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Abstract

Deep neural networks suffer from catastrophic forgetting, where performance on
previous tasks degrades after training on a new task. We present a novel approach
to address this challenge, focusing on the intersection of memory-based methods
and regularization approaches. We formulate a regularization strategy, termed
Information Maximization (IM) regularizer, for memory-based continual learning
methods, which is based exclusively on the expected label distribution, thus making
it class-agnostic. As a consequence, IM regularizer can be directly integrated into
rehearsal-based continual learning methods, reducing forgetting and favoring faster
convergence. Our empirical validation shows that, across datasets and regardless
of the number of tasks, our proposed regularization strategy consistently improves
baseline performance at the expense of a minimal computational overhead. Finally,
we demonstrate the data-agnostic nature of our regularizer by applying it to video
data, which presents additional challenges due to its temporal structure and higher
memory requirements. Despite the significant domain gap, our experiments show
that IM regularizer also improves the performance of video continual learning
methods.

1 Introduction

Continual learning (CL) aims to develop models that can learn from evolving data distributions
with minimal forgetting [26]. Due to the high computational and financial costs of training deep
neural network models and growing concerns over privacy regulations, the applicability of CL in
various real-world scenarios has become increasingly critical. For instance, video-sharing platforms
such as YouTube and TikTok receive millions of newly uploaded videos daily, each introducing new
trends, visual concepts, and styles. In these dynamic environments, traditional training algorithms
for deep learning models struggle to keep pace due to the necessity of frequent retraining, which is
resource-intensive and impractical at scale. CL can significantly enhance the effectiveness of models
designed for such dynamic data streams by continually adapting previously trained models, rather
than retraining them from scratch as new data arrives.

In recent years, memory-based methods [26} 5] have emerged as the front-runners in CL, demonstrat-
ing better performance at mitigating forgetting compared to their regularization-based counterparts.
This superior performance of rehearsal methods is attributed to the use of a memory buffer, a dedi-
cated storage that retains a subset of training data from previously learned tasks. By having access to
a subset of past samples, the model can estimate class prototypes effectively and alleviate forgetting
despite distribution shifts [26} [25]. This ability to retain past information enables rehearsal-based
approaches to maintain stability in long-term learning while adapting to new tasks.

The performance improvement of rehearsal methods over regularization methods comes at the cost of
increased memory requirements and greater computational overhead. Experience replay methods
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retrain for several epochs on both the current task data and memory buffer samples, thus effectively
approximating a joint distribution whenever new data becomes available. This continuous reprocess-
ing of stored data samples not only increases computational demands but also increases training time,
making it less scalable for large datasets.This computational penalty is further emphasized outside
the image domain; for example, in video data, a single minute-long video recorded at 30 frames
per second occupies as much memory as 1800 individual images. However, despite consuming
significant storage, such a video might represent only a single instance of a class within the memory
buffer, limiting the diversity of stored information and further challenging the efficiency of experience
replay in temporal data.

In this paper, we investigate the synergy between memory-based methods and regularization tech-
niques for CL in a class incremental setup, aiming to leverage the strengths of both approaches to
mitigate forgetting while maintaining computational efficiency. Furthermore, we propose a class-
agnostic regularization strategy for CL, which targets the distribution of the network predictions [18].
Such regularization enables us to learn improved feature representations across several distribution
shifts, thereby enhancing the model’s generalization to previously seen tasks, while simultaneously
minimizing the memory footprint and computational overhead. Despite its simplicity, extensive
empirical evaluation shows that the proposed Information Maximization (IM) regularizer emerges
as a consistently effective regularization technique, outperforming current regularization strategies
tailored for the CL setting in both accuracy and retention of past knowledge. In fact, our proposed
approach is not specific to the image CL domain; we further validate its effectiveness by applying the
IM regularizer to a video continual learning setup, where it demonstrates similarly improved results
in handling the challenges posed by temporal dependencies and increased data complexity.

Contributions: Our work makes two key contributions: (i) We conduct an experimental evaluation
of several regularizers, including Elastic Weight Consolidation (EWC), Synaptic Intelligence (SI),
Information Maximization (IM), and Entropy Minimization (EM), applied to image continual learning.
This evaluation highlights the advantages of the proposed IM regularizer, demonstrating its superiority
in terms of both performance and overall reduction in catastrophic forgetting. (ii) We extend our
analysis beyond image-based settings by demonstrating the applicability of IM within the context of
video continual learning. Given the additional complexity of temporal dependencies and larger data
volumes in videos, our results show that IM maintains its effectiveness, achieving substantial gains
over traditional memory-based baselines while preserving computational efficiency.

2 Related Work

Image Continual Learning. In the field of image-based continual learning, numerous innovative
approaches have been proposed to address catastrophic forgetting. Memory-based methods, such
as iCaRL [25]], utilize incremental classifiers and representation learning to balance new and old
knowledge, while GEM [20] and its more efficient variant A-GEM [8]] optimize gradient-based
episodic memory to mitigate forgetting. Other approaches, including DER [5], enhance rehearsal
by incorporating logit distillation, while CoPE [[11] leverages class prototypes to structure the latent
space, and ER-ACE [7] modifies cross-entropy loss to address task imbalance. Recent work includes
Refresh Learning [32]], which unifies rehearsal with selective unlearning to refresh model knowledge,
and STAR [12], a plug-and-play regularizer that leverages stability-inducing weight perturbations
during rehearsal to mitigate forgetting. Regularization-based methods aim to preserve past knowledge
by constraining weight updates, typically by identifying the importance of parameters, like Elastic
Weight Consolidation (EWC) [[15] and Synaptic Intelligence (SI) [36]. Architectural innovations
also play a crucial role in continual learning, with L2P [34] demonstrating the effectiveness of
learnable prompts in guiding pre-trained models without relying on a rehearsal buffer. More recently,
DualPrompt [33]] introduced a two-level prompting mechanism for transformer-based architectures.
These diverse approaches underscore the rapid advancements in continual learning, paving the way
for more scalable and adaptable models in real-world applications.

Video Continual Learning. To mitigate catastrophic forgetting in video data, various strategies
have been developed, which can be broadly categorized into regularization and memory-based
techniques. While regularization methods apply constraints to preserve previous knowledge, memory-
based approaches leverage data or representations from past tasks. When analyzing video continual
learning, the importance of memory becomes even more pronounced due to the temporal complexity
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and higher dimensionality of video data. SMILE [2] underscores this by proposing an efficient
replay mechanism that stores a single frame per video, emphasizing video diversity over temporal
information. This approach addresses memory constraints effectively, showcasing the critical role of
memory in video continual learning. vCLIMB [29]] and PIVOT [28]] introduce novel benchmarks and
methods focusing on class incremental learning and the use of prompting mechanisms, respectively,
pushing the boundaries of current methodologies. Utilizing Winning Subnetworks for efficient
learning [14]], and creating multi-modal datasets for egocentric activity recognition [35]] illustrate the
expanding scope of continual learning in video domains. Additionally, Continual Predictive Learning
[LO] and approaches to Video Object Segmentation as a continual learning task [21] represent
significant advancements in handling non-stationary environments and long video sequences. Finally,
efforts to learn new class representations while preserving old ones through time-channel importance
maps [23].

Test-Time Adaptation. Test-Time Adaptation (TTA) aims to alleviate performance drop of pre-
trained models at test time when exposed to domain shifts 27, [1]. Earlier works augmented the
training objective with a self-supervised loss function that is later leveraged at test time to combat
domain shifts [27,[19]. More recent TTA methods optimize an unsupervised loss function at test-time
on the received unlabeled data to improve performance under domain shifts [22]]. This includes simple
adjustments to the statistics of normalization layers [17]], entropy minimization [30], information
maximization [18]], among others [4} 31]. However, most TTA methods are proposed to combat
covariate domain shifts at test time. In this work, we get inspiration from the source hypothesis
adaptation method [18]] to propose an effective regularizer for continual learning. We also analyze
the effectiveness of other adaptation methods such as entropy minimization in mitigating catastrophic
forgetting in continual learning.

This work aims to enhance continual learning performance by introducing a cost-effective regularizer
that improves results even in memory-constrained scenarios. Such scenarios are particularly important
when dealing with memory-intensive data, such as videos, or when sample storage is restricted due to
privacy concerns. We investigate a class-independent regularizer designed to facilitate the learning of
generalizable features.

3 Methodology

In this section, we formalize the problem of continual learning, with a particular focus on class-
incremental learning in visual recognition tasks. We define the underlying framework and introduce
the necessary notation to describe the incremental learning process. Additionally, we present the
formulation of the proposed regularizer, Information Maximization (IM), along with the selected
baseline regularizers: Elastic Weight Consolidation (EWC), Synaptic Intelligence (SI), and Entropy
Minimization (EM).

We focus on the offline continual learning problem for visual recognition tasks, where a classifier
fo : X = P(Y) (a DNN parameterized by §) maps an input 2 € X into the probability simplexﬂ
P(Y),withY = {1,2,..., K}. In continual learning, fy is presented with a sequence of T tasks
{(X1,11),(X2,Y2),..., (X7, Yr)} where X; C X and Y; C Y Vi [29]. Furthermore, we consider
the class-incremental problem setup, where the labels presented in each individual task are mutually
exclusive (Y; NY; = ¢ Vi # j). The main objective of the learner is to maximize its performance
(e.g. Accuracy) on all observed tasks. This objective is often hindered by the catastrophic forgetting
problem: while learning task ¢, fy tends to forget previously learned tasks < i, significantly dropping
its performance for any x € X ;.

For our baseline, we consider rehearsal-based continual learning methods where the learner is allowed
to store up to NN training examples from previous tasks into a replay memory buffer M [9]]. Let M;
denote the replay buffer at task ¢ containing examples from the tasks 7 < ¢. Rehearsal-based methods
update the parameter set 6 at task ¢ in the following form:

0 = argemin E ()~ (x0,v0) £(fo(2), y) + Euvy~nr, L(fo(u), v). )

'e.g. the network’s output after Softmax.
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That is, for each batch sampled from the newly available data on the ¢ task, the learner samples
another batch from memory M, and updates the model on the combined loss.

3.1 Regularizing Replay Methods with Information Maximization

Inspired by the work of Liang et al. [18] in the domain of test-time adaptation, we hypothesize
that in a continual learning setup, fy should output confident predictions that distinctly separate
all previously seen classes. This means that for any given input, the model should assign a high
probability to a single class. Since the memory buffer M, contains a subset of past examples and new
tasks introduce distribution shifts, the model must remain adaptable while preserving knowledge from
earlier tasks. To achieve this, we propose a regularizer that encourages the model to make confident
predictions across all encountered classes without biasing toward recent task data. By maximizing
information in the logits, our approach helps reinforce discriminative representations for all learned
classes, improving robustness against distribution shifts. Our proposed regularizer (Rpy) takes the
following form:

Rm(b, Xt) = Len(0, Xt) + Lai (0, X¢) @

with Len (0, X:) :—Emthz fy(@)log f3(x)  Law = Zfe ) log fi (),

where fy(z) = Epx,[fo(x)] and f§(z) is the k' element in the vector fy(z). Note that optimizing
Leq increases the model’s confidence on the prediction, while Lg;, promotes diverse label predictions
on fy. Our regularized rehearsal-based method follows the formulation:

min B )~ o0, v) £0fo(2),Y) + Euoymnr, £(fo(w), v) + Rim (0, X). 3)

Our proposed regularizer has the following advantages: (i) It is orthogonal to the most critical design
choices of continual learning algorithms, as it can operate regardless of the choice of fy, the replay-
based method, the size of the memory buffer, and the number of tasks. (ii) Efficient computation
of Ryas: where both Ly and Lg;, depend exclusively on the output predictions of the model and
can be computed in O(n). This aspect is essential when dealing with memory-intensive setups.
For example, on video data, our regularizer estimates L, and Lg;, over clip predictions instead
of per-frame estimates. (iii) Our formulation is agnostic to the type of data used in the continual
learning problem. Without any modifications, our formulation can be applied to both image-based or
video-based continual learning problems.

3.2 Baseline Regularizers

We compare our proposal against different regularizers to assess its effectiveness in mitigating
forgetting and improving continual learning performance. We follow the formulation in Equation
(3), and study alternatives to Rv (60, X;). In particular, we analyze different regularizers from the
continual learning literature, namely Elastic Weight Consolidation [[15] and Synaptic Intelligence [36].
Furthermore, we explore Entropy Minimization [30] from the test-time adaptation literature.

Elastic Weight Consolidation (EWC). Kirkpatrick et.al proposed to regularize the parameter
update during continual learning to prevent catastrophic forgetting by constraining changes to
important weights. The key idea behind EWC is to estimate the importance of each parameter
for previously learned tasks and penalize deviations from their learned values. We analyze the
effectiveness of combining EWC [[15] with rehearsal-based methods by replacing Ry in Equation
with Rewc, defined as:

A
Rewe(0) =) SF(0" = 0i_1)7,

where F' is the Fisher information matrix, which quantifies the importance of each parameter based on
how sensitive the loss function is to changes in that parameter, and ) is a hyper-parameter balancing
the relative importance of the old tasks with respect to the current task.
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Synaptic Intelligence (SI). It is a biologically inspired regularizer from the continual learning
literature. It follows a similar principle to EWC but determines weight importance using a different
approach. Instead of using the Fisher Information Matrix, SI tracks the contribution of each parameter
during training by accumulating an importance measure based on changes in loss. This adaptive
tracking mechanism allows the model to selectively constrain updates to crucial parameters while
remaining flexible for learning new tasks. We replace Ry in Equation (3)) with R¢; which takes the

following form:
T
Rsi1(0 Z @ 9t
t

where AfL = 0} — th_l and the damping parameter ¢ avoids division by zero.

Entropy Minimization (EM). Following the self-supervised spirit of our proposed regularization
approach, we include one self-supervised regularizer that encourages the model to produce more
confident predictions. In particular, we follow Wang et.al [30] and apply entropy minimization to
regularize the output distribution, reducing the model’s uncertainty when making predictions. Entropy
minimization replaces Ry in Equation (3)) with Rgy where:

Rem(0, Xi) = —Epnx, ng )log f5 (). “)

Entropy minimization encourages the model to assign hlgher confidence to its predictions, effectively
suppressing uncertain outputs. This can be beneficial in a continual learning setup, where distribution
shifts can lead to increased uncertainty.

4 Experiments

In this section, we proceed with the empirical assessment of our proposed approach to validate its
effectiveness. For completeness, we first evaluate several rehearsal-based continual learning (CL)
methods when paired with the regularizers IM, EWC, SI, and EM. We then extend the analysis by
applying IM to additional rehearsal approaches, showing that its benefits generalize consistently
across different methods and datasets.

Datasets. Following the image CL literature, we focus on two main datasets: Split-CIFAR100 [36]]
and Split-Tiny ImageNet [16]. Split-CIFAR100 contains a total of 100 classes and 6000 images per
class. It is divided into 10 tasks, each containing 10 classes. Split-Tiny ImageNet consists of 200
classes with 500 images per class, and is divided into 10 tasks of 20 classes each.

Evaluation Metrics. To evaluate the performance of CL methods, we consider two metrics: Average
Accuracy, which is defined as the average performance across all tasks, and Forgetting Rate that
measures the impact of the learned task on the performance of the previous tasks [8]].

* Average Accuracy (ACC) quantifies the model’s overall performance across all tasks it has
encountered. It is defined as:

1 T
ACC = T;ai, (5)

where T is the total number of tasks and a; represents the accuracy of the model on
the ¢-th task after it has been trained on all 7" tasks. ACC provides a comprehensive
measure of how well the model learns and retains knowledge across a full sequence of tasks.

» Forgetting Rate (FR) measures the decrease in performance on past tasks after a model has
been trained on new ones. It directly measures catastrophic forgetting. FR is defined as:

1 T-1

FR= 71 zz: rjn<ax a;j — a;1), (6)
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Figure 1: Results of Integrating Different Regularizers on Split-CIFAR100 and Split-Tiny
ImageNet. This figure plots the average accuracy and forgetting rate of three baseline methods (ER,
DER, and DER++) across various memory sizes, in combination with the analyzed regularizers (IM,
EM, EWC, and SI), and across two datasets (Split-CIFAR100 and Split-Tiny ImageNet).

where a;; is the accuracy on task ¢ immediately after training on task j, and a;7 is the
accuracy on task ¢ after the final task 7" has been learned. A lower FR indicates better
retention of previously learned knowledge, while a higher FR points to significant forgetting.

Implementation Details. We train a ResNet18 [[13] model from scratch, following the training
scheme and hyper-parameters of each paper. Following our limited memory setting, we define a
budget of 5, 10 and 20 samples per class as the maximum allowed in M, at any moment. To balance
the loss terms, we multiply the regularization term by A=0.5 and the cross-entropy loss with 1-\.

Baselines. We consider four regularizers: EWC [[15]], ST [36], EM [30]], and IM [[18]], applied on top
of three memory-based continual learning methods: ER [26], DER [3], and DER++ [3]. For the IM
regularizer, we further extend the evaluation to include Refresh Learning [32], implemented on top of
DER++, and STAR [12]], implemented on top of ER.

4.1 Regularized Rehearsal Methods Results

Figure (1) summarizes the performance of rehearsal-based methods ER, DER, and DER++ on Split-
CIFAR100 (left columns) and Split-Tiny ImageNet (right columns) for the selected memory sizes. We
include the baseline performance (light blue) and outline the impact of incorporating regularization
techniques on top of these rehearsal methods.

Our results demonstrate that introducing IM on top of rehearsal-based methods consistently leads to
improvements across all memory sizes. For instance, when IM is applied to ER on Split-CIFAR100,
we observe an enhancement of 10-13% in performance across all memory sizes. The improvement is
slightly lower for DER and DER++, ranging around 2-7% for DER and 1-2% for DER++. In contrast,
other regularizers like EWC, SI, and EM generally do not improve the baseline methods, and can
even degrade performance in some cases, as is the case for EWC on DER and DER++, where the
model’s accuracy drops by nearly half.

We can also observe in Figure (I)) that forgetting is significantly reduced when the rehearsal methods
are paired with IM. For ER (paired with IM) applied on Split-CIFAR100, the reduction in forgetting
is around (22-25%) across all memory sizes. For DER and DER++ on Split-CIFAR100, our results
show a smaller reduction compared to ER with about (9-13%) and (4-6%), respectively. On the other
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Figure 2: Results on Split-CIFAR100 and Split-Tiny ImageNet. This figure presents the average
accuracy and forgetting rate of five rehearsal-based methods (ER, DER, DER++, Refresh Learning,
and STAR) across different memory buffer sizes, both in their baseline form and when combined
with Information Maximization (IM).

hand, EM and SI do not generally reduce forgetting compared to the original baselines. This is since
EM aims at increasing the model’s confidence in predicting samples from the current task. While
this approach might accelerate the learning process over tasks, it does not promote the retention of
previously learned information.

For EWC, we observe reduction in forgetting when paired with ER, but not with the remaining
baselines. More detailed and comprehensive results can be found in the Appendix.

To further validate the effectiveness of IM, we expand our analysis to include two additional rehearsal-
based baselines: Refresh Learning and STAR. Figure (2) presents the performance gains when IM is
integrated into all five rehearsal methods (ER, DER, DER++, Refresh Learning, STAR) across both
Split-CIFAR100 and Split-Tiny ImageNet.

On Split-CIFAR100, IM consistently improves the performance of Refresh Learning and STAR, but
with varying impact. When paired with Refresh Learning, the improvements are more modest—about
1-2% in accuracy—yet forgetting is reduced by (7-9%) across all memory sizes. This indicates
that while Refresh Learning already stabilizes training to some degree, IM provides an additional
layer of retention without significantly altering the learning dynamics. For STAR, the effect is more
pronounced: we observe accuracy gains of 2—6%, along with a substantial reduction in forgetting
(18-24%). On Split-Tiny ImageNet, IM continues to yield consistent improvements. For Refresh,
the accuracy gains are larger than on Split-CIFAR100, ranging from 2-8%, with forgetting reduced
by (7-20%). STAR also benefits considerably, with accuracy improvements of 3-9% and forgetting
reductions between (9-15%).

Conclusion. These results reveal that Information Maximization (IM) serves as an effective regu-
larization technique, consistently improving the performance of image continual learning baselines
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Table 1: Ablation Study on Compute Budget. This table presents the performance of ER and DER,
with and without the Information Maximization (IM) regularizer, on Split-CIFAR100 and Split-Tiny
ImageNet datasets. For Split-CIFAR100, the baselines are run with 10 epochs, while for Split-Tiny
ImageNet, the experiments are run with 50 epochs.

Split-Cifar100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000

ER 20.8 268 356 132 187 25.6
ER + IM 28.8 357 401 215 26.6 31.8
DER 241 211 199 216 263 242

DER + IM 335 373 344 279 321 333

across various memory budgets. By encouraging confident yet balanced predictions, IM enhances
both accuracy and knowledge retention, thereby mitigating catastrophic forgetting.

4.2 Ablation Analysis

To explore the limitations of Information Maximization (IM) as a regularizer for continual learning
methods, we conduct two ablation experiments aimed at understanding its performance under various
conditions. First, we assess the impact of IM when the computational budget is reduced to determine
whether it improves the convergence of the baseline methods. Second, we evaluate if the improvement
obtained by using IM diminishes with additional tasks.

Computational Budget. In Section (&.I), we followed Mammoth [3| [6] defaults of 50 epochs
per task for Split-CIFAR100 and 100 for Split-Tiny ImageNet, ensuring stable training. However,
compute efficiency is increasingly critical in continual learning, as resources are costly compared to
storage. To assess IM under computational constraints, we ran ablations with 10 epochs per task on
Split-CIFAR100 and 50 on Split-Tiny ImageNet.

The results in Table (I)) show that, even with a lower computational budget of 10 and 50 epochs per
task on Split-CIFAR100 and Split-Tiny ImageNet, respectively, the proposed ER+IM and DER+IM
methods outperform their counterparts without IM regularizer. For instance, on the Split-CIFAR100
dataset with a buffer size of 1000, ER+IM achieves an accuracy of 35.7%, significantly higher than
ER at 26.8%. Similarly, DER+IM attains 37.3% accuracy, surpassing DER’s 21.1% by a large margin.
These trends hold for different buffer sizes and datasets, highlighting the effectiveness of the proposed
regularization in low-compute regimes.

Number of Tasks. In the experiments presented in Section (4.1), we used the conventional 10-tasks
split for Split-CIFAR100 and Split-Tiny ImageNet, which is commonly used in continual learning
studies. However, as shown in [29, 24]], performance may vary when more tasks are introduced. More
tasks can make the problem harder because the model has to remember more information and avoid
forgetting earlier tasks while learning new information. Consequently, we reran the experiments
in Section @, doubling the number of tasks from 10 to 20. This allows us to evaluate whether
Information Maximization (IM) regularizer remains effective when the continual learning problem
becomes more challenging due to having more tasks to learn. The results presented in Table (2))
show that incorporating IM into ER and DER can significantly improve their performance on longer
sequences of tasks. For example, ER+IM shows an improvement of (4-7%) and (6-8%) on Split-
CIFAR100 and Split-Tiny ImageNet, respectively. On the other hand, DER+IM shows a (4-7%) and
(4-5%) improvement on Split-CIFAR100 and Split-Tiny ImageNet, respectively.

4.3 Generalization to Video Continual Learning

To further validate the effectiveness of Information Maximization (IM) as a cost-effective regu-
larization technique for continual learning methods, we extend our analysis to experiments in the
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Table 2: Ablation Study on Number of Tasks. This table presents the performance of ER and DER
, with and without Information Maximization (IM) regularizer on a sequence of 20 tasks for both
Split-CIFAR100 and Split-Tiny ImageNet datasets.

Split-CIFAR100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000

ER 16.6 258 347 9.1 14.5 22.1
ER + IM 234 313 389 183 234 29.1
DER 25.1 358 389 180 225 27.8

DER + IM 328 398 450 232 27.0 321
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Figure 3: Application of Information Maximization to Video Continual Learning. This figure
illustrates the average accuracy and forgetting rates of the iCARL video continual learning variant,
introduced by vCLIMB [29]], with and without our Information Maximization (IM) regularizer.

video domain. Specifically, we experiment with the iCaRL approach as part of the popular vCLIMB
framework [25) [29] to assess IM’s performance in this video CL context. We evaluate the use of
IM regularizer on two widely recognized datasets in the video domain: UCF-101, consisting of 101
classes split into 10 tasks, and ActivityNet, comprising 200 classes also divided into 10 tasks. We set
the memory size to 5, 10 and 20 samples per class and adopt the training hyperparameters from [29].

Upon applying iCARL to UCF-101 with IM, we achieve an improvement of 2-8% across all memory
sizes. Similarly, on ActivityNet, the accuracy gain is between 4-8% with the incorporation of IM.
These results highlight the potential of IM as a valuable regularization technique for enhancing
performance in the video continual learning scenarios. Note that video data has an additional
temporal dimension compared to images, which requires more memory to store. Being able to
improve continual learning performance with small memory buffer sizes, as shown in Figure 3] is
crucial for facilitating the development of memory-efficient approaches for video continual learning.

5 Conclusion

In conclusion, this paper explores the combined potential of memory-based methods and regulariza-
tion techniques in the context of Continual Learning (CL), specifically within a class incremental
setup. We introduce a novel, class-agnostic regularization strategy for CL, which focuses on the
distribution of the network’s predictions. This strategy, termed Information Maximization (IM)
regularization, facilitates the learning of enhanced feature representations across multiple distribu-
tion shifts, while simultaneously minimizing memory requirements and computational overhead.
Our extensive empirical evaluation underscores the effectiveness of the proposed IM regularizer.
Furthermore, the simplicity and versatility of our approach allow it to be applied across different
input domains, as evidenced by its successful application in the video continual learning setup.
Unlike traditional image-based settings, video CL presents additional challenges due to its temporal
structure and higher memory demands. Despite these complexities, our method demonstrates strong
performance, reinforcing its applicability to real-world, resource-constrained scenarios.
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A Appendix

A.1 Regularized Rehearsal Methods Results

Tables [3|and |4} contain the numerical results for the average accuracy and forgetting rate metrics,
respectively, on three baseline methods (ER, DER, and DER++) in combination with the analyzed
regularizers (IM, EM, EW, and SI), as well as for integrating IM into Refresh Learning and STAR.
These results were summarized as plots in Figures (T)) and (2)) of the main paper. We observe that our
proposed regularize (IM) consistently outperforms other methods across different memory settings.

Table 3: Average Accuracy on Split-CIFAR100 and Split-Tiny ImageNet. This table shows the
average accuracy of three baseline methods (ER, DER, and DER++) across various sizes of memory
buffer, in combination with the analyzed regularizers (IM, EM, EW, and SI), as well as for integrating
IM into Refresh Learning and STAR.

Dataset Split-CIFAR100 Split-Tiny ImageNet

Buffer 500 1000 2000 1000 2000 4000
ER 21.6 296 363 133 180 252
ER (IM) 336 398 462 216 270 321
ER (EM) 20.8 28.8 383 122 166 24.1
ER (EWC) 242 314 374 114 154 213
ER (SD) 21.8 290 364 112 157 204
DER 33.6 426 519 233 314 357
DER (IM) 40.6 48.7 53.6 281 333 387
DER (EM) 323 426 493 244 309 355
DER (EWC) 205 195 250 109 152 176
DER (SI) 29.5 423 504 132 170 168
DER++ 404 459 525 230 312 380

DER++ (IM) 41.6 473 543 275 333 385
DER++ (EM) 40.5 446 526 251 307 368
DER++ (EWC) 18.0 17.6 228 129 143 213
DER++ (SI) 337 423 503 176 174 222

Refresh 40.8 480 536 185 21.8 336
Refresh (IM) 427 495 551 255 301 352
STAR 28,6 369 466 168 232 263
STAR (IM) 347 434 488 258 261 347

A.2 Regularization Targets

For the experimental assessment in Section (4.1]), we apply the regularization loss to current task
samples only. This raises the question of how the proposed method would behave if the IM loss were
applied exclusively to memory samples or to both memory and current task samples. For this reason,
we reran the experiments shown in Section ({.)) for both variants, and the results are summarized
in Table (5). We find that applying the IM loss to the current task (CT) is superior to applying it to
the memory/buffer samples only (BF) or to both buffer and current task samples (ALL). Notably,
this trend remains consistent across various buffer sizes, datasets, and continual learning methods,
highlighting the robustness of this strategy.

For example, with a buffer size of 500 on the Split-CIFAR100, ER+IM (CT) achieves an accuracy
of 33.6%, which is significantly higher than ER+IM (ALL) and ER+IM (BF), which achieve 25.9%
and 21.7%, respectively. Similarly, DER+IM (CT) consistently outperforms DER+IM (ALL) and
DER+IM (BF) across various buffer sizes and datasets, reinforcing the advantage of applying IM
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Table 4: Forgetting Rate on Split-CIFAR100 and Split-Tiny ImageNet. This table shows the
forgetting rate of three baseline methods (ER, DER, and DER++) across various sizes of memory
buffer, in combination with the analyzed regularizers (IM, EM, EW, and SI), as well as the results for
integrating IM into Refresh Learning and STAR.

Dataset Split-CIFAR100 Split-Tiny ImageNet

Buffer 500 1000 2000 1000 2000 4000
ER 73.8 645 548 71.8 659 575
ER (IM) 479 406 328 533 476 409
ER (EM) 755 669 555 729 683 593
ER (EWC) 652 553 474 620 575 504
ER (SI) 73.0 653 560 685 608 576
DER 58.8 465 324 559 43.0 357
DER (IM) 451 327 232 443 345 260
DER (EM) 60.0 469 382 537 448 384
DER (EWC) 67.7 720 648 674 613 588
DER (SI) 63.8 47.1 360 589 49.7 515
DER++ 50.7 427 351 567 41.0 339

DER++ (IM) 46.0 371 281 461 321 284
DER++ (EM) 49.6 43.1 325 488 405 329
DER++ (EWC) 684 70.7 630 647 644 538
DER++ (SI) 583 467 36.1 574 527 498

Refresh 45.0 351 285 627 579 422
Refresh (IM) 364 259 218 446 379 354
STAR 62.6 551 422 657 509 541
STAR (IM) 40.8 314 237 504 420 404

440 solely to current task samples. For example, it achieves 48.7% accuracy on Split-CIFAR100 with
441 a buffer size of 1000, while DER +IM (ALL) and DER +IM (BF) achieve 46.0% and 41.0%,
a2 respectively. These results indicate that applying IM regularizer to the current task samples is more
443 effective than applying it exclusively to the memory/buffer samples only or to both buffer and current
444 task samples.

445 A.3 Generalization to Video Continual Learning

446 Tables[6]and[7 present the numerical results of average accuracy and forgetting rate, respectively, for
447 iCaRL approach with and without IM on two video datasets (UCF101 and ActivityNet). Combining
448 1CaRL with IM shows improvement in average accuracy and reduces forgetting rate across different
449 Mmemory settings.
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Table 5: Ablation Study on Regularization Target Selection. In the main results, the Information
Maximization (IM) regularizer is applied exclusively to the current task samples (CT). This table
presents the results of applying the regularizer to the buffer samples only (BF) and to both current task
samples and buffer samples simultaneously (ALL). The findings indicate that applying the regularizer
to the current task samples consistently leads to superior performance compared to the other variants.

Split-CIFAR100 Split-Tiny ImageNet

Buffer Size 500 1000 2000 1000 2000 4000
ER + IM (ALL) 259 346 427 150 203 27.8
ER +IM (CT) 33.6 398 462 21.6 27.0 321
ER + IM (BF) 217 289 388 127 177 24.2

DER +IM (ALL) 335 460 535 277 327 35.1
DER + IM (CT) 40.6 48.7 536 281 333 38.7
DER + IM (BF) 273 410 502 212 277 34.6

Table 6: Average Accuracy on UCF101 and ActivityNet. This table shows the average accuracy of
iCaRL with and without IM across various sizes of memory buffer on two datasets (UCF101 and
ActivityNet). The results demonstrate that the proposed information maximization approach (+IM)
consistently outperforms iCaRL on both datasets regardless of the memory setting.

Dataset UCF101 ActivityNet
Buffer 505 1010 2020 1000 2000 4000
iCaRL 68.44 7470 81.07 41.72 4505 4691

iCaRL (IM) 75.60 79.11 83.53 45.76 50.01 55.20

Table 7: Forgetting Rate on UCF101 and ActivityNet. This table shows the forgetting rate of
iCaRL with and without IM across various sizes of memory buffer on two datasets (UCF101 and
ActivityNet). The results demonstrate that the proposed information maximization approach (+IM)
consistently achieves lower forgetting rates on both datasets regardless of the memory setting.

Dataset UCF101 ActivityNet
Buffer 505 1010 2020 1000 2000 4000
iCaRL 25.55 2037 1431 2129 1946 18.55

iCaRL+IM 16.87 16.02 10.54 19.01 18.55 1548
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