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ABSTRACT

Audio Language Models (ALM) have emerged as the dominant paradigm for
speech and music generation by representing audio as sequences of discrete
tokens. Yet, unlike text tokens, which are invertible, audio tokens are extracted
from lossy codecs with a limited bitrate. As a consequence, increasing audio
quality requires generating more tokens, which imposes a trade-off between
fidelity and computational cost. We address this issue by studying Continuous
Audio Language Models (CALM). These models instantiate a large Transformer
backbone that produces a contextual embedding at every timestep. This sequential
information then conditions an MLP that generates the next continuous frame of an
audio VAE through consistency modeling. By avoiding lossy compression, CALM
achieves higher quality at lower computational cost than their discrete counterpart.
Experiments on speech and music demonstrate improved efficiency and fidelity
over state-of-the-art discrete audio language models, facilitating lightweight,
high-quality audio generation. Samples are available at jiclr-continuous-audio-
language-models.github.io. Finally, we release Pocket TTS, an open-source
100M-parameter text-to-speech model that can run faster than real time on a laptop
CPU: github.com/kyutai-labs/pocket-tts.

1 INTRODUCTION

Using classification over a finite vocabulary as the training objective for autoregressive sequence
models is an effective approach for naturally discrete modalities such as text, where large-scale
Transformer-based (Vaswani et al., [2017) language models such as LLaMa (Touvron et al., 2023
and GPT-4|OpenAl| (2024) have achieved impressive results. To extend this powerful framework to
continuous domains such as image, audio, or video, previous work has mostly relied on discretizing
signals using lossy compression algorithms (van den Oord et al., 2018)), such that they become akin to
text. In particular, neural audio codecs (Zeghidour et al.l 2021} |Défossez et al., 2024a)) have provided
discrete representations of audio that are compact enough to allow for high-quality speech (Borsos
et al.| [2023;Wang et al., |2023) and music (Agostinelli et al.} 2023} Copet et al.,[2023)) generation with
autoregressive models. In this context, a Residual Vector Quantizer (RVQ) (Zeghidour et al.| 2021)
transforms an audio frame into a coarse-to-fine hierarchy of tokens. As quantization inevitably intro-
duces a perceptual quality loss, generating high-fidelity audio requires increasing the bitrate of audio
tokens, which amounts to using deeper hierarchies of RVQ tokens. A consequence of growing the size
of the token matrix (along time and token depth) is an additional computational load for the generative
model, as the strong dependencies between tokens of the same frame(Lemercier et al.| [2024) prevent
fully parallel generation. The naive approach of flattening the token hierarchy (Borsos et al.,2023)
being prohibitively expensive, (Copet et al.|(2023) introduces a delay pattern that conjugates the com-
putational efficiency of parallel generation with a better modeling of inter-token dependencies. |[Lee
et al.| (2022) and|Yang et al.| (2023) furthermore introduce a smaller RQ-Transformer model that is
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autoregressive along the depth axis, and [Défossez et al.|(2024b)) combines this approach with the
delay pattern. While these methods currently power state-of-the-art generative models for audio (Dé-
fossez et al., [2024b} |[Labiausse et al.||2025), the trade-off imposed by residual quantization between
quality and computation remains too constraining for generating high-quality audio on edge devices.

This motivates an alternative strategy: autoregressive modeling of continuous latents without
quantization. Standard variational autoencoders (VAEs) are easier to train, are not affected by
issues such as codebook collapse, and can reconstruct audio at higher fidelity for the same latent
dimensionality. Pioneering work in the vision domain that autoregressively models continuous
sequences includes GIVT (Tschannen et al.l[2024) and MAR (Li et al. [2024)), followed by some
larger models in the image domain (Fan et al., [2025; |Gu et al., [2025) and attempts in the audio
domain (Turetzky et al.,|2024; [Pasini et al., 2024bj Jia et al., [2025} [wen Yang et al., 2025). In MAR,
the authors model the per-token probability distribution with a diffusion model (in the form of a
small MLP) conditioned on a latent variable modeled by an autoregressive transformer backbone.
SALAD (Turetzky et al.,2024) and DiTAR (Jia et al., |2025) adapt MAR-style diffusion heads for
text-to-speech modeling, achieving better audio quality than discrete baselines. However, these
works are limited to text-to-speech on small-scale and domain-specific datasets, leaving open the
question of how well they can adapt to more complex tasks such as speech continuation (without
text supervision) and richer audio domains such as music. We apply CALM to 4 tasks which are
speech and music continuation as well as text-to-speech and text-to-music.

We propose Continuous Audio Language Models (CALM) that predict sequences in the latent
space of a VAE, bypassing the need for quantization. While we build on the MAR architecture
where a transformer backbone uses (x!,...,x*~!) to predict an intermediate latent z*, which then
conditions a head (diffusion model) that models p(x*®|z®), we find that without further improvements,
it fails to generate rich audio content and is slow to sample from. To overcome this, we introduce
several key innovations:

1. Improving quality and stability: To mitigate error accumulation during inference, we follow
Pasini et al.|(2024b)) and, during training, inject noise into the long-term context (x17 oxsTL ). Addi-
tionally, we introduce a short-context transformer that summarizes recent clean latents, providing the
sampling head with both coarse long-range context and fine-grained local information. 2. Diffusion-
to-Consistency replacement: We replace the diffusion model with a continuous consistency model
(Lu & Songl |2025)) during training, significantly accelerating inference without compromising sample
quality. This change reduces the inference time of the sampler head by a factor of up to x20 in our
music experiments and x 12 in our speech experiments compared to an RQ-Transformer head. 3.
Gaussian Temperature sampling: Temperature control is crucial for high-quality speech generation,
yet consistency models lack a formal mechanism for temperature sampling. We present a heuristic
that approximates temperature sampling in the consistency setup. 4. Head batch multiplier: Sam-
pling multiple noise levels at training time for the same latent highly accelerates training for a small
cost. 5. Latent Classifier Free Guidance: we apply Classifier Free Guidance to the latent variable
conditioning the consistency head for the conditioned CALM. 6. Latent Distillation: once that we
have chosen a latent CFG coefficient, we can distill the CFG computation of the backbone into a
student backbone while keeping the same sampling head (MLP), hence dividing the batch size by
2 at inference time. This distillation can also be applied to a much smaller student backbone.

Finally, by using these innovations, we introduce Pocket TTS which is a 100M-parameters text-to-
speech model that can run faster than real-time on a laptop CPU. We detail the results of Pocket TTS
in Sec[G|and in the following technical report: kyutai.org/pocket-tts-technical-report.

2 RELATED WORK

Autoregressive audio language models. Early autoregressive audio models operated on raw
waveforms such as WaveNet (van den Oord et al., [2016)), learned discrete codes via VQ-VAE, such as
in Jukebox (Dhariwal et al.|2020) or continuous word-sized audio tokens (Algayres et al.|[2023)). The
advent of neural audio codecs (Zeghidour et al 2021} |Défossez et al.l 2024a)) enabled high-quality
vector-quantized tokenizers for general audio. These, in turn, powered discrete-token audio LMs:
AudiolLM (Borsos et al., [2023)) for unconditioned audio generation while AudioGen (Kreuk et al.,
2023)), MusicLM (Agostinelli et al.,[2023)), and MusicGen (Copet et al.,[2023)) apply similar methods
for text-to-audio and text-to-music generation. In speech, autoregressive modeling of RVQ codes
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Figure 1: Overview of our model. During training, latent vectors x° are noised to encourage the backbone
Transformer to focus on coarse structure. The consistency head is a consistency model conditioned on the
latent variable zj,,, produced by the backbone, as well as a short-term context vector zg,,, computed from a
short-context Transformer applied to the most recent clean latent tokens.

has been used for text-to-speech generation (Wang et al.| 2023} [Kharitonov et al.,[2023) as well as
for spoken dialogue (Défossez et al.,[2024b)) or translation (Labiausse et al., 2025). However, all of

these systems rely on lossy quantization, which inevitably degrades audio fidelity unless a significant
compute budget is spent to generate a deep hierarchy of RVQ tokens. This is unlike CALM, which
predicts continuous embeddings in one pass, providing a better quality-computation trade-off.

Continuous autoregressive models. In GIVT, [Tschannen et al.| (2024) use a transformer to
autoregressively model the latent space of a VAE trained on images, parameterize a Gaussian
Mixture Model, and train it with a cross-entropy loss. The authors of MAR [2024)
obtain better results by replacing the Gaussian mixture model with a diffusion-model enabling
the approximation of more diverse distributions. In MAR, a large transformer backbone predicts
a continuous embedding z* given (x!,...,x°"!), which then conditions a small MLP diffusion
network that models the probability distribution p(x*®|z*®) of the next latent. This eliminates the need
for discrete tokenizers, but at the cost of slow sampling: MAR typically needs hundreds of denoising
steps per token. [Hang et al.| (2025) aims to speed up MAR by replacing the diffusion head with a
shortcut head (Frans et al., 2025) for few-step sampling. Shortcut models combine a diffusion loss
and a self-consistency loss in order to accelerate the diffusion process. They reduce the number of
diffusion steps from 100 to 8 with a similar image quality. Remarkably, CALM achieves a quality
comparable to the best discrete models with only one step of consistency modeling.

In audio, the approach of MAR has been adapted for the task of Text-to-Speech (TTS) synthesis.
SALAD (Turetzky et al.| [2024) introduces a zero-shot TTS model that operates on continuous speech
representations using a per-token latent diffusion process. By leveraging semantic tokens for contex-
tual information and determining synthesis stopping points, SALAD achieves improved intelligibility
and audio quality without relying on quantization. Similarly, DiTAR 2025)) presents a patch-
based autoregressive framework combining a language model with a diffusion transformer for speech
generation. This approach models dependencies between aggregated local patches of continuous
tokens, using a causal language model to produce embeddings, which, along with previous patches,
serve as inputs to a bidirectional diffusion transformer that predicts the next patch. The authors
observe that providing local context through patching was determinant to improve their model, which
corroborates what we observe with the introduction of a short context transformer into our model.
In Pasini et al.| (2024b), the authors apply the MAR framework to music generation using a relatively
small dataset comprising 20,000 single-instrument stems, training their model on 10-second excerpts
on top of their continuous compression model Music2Latent (Pasini et al., 2024a). They introduce
a method for noise augmentation of the data that allows the model to avoid error accumulation. How-
ever, we notice that scaling to a more complex and diverse dataset consisting of full musical pieces
makes their approach struggle to maintain high-quality generation on longer sequences. To address
these challenges, we propose novel strategies that enhance generation quality while also improving in-
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ference efficiency. Finally, Music2Latent2 (Pasini et al.,2025) explores combining autoregressive and
consistency modeling but for compression. IMPACT (Huang et al., [2025) explores MAR decoding
for text-to-audio generation and sets a new standard for short latency models on the AudioCaps (Kim
et al.,|2019) benchmark. More recently, MingUni-Audio (Yan et al.,|2025) shows that continuous
speech language models can scale to 20B Mixture of Experts models with 3B active parameters.

Some other autoregressive speech models work in the continuous domain thanks to spectral rep-
resentations such as MELLE (Meng et al., [2024) for TTS and Flow-Omni (Yuan et al., [2024)) for
speech-to-speech conversation.

3 BACKGROUND

Notations: Let W € R/s"? be a monophonic waveform of d seconds sampled at frame rate f,. Our
goal is to model W either in the discrete latent space of a RVQ-based codec or in the latent space
of a VAE. Let f,. be the frame rate of the codec or VAE.

In the case of the discrete modeling, W is represented by the sequence of discrete tokens (qs’k) ,
where s € {1,...,S5} indexes time and k € {1, ..., K} indexes codebook depth and S = f, - d.
Each token ¢** € {1,..., N} } is drawn from a finite vocabulary.

In the case of continuous modeling, W is represented by a sequence (x!,...,x") with S = f,. - d
and x* € R where C is the latent dimension of the VAE.

3.1 AUTOREGRESSIVE MODELING WITH RESIDUAL VECTOR QUANTIZATION BASED CODECS.

Autoregressive modeling of discrete tokens from RVQ-based codecs (Zeghidour et al.l 2021}
Défossez et al.l 2024a)) is a prevalent method for high-fidelity audio generation (Copet et al.| 2023}
Agostinelli et al., 2023} Borsos et al., 2023} |Kreuk et al.,[2023)). Given a sequence of discrete tokens
(qs”“)Z.e{lw’N}’ke{1 .... K}’ early models like [Borsos et al.|(2023); |Agostinelli et al.[(2023) flattened

the multi-level sequence, increasing its length by a factor of K and resulting in high computational
costs due to the quadratic complexity of Transformer self-attention. MusicGen (Copet et al.| [2023)
mitigates this by using a delay pattern to independently sample each of the K RVQ levels, adding
only K — 1 tokens to the sequence but introducing a fixed latency of K — 1 frames, which is
problematic for real-time applications. RQ-Transformer (Lee et al.,|2022) addresses this by using a
sampler transformer head that models the RVQ at a given time step, enabling low-latency generation.

Denoting q* = (¢*!,...,¢*%), the Backbone Transformer Ty encodes the history of previous
timesteps to produce a context vector z°, and a RQ-Transformer g4 autoregressively decodes the
residual-wise components of the token stack at each time step. The context vector is then given by
z° = Ty(q',...,q°1), and the logits ¢*** for predicting the k-th codebook token are computed
as (! = Lin(z®) and (> = g, (2°,¢>,...,¢**7 1) for k > 1.

These logits are trained using a cross-entropy loss over discrete tokens Lcg =
s K
= Y1 gt logp (¢%F [ a<%, q7F)

This approach enables efficient parallel modeling of RVQ sequences, allowing all codebooks
corresponding to a single timestep to be generated simultaneously without introducing any delay.
However, a key limitation lies in the use of the RQ-Transformer, which is computationally intensive;
as its resource requirements scale with the number of RVQ, or even with the square of the number
of RVQ, if the attention dominates the computation cost.

3.2 CONSISTENCY MODELS

Flow Matching and Probability Flow ODE. Let pg,, be a data distribution over R, Given
Xg ~ Ddata, diffusion (Ho et al., |2020; |[Song et al., |2021) and flow matching (Lipman et al.,
2023) models define a forward noising process that gradually perturbs samples from pg,, through
the noising process x; = a;xo + o€, where € ~ N(0,I) and t € [0,T]. oy,o; are pre-
defined functions such that « is decreasing with g = 1,ar = 0 and o is increasing with
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oo = 0,00 = 1. In Flow Matching, a neural network I is trained to minimize the loss
2
Lim(9) = Exympau, e~ (0,1), tntd (0,1) |W(E) | Fp (%2, ) — (afxo + 026)\\2} :

Once trained, sample generation is performed by solving a deterministic ordinary differential
equation known as the probability flow ODE (PF-ODE), which defines a continuous path from noise

to data. In the context of Flow Matching, the PF-ODE is % = Fy(xy,t) with xp ~ N(0,1).

A Continuous-Time Consistency Models. (Song et al.,[2023) is a neural network fy(x;,t) trained
to map a noisy input x; directly to the corresponding clean data x in a single step, by approximating
the sampling trajectory of the probability flow ODE (PF-ODE) starting from x;. To ensure correct
behavior, f; must satisfy the boundary condition f,(x,0) = x, thus leading to the common
parameterization fy (X, t) = Coip(t)Xt + Couc(t)Fp (x4, t), where Fy; is a neural network and the
coefficients satisfy cip(0) = 1 and cou(0) = 0 to fulfill the boundary condition.

By using ' = 7 and a; = cos(t),0; = sin(t), Lu & Song| (2025) derive the following
continuous-time consistency loss where w.(t) is an adaptive weighting function:

dfy- (x4,1) ||
dt

ey (t)

£CM(¢7 ’(/}) = EXt,t T

’F¢> (x¢,t) = Fy— (x4,t) — cos(t)

- ww(t)] (D

Lagrangian Self-Distillation. We also explore a new 1-step flow-matching method named Latent
Self-Distillation (LSD) that has been introduced in [Boffi et al.|(2025). In this paper, the authors unify
most 1-step methods into 2 categories and develops a third one (LSD) which appears to be more
stable at training. See Sec.[A]for the equations.

3.3 AUTOREGRESSIVE MODELING OF CONTINUOUS LATENTS VIA DIFFUSION.

Li et al|(2024) propose MAR, a method for autoregressive modeling over a sequence (xl, xS )

of continuous latent vectors extracted from a pretrained VAE, thereby eliminating the need for
discrete quantization. As in the discrete case, a Backbone Transformer Ty maps the context to an
embedding: z° = Ty(x*,...,x°71).

Then, a diffusion process parameterized by a neural network € is trained on each x* with the loss
Laite(0, ¢) = Zle Eeon(0,1),t~[0,1] [||e —€4(x},2°, t)||2} where x7 is a noisy version of x° at

diffusion timestep ¢: x§ = a;x® + ove with € ~ A(0, 1) and o; and o are predefined schedules
forall t € [0, 1]. In practice, an MLP significantly smaller than the backbone transformer estimates
€4. This replaces the categorical prediction used in discrete models (done by the RQ-Transformer)
with a denoising task in the continuous domain (done by the MLP). This method enables flexible and
differentiable modeling of continuous signals without requiring to perform quantization on the latent
space which can lead to several issues such as codebook collapse, balancing quantization losses and
training instabilities. A key limitation of this approach is that sample quality depends on the number
of diffusion steps at inference, raising the question of whether it can surpass the RQ-Transformer
under similar computational constraints.

4 METHOD

4.1 OUR VAE-GAN

Most autoregressive audio models are built upon RVQ-GAN architectures (Zeghidour et al.| 2021}
Défossez et al.l [2024a}, | Kumar et al., 2023} |Guo et al., 2025). Following the approach of [Evans
et al. (2024), we instead adopt a VAE-GAN framework, replacing the RVQ bottleneck with a VAE
bottleneck to regularize the latent space and enforce a Gaussian prior. Our VAE is fully causal and
draws from the architecture of Mimi (Défossez et al., |2024b)), using Transformers in addition to
convolutions in the encoder and decoder, which have been shown to improve performance.

While training the model with adversarial losses and VAE regularization without any reconstruction
losses improves the quality of the model for speech, it degrades the reconstruction quality for music.
Semantic distillation is performed for the speech VAE similarly as in Mimi, with WavLM (Chen
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et al.| [2021b) as teacher. There is no semantic distillation for the music model and we let this for
future work as semantic content is harder to define for music. The loss is:

Lyag = ML(2, ) + MLe(x, Z) + AaavLadv (L) + Asear Lreat (T, &) + AkLLrr + Adistn Ldisin - (2)

where £ and Ly are the temporal and frequential reconstruction losses, £,y is the adversarial loss,
Leq 1s the feature matching loss, Lky is the KL regularization applied to the VAE bottleneck, and
Lgisiin 1s the WavLM distillation loss applied for the speech VAE.

4.2 CONTINUOUS AUDIO LANGUAGE MODEL (CALM) ARCHITECTURE

Let (xl, xS ) denote the sequence of continuous latent vectors produced by a VAE encoder. As
illustrated in Fig. [T} our model comprises three main components. The motivations behind these
design choices are described in Sec. [4.3]and the ablation study in Tab.[6]justifies these choices.

1. Causal Backbone Transformer with Noise Injection We build on the MAR framework (L1
et al.,2024) by employing a causal Transformer Tjyn, g1 to capture long-term dependencies. However,
during preliminary experiments, we realized that music generation models with the MAR framework
were generating poor quality audio and diverging quickly at inference because they were not robust
to error accumulation. [Pasini et al.| (2024b) introduced a noise augmentation trick at training time
in order to tackle this problem. Given a sequence (x*,x2,...,x?), they sample k, ~ ¢/(0, 1) and
€s ~ N(0,I)forevery s € {1,...,S} and use a noised input to the backbone X* = kse;+(1—ky)x®
for every s. Early experiments showed that preserving the variance of X° improved quality, so that
we use instead X° = /k e, + /1 — k,x°. We don’t perform any noise augmentation at inference
time. Thus, zfong = Tiong,01 (5(1, e 5{5*1). Noise injection prevents error accumulation during
inference, but as shown in Tab. [6]is insufficient alone for high-quality music generation.

2. Short-Context Transformer To supply local, high-resolution context to the denoising head,
we introduce a lightweight causal Transformer that attends the K previous clean latents (we use
K =10, ~ 0.4s of music): 25, = Tinor,e2 (x* %, ..., x*~!). This short-context embedding
Z3or SUpplies fine-grained information potentially lost through noise injection in the backbone. We
show in Sec. [E.3|that the value of K is not a decisive hyperparameter but Tab. [6]indicates that the

short-context transformer is crucial to good quality generation.

3. Consistency-Model Head Finally, a small MLP-based consistency model f, is conditioned on
the sum of the long-term and short-term features, Z* = zy,,, + 23, At inference time, for 1-step

generation, the next latent x* is sampled through: € ~ N'(0,1),t =1,%x° = f4 (x‘{ =€t=1, Z‘)
In addition to consistency, we experiment with the TrigFlow (Lu & Song} [2025)) formulation of

flow-matching for the MLP. Although TrigFlow yields marginally higher fidelity, its inference cost
makes it impractical for real-time use. While Tab. ] shows it, this tradeoff is studied in Sec.

Together, these three components form a continuous autoregressive model that (i) leverages
noise-robust long-term modeling, (ii) preserves local detail via short-context conditioning, and (iii)
achieves rapid, high-fidelity latent sampling through consistency modeling.

The training objective for one sequence (xl, xS ) is defined by:

s 2
e ® df5(xi, 6, 2")
L 0 = Eie Fy (xi,t,Z°) — F3 (x{,t,Z°) — ) — 1),
CALM( 7¢7¢) ; t, |: D ‘ b (Xt ) & (Xt ) COS( ) di , U}¢( )
(3)
Where ZS = Zfong + Zghort = Tlongﬁl (ilﬂ R >~(s_l) + Tshort,02 (XS_Ky R} XS_l)?

t ~1[0,1],€ ~ N(0, 1) and x§ = cos(t)x* + sin(¢)e. All the parameters (6, ¢, 1) of the transformer
backbone Tjgyg 91, the short-context transformer 7o, 92, the consistency MLP f and the adaptive
weighting function w,, are jointly trained together with this consistency loss similarly as the
backbone and the RQ-Transformer are trained through cross-entropy loss in the discrete case.
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4.3 COMBINING NOISY LONG-TERM CONTEXT AND CLEAN SHORT-TERM CONTEXT

In preliminary experiments, music generation models trained with the MAR framework were
diverging quickly during inference because they were not robust to error accumulations. Applying
noise injection during training slightly improves model stability but often reduces detail and
instrument diversity, typically preserving only rhythmic elements, with audio fading into silence after
10-15 seconds. Since [Pasini et al.|(2024b) targets short, single-instrument clips, it’s unsurprising
the method performs best in that constrained setting. We hypothesize that the added noise inhibits the
backbone transformer from encoding fine-grained information into zg,,, limiting the MLP’s ability
to reconstruct detailed audio. However, combining this with a short-context transformer computing
Z50r Yields the best results (Tab. [6)), likely because the clean short-term context restores local detail
needed to model the distribution of the next x°.

4.4 HEAD BATCH MULTIPLIER

Training is bottlenecked by the cost of generating the conditioning variable zj,,, via the large causal
transformer. To address this, we introduce the Head Batch Multiplier, which amortizes this cost
by reusing zy,,, multiple times per training step. Specifically, for each input sequence, we compute
Zj,ne ONCe and use it across N loss computations, each with independently sampled noise levels ¢
and e. This improves efficiency and stabilizes training by averaging the loss over multiple samples.
Tab. [6]and Fig.[3] show faster convergence and better final performance at comparable training cost.

4.5 GAUSSIAN TEMPERATURE SAMPLING

Sampling strategies, such as temperature sampling, have a significant impact on generation quality
in the discrete setup, particularly for speech. To replicate this behavior in the continuous domain,
we introduce a sampling heuristic that results in comparable gains. Similarly to the GAN noise
truncation trick presented in [Brock et al.| (2018)), we sample more from the high probability zone
of the Gaussian to trade diversity for fidelity.

While the GAN truncation trick truncates the Gaussian noise such that values outside of a certain range
are redrawn, we chose to reduce the variance of the Gaussian noise instead. This is mathematically
equivalent to applying a temperature 7 to the Gaussian if we change the standard deviation to /7.
This makes temperature values between the discrete and continuous setups somewhat comparable,
and we found that using a temperature of .8 for speech continuation was bringing good results in both
setups. The effects of gaussian temperature are further discussed in Section[C]

4.6 LATENT CLASSIFIER FREE GUIDANCE

Classifier Free Guidance (CFG) (Ho & Salimans| [2022) is known to improve the generation quality
of conditioned generative models. It can be applied for diffusion and flow matching models on
the sampling trajectory as well as on the logits of autoregressive language models (Kreuk et al.|
2023). Since CFG cannot be applied on the trajectory of 1-step consistency models we decide
to apply the CFG on the outputs of the Backbone and Short-Context transformers. Formally,
given C a conditioning and « the CFG coefficient, we compute for every s of the sequence
Zégg = Zj + a(ZE — Zj) and then we generate X° with the consistency head conditioned on Zgy.
We call this method Latent CFG, as it operates on the latent variable Z° instead of the model output.
It has been introduced in the video-to-audio model SoundReactor (Saito et al., [2025)).

4.7 LATENT DISTILLATION

Once a teacher model has been trained and the desired classifier free guidance (CFG) coefficient has
been selected for inference, we distill the CFG-guided teacher into a student model to avoid the need
to double the batch size during inference when using CFG. To this end, we distill only the backbone
transformer and directly copy the teacher’s MLP head into the student.

The distillation objective for the student backbone is an /5 loss between the latent representation
Zjiin produced by the student backbone and the CFG-guided latent representation Z¢ g produced by
the teacher. Additionally, the student backbone transformer may contain fewer layers than the teacher.
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In practice for Pocket TTS, we distill a text-to-speech model with 24 transformer layers into a student
model with only 6 layers, using a latent CFG coefficient of o = 1.5. See Sec. [G|for more details.

5 EXPERIMENTS AND RESULTS

5.1 SPEECH CONTINUATION

VAE: Our VAE is based on Mimi (Défossez et al.,[2024b) but enforces gaussian inner latents instead
of a categorical distribution. Like in Mimi, to enforce semanticity of the representations, we distill
WavLM into the inner latent representation with a cosine similarity loss. Unlike Mimi, which applies
this loss only to the first codebook, we extend it to the entire latent representation.

Table 1: Speech compression models. Our VAE is on par with the VQ-VAE on acoustic quality
(MOSNEeT) and outperforms it on semantic discriminability (ABX), PESQ Rix et al.|(2001) and STOI
Taal et al.|(2011)) and a MUSHRA for acoustic quality.

MODEL TYPE DiMs/RVQ  FRAME RATE (Hz)  BITRATE (KBIT/S)  MOSNET (1) ABX()) PESQ(f) STOI(1)  ACOUSTIC QUAL. (1)
VQ-VAE (MimI) 8 RVQ 12.5 1.1KBPS 3.11 9.4% 2.13 0.87 577+ 1.3
VAE 32 pIMS 12.5 - 3.15 8.1% 2.42 0.90 66.0 + 1.4

Model and dataset: Starting from Helium-1 (Kyutai, | 2025)), a pretrained 2B parameters multilingual
text LM as backbone, we train on French and English speech data following |Défossez et al.| (2024b)
to learn continuation. To enhance the stability and coherence of speech continuation, we adopt the
concept of inner monologue (Défossez et al., [2024b)—a latent textual representation of the model’s
own speech, aligned such that each word is positioned at the timestep corresponding to its spoken
occurrence. This implies that, at each timestep s, the backbone transformer takes both text tokens
and speech latents as input, and that its output zy,,, is passed through a linear layer which produces
text logits alongside conditioning the consistency head. This internal text stream acts as a semantic
scaffold, as it represents the next word to be pronounced, guiding the generation of audio tokens
by grounding them in a linguistic form. Crucially, like in Défossez et al.| (2024b), we introduce a
temporal delay of 2 time steps (160ms) between the inner monologue and the corresponding audio
tokens. This delay allows the model to access textual content prior to generating acoustic latents,
decoupling high-level planning from low-level synthesis. For speech generation, we didn’t notice
any gains from introducing a short context transformer and noising the latents before feeding them
to the backbone, resulting in a simpler model architecture.

Table 2: Comparison of speech continuation models: 8-RVQ RQ-transformer vs 1-step Consistency
model head, with 2 temperature options.

Model Type Sampling Overall Sampler % Timein PPX(|) VERT (}) Acoustic Meaningfulness
temperature  Speedup (1) Speedup (1) Sampler (1) Quality() Elo (1) Rank ()
Reference - - - - 20.2 252 4.0240.11  2180£30 -
RQ-transformer 8 RVQ 1.0 x1.0 x1.0 26.7% 52.4 36.3 2.42+0.12 1841+ 25 4
RQ-transformer 8 RVQ 0.8 x1.0 x1.0 26.7% 26.8 33.1  275£0.14 1870+ 30 3
CALM - Consistency - 1 step 1.0 x1.3 x12.3 2.9% 42.9 343  2.8240.13  1947£28 2
CALM - Consistency - 1 step 0.8 x1.3 x12.3 2.9% 23.8 31.2 3.45+0.14 2023 £27 1

Results: Tab.[T|shows that our 32-dimensional VAE matches an 8-RVQ Mimi codec on MOSNet
(Lo et al., |2019), which measures audio quality, and exceeds it on the ABX metric (Schatz et al.|
2013). ABX evaluates phonetic discriminability by testing whether a word like “bat” is represented
closer to another “bat” utterance than to a similar-sounding word like “bit”, based on latent distances.
Tab. [2 shows that the 1-step Consistency model outperforms the RQ-Transformer with 8 RVQ on
all our automatic and human based metrics as well as on speed. For automatic metrics, we compute
PPX and VERT as introduced by [Lakhotia et al.| (2021). The PPX metric measures the semantic
meaningfulness of the generated speech. To do so we generate 1000 excerpts of speech of 30 second,
we use Whisper (Radford et al.l |2022) to compute textual transcriptions and finally compute the
negative log-likelihood of the text tokens with a Mistral 7B LLM Jiang et al.| (2023) and convert
it to Perplexity. Because a model that generates poorly diverse but good quality sentences would
perform well on the PPX metric, the authors of (Lakhotia et al., 2021} introduce the VERT metric
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(for diVERsiTy) which is a geometric mean of self- and auto-BLEU metrics. We use the official
implementation from the fairseq Ott et al.[|(2019) repository.

To assess perceptual quality, we conduct two human evaluation studies involving 50 participants and
50 randomly selected examples from the English test set. Each participant rates 10 examples across
the following evaluation protocols: For Acoustic Quality, participants are presented with all model
continuations for the same prompt, including the ground truth reference, and rate the acoustic quality
of each continuation on a 1 to 5 scale. For Meaningfulness, participants are shown two continuations
of the same prompt and select the one that is the most meaningful. These pairwise preferences are
used to compute an Elo score (see Sec. [H).

Notably, we note a clear quality and meaningfulness improvement with our temperature method.
Given that there is a text stream to guide the audio generation, we expected the CALM to match
the baseline on meaningfulness rather than outperforming it. This phenomenon could be due
to less model capacity in the backbone being allocated to audio manipulation, allowing more
for text prediction. On the inference speed side, the consistency head is x12.3 faster than the
RQ-Transformer. The overall gain to perform a full inference of 30 seconds is x1.3.

Temperature Sampling and speaker similarity: In Sec.|C| we show that our gaussian temperature
sampling heuristic has similar effects on speaker similarity than the temperature sampling of the
discrete model.

5.2 TEXT-TO-SPEECH (TTS)

VAE, model and dataset: We use the same VAE as for speech continuation. Our TTS CALM
builds on a 300M backbone transformer and uses the same architecture for the 10M parameters
consistency sampling head. The text is fed to the backbone as a prefix with SentencePiece model
(Kudo & Richardsonl 2018)) with a vocabulary size of 4k. The training data is a mix of public datasets
totalizing to 88k hours of speech that is detailed in Sec. D}

Results: We evaluate on the Librispeech test-clean set using the same protocol as F5-TTS (Chen
et al.} 2025). We compare against four baselines: FS-TTS (Chen et al., 2025), DSM (Zeghidour et al.,
2025), DiTAR (Jia et al.| 2025}, and SALAD (Turetzky et al., 2024)). For DiTAR and SALAD, we
report the paper results since the models are closed-source. We report Word Error Rate (WER) and
Character Error Rate (CER) using Whisper-large-v3 (Radford et al., 2022), Speaker Similarity using
WavLM-large (Chen et al.,2021b)) as well as the results of a MUSHRA test for acoustic quality and a
pairwise audio test for speaker similarity. By doing distillation on the backbone, we obtain Pocket
TTS, a 100M parameters model that can run faster than real-time on a CPU (see Sec.

Table 3: Text-to-Speech models. Our CALM model with 1-step LSD outperforms baselines on
WER, CER and Acoustic Quality. Results for Pocket TTS are in Sec. [@

MODEL NUM. PARAMETERS WER CER SIM ACOUSTIC SPEAKER SIM
@ @ (M QuaLty (1) HUMANELO (1)
REFERENCE - 2.23 - 0.69 61.8+24 1953 + 24
REFERENCE (WITH VAE) - - - 057 - -
F5 TTS (NFE=32) (CHEN ET AL.}|2025) 336M 2.42 - 0.66 547428 2032 + 18
DSM (16 RVQ CFG=3 750M 1.95 - 0.67 60.2+2.4 2112 £ 20
W.R.T TEXT AND AUDIO PROMPT) (ZEGHIDOUR ET AL.[|2025)
DITAR (NFE=10) (JIA ET AL.}|2025) 600M 2.39 - 0.67 - -
SALAD (NFE=20) (TURETZKY ET AL.}|2024) 350M - 0.74 0.54 - -
CALM w/ LSD (NFE=1, CFG=1.5 W.R.T TEXT) 313M 1.81 0.57 0.52 61.1 2.3 1966 £ 23

Our CALM model with 1-step LSD (Boffi et al., [2025) outperforms baselines on WER, CER and
Acoustic Quality but obtains a low speaker similarity score. This can be partially explained by the
fact that when computing the speaker similarity between the reference prompt and the reference
utterance that goes through the VAE (the second line of the tab) we obtain a similarity of 0.57. Yet,
we demonstrate in Tab. [I|that our VAE faithfully reconstructs speech. Due to this surprising behavior,
we decide to measure speaker similarity with a human study. We observe that all measured methods
beat the ground truth, which means that they preserve well the voice of the audio prompt.
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5.3 MusiCc CONTINUATION

In this section, we detail our Music Continuation model. Since our dataset does not have any textual
information, we use CLAP (Elizalde et al} [2023)) to train a text-to-music model (see Sec.[F).

Dataset: We use a randomly selected subset of 400K songs (approximately 20K hours with 32kHz
mono format) from the LAION-Disco-12M dataset, ensuring broad coverage across musical genres.

VAE: Our variational autoencoder (VAE) and codec architecture is adapted from the Mimi codec
(Défossez et al.,[2024b), originally designed for 24kHz speech at 12.5Hz. We trained it to compress
32kHz mono music with a 25Hz frame rate. Details and metrics are described in Sec.

Table 4: Comparison of music continuation for 30 seconds generation. Consistency-based models
provide up to a 2.2x overall speedup and a 19.3x sampler head speedup compared to the RQ-
Transformer 32 RVQ baseline, with improved FAD scores and equivalent human ratings. TrigFlow
achieves the best qualitative results but has significantly higher inference time. Since MusicGen only
uses a linear layer to sample its token we consider its inference cost as negligible.

MODEL OVERALL SAMPLER % TIME IN FAD () ACOUSTIC ENJOYMENT
SPEEDUP (1) SPEEDUP (1) SAMPLER (]) QUALITY (1) ELO (1) RANK ({)
REFERENCE - - - - 3.844+0.08 2166 +33 -
RQ-TRANSFORMER 32 RVQ (BASELINE) x 1.0 x 1.0 57.7% 1.06 £ 0.06 2.85+0.07 1824 +29 4
RQ-TRANSFORMER 16 RVQ x 1.5 x2.2 38.0% 1.43+0.07 2.76 £0.07 1781 +29 5
CALM - CONSISTENCY - 1 STEP x 2.2 x 19.3 6.6% 0.83+0.04 2.90 +£0.07 1857 £28 2
CALM - CONSISTENCY - 4 STEPS x 1.9 x 5.4 20.1% 0.71 £ 0.05 3.07 £ 0.07 1847 +24 3
CALM - TRIGFLOW - 100 STEPS x 0.3 x 0.2 86.6% 0.64+0.04 3.12+0.07 1921+29 1
MUSICGEN MEDIUM x 1.3 - 0.0% 1.72+0.12 2.62£0.07 1761 £33 6

Model: Our music CALM builds on the MusicGen Medium backbone, a 1.35B parameter
Transformer (see Sec. [I] for all the hyperparameters). We compare against: (1) 32- and 16-RVQ
discrete models utilizing the same 1.35B backbone and an RQ-transformer for parallel prediction;
(2) a MusicGen Medium variant using EnCodec and delay-pattern interleaving. All baselines were
trained on our dataset.

Results: In Tab. 4] we report both objective metrics and the results of a human evaluation study
for the task of music continuation, conditioned on a 3-second prompt. We compute the speed-up
compared to the RQ-Transformer 32 RVQ, the VGG Fréchet Audio Distance (FAD) on 4,000
model-generated continuations from the test set. The Acoustic Quality is a MOS score between 1
and 5. The Enjoyment metric is an Elo score (see Sec.[H), computed by making human raters choose
their favorite music out of generated pairs with the same 3s prompt. We observe that CALM with
consistency outperforms the 32 RVQ RQ-Transformer baseline on computed and human metrics
while being x1.9 to x2.2 times faster for the overall speedup. While the RQ-Transformer takes
57.7% of the inference time for the baseline, the consistency head only takes 6.6% to 20.1%. As
well, we train a CALM model with a TrigFlow head instead of consistency and it outperforms all
the models but to the price of a slow inference.

Ablation Study: In Sec. we show the importance of each architectural component.

Necessity of Consistency for fast inference: Sec. [E.4] shows that consistency models largely
outperforms TrigFlow under 10 inference steps (the regime where RTF < 1).

Scalability: We show in Sec. that CALM does improve with a bigger 3B parameters backbone.
However, we leave a complete scalability study for future work.

6 CONCLUSION

We present Continuous Audio Language Models (CALM), a novel framework for autoregressive audio
generation that operates directly in the continuous latent space of a VAE, bypassing the limitations
of discrete quantization. Replacing RVQ or diffusion heads with consistency models significantly
reduces inference cost while improving sample quality as shown by our experiments. Our architecture
combines noise-injected long-term context and clean short-term context, implemented via a
dual-transformer design. We introduce practical innovations to further improve sampling quality
and training efficiency. We demonstrate the effectiveness of our approach across both speech and

10
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music generation tasks. Our results suggest that continuous modeling offers a compelling alternative
to discrete tokenization for high-quality, efficient, and scalable autoregressive audio generation.
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A  LAGRANGIAN SELF-DISTILLATION

Lagrangian Self-Distillation (LSD) (Boffi et al.,|2025) extends the consistency-model framework by
introducing an additional time parameter s, enabling the model to learn mappings between arbitrary
points along the probability flow trajectory rather than only from noisy inputs to clean data. An LSD
model is a neural network f,(x,t, s) that predicts the state of the PF-ODE solution at time s given
its state x; at time ¢: V(s,t) € [0,1]2, f4(x¢,t,8) = Xs. In particular, with ¢ = 1, s = 0 and by
sampling x; ~ N(0, I) we can sample from the data distribution with fy(x1,¢t = 1,5 = 0).

In (Boffi et al.| 2025), the authors define F ,(x, ¢, s) as
fo(x,t,8) =x+ (s — 1) Fp(x,1, 5). (€))

To train a LSD model from scratch we need to combine a flow matching loss as well as a LSD loss:
L = Lpm + Lrsp. With an adaptive weighting loss wy (¢, s) and our notations they derive as:

Lim(0,0) = Exgmpua, e~ (0,1), t~24(0,1) [e_ww(t’t) [ Fo(xe,t,t) — (axo + 026)”; + ww(tﬁ)} .
)

and

ELSD(¢» 7/}) = Exo,e,t,s |:efw¢,(t7s) ||8sf¢(xt, ta 8) - Fq&* (f¢(xt7 ta 8)7 S, 8)“; + U}?/J(ta S):| . (6)

where Xg ~ Ddata, € ~ N (0,1),¢ ~U(0,1),s ~U(0,1).
In practice, we compute the flow matching loss on 75% of a batch and the LSD loss on the 25% left.

B Our Music VAE

Table 5: Music compression models. At least 96 VAE latent dimensions are required to outperform
the 32-RVQ codec on reconstruction metrics. EnCodec has been retrained on our dataset.

MODEL TYPE DiMS /RVQ FRAME RATE (HzZ) BITRATE (KBPS) VISQOL (1) SISNR (1)
ENCODEC|COPET ET AL.{(2023) 4RVQ 50 2.2 2.41 5.62
VQ-VAE (INSPIRED FROM MIMI) 32RVQ 25 8.8 3.63 9.61
VAE 32 DIMS 25 - 2.23 5.51
VAE 96 DIMS 25 - 3.65 9.76
VAE 128 DIMS 25 - 4.01 10.3

Our variational autoencoder (VAE) and codec architecture is adapted from the Mimi codec (Défossez
et al., 2024b), originally designed for 24kHz speech at 12.5Hz. We trained it to compress 32kHz
mono music with a 25Hz frame rate. We experiment with bottleneck sizes of 96 and 128 dimensions.
For comparison, MusicGen’s EnCodec model (Copet et al., 2023) also operates at 32kHz but uses
a 4-level RVQ at 50Hz. In Tab.[5] we report reconstruction metrics (audio ViSQOL [Chinen et al.
(2020) and SISNR), showing that a 32-dim VAE matches MusicGen’s codec, and that at least 96
dimensions are needed for our VAE to match the quality of the 32-level RVQ configuration.

C EFFECT OF GAUSSIAN TEMPERATURE SAMPLING

We evaluate how our proposed gaussian temperature sampling method affects acoustic diversity for
consistency models, in comparison with temperature sampling on its discrete counterpart. More
precisely, we compute WavLM speaker embeddings (Chen et al.l 2021b)) over 100 unprompted
speech generations with different values of temperature, both for an RQ-transformer and CALM. In
both cases, the inner monologue text stream is generated with 0.8 temperature to ensure text diversity.
We then average the pairwise cosine similarities of these embeddings, as a measure of diversity: the
higher the average similarity, the lower speaker diversity in generated audio. The reference speaker
similarity number is computed over 100 examples from the ground truth dataset. Fig. [2]shows, as
expected, that speaker similarity tends to decrease with temperature, which means that temperature
increases diversity with a similar trajectory to the discrete models.
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Average Speaker Similarity vs. Temperature Fllgure 2: AVer?gff pa}ir-
wise speaker similarity
—— CALM
0.35 over 100 unprompted 10s
RQ-Transformer .
0.30 - generations, or 100 10s ex-

amples from the ground

025 \ truth dataset as reference.

0.20 — As expected, for both

015 T methods models generate
more diverse speakers (i.e.
02 03 0.4 03 0.6 07 0.8 0.9 Lo less pairwise speaker sim-
Temperature . .
ilarity) as temperature in-
creases.

Average Speaker Similarity

D DATA USED FOR THE TEXT-TO-SPEECH MODEL

The dataset used to train our TTS models is composed of AMI |Carlettal (2007), EARNINGS22
Del Rio et al.| (2022)), GIGASpeech Chen et al.| (2021a)), SPGISpeech|O’Neill et al.|(2021)), TED-
LIUM Hernandez et al.[(2018)), VoxPopuli Wang et al.|(2021), LibriHeavy Beck et al.| (2024}, and
Emilia /Author & Contributors| (2023)). It results into 88k hours of audio.

E SUPPLEMENTARY EXPERIMENTS

E.1 ABLATION STUDY

MODEL VARIANT FAD (}) Table 6: Ablation study on music CALM
Consistency 4-steps model components, af-
ter 250K training steps. Removing noise

BASE (CALM - CONSISTENCY - 4 STEPS) 0.93 £+ 0.06

W/0 HEAD BATCH MULTIPLIER 1.32 +£0.09 .

W/O NOISE AUGMENTATION 1.634+0.11 augmentation or the short-context transformer
W/0O SHORT CONTEXT TRANSFORMER ~ 4.03 £ 0.16 leads to significant performance drops. Fi-
W/O ANY OF THE ABOVE 8.38 +£0.17 nal row approximates the MAR configuration

from|Li et al.| (2024)).

An ablation study (Tab. [6) on music CALM Consistency 4 steps shows the importance of each
component. The experiments are run for 250K steps, which explains that the base model’s FAD
is worse than the one reported in Tab.[d] The final row that is the closest to the MAR framework
(consistency replacing diffusion) fails to produce high-quality music. In Fig.[3] we show that the
FAD decreases much faster over time when we train consistency CALM models with a bigger head
batch multiplier. All evaluations are done with 4 steps of consistency. We keep the value of 8 for all
of our experiments as a higher value would lead to out of memory issues at training time.

E.2 HEAD BATCH MULTIPLIER VALUE

301 —3$— CALM head batch mult. = 2

CALM head batch mult. = 4

—$— CALM head batch mult. = 8
* Figure 3: Effect of the head batch multiplier
9 2.0 value. Training a model (music consistency
= CALM) with a higher batch size multiplier fas-
157 tens the convergence for the FAD metric. All the
Lol evaluations are done with 4 steps of consistency at

' inference time.

05 10 15 20 25 30 35 40
Training Time (days)
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E.3 SHORT-CONTEXT TRANSFORMER WINDOW

To study the influence of the context window K of the short-context transformer, we performed an
hyperparameter search with K = 5, 10, 20, 40 and trained our models for 500K training steps (see
Tab.[7). The model is the music continuation CALM and all evaluations are done with 4-steps of
consistency. We observe that finding an optimal value of K is not critical even though it seems that 5
is too small enough.

Table 7: FAD after S00K training steps for different short-context Transformer contexts K.

K in short-context Transformer FAD

5 0.85 4+ 0.05
10 0.76 +0.04
20 0.73 £ 0.04
40 0.78 +0.04

E.4 COMPARISON OF TRIGFLOW AND CONSISTENCY ON INFERENCE SPEED AND QUALITY
CRITERIA

In Tab. [§] we compare the inference speed for both TrigFlow CALM and Consistency CALM on the
task of music continuation on our test set. We see that below the 10 steps regime, only the Consistency
model performs well. Moreover, around 10 steps is the limit for streaming applications where the
real time factor (RTF) is smaller than 1. This justifies the need of consistency modeling (instead of
diffusion or flow matching) for good quality streaming generation.

Table 8: Generation efficiency of TrigFlow CALM and Consistency CALM models. We compute
the inference time to generate 30 seconds of audio, the corresponding Real Time Factor (RTF) as well
as the FAD metric for different numbers of inference steps. For streaming (RTF<1), only consistency
generates good quality audio.

#Steps Time (s) RTF FAD (TrigFlow) FAD (Consistency)

1 16.7 0.56 - 0.83 £ 0.04

20.4 0.68 28.83 £0.20 0.71 +£0.05
10 27.7 0.92 4.62+0.07 0.73 £ 0.05
25 46.1 1.54 0.79 £ 0.04 0.96 + 0.06
50 76.8 2.56 0.74 +=0.05 1.46 £0.06
100 136.4 4.55 0.64 £ 0.04 2.05 £ 0.07

E.5 SCALABILITY OF CALM

In order to see if all the hyperparameters of our CALM method transfer well to more model parameters,
we trained a consistency music CALM model with a larger 3B backbone (with a model dimension of
2048, 32 heads and 48 layers) as well as a discrete RQ-Transformer with 32-RVQ model with the
same backbone size. For the CALM model, we use 4 consistency steps at inference. Tab. [0]shows
that the FAD are improving with a bigger backbone (3B vs 1.3B) in similar proportions for both
discrete-based (RQ-Transformer) and continuous-based (CALM) models.

Table 9: Scalability of the backbone for CALM and RQ-Transformer methods.

Model FAD

CALM with 3B backbone 0.62 £0.05
32 RVQ RQ-Transformer with 3B backbone 0.98 + 0.06
CALM with 1.3B backbone 0.71 & 0.05

32 RVQ RQ-Transformer with 1.3B backbone 1.06 + 0.06
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We can see in Tab. 0] that at this smaller scale (~300M), Lagrangian Self-Distillation models provide
better audio quality than Consistency models. We also conclude that the latent CFG has a significant
impact over the WER. As well, applying the latent CFG on the audio prefix improves the speaker
similarity but at the cost of audio quality. All models were run with sampling from a Gaussian with
0.7 temperature (i.e., multiplying the standard Gaussian noise by v/0.7).

E.6 TEXT-TO-SPEECH ABLATION STUDY

At the 300M parameter scale, Lagrangian Self-Distillation (LSD) achieves significantly higher audio
quality than standard Consistency models. Furthermore, latent CFG has a major positive impact
on Word Error Rate (WER), though applying it to the audio prefix trades overall audio quality for
increased speaker similarity.

Table 10: Ablation study on the Text-to-Speech CALM model (~300M parameters). We evaluate the
impact of Lagrangian Self-Distillation (LSD) versus Consistency modeling, as well as the effects of
latent CFG applied to text and audio prefixes.

MODEL NUM. PARAMETERS WER CER SIM MUSHRA SPEAKER SIM

() o) () () (HUMAN EVAL ELO (1)
CALM w/ LSD (NFE=1, CFG=1.5 W.R.T TEXT) 313M 1.81 0.57 0.52 61.1+2.3 1966 + 23
CALM w/ LSD (NFE=1, No CFG) 313M 2.39 0.90 0.52 55.5+2.2 1991 + 26
CALM W/ LSD (NFE=1, CFG=1.25 W.R.T TEXT AND AUDIO PREFIX) 313M 1.86 0.59 0.54 56.2+22 1995 + 27
CALM w/ CONSISTENCY (NFE=1, CFG=1.5 W.R.T TEXT) 313M 1.93 0.62 0.40 46.8 £2.5 1900 + 30

F TEXT-TO-MUSIC GENERATION

We compare CALM on the task of text-to-music generation. Since our dataset do not have any text
labeling, we use CLAP (Elizalde et al., 2023)) as a prefix conditioning and train MusicGen, our
RQ-Transformer 32 RVQ baseline as well as CALM. During training, we drop the conditioning 20%
of the time in order to perform Classifier Free Guidance (Ho & Salimans|, |2022)) at inference. We use
CLAP in audio mode when training. We use the same training data, VAE/codecs and hyperparameters
as the models reported in Tab.[d] In Tab.[TI] we show the results of our CLAP conditioned model
evaluated on our internal test set with the CLAP conditioning being used in audio mode. As well,
we report the results of our model and several baselines on the text-to-music benchmark on the
MusicCaps dataset|Agostinelli et al.| (2023) in Sec[F]

Table 11: Text-to-music generation models on our test set where CLAP is used in audio mode.
MODEL OVERALL SAMPLER % TIME IN FAD (}) ACOUSTIC ENJOYMENT

SPEEDUP (1) SPEEDUP (1) SAMPLER (/) QUALITY (1) ELO (1) RANK (})
REFERENCE - - - - 3.75£0.15 2104 +£24 -
RQ-TRANSFORMER 32 RVQ (CFG=3) x 1.0 x 1.0 57.7% 0.93 = 0.07 3.16 £ 0.15 1998 +24 1
CALM - CONSISTENCY - 4 STEPS (CFG=2) x 1.9 X 5.4 20.1% 0.91 + 0.08 3.11+0.14 1998 +24 1
MUSICGEN MEDIUM x 1.3 - 0.0% 1.93+0.14 2.54+0.14 1946 £25 3

We report the results on the MusicCaps dataset /Agostinelli et al.|(2023)) and report as well the results
of MusicLM (Agostinelli et al.,[2023)), the original text-to-music MusicGen Medium (Copet et al.,
2023), AudioLDM2 (Liu et al.,|2024), Noise2Music (Huang et al., 2023), Jen-1 (Li et al.,20235)) as
well as MusicFlow (Prajwal et al.,|2024) on the FAD, the KL Divergence (KLD) metric based on
the pre-trained audio model PANN (Kong et al.,[2019) as well as the CLAP cosine similarity that
measures the matching between the generated music and text description. The results of Tab. [I2]show
that even though our goal is not to specifically build the best text-to-music model, simply applying
CALM on our dataset with a CLAP conditioning leads to competitive results. The metrics from the
models that we did not train are reported from the MusicFlow (Prajwal et al., 2024) paper.

G POCKETTTS

Given a 313M parameters text-to-speech CALM model that has a 24 layers backbone transformer
(the teacher), we do latent distillation to a 6 layers transformer backbone (the student) and a CFG
coefficient of o = 1.5 applied to the teacher. We keep the same MLP sampling head. The final model,
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Table 12: Text-to-music results on the MusicCaps dataset.

MODEL FAD (|) KLD () CLAP)
REFERENCE - - 0.30
MUSICLM (AGOSTINELLI ET AL.||2023) 4.00 - -
MUSICGEN MEDIUM (COPET ET AL.||2023) 3.40 1.23 0.37
AUDIOLDM?2 (L1U ET AL.[|2024) 3.13 1.20 0.43
NOISE2MUSIC (HUANG ET AL.||2023) 2.10 - -
JEN-1 (L1 ET AL.[|2025) 2.00 1.29 -
MusiCFLOW (UNIDIRECTIONAL LM + FM) (PRAJWAL ET AL.|[2024) 2.69 1.23 0.52
MUSICGEN MEDIUM (RETRAINED WITH CLAP) 2.70 1.37 0.39
RQ-TRANSFORMER 32 RVQ 2.56 1.35 0.43
CALM - CONSISTENCY - 4 STEPS 2.14 1.30 0.44

named Pocket TTS has a size of 90M parameters while the VAE has 20M parameters. In Tab[T3] we
put 100M parameters to include the VAE decoder in the parameter count.

We evaluate Pocket TTS on the Librispeech test-clean set following the same protocol as F5-TTS
(Chen et al.,[2025), with the difference that we cleaned the audio input using Adobe Enhance Speeclﬂ
to obtain 24kHz high-quality audio. We evaluate all baselines with the enhanced sampleﬂ

We compare against three baselines: F5-TTS (Chen et al., [2025), DSM (Zeghidour et al., [2025),
Chatterbox Turbcﬂ and Kokoro TTSﬂ We report Word Error Rate (WER) using Whisper-large-
v3(Radford et al.,|2022)), as well as the results of a pairwise human evaluation for audio quality and
speaker similarity. For audio quality, we ask raters “Which of the two audio clips has the best audio
quality?”, and for speaker similarity, we ask “Which of the two audio clips sounds more similar to the
reference audio clip in terms of voice characteristics?”” and provide the voice prompt as a reference.

Table 13: Comparison of TTS models on Librispeech test-clean.

MODEL PARAM SIZE WER AUDIO QUALITY SPEAKER SIM FASTER THAN
(GEN. ONLY) ) (ELO) (1) (ELO) (1) REAL-TIME CPU

F5-TTS (CHEN ET AL.|2025) 336M 2.21 1949 + 27 1946 + 26 X

DSM 750M 1.84 1959 + 25 2037 + 21 X

CHATTERBOX TURBO 350M 3.24 2055 + 23 2012 + 22 X

KOKORO 82M 1.93 NO VOICE CLONING v

POCKET TTS (OURS) 100M 1.84 2016 + 25 1898 + 26 v

As seen in Tab. [I3] Pocket TTS has the lowest Word Error Rate, a better Audio Quality than the ground
truth F5-TTS and DSM, as well as an on-par Speaker Similarity with the ground truth while being a
significantly smaller model than competitors, and being the only one that can run faster than real-time
on CPU (we tested on Apple M3 and Intel core ultra 7 165H). We invite the reader to check the blog
post where the one-line installation of the model is provided: kyutai.org/pocket-tts-technical-report.

H HUMAN EVALUATION METHODS

Audio clips are always 30s second total, with a 3s prompt coming from a ground truth audio. Each
experiments has 50 samples for each method. There are 50 raters. Each of them sees 10 samples.
Raters were payed £9 / hour for their contribution.

'https://podcast .adobe.com/en/enhance
Zhttps://huggingface.co/datasets/kyutai/librispeech_test_clean_enhanced
*https://www.resemble.ai/chatterbox—turbo/
*nttps://huggingface.co/hexgrad/Kokoro-82M
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H.1 SPEECH CONTINUATION

Acoustic quality assessment: How would you rate the overall quality of this audio clip? Consider
aspects such as clarity, balance, richness, and naturalness. Listen to at least 10 seconds of audio
before deciding. 1 clip is presented, possibilities are bad, poor, fair, good, excellent.

Meaningfulness: Which of these two audio clips feels more like meaningful and natural speech?
The first 3 seconds are identical. Listen to at least 10 seconds of each clip. 2 clips are presented, ties
are possible. Elo scores are Bayesian estimates of the posterior mean in a Bradley-Terry model.

H.2 MUSIC CONTINUATION AND CLAP-TO-MUSIC

Acoustic quality assessment: How would you rate the overall quality of this music? Consider
aspects such as clarity, balance, richness, and naturalness. Listen to at least 10 seconds of audio
before deciding. 1 clip is presented, possibilities are bad, poor, fair, good, excellent.

Music enjoyment: Which music do you enjoy listening to more? The first 3 seconds are identical.
Listen to at least 10 seconds of each clip. 2 clips are presented, ties are possible. Elo scores are
Bayesian estimates of the posterior mean in a Bradley-Terry model.

H.3 BAYESIAN ELO SCORE

The Meaningfulness metric for speech and the Enjoyment metric for music are both Bayesian Elo
Scores. Elo score is used to rank models based on some pairwise comparisons of audio samples.
Given two models A and B, the probability that A is preferred over B is:

1
1+ 10(Ez—Ea)/400

P(A> B) = )
where F/ 4 and E'p are the Elo scores of each model. Unlike a traditional Elo score, the Bayesian Elo
score uses a Gamma prior, so that one can derive confidence intervals over the posterior distribution.

By defining S4 such as E4 = 4001og;,(S4) + ¢ with ¢ being a constant, we obtain:

Sa
P(A> B) S 1 5 (8)
which is a Bradley-Terry (Bradley & Terry}, [1952) model. There are a few different methods to
estimate the parameters of a Bradley-Terry model. We use the iterative one from (Caron & Doucet,
2010) where S9 follows a Gamma prior with parameters o, 3°. By denoting w4 the number of
times where method A won against any other methods and n 4 5 the number of times where A and B
are compared, S is computed with the following update rule until convergence:

StJrl Qa+wa (9)
4 B+t gt SR
which is the mean of the Gamma distribution with updated parameters o',/ *, 3%+
WA,B
af'=a’+wa,  and BT =504 > AN (10)

B#A

Iterating over ¢ allows to reach a fix point, we run 30 of them, once we have collected all the pairs. We
use a = 0.1, 8 = 0.1, ¢ = 2000 so that in absence of any data, S4 = 1 and F4 = 2000. Confidence
interval are 95% confidence interval according to the posterior (the 2.5th and 97.5th percentiles).

I HYPERPARAMETERS

We present in Tab. [T4]the parameters of the music and speech VAE used for CALMs. For CALMs
and the RQ-Transformer based discrete LMs, the hyperparameters are presented in Tab.
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Table 14: VAE hyperparameters

| Music VAE | Speech continuation VAE

General
Sample rate 32kHz 24kHz
Frame rate 25Hz 12.5Hz
Latent dimension 128 32
Architecture
Convolutions ratios 8,8,5,4 6,5,4,4,4
Num transformer encoder layers 4 8
Num transformer decoder layers 4 8
Transformer context 30s 10s
Training parameters
Batch size 64 64
Audio sample length 12s 12s
KL loss weight 0.01 0.01
Reconstruction loss v X
Distillation loss weight X 25
LR Schedule cosine cosine
Learning rate 8.107* 8.107*
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Table 15: Model and training hyperparameters

Music \

Speech continuation

Text-to-Speech

Backbone Transformer

Model dimension 1536 2560 1024
MLP dimension 6336 10560 4096
Number of heads 24 20 16
Number of layers 48 24 24
Learning rate 1-107* 5-107° le-4
Number of parameters 1.35B 2.2B 302M
RQ-Transformer head (RVQ model)
Model dimension 1024 1024 X
MLP dimension 4096 4096 X
Number of heads 16 16 X
Number of layers 6 6 X
Number of parameters 701M 701M X
Consistency sampler head (ours)
Number of layers 12 6 6
MLP dimension 3072 512 512
Gating SiLU SiLU SiLU
Number of parameters 601M 10M 10M
Short context transformer (ours)
Model dimension 1536 X X
MLP dimension 6336 X X
Number of heads 24 X X
Number of layers 4 X X
Context 10 X X
Number of parameters 113M X X
Audio embedding manipulations
Center and normalize v v v
Noise before entering backbone v X X
Training parameters
Head batch multiplier 8 8 8
Optimizer AdamW 31 = 0.9, 82 = 0.95 | AdamW 1 = 0.9, 82 = 0.95 | AdamW £; = 0.9, 82 = 0.95
Batch size 48 144 128
Audio sample length 30s 300s 60s
LR Schedule cosine cosine cosine
Learning rate 1-107* 2.107* le-4
GPU used 16 H100 48 H100 8 H100
Number of training steps 500k 150k 400k
Initial checkpoint X Helium-1 (Kyutai/[2025) X
Inner monologue X v X
Acoustic delay - 2 frames (160 ms) -
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