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Abstract

Deep neural networks suffer from catastrophic forgetting, where performance on1

previous tasks degrades after training on a new task. We present a novel approach2

to address this challenge, focusing on the intersection of memory-based methods3

and regularization approaches. We formulate a regularization strategy, termed4

Information Maximization (IM) regularizer, for memory-based continual learning5

methods, which is based exclusively on the expected label distribution, thus making6

it class-agnostic. As a consequence, IM regularizer can be directly integrated into7

rehearsal-based continual learning methods, reducing forgetting and favoring faster8

convergence. Our empirical validation shows that, across datasets and regardless9

of the number of tasks, our proposed regularization strategy consistently improves10

baseline performance at the expense of a minimal computational overhead. Finally,11

we demonstrate the data-agnostic nature of our regularizer by applying it to video12

data, which presents additional challenges due to its temporal structure and higher13

memory requirements. Despite the significant domain gap, our experiments show14

that IM regularizer also improves the performance of video continual learning15

methods.16

1 Introduction17

Continual learning (CL) aims to develop models that can learn from evolving data distributions18

with minimal forgetting [26]. Due to the high computational and financial costs of training deep19

neural network models and growing concerns over privacy regulations, the applicability of CL in20

various real-world scenarios has become increasingly critical. For instance, video-sharing platforms21

such as YouTube and TikTok receive millions of newly uploaded videos daily, each introducing new22

trends, visual concepts, and styles. In these dynamic environments, traditional training algorithms23

for deep learning models struggle to keep pace due to the necessity of frequent retraining, which is24

resource-intensive and impractical at scale. CL can significantly enhance the effectiveness of models25

designed for such dynamic data streams by continually adapting previously trained models, rather26

than retraining them from scratch as new data arrives.27

In recent years, memory-based methods [26, 5] have emerged as the front-runners in CL, demonstrat-28

ing better performance at mitigating forgetting compared to their regularization-based counterparts.29

This superior performance of rehearsal methods is attributed to the use of a memory buffer, a dedi-30

cated storage that retains a subset of training data from previously learned tasks. By having access to31

a subset of past samples, the model can estimate class prototypes effectively and alleviate forgetting32

despite distribution shifts [26, 25]. This ability to retain past information enables rehearsal-based33

approaches to maintain stability in long-term learning while adapting to new tasks.34

The performance improvement of rehearsal methods over regularization methods comes at the cost of35

increased memory requirements and greater computational overhead. Experience replay methods36
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retrain for several epochs on both the current task data and memory buffer samples, thus effectively37

approximating a joint distribution whenever new data becomes available. This continuous reprocess-38

ing of stored data samples not only increases computational demands but also increases training time,39

making it less scalable for large datasets.This computational penalty is further emphasized outside40

the image domain; for example, in video data, a single minute-long video recorded at 30 frames41

per second occupies as much memory as 1800 individual images. However, despite consuming42

significant storage, such a video might represent only a single instance of a class within the memory43

buffer, limiting the diversity of stored information and further challenging the efficiency of experience44

replay in temporal data.45

In this paper, we investigate the synergy between memory-based methods and regularization tech-46

niques for CL in a class incremental setup, aiming to leverage the strengths of both approaches to47

mitigate forgetting while maintaining computational efficiency. Furthermore, we propose a class-48

agnostic regularization strategy for CL, which targets the distribution of the network predictions [18].49

Such regularization enables us to learn improved feature representations across several distribution50

shifts, thereby enhancing the model’s generalization to previously seen tasks, while simultaneously51

minimizing the memory footprint and computational overhead. Despite its simplicity, extensive52

empirical evaluation shows that the proposed Information Maximization (IM) regularizer emerges53

as a consistently effective regularization technique, outperforming current regularization strategies54

tailored for the CL setting in both accuracy and retention of past knowledge. In fact, our proposed55

approach is not specific to the image CL domain; we further validate its effectiveness by applying the56

IM regularizer to a video continual learning setup, where it demonstrates similarly improved results57

in handling the challenges posed by temporal dependencies and increased data complexity.58

Contributions: Our work makes two key contributions: (i) We conduct an experimental evaluation59

of several regularizers, including Elastic Weight Consolidation (EWC), Synaptic Intelligence (SI),60

Information Maximization (IM), and Entropy Minimization (EM), applied to image continual learning.61

This evaluation highlights the advantages of the proposed IM regularizer, demonstrating its superiority62

in terms of both performance and overall reduction in catastrophic forgetting. (ii) We extend our63

analysis beyond image-based settings by demonstrating the applicability of IM within the context of64

video continual learning. Given the additional complexity of temporal dependencies and larger data65

volumes in videos, our results show that IM maintains its effectiveness, achieving substantial gains66

over traditional memory-based baselines while preserving computational efficiency.67

2 Related Work68

Image Continual Learning. In the field of image-based continual learning, numerous innovative69

approaches have been proposed to address catastrophic forgetting. Memory-based methods, such70

as iCaRL [25], utilize incremental classifiers and representation learning to balance new and old71

knowledge, while GEM [20] and its more efficient variant A-GEM [8] optimize gradient-based72

episodic memory to mitigate forgetting. Other approaches, including DER [5], enhance rehearsal73

by incorporating logit distillation, while CoPE [11] leverages class prototypes to structure the latent74

space, and ER-ACE [7] modifies cross-entropy loss to address task imbalance. Recent work includes75

Refresh Learning [32], which unifies rehearsal with selective unlearning to refresh model knowledge,76

and STAR [12], a plug-and-play regularizer that leverages stability-inducing weight perturbations77

during rehearsal to mitigate forgetting. Regularization-based methods aim to preserve past knowledge78

by constraining weight updates, typically by identifying the importance of parameters, like Elastic79

Weight Consolidation (EWC) [15] and Synaptic Intelligence (SI) [36]. Architectural innovations80

also play a crucial role in continual learning, with L2P [34] demonstrating the effectiveness of81

learnable prompts in guiding pre-trained models without relying on a rehearsal buffer. More recently,82

DualPrompt [33] introduced a two-level prompting mechanism for transformer-based architectures.83

These diverse approaches underscore the rapid advancements in continual learning, paving the way84

for more scalable and adaptable models in real-world applications.85

Video Continual Learning. To mitigate catastrophic forgetting in video data, various strategies86

have been developed, which can be broadly categorized into regularization and memory-based87

techniques. While regularization methods apply constraints to preserve previous knowledge, memory-88

based approaches leverage data or representations from past tasks. When analyzing video continual89

learning, the importance of memory becomes even more pronounced due to the temporal complexity90
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and higher dimensionality of video data. SMILE [2] underscores this by proposing an efficient91

replay mechanism that stores a single frame per video, emphasizing video diversity over temporal92

information. This approach addresses memory constraints effectively, showcasing the critical role of93

memory in video continual learning. vCLIMB [29] and PIVOT [28] introduce novel benchmarks and94

methods focusing on class incremental learning and the use of prompting mechanisms, respectively,95

pushing the boundaries of current methodologies. Utilizing Winning Subnetworks for efficient96

learning [14], and creating multi-modal datasets for egocentric activity recognition [35] illustrate the97

expanding scope of continual learning in video domains. Additionally, Continual Predictive Learning98

[10] and approaches to Video Object Segmentation as a continual learning task [21] represent99

significant advancements in handling non-stationary environments and long video sequences. Finally,100

efforts to learn new class representations while preserving old ones through time-channel importance101

maps [23].102

Test-Time Adaptation. Test-Time Adaptation (TTA) aims to alleviate performance drop of pre-103

trained models at test time when exposed to domain shifts [27, 1]. Earlier works augmented the104

training objective with a self-supervised loss function that is later leveraged at test time to combat105

domain shifts [27, 19]. More recent TTA methods optimize an unsupervised loss function at test-time106

on the received unlabeled data to improve performance under domain shifts [22]. This includes simple107

adjustments to the statistics of normalization layers [17], entropy minimization [30], information108

maximization [18], among others [4, 31]. However, most TTA methods are proposed to combat109

covariate domain shifts at test time. In this work, we get inspiration from the source hypothesis110

adaptation method [18] to propose an effective regularizer for continual learning. We also analyze111

the effectiveness of other adaptation methods such as entropy minimization in mitigating catastrophic112

forgetting in continual learning.113

This work aims to enhance continual learning performance by introducing a cost-effective regularizer114

that improves results even in memory-constrained scenarios. Such scenarios are particularly important115

when dealing with memory-intensive data, such as videos, or when sample storage is restricted due to116

privacy concerns. We investigate a class-independent regularizer designed to facilitate the learning of117

generalizable features.118

3 Methodology119

In this section, we formalize the problem of continual learning, with a particular focus on class-120

incremental learning in visual recognition tasks. We define the underlying framework and introduce121

the necessary notation to describe the incremental learning process. Additionally, we present the122

formulation of the proposed regularizer, Information Maximization (IM), along with the selected123

baseline regularizers: Elastic Weight Consolidation (EWC), Synaptic Intelligence (SI), and Entropy124

Minimization (EM).125

We focus on the offline continual learning problem for visual recognition tasks, where a classifier126

fθ : X → P(Y) (a DNN parameterized by θ) maps an input x ∈ X into the probability simplex1127

P(Y) , with Y = {1, 2, . . . ,K}. In continual learning, fθ is presented with a sequence of T tasks128

{(X1, Y1), (X2, Y2), . . . , (XT , YT )} where Xi ⊂ X and Yi ⊂ Y ∀i [29]. Furthermore, we consider129

the class-incremental problem setup, where the labels presented in each individual task are mutually130

exclusive (Yi ∩ Yj = ϕ ∀i ̸= j). The main objective of the learner is to maximize its performance131

(e.g. Accuracy) on all observed tasks. This objective is often hindered by the catastrophic forgetting132

problem: while learning task i, fθ tends to forget previously learned tasks < i, significantly dropping133

its performance for any x ∈ X<i.134

For our baseline, we consider rehearsal-based continual learning methods where the learner is allowed135

to store up to N training examples from previous tasks into a replay memory buffer M [9]. Let Mt136

denote the replay buffer at task t containing examples from the tasks i < t. Rehearsal-based methods137

update the parameter set θ at task t in the following form:138

θ∗t = argmin
θ

E(x,y)∼(Xt,Yt)L(fθ(x), y) + E(u,v)∼Mt
L(fθ(u), v). (1)

1e.g. the network’s output after Softmax.
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That is, for each batch sampled from the newly available data on the tth task, the learner samples139

another batch from memory Mt and updates the model on the combined loss.140

3.1 Regularizing Replay Methods with Information Maximization141

Inspired by the work of Liang et al. [18] in the domain of test-time adaptation, we hypothesize142

that in a continual learning setup, fθ should output confident predictions that distinctly separate143

all previously seen classes. This means that for any given input, the model should assign a high144

probability to a single class. Since the memory buffer Mt contains a subset of past examples and new145

tasks introduce distribution shifts, the model must remain adaptable while preserving knowledge from146

earlier tasks. To achieve this, we propose a regularizer that encourages the model to make confident147

predictions across all encountered classes without biasing toward recent task data. By maximizing148

information in the logits, our approach helps reinforce discriminative representations for all learned149

classes, improving robustness against distribution shifts. Our proposed regularizer (RIM) takes the150

following form:151

RIM(θ,Xt) = Lent(θ,Xt) + Ldiv(θ,Xt) (2)
152

with Lent(θ,Xt) = −Ex∼Xt

K∑
k=1

fk
θ (x) log f

k
θ (x) Ldiv =

K∑
k=1

f̂k
θ (x) log f̂

k
θ (x),

where f̂θ(x) = Ex∼Xt [fθ(x)] and fk
θ (x) is the kth element in the vector fθ(x). Note that optimizing153

Lent increases the model’s confidence on the prediction, while Ldiv promotes diverse label predictions154

on fθ. Our regularized rehearsal-based method follows the formulation:155

min
θ

E(x,y)∼(Xt,Yt)L(fθ(x), y) + E(u,v)∼Mt
L(fθ(u), v) +RIM(θ,Xt). (3)

Our proposed regularizer has the following advantages: (i) It is orthogonal to the most critical design156

choices of continual learning algorithms, as it can operate regardless of the choice of fθ, the replay-157

based method, the size of the memory buffer, and the number of tasks. (ii) Efficient computation158

of RIM : where both Lent and Ldiv depend exclusively on the output predictions of the model and159

can be computed in O(n). This aspect is essential when dealing with memory-intensive setups.160

For example, on video data, our regularizer estimates Lent and Ldiv over clip predictions instead161

of per-frame estimates. (iii) Our formulation is agnostic to the type of data used in the continual162

learning problem. Without any modifications, our formulation can be applied to both image-based or163

video-based continual learning problems.164

3.2 Baseline Regularizers165

We compare our proposal against different regularizers to assess its effectiveness in mitigating166

forgetting and improving continual learning performance. We follow the formulation in Equation167

(3), and study alternatives to RIM(θ,Xt). In particular, we analyze different regularizers from the168

continual learning literature, namely Elastic Weight Consolidation [15] and Synaptic Intelligence [36].169

Furthermore, we explore Entropy Minimization [30] from the test-time adaptation literature.170

Elastic Weight Consolidation (EWC). Kirkpatrick et.al proposed to regularize the parameter171

update during continual learning to prevent catastrophic forgetting by constraining changes to172

important weights. The key idea behind EWC is to estimate the importance of each parameter173

for previously learned tasks and penalize deviations from their learned values. We analyze the174

effectiveness of combining EWC [15] with rehearsal-based methods by replacing RIM in Equation175

(3) with REWC, defined as:176

REWC(θ) =
∑
i

λ

2
Fi(θ

i − θit−1)
2,

where F is the Fisher information matrix, which quantifies the importance of each parameter based on177

how sensitive the loss function is to changes in that parameter, and λ is a hyper-parameter balancing178

the relative importance of the old tasks with respect to the current task.179
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Synaptic Intelligence (SI). It is a biologically inspired regularizer from the continual learning180

literature. It follows a similar principle to EWC but determines weight importance using a different181

approach. Instead of using the Fisher Information Matrix, SI tracks the contribution of each parameter182

during training by accumulating an importance measure based on changes in loss. This adaptive183

tracking mechanism allows the model to selectively constrain updates to crucial parameters while184

remaining flexible for learning new tasks. We replace RIM in Equation (3) with RSI which takes the185

following form:186

RSI(θ) =

T∑
t

ωk
t

(∆θtk)
2 + ξ

,

where ∆θtk = θtk − θt−1
k and the damping parameter ξ avoids division by zero.187

Entropy Minimization (EM). Following the self-supervised spirit of our proposed regularization188

approach, we include one self-supervised regularizer that encourages the model to produce more189

confident predictions. In particular, we follow Wang et.al [30] and apply entropy minimization to190

regularize the output distribution, reducing the model’s uncertainty when making predictions. Entropy191

minimization replaces RIM in Equation (3) with REM where:192

REM(θ,Xt) = −Ex∼Xt

K∑
k=1

fk
θ (x) log f

k
θ (x). (4)

Entropy minimization encourages the model to assign higher confidence to its predictions, effectively193

suppressing uncertain outputs. This can be beneficial in a continual learning setup, where distribution194

shifts can lead to increased uncertainty.195

4 Experiments196

In this section, we proceed with the empirical assessment of our proposed approach to validate its197

effectiveness. For completeness, we first evaluate several rehearsal-based continual learning (CL)198

methods when paired with the regularizers IM, EWC, SI, and EM. We then extend the analysis by199

applying IM to additional rehearsal approaches, showing that its benefits generalize consistently200

across different methods and datasets.201

Datasets. Following the image CL literature, we focus on two main datasets: Split-CIFAR100 [36]202

and Split-Tiny ImageNet [16]. Split-CIFAR100 contains a total of 100 classes and 6000 images per203

class. It is divided into 10 tasks, each containing 10 classes. Split-Tiny ImageNet consists of 200204

classes with 500 images per class, and is divided into 10 tasks of 20 classes each.205

Evaluation Metrics. To evaluate the performance of CL methods, we consider two metrics: Average206

Accuracy, which is defined as the average performance across all tasks, and Forgetting Rate that207

measures the impact of the learned task on the performance of the previous tasks [8].208

• Average Accuracy (ACC) quantifies the model’s overall performance across all tasks it has209

encountered. It is defined as:210

ACC =
1

T

T∑
i=1

ai, (5)

where T is the total number of tasks and ai represents the accuracy of the model on211

the i-th task after it has been trained on all T tasks. ACC provides a comprehensive212

measure of how well the model learns and retains knowledge across a full sequence of tasks.213

214

• Forgetting Rate (FR) measures the decrease in performance on past tasks after a model has215

been trained on new ones. It directly measures catastrophic forgetting. FR is defined as:216

FR =
1

T − 1

T−1∑
i=1

max
j<T

(aij − aiT ), (6)
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Figure 1: Results of Integrating Different Regularizers on Split-CIFAR100 and Split-Tiny
ImageNet. This figure plots the average accuracy and forgetting rate of three baseline methods (ER,
DER, and DER++) across various memory sizes, in combination with the analyzed regularizers (IM,
EM, EWC, and SI), and across two datasets (Split-CIFAR100 and Split-Tiny ImageNet).

where aij is the accuracy on task i immediately after training on task j, and aiT is the217

accuracy on task i after the final task T has been learned. A lower FR indicates better218

retention of previously learned knowledge, while a higher FR points to significant forgetting.219

Implementation Details. We train a ResNet18 [13] model from scratch, following the training220

scheme and hyper-parameters of each paper. Following our limited memory setting, we define a221

budget of 5, 10 and 20 samples per class as the maximum allowed in Mt at any moment. To balance222

the loss terms, we multiply the regularization term by λ=0.5 and the cross-entropy loss with 1-λ.223

Baselines. We consider four regularizers: EWC [15], SI [36], EM [30], and IM [18], applied on top224

of three memory-based continual learning methods: ER [26], DER [5], and DER++ [5]. For the IM225

regularizer, we further extend the evaluation to include Refresh Learning [32], implemented on top of226

DER++, and STAR [12], implemented on top of ER.227

4.1 Regularized Rehearsal Methods Results228

Figure (1) summarizes the performance of rehearsal-based methods ER, DER, and DER++ on Split-229

CIFAR100 (left columns) and Split-Tiny ImageNet (right columns) for the selected memory sizes. We230

include the baseline performance (light blue) and outline the impact of incorporating regularization231

techniques on top of these rehearsal methods.232

Our results demonstrate that introducing IM on top of rehearsal-based methods consistently leads to233

improvements across all memory sizes. For instance, when IM is applied to ER on Split-CIFAR100,234

we observe an enhancement of 10-13% in performance across all memory sizes. The improvement is235

slightly lower for DER and DER++, ranging around 2-7% for DER and 1-2% for DER++. In contrast,236

other regularizers like EWC, SI, and EM generally do not improve the baseline methods, and can237

even degrade performance in some cases, as is the case for EWC on DER and DER++, where the238

model’s accuracy drops by nearly half.239

We can also observe in Figure (1) that forgetting is significantly reduced when the rehearsal methods240

are paired with IM. For ER (paired with IM) applied on Split-CIFAR100, the reduction in forgetting241

is around (22-25%) across all memory sizes. For DER and DER++ on Split-CIFAR100, our results242

show a smaller reduction compared to ER with about (9-13%) and (4-6%), respectively. On the other243
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Figure 2: Results on Split-CIFAR100 and Split-Tiny ImageNet. This figure presents the average
accuracy and forgetting rate of five rehearsal-based methods (ER, DER, DER++, Refresh Learning,
and STAR) across different memory buffer sizes, both in their baseline form and when combined
with Information Maximization (IM).

hand, EM and SI do not generally reduce forgetting compared to the original baselines. This is since244

EM aims at increasing the model’s confidence in predicting samples from the current task. While245

this approach might accelerate the learning process over tasks, it does not promote the retention of246

previously learned information.247

For EWC, we observe reduction in forgetting when paired with ER, but not with the remaining248

baselines. More detailed and comprehensive results can be found in the Appendix.249

To further validate the effectiveness of IM, we expand our analysis to include two additional rehearsal-250

based baselines: Refresh Learning and STAR. Figure (2) presents the performance gains when IM is251

integrated into all five rehearsal methods (ER, DER, DER++, Refresh Learning, STAR) across both252

Split-CIFAR100 and Split-Tiny ImageNet.253

On Split-CIFAR100, IM consistently improves the performance of Refresh Learning and STAR, but254

with varying impact. When paired with Refresh Learning, the improvements are more modest—about255

1–2% in accuracy—yet forgetting is reduced by (7–9%) across all memory sizes. This indicates256

that while Refresh Learning already stabilizes training to some degree, IM provides an additional257

layer of retention without significantly altering the learning dynamics. For STAR, the effect is more258

pronounced: we observe accuracy gains of 2–6%, along with a substantial reduction in forgetting259

(18–24%). On Split-Tiny ImageNet, IM continues to yield consistent improvements. For Refresh,260

the accuracy gains are larger than on Split-CIFAR100, ranging from 2–8%, with forgetting reduced261

by (7–20%). STAR also benefits considerably, with accuracy improvements of 3–9% and forgetting262

reductions between (9–15%).263

Conclusion. These results reveal that Information Maximization (IM) serves as an effective regu-264

larization technique, consistently improving the performance of image continual learning baselines265
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Table 1: Ablation Study on Compute Budget. This table presents the performance of ER and DER,
with and without the Information Maximization (IM) regularizer, on Split-CIFAR100 and Split-Tiny
ImageNet datasets. For Split-CIFAR100, the baselines are run with 10 epochs, while for Split-Tiny
ImageNet, the experiments are run with 50 epochs.

Split-Cifar100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000
ER 20.8 26.8 35.6 13.2 18.7 25.6
ER + IM 28.8 35.7 40.1 21.5 26.6 31.8
DER 24.1 21.1 19.9 21.6 26.3 24.2
DER + IM 33.5 37.3 34.4 27.9 32.1 33.3

across various memory budgets. By encouraging confident yet balanced predictions, IM enhances266

both accuracy and knowledge retention, thereby mitigating catastrophic forgetting.267

4.2 Ablation Analysis268

To explore the limitations of Information Maximization (IM) as a regularizer for continual learning269

methods, we conduct two ablation experiments aimed at understanding its performance under various270

conditions. First, we assess the impact of IM when the computational budget is reduced to determine271

whether it improves the convergence of the baseline methods. Second, we evaluate if the improvement272

obtained by using IM diminishes with additional tasks.273

Computational Budget. In Section (4.1), we followed Mammoth [3, 6] defaults of 50 epochs274

per task for Split-CIFAR100 and 100 for Split-Tiny ImageNet, ensuring stable training. However,275

compute efficiency is increasingly critical in continual learning, as resources are costly compared to276

storage. To assess IM under computational constraints, we ran ablations with 10 epochs per task on277

Split-CIFAR100 and 50 on Split-Tiny ImageNet.278

The results in Table (1) show that, even with a lower computational budget of 10 and 50 epochs per279

task on Split-CIFAR100 and Split-Tiny ImageNet, respectively, the proposed ER+IM and DER+IM280

methods outperform their counterparts without IM regularizer. For instance, on the Split-CIFAR100281

dataset with a buffer size of 1000, ER+IM achieves an accuracy of 35.7%, significantly higher than282

ER at 26.8%. Similarly, DER+IM attains 37.3% accuracy, surpassing DER’s 21.1% by a large margin.283

These trends hold for different buffer sizes and datasets, highlighting the effectiveness of the proposed284

regularization in low-compute regimes.285

286

Number of Tasks. In the experiments presented in Section (4.1), we used the conventional 10-tasks287

split for Split-CIFAR100 and Split-Tiny ImageNet, which is commonly used in continual learning288

studies. However, as shown in [29, 24], performance may vary when more tasks are introduced. More289

tasks can make the problem harder because the model has to remember more information and avoid290

forgetting earlier tasks while learning new information. Consequently, we reran the experiments291

in Section (4.1), doubling the number of tasks from 10 to 20. This allows us to evaluate whether292

Information Maximization (IM) regularizer remains effective when the continual learning problem293

becomes more challenging due to having more tasks to learn. The results presented in Table (2)294

show that incorporating IM into ER and DER can significantly improve their performance on longer295

sequences of tasks. For example, ER+IM shows an improvement of (4-7%) and (6-8%) on Split-296

CIFAR100 and Split-Tiny ImageNet, respectively. On the other hand, DER+IM shows a (4-7%) and297

(4-5%) improvement on Split-CIFAR100 and Split-Tiny ImageNet, respectively.298

299

4.3 Generalization to Video Continual Learning300

To further validate the effectiveness of Information Maximization (IM) as a cost-effective regu-301

larization technique for continual learning methods, we extend our analysis to experiments in the302
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Table 2: Ablation Study on Number of Tasks. This table presents the performance of ER and DER
, with and without Information Maximization (IM) regularizer on a sequence of 20 tasks for both
Split-CIFAR100 and Split-Tiny ImageNet datasets.

Split-CIFAR100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000
ER 16.6 25.8 34.7 9.1 14.5 22.1
ER + IM 23.4 31.3 38.9 18.3 23.4 29.1
DER 25.1 35.8 38.9 18.0 22.5 27.8
DER + IM 32.8 39.8 45.0 23.2 27.0 32.1
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Figure 3: Application of Information Maximization to Video Continual Learning. This figure
illustrates the average accuracy and forgetting rates of the iCARL video continual learning variant,
introduced by vCLIMB [29], with and without our Information Maximization (IM) regularizer.

video domain. Specifically, we experiment with the iCaRL approach as part of the popular vCLIMB303

framework [25, 29] to assess IM’s performance in this video CL context. We evaluate the use of304

IM regularizer on two widely recognized datasets in the video domain: UCF-101, consisting of 101305

classes split into 10 tasks, and ActivityNet, comprising 200 classes also divided into 10 tasks. We set306

the memory size to 5, 10 and 20 samples per class and adopt the training hyperparameters from [29].307

Upon applying iCARL to UCF-101 with IM, we achieve an improvement of 2-8% across all memory308

sizes. Similarly, on ActivityNet, the accuracy gain is between 4-8% with the incorporation of IM.309

These results highlight the potential of IM as a valuable regularization technique for enhancing310

performance in the video continual learning scenarios. Note that video data has an additional311

temporal dimension compared to images, which requires more memory to store. Being able to312

improve continual learning performance with small memory buffer sizes, as shown in Figure 3, is313

crucial for facilitating the development of memory-efficient approaches for video continual learning.314

5 Conclusion315

In conclusion, this paper explores the combined potential of memory-based methods and regulariza-316

tion techniques in the context of Continual Learning (CL), specifically within a class incremental317

setup. We introduce a novel, class-agnostic regularization strategy for CL, which focuses on the318

distribution of the network’s predictions. This strategy, termed Information Maximization (IM)319

regularization, facilitates the learning of enhanced feature representations across multiple distribu-320

tion shifts, while simultaneously minimizing memory requirements and computational overhead.321

Our extensive empirical evaluation underscores the effectiveness of the proposed IM regularizer.322

Furthermore, the simplicity and versatility of our approach allow it to be applied across different323

input domains, as evidenced by its successful application in the video continual learning setup.324

Unlike traditional image-based settings, video CL presents additional challenges due to its temporal325

structure and higher memory demands. Despite these complexities, our method demonstrates strong326

performance, reinforcing its applicability to real-world, resource-constrained scenarios.327
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A Appendix420

A.1 Regularized Rehearsal Methods Results421

Tables 3 and 4, contain the numerical results for the average accuracy and forgetting rate metrics,422

respectively, on three baseline methods (ER, DER, and DER++) in combination with the analyzed423

regularizers (IM, EM, EW, and SI), as well as for integrating IM into Refresh Learning and STAR.424

These results were summarized as plots in Figures (1) and (2) of the main paper. We observe that our425

proposed regularize (IM) consistently outperforms other methods across different memory settings.426

Table 3: Average Accuracy on Split-CIFAR100 and Split-Tiny ImageNet. This table shows the
average accuracy of three baseline methods (ER, DER, and DER++) across various sizes of memory
buffer, in combination with the analyzed regularizers (IM, EM, EW, and SI), as well as for integrating
IM into Refresh Learning and STAR.

Dataset Split-CIFAR100 Split-Tiny ImageNet

Buffer 500 1000 2000 1000 2000 4000

ER 21.6 29.6 36.3 13.3 18.0 25.2
ER (IM) 33.6 39.8 46.2 21.6 27.0 32.1
ER (EM) 20.8 28.8 38.3 12.2 16.6 24.1
ER (EWC) 24.2 31.4 37.4 11.4 15.4 21.3
ER (SI) 21.8 29.0 36.4 11.2 15.7 20.4

DER 33.6 42.6 51.9 23.3 31.4 35.7
DER (IM) 40.6 48.7 53.6 28.1 33.3 38.7
DER (EM) 32.3 42.6 49.3 24.4 30.9 35.5
DER (EWC) 20.5 19.5 25.0 10.9 15.2 17.6
DER (SI) 29.5 42.3 50.4 13.2 17.0 16.8

DER++ 40.4 45.9 52.5 23.0 31.2 38.0
DER++ (IM) 41.6 47.3 54.3 27.5 33.3 38.5
DER++ (EM) 40.5 44.6 52.6 25.1 30.7 36.8
DER++ (EWC) 18.0 17.6 22.8 12.9 14.3 21.3
DER++ (SI) 33.7 42.3 50.3 17.6 17.4 22.2

Refresh 40.8 48.0 53.6 18.5 21.8 33.6
Refresh (IM) 42.7 49.5 55.1 25.5 30.1 35.2
STAR 28.6 36.9 46.6 16.8 23.2 26.3
STAR (IM) 34.7 43.4 48.8 25.8 26.1 34.7

A.2 Regularization Targets427

For the experimental assessment in Section (4.1), we apply the regularization loss to current task428

samples only. This raises the question of how the proposed method would behave if the IM loss were429

applied exclusively to memory samples or to both memory and current task samples. For this reason,430

we reran the experiments shown in Section (4.1) for both variants, and the results are summarized431

in Table (5). We find that applying the IM loss to the current task (CT) is superior to applying it to432

the memory/buffer samples only (BF) or to both buffer and current task samples (ALL). Notably,433

this trend remains consistent across various buffer sizes, datasets, and continual learning methods,434

highlighting the robustness of this strategy.435

For example, with a buffer size of 500 on the Split-CIFAR100, ER+IM (CT) achieves an accuracy436

of 33.6%, which is significantly higher than ER+IM (ALL) and ER+IM (BF), which achieve 25.9%437

and 21.7%, respectively. Similarly, DER+IM (CT) consistently outperforms DER+IM (ALL) and438

DER+IM (BF) across various buffer sizes and datasets, reinforcing the advantage of applying IM439
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Table 4: Forgetting Rate on Split-CIFAR100 and Split-Tiny ImageNet. This table shows the
forgetting rate of three baseline methods (ER, DER, and DER++) across various sizes of memory
buffer, in combination with the analyzed regularizers (IM, EM, EW, and SI), as well as the results for
integrating IM into Refresh Learning and STAR.

Dataset Split-CIFAR100 Split-Tiny ImageNet

Buffer 500 1000 2000 1000 2000 4000

ER 73.8 64.5 54.8 71.8 65.9 57.5
ER (IM) 47.9 40.6 32.8 53.3 47.6 40.9
ER (EM) 75.5 66.9 55.5 72.9 68.3 59.3
ER (EWC) 65.2 55.3 47.4 62.0 57.5 50.4
ER (SI) 73.0 65.3 56.0 68.5 60.8 57.6

DER 58.8 46.5 32.4 55.9 43.0 35.7
DER (IM) 45.1 32.7 23.2 44.3 34.5 26.0
DER (EM) 60.0 46.9 38.2 53.7 44.8 38.4
DER (EWC) 67.7 72.0 64.8 67.4 61.3 58.8
DER (SI) 63.8 47.1 36.0 58.9 49.7 51.5

DER++ 50.7 42.7 35.1 56.7 41.0 33.9
DER++ (IM) 46.0 37.1 28.1 46.1 32.1 28.4
DER++ (EM) 49.6 43.1 32.5 48.8 40.5 32.9
DER++ (EWC) 68.4 70.7 63.0 64.7 64.4 53.8
DER++ (SI) 58.3 46.7 36.1 57.4 52.7 49.8

Refresh 45.0 35.1 28.5 62.7 57.9 42.2
Refresh (IM) 36.4 25.9 21.8 44.6 37.9 35.4
STAR 62.6 55.1 42.2 65.7 50.9 54.1
STAR (IM) 40.8 31.4 23.7 50.4 42.0 40.4

solely to current task samples. For example, it achieves 48.7% accuracy on Split-CIFAR100 with440

a buffer size of 1000, while DER +IM (ALL) and DER +IM (BF) achieve 46.0% and 41.0%,441

respectively. These results indicate that applying IM regularizer to the current task samples is more442

effective than applying it exclusively to the memory/buffer samples only or to both buffer and current443

task samples.444

A.3 Generalization to Video Continual Learning445

Tables 6 and 7 present the numerical results of average accuracy and forgetting rate, respectively, for446

iCaRL approach with and without IM on two video datasets (UCF101 and ActivityNet). Combining447

iCaRL with IM shows improvement in average accuracy and reduces forgetting rate across different448

memory settings.449
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Table 5: Ablation Study on Regularization Target Selection. In the main results, the Information
Maximization (IM) regularizer is applied exclusively to the current task samples (CT). This table
presents the results of applying the regularizer to the buffer samples only (BF) and to both current task
samples and buffer samples simultaneously (ALL). The findings indicate that applying the regularizer
to the current task samples consistently leads to superior performance compared to the other variants.

Split-CIFAR100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000
ER + IM (ALL) 25.9 34.6 42.7 15.0 20.3 27.8
ER + IM (CT) 33.6 39.8 46.2 21.6 27.0 32.1
ER + IM (BF) 21.7 28.9 38.8 12.7 17.7 24.2

DER + IM (ALL) 33.5 46.0 53.5 27.7 32.7 35.1
DER + IM (CT) 40.6 48.7 53.6 28.1 33.3 38.7
DER + IM (BF) 27.3 41.0 50.2 21.2 27.7 34.6

Table 6: Average Accuracy on UCF101 and ActivityNet. This table shows the average accuracy of
iCaRL with and without IM across various sizes of memory buffer on two datasets (UCF101 and
ActivityNet). The results demonstrate that the proposed information maximization approach (+IM)
consistently outperforms iCaRL on both datasets regardless of the memory setting.

Dataset UCF101 ActivityNet

Buffer 505 1010 2020 1000 2000 4000

iCaRL 68.44 74.70 81.07 41.72 45.05 46.91
iCaRL (IM) 75.60 79.11 83.53 45.76 50.01 55.20

Table 7: Forgetting Rate on UCF101 and ActivityNet. This table shows the forgetting rate of
iCaRL with and without IM across various sizes of memory buffer on two datasets (UCF101 and
ActivityNet). The results demonstrate that the proposed information maximization approach (+IM)
consistently achieves lower forgetting rates on both datasets regardless of the memory setting.

Dataset UCF101 ActivityNet

Buffer 505 1010 2020 1000 2000 4000

iCaRL 25.55 20.37 14.31 21.29 19.46 18.55

iCaRL + IM 16.87 16.02 10.54 19.01 18.55 15.48
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