLA-SaProt-Llama-3.1-8B-Instruct
STELLA-SaProt-Llama-3-8B-Instruct
STELLA-SaProt-Mistral-7B-Instruct-v0.2
STELLA-SaProt-Phi-3-mini-128k-instruct
STELLA-SaProt-BioMistral-7B-DARE
STELLA-SaProt-BioMedGPT-LM-7B

* Merge (Yu et al.|2024] of Mistral-7B-Instruct-v0.1 and BioMistral-7B (Labrak et al.|[2024] which was further pre-trained on top of Mistral-7B-Instruct-v0.1 using PubMed
Central Open Access from https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
® Increamtally pre-training from Llama-2-7B-Chat with S20RC (Lo et al.}[2020} corpus.
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Figure 6: The trend lines for the various metrics across different training epochs.
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