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ABSTRACT

World models are receiving increasing attention in autonomous driving for their
ability to predict potential future scenarios. In this paper, we present BEVWorld, a
novel approach that tokenizes multimodal sensor inputs into a unified and compact
Bird’s Eye View (BEV) latent space for environment modeling. The world model
consists of two parts: the multi-modal tokenizer and the latent BEV sequence
diffusion model. The multi-modal tokenizer first encodes multi-modality informa-
tion and the decoder is able to reconstruct the latent BEV tokens into LiDAR and
image observations by ray-casting rendering in a self-supervised manner. Then
the latent BEV sequence diffusion model predicts future scenarios given action
tokens as conditions. Experiments demonstrate the effectiveness of BEVWorld in
autonomous driving tasks, showcasing its capability in generating future scenes
and benefiting downstream tasks such as perception and motion prediction. Code
will be available soon.

1 INTRODUCTION

Autonomous driving has made significant progress in recent years, but it still faces several challenges.
First, training a reliable autonomous driving system requires a large amount of precisely annotated
data, which is resource-intensive and time-consuming. Thus, exploring how to utilize unlabeled
multimodal sensor data within a self-supervised learning paradigm is crucial. Moreover, a reliable
autonomous driving system requires not only the ability to perceive the environment but also a
comprehensive understanding of environmental information for decision-making.

We claim that the key to addressing these challenges is to construct a multimodal world model for
autonomous driving. By modeling the environment, the world model predicts future states and
behaviors, empowering the autonomous agent to make more sophisticated decisions. Recently, some
world models have demonstrated their practical significance in autonomous driving Hu et al. (2023);
Zhang et al. (2024); Yang et al. (2024b). However, most methods are based on a single modality,
which cannot adapt to current multisensor, multimodal autonomous driving systems. Due to the
heterogeneous nature of multimodal data, integrating them into a unified generative model and
seamlessly adapting to downstream tasks remains an unresolved issue.

In this paper, we introduce BEVWorld, a multimodal world model that transforms diverse multimodal
data into a unified bird’s-eye-view (BEV) representation and performs action-conditioned future
prediction within this unified space. Our BEVWorld consists of two parts: a multimodal tokenizer
network and a latent BEV sequence diffusion network.

The core capability of the multimodal tokenizer lies in compressing original multimodal sensor
data into a unified BEV latent space. This is achieved by transforming visual information into 3D
space and aligning visual semantic information with Lidar geometric information in a self-supervised
manner using an auto-encoder structure. To reverse this process and reconstruct the multimodal data,
a 3D volume representation is constructed from the BEV latent to predict high-resolution images and
point clouds using a ray-based rendering technique Yang et al. (2023).

The Latent BEV Sequence Diffusion network is designed to predict future frames of images and point
clouds. With the help of a multimodal tokenizer, this task is made easier, allowing for accurate future
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BEV predictions. Specifically, we use a diffusion-based method with a spatial-temporal transformer,
which converts sequential noisy BEV latents into clean future BEV predictions based on the action
condition.

To summarize, the main contributions of this paper are:

• We introduced a novel multimodal tokenizer that integrates visual semantics and 3D geome-
try into a unified BEV representation. The quality of the BEV representation is ensured by
innovatively applying a rendering-based method to restore multi-sensor data from BEV. The
effectiveness of the BEV representation is validated through ablation studies, visualizations,
and downstream task experiments.

• We designed a latent diffusion-based world model that enables the synchronous generation
of future multi-view images and point clouds. Extensive experiments on the nuScenes and
Carla datasets showcase the leading future prediction performance of multimodal data.

2 RELATED WORKS

2.1 WORLD MODEL

This part mainly reviews the application of world models in the autonomous driving area, focusing
on scenario generation as well as the planning and control mechanism. If categorized by the key
applications, we divide the sprung-up world model works into two categories. (1) Driving Scene
Generation. The data collection and annotation for autonomous driving are high-cost and sometimes
risky. In contrast, world models find another way to enrich unlimited, varied driving data due to their
intrinsic self-supervised learning paradigms. GAIA-1 Hu et al. (2023) adopts multi-modality inputs
collected in the real world to generate diverse driving scenarios based on different prompts (e.g.,
changing weather, scenes, traffic participants, vehicle actions) in an autoregressive prediction manner,
which shows its ability of world understanding. ADriver-I Jia et al. (2023) combines the multimodal
large language model and a video latent diffusion model to predict future scenes and control signals,
which significantly improves the interpretability of decision-making, indicating the feasibility of the
world model as a fundamental model. MUVO Bogdoll et al. (2023) integrates LiDAR point clouds
beyond videos to predict future driving scenes in the representation of images, point clouds, and
3D occupancy. Further, Copilot4D Zhang et al. (2024) leverages a discrete diffusion model that
operates on BEV tokens to perform 3D point cloud forecasting and OccWorld Zheng et al. (2023)
adopts a GPT-like generative architecture for 3D semantic occupancy forecast and motion planning.
DriveWorld Min et al. (2024) and UniWorld Min et al. (2023) approach the world model as 4D scene
understanding task for pre-training for downstream tasks. (2) Planning and Control. MILE Hu
et al. (2022) is the pioneering work that adopts a model-based imitation learning approach for joint
dynamics future environment and driving policy learning in autonomous driving. DriveDreamer
Wang et al. (2023a) offers a comprehensive framework to utilize 3D structural information such as
HDMap and 3D box to predict future driving videos and driving actions. Beyond the single front
view generation, DriveDreamer-2 Zhao et al. (2024) further produces multi-view driving videos
based on user descriptions. TrafficBots Zhang et al. (2023) develops a world model for multimodal
motion prediction and end-to-end driving, by facilitating action prediction from a BEV perspective.
Drive-WM Wang et al. (2023b) generates controllable multiview videos and applies the world model
to safe driving planning to determine the optimal trajectory according to the image-based rewards.

2.2 VIDEO DIFFUSION MODEL

World model can be regarded as a sequence-data generation task, which belongs to the realm of video
prediction. Many early methods Hu et al. (2022; 2023) adopt VAE Kingma & Welling (2013) and
auto-regression Chen et al. (2024) to generate future predictions. However, the VAE suffers from
unsatisfactory generation quality, and the auto-regressive method has the problem of cumulative error.
Thus, many researchers switch to study on diffusion-based future prediction methods Zhao et al.
(2024); Li et al. (2023), which achieves success in the realm of video generation recently and has
ability to predict multiple future frames simultaneously. This part mainly reviews the related methods
of video diffusion model.
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Figure 1: An overview of our method BEVWorld. BEVWorld consists of the multi-modal tokenizer
and the latent BEV sequence diffusion model. The tokenizer first encodes the image and Lidar
observations into BEV tokens, then decodes the unified BEV tokens to reconstructed observations by
NeRF rendering strategies. Latent BEV sequence diffusion model predicts future BEV tokens with
corresponding action conditions by a Spatial-Temporal Transformer. The multi-frame future BEV
tokens are obtained by a single inference, avoiding the cumulative errors of auto-regressive methods.

The standard video diffusion model Ho et al. (2022) takes temporal noise as input, and adopts the
UNet Ronneberger et al. (2015) with temporal attention to obtain denoised videos. However, this
method requires high training costs and the generation quality needs further improvement. Subsequent
methods are mainly improved along these two directions. In view of the high training cost problem,
LVDMHe et al. (2022) and Open-Sora Lab & etc. (2024) methods compress the video into a latent
space through schemes such as VAE or VideoGPT Yan et al. (2021), which reduces the video
capacity in terms of spatial and temporal dimensions. In order to improve the generation quality of
videos, stable video diffusion Blattmann et al. (2023) proposes a multi-stage training strategy, which
adopts image and low-resolution video pretraining to accelerate the model convergence and improve
generation quality. GenAD Yang et al. (2024a) introduces the causal mask module into UNet to
predict plausible futures following the temporal causality. VDT Lu et al. (2023a) and Sora Brooks
et al. (2024) replace the traditional UNet with a spatial-temporal transformer structure. The powerful
scale-up capability of the transformer enables the model to fit the data better and generates more
reasonable videos.

3 METHOD

In this section, we delineate the model structure of BEVWorld. The overall architecture
is illustrated in Figure 1. Given a sequence of multi-view image and Lidar observations
{ot−P , · · · , ot−1, ot, ot+1, · · · , ot+N} where ot is the current observation, +/− represent the fu-
ture/past observations and P/N is the number of past/future observations, we aim to predict
{ot+1, · · · , ot+N} with the condition {ot−P , · · · , ot−1, ot}. In view of the high computing costs
of learning a world model in original observation space, a multi-modal tokenizer is proposed to
compress the multi-view image and Lidar information into a unified BEV space by frame. The
encoder-decoder structure and the self-supervised reconstruction loss promise proper geometric and
semantic information is well stored in the BEV representation. This design exactly provides a suffi-
ciently concise representation for the world model and other downstream tasks. Our world model is
designed as a diffusion-based network to avoid the problem of error accumulating as those in an auto-
regressive fashion. It takes the ego motion and {xt−P , · · · , xt−1, xt}, i.e. the BEV representation of
{ot−P , · · · , ot−1, ot}, as condition to learn the noise {ϵt+1, · · · , ϵt+N} added to {xt+1, · · · , xt+N}
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Figure 2: The detailed structure of BEV encoder. The encoder takes as input the multi-view multi-
modality sensor data. Multimodal information is fused using deformable attention, BEV features are
channel-compressed to be compatible with the diffusion models.

in the training process. In the testing process, a DDIM Song et al. (2020) scheduler is applied to
restore the future BEV token from pure noises. Next we use the decoder of multi-modal tokenizer to
render future multi-view images and Lidar frames out.

3.1 MULTI-MODAL TOKENIZER

Our designed multi-modal tokenizer contains three parts: a BEV encoder network, a BEV Decoder
network and a multi-modal rendering network. The structure of BEV encoder network is illustrated
in the Figure 2. To make the multi-modal network as homogeneous as possible, we adopt the
Swin-Transformer Liu et al. (2021) network as the image backbone to extract multi-image features.
For Lidar feature extraction, we first split point cloud into pillars Lang et al. (2019) on the BEV
space. Then we use the Swin-Transformer network as the Lidar backbone to extract Lidar BEV
features. We fuse the Lidar BEV features and the multi-view images features with a deformable-based
transformer Zhu et al. (2020). Specifically, we sample K(K = 4) points in the height dimension
of pillars and project these points onto the image to sample corresponding image features. The
sampled image features are treated as values and the Lidar BEV features is served as queries in the
deformable attention calculation. Considering the future prediction task requires low-dimension
inputs, we further compress the fused BEV feature into a low-dimensional(C ′ = 4) BEV feature.

For BEV decoder, there is an ambiguity problem when directly using a decoder to restore the images
and Lidar since the fused BEV feature lacks height information. To address this problem, we first
convert BEV tokens into 3D voxel features through stacked layers of upsampling and swin-blocks.
And then we use voxelized NeRF-based ray rendering to restore the multi-view images and Lidar
point cloud.

The multi-modal rendering network can be elegantly segmented into two distinct components, image
reconstruction network and Lidar reconstruction network. For image reconstruction network, we first
get the ray r(t) = o+ td, which shooting from the camera center o to the pixel center in direction d.
Then we uniformly sample a set of points {(xi, yi, zi)}Nr

i=1 along the ray, where Nr(Nr = 150) is
the total number of points sampled along a ray. Given a sampled point (xi, yi, zi), the corresponding
features vi are obtained from the voxel feature according to its position. Then, all the sampled
features in a ray are aggregated as pixel-wise feature descriptor (Eq. 1).

v(r) =

Nr∑
i=1

wivi, wi = αi

i−1∏
j=1

(1− αj), αi = σ(MLP(vi)) (1)

We traverse all pixels and obtain the 2D feature map V ∈ RHf×Wf×Cf of the image. The 2D feature
is converted into the RGB image Ig ∈ RH×W×3 through a CNN decoder. Three common losses are
added for improving the quality of generated images, perceptual loss Johnson et al. (2016), GAN
loss Goodfellow et al. (2020) and L1 loss. Our full objective of image reconstruction is:

Lrgb = ∥Ig − It∥1 + λperc∥
Nϕ∑
j=1

ϕj(Ig)− ϕj(It)∥+ λganLgan(Ig, It) (2)
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Figure 3: Left: Details of the multi-view images rendering. Trilinear interpolation is applied to the
series of sampled points along the ray to obtain weight wi and feature vi. {vi} are weighted by {wi}
and summed, respectively, to get the rendered image features, which are concatenated and fed into the
decoder for 8× upsampling, resulting in multi-view RGB images. Right: Details of Lidar rendering.
Trilinear interpolation is also applied to obtain weight wi and depth ti. {ti} are weighted by {wi} and
summed, respectively, to get the final depth of point. Then the point in spherical coordinate system is
transformed to the Cartesian coordinate system to get vanilla Lidar point coordinate.

where It is the ground truth of Ig, ϕj represents the jth layer of pretrained VGG Simonyan &
Zisserman (2014) model, and the definition of Lgan(Ig, It) can be found in Goodfellow et al. (2020).

For Lidar reconstruction network, the ray is defined in the spherical coordinate system with inclination
θ and azimuth ϕ. θ and ϕ are obtained by shooting from the Lidar center to current frame of Lidar point.
We sample the points and get the corresponding features in the same way of image reconstruction.
Since Lidar encodes the depth information, the expected depth Dg(r) of the sampled points are
calculated for Lidar simulation. The depth simulation process and loss function are shown in Eq. 3.

Dg(r) =

Nr∑
i=1

witi, LLidar = ∥Dg(r)−Dt(r)∥1, (3)

where ti denotes the depth of sampled point from the Lidar center and Dt(r) is the depth ground
truth calculated by the Lidar observation.

The Cartesian coordinate of point cloud could be calculated by:

(x, y, z) = (Dg(r) sin θ cosϕ,Dg(r) sin θ sinϕ,Dg(r) cos θ) (4)

Overall, the multi-modal tokenizer is trained end-to-end with the total loss in Eq. 5:

LTotal = LLidar + Lrgb (5)

3.2 LATENT BEV SEQUENCE DIFFUSION

Most existing world models Zhang et al. (2024); Hu et al. (2023) adopt autoregression strategy to get
longer future predictions, but this method is easily affected by cumulative errors. Instead, we propose
latent sequence diffusion framework, which inputs multiple frames of noise BEV tokens and obtains
all future BEV tokens simultaneously.

The structure of latent sequence diffusion is illustrated in Figure 1. In the training process, the
low-dimensional BEV tokens (xt−P , · · · , xt−1, xt, xt+1, · · · , xt+N ) are firstly obtained from the
sensor data. Only BEV encoder in the multi-modal tokenizer is involved in this process and the
parameters of multi-modal tokenizer is frozen. To facilitate the learning of BEV token features
by the world model module, we standardize the input BEV features along the channel dimension
(xt−P , · · · , xt−1, xt, xt+1, · · · , xt+N ). Latest history BEV token and current frame BEV token
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Figure 4: The architecture of Spatial-Temporal transformer block.

(xt−P , · · · , xt−1, xt) are served as condition tokens while (xt+1, · · · , xt+N ) are diffused to noisy
BEV tokens (xϵ

t+1, · · · , xϵ
t+N ) with noise {ϵi

t̂
}t+N
i=t+1, where t̂ is the timestamp of diffusion process.

The denoising process is carried out with a spatial-temporal transformer containing a sequence
of transformer blocks, the architecture of which is shown in the Figure 4. The input of spatial-
temporal transformer is the concatenation of condition BEV tokens and noisy BEV tokens
(xt−P , · · · , xt−1, xt, x

ϵ
t+1, · · · , xϵ

t+N ). These tokens are modulated with action tokens {ai}T+N
i=T−P

of vehicle movement and steering, which together form the inputs to spatial-temporal transformer.
More specifically, the input tokens are first passed to temporal attention block for enhancing temporal
smoothness. To avoid time confusion problem, we added the causal mask into temporal attention.
Then, the output of temporal attention block are sent to spatial attention block for accurate details.
The design of spatial attention block follows standard transformer block criterion Lu et al. (2023a).
Action token and diffusion timestamp {t̂di }

T+N
i=T−P are concatenated as the condition {ci}T+N

i=T−P of
diffusion models and then sent to AdaLN Peebles & Xie (2023) (6) to modulate the token features.

c = concat(a, t̂); γ, β = Linear(c); AdaLN(x̂, γ, β) = LayerNorm(x̂) · (1 + γ) + β (6)

where x̂ is the input features of one transformer block, γ, β is the scale and shift of c.

The output of the Spatial-Temporal transformer is the noise prediction {ϵi
t̂
(x)}Ni=1, and the loss is

shown in Eq. 7.

Ldiff = ∥ϵt̂(x)− ϵt̂∥1. (7)

In the testing process, normalized history frame and current frame BEV tokens (xt−P , · · · , xt−1, xt)
and pure noisy tokens (ϵt+1, ϵt+2, · · · , ϵt+N ) are concatenated as input to world model. The ego
motion token {ai}T+N

i=T−P , spanning from moment T−P to T+N , serve as the conditional inputs. We
employ the DDIM Song et al. (2020) schedule to forecast the subsequent BEV tokens. Subsequently,
the denormalized operation is applied to the predicted BEV tokens, which are then fed into the BEV
decoder and rendering network yielding a comprehensive set of predicted multi-sensor data.

4 EXPERIMENTS

4.1 DATASET

NuScenes Caesar et al. (2020) NuScenes is a widely used autonomous driving dataset, which
comprises multi-modal data such as multi-view images from 6 cameras and Lidar scans. It includes a
total of 700 training videos and 150 validation videos. Each video includes 20 seconds at a frame
rate of 12Hz.

Carla Dosovitskiy et al. (2017) The training data is collected in the open-source CARLA simulator
at 2Hz, including 8 towns and 14 kinds of weather. We collect 3M frames with four cameras (1600 ×
900) and one Lidar (32p) for training, and evaluate on the Carla Town05 benchmark, which is the
same setting of Shao et al. (2022).
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4.2 MULTI-MODAL TOKENIZER

In this section, we explore the impact of different design decisions in the proposed multi-modal
tokenizer and demonstrate its effectiveness in the downstream tasks. For multi-modal reconstruction
visualization results, please refer to Figure7 and Figure8.

4.2.1 ABLATION STUDIES

Various input modalities and output modalities. The proposed multi-modal tokenizer supports
various choice of input and output modalities. We test the influence of different modalities, and
the results are shown in Table 1, where L indicates Lidar modality, C indicates multi-view cameras
modality, and L&C indicates multi-modal modalities. The combination of Lidar and cameras achieves
the best reconstruction performance, which demonstrates that using multi modalities can generate
better BEV features. We find that the PSNR metric is somewhat distorted when comparing ground
truth images and predicted images. This is caused by the mean characteristics of PSNR metric, which
does not evaluate sharpening and blurring well. As shown in Figure 12, though the PSNR of multi
modalities is slightly lower than single camera modality method, the visualization of multi modalities
is better than single camera modality as the FID metric indicates.

Table 1: Ablations of different modalities.

Input Output FID↓ PSNR↑ Chamfer↓
C C 19.18 26.95 -
C L - - 2.67
L L - - 0.19
L & C L & C 5.54 25.68 0.15

Table 2: Ablations of rendering methods.

Method FID↓ PSNR↑ Chamfer↓
(a) 67.28 9.45 0.24
(b) 5.54 25.68 0.15

Rendering approaches. To convert from BEV features into multiple sensor data, the main challenge
lies in the varying positions and orientations of different sensors, as well as the differences in imaging
(points and pixels). We compared two types of rendering methods: a) attention-based method,
which implicitly encodes the geometric projection in the model parameters via global attention
mechanism; b) ray-based sampling method, which explicitly utilizes the sensor’s pose information
and imaging geometry. The results of the methods (a) and (b) are presented in Table 2. Method (a)
faces with a significant performance drop in multi-view reconstruction, indicating that our ray-based
sampling approach reduces the difficulty of view transformation, making it easier to achieve training
convergence. Thus we adopt ray-based sampling method for generating multiple sensor data.

4.2.2 BENEFIT FOR DOWNSTREAM TASKS

3D Detection. To verify our proposed method is effective for downstream tasks when used in the
pre-train stage, we conduct experiments on the nuScenes 3D detection benchmark. For the model
structure, in order to maximize the reuse of the structure of our multi-modal tokenizer, the encoder
in the downstream 3D detection task is kept the same with the encoder of the tokenizer described
in 3. We use a BEV encoder attached to the tokenizer encoder for further extracting BEV features.
We design a UNet-style network with the Swin-transformer Liu et al. (2021) layers as the BEV
encoder. As for the detection head, we adopt query-based head Li et al. (2022), which contains
500 object queries that searching the whole BEV feature space and uses hungarian algorithm to
match the prediction boxes and the ground truth boxes. We report both single frame and two frames
results. We warp history 0.5s BEV future to current frame in two frames setting for better velocity
estimation. Note that we do not perform fine-tuning specifically for the detection task all in the
interest of preserving the simplicity and clarity of our setup. For example, the regular detection range
is [-60.0m, -60.0m, -5.0m, 60.0m, 60.0m, 3.0m] in the nuScenes dataset while we follow the BEV
range of [-80.0m, -80.0m, -4.5m, 80.0m, 80.0m, 4.5m] in the multi-modal reconstruction task, which
would result in coarser BEV grids and lower accuracy. Meanwhile, our experimental design eschew
the use of data augmentation techniques and the layering of point cloud frames. We train 30 epoches
on 8 A100 GPUs with a starting learning rate of 5e−4 that decayed with cosine annealing policy. We
mainly focus on the relative performance gap between training from scratch and use our proposed self-
supervised tokenizer as pre-training model. As demonstrated in Table 3, it is evident that employing
our multi-modal tokenizer as a pre-training model yields significantly enhanced performance across
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both single and multi-frame scenarios. Specifically, with a two-frame configuration, we have achieved
an impressive 8.4% improvement in the NDS metric and a substantial 13.4% improvement in the
mAP metric, attributable to our multi-modal tokenizer pre-training approach.

Motion Prediction. We further validate the performance of using our method as pre-training model
on the motion prediction task. We attach the motion prediction head to the 3D detection head. The
motion prediction head is stacked of 6 layers of cross attention(CA) and feed-forward network(FFN).
For the first layer, the trajectory queries is initialized from the top 200 highest score object queries
selected from the 3D detection head. Then for each layer, the trajectory queries is firstly interacting
with temporal BEV future in CA and further updated by FFN. We reuse the hungarian matching
results in 3D detection head to pair the prediction and ground truth for trajectories. We predict five
possible modes of trajectories and select the one closest to the ground truth for evaluation. For the
training strategy, we train 24 epoches on 8 A100 GPUs with a starting learning rate of 1e−4. Other
settings are kept the same with the detection configuration. We display the motion prediction results
in Table 3. We observed a decrease of 0.455 meters in minADE and a reduction of 0.749 meters in
minFDE at the two-frames setting when utilizing the tokenizer during the pre-training phase. This
finding confirms the efficacy of self-supervised multi-modal tokenizer pre-training.

Table 3: Comparison of whether use pretrained tokenizer on the nuScenes validation set.

Frames Pretrain 3D Object Detection Motion Prediction

NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ minADE↓ minFDE↓
Single wo 0.366 0.338 0.555 0.290 0.832 1.290 0.357 2.055 3.469
Single w 0.415 0.412 0.497 0.278 0.769 1.275 0.367 1.851 3.153

Two wo 0.392 0.253 0.567 0.308 0.650 0.610 0.212 1.426 2.230
Two w 0.476 0.387 0.507 0.287 0.632 0.502 0.246 0.971 1.481

Table 4: Comparison of generation quality on nuScenes validation dataset.

Methods Multi-view Video Manual Labeling Cond. FID↓ FVD↓
DriveDreamer Wang et al. (2023a) ✓ ✓ 52.6 452.0

WoVoGen Lu et al. (2023b) ✓ ✓ ✓ 27.6 417.7
Drive-WM Wang et al. (2023b) ✓ ✓ ✓ 15.8 122.7

DriveGAN Kim et al. (2021) ✓ 73.4 502.3
Drive-WM Wang et al. (2023b) ✓ ✓ 20.3 212.5

BEVWorld ✓ ✓ 19.0 154.0

Table 5: Comparison with SOTA methods on the nuScenes validation set and Carla dataset. The
suffix * represents the methods adopt classifier-free guidance (CFG) when getting the final results,
and † is the reproduced result. Cham. is the abbreviation of Chamfer Distance.

Dataset Methods Modal PSNR 1s↑ FID 1s↓ Cham. 1s↓ PSNR 3s↑ FID 3s↓ Cham. 3s↓
nuScenes SPFNet Weng et al. (2021) Lidar - - 2.24 - - 2.50
nuScenes S2Net Weng et al. (2022) Lidar - - 1.70 - - 2.06
nuScenes 4D-Occ Khurana et al. (2023) Lidar - - 1.41 - - 1.40
nuScenes Copilot4D* Zhang et al. (2024) Lidar - - 0.36 - - 0.58
nuScenes Copilot4D Zhang et al. (2024) Lidar - - - - - 1.40
nuScenes BEVWorld Multi 20.85 22.85 0.44 19.67 37.37 0.73

Carla 4D-Occ† Khurana et al. (2023) Lidar - - 0.27 - - 0.44
Carla BEVWorld Multi 20.71 36.80 0.07 19.12 43.12 0.17

4.3 LATENT BEV SEQUENCE DIFFUSION

In this section, we introduce the training details of latent BEV Sequence diffusion and compare this
method with other related methods.

4.3.1 TRAINING DETAILS.

NuScenes. We adopt a three stage training for future BEV prediction. 1) Next BEV pretraining. The
model predicts the next frame with the {xt−1, xt} condition. In practice, we adopt sweep data of
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nuScenes to reduce the difficulty of temporal feature learning. The model is trained 20000 iters with
a batch size 128. 2) Short Sequence training. The model predicts the N(N = 5) future frames of
sweep data. At this stage, the network can learn how to perform short-term (0.5s) feature reasoning.
The model is trained 20000 iters with a batch size 128. 3) Long Sequence Fine-tuning. The model
predicts the N(N = 6) future frames (3s) of key-frame data with the {xt−2, xt−1, xt} condition.
The model is trained 30000 iters with a batch size 128. The learning rate of three stages is 5e-4
and the optimizer is AdamW Loshchilov & Hutter (2017). Note that our method does not introduce
classifier-free gudiance (CFG) strategy in the training process for better integration with downstream
tasks, as CFG requires an additional network inference, which doubles the computational cost.

Carla. The model is fine-tuned 30000 iterations with a nuScenes-pretrained model with a batch size
32. The initial learning rate is 5e-4 and the optimizer is AdamW Loshchilov & Hutter (2017). CFG
strategy is not introduced in the training process, following the same setting of nuScenes.

4.3.2 LIDAR PREDICTION QUALITY

NuScenes. We compare the Lidar prediction quality with existing SOTA methods. We follow the
evaluation process of Zhang et al. (2024) and report the Chamfer 1s/3s results in Table 5, where the
metric is computed within the region of interest: -70m to +70m in both x-axis and y-axis, -4.5m to
+4.5m in z-axis. Our proposed method outperforms SPFNet, S2Net and 4D-Occ in Chamfer metric
by a large margin. When compared to Copilot4D Zhang et al. (2024), our approach uses less history
condition frames and no CFG schedule setting considering the large memory cost for multi-modal
inputs. Our BEVWorld requires only 3 past frames for 3-second predictions, whereas Copilot4D
utilizes 6 frames for the same duration. Our method demonstrates superior performance, achieving
chamfer distance of 0.73 compared to 1.40, in the no CFG schedule setting, ensuring a fair and
comparable evaluation.

Carla. We also conducted experiments on the Carla dataset to verify the scalability of our method.
The quantitative results are shown in Table 5. We reproduce the results of 4D-Occ on Carla and
compare it with our method, obtaining similar conclusions to this on the nuScenes dataset. Our
method significantly outperform 4D-Occ in prediction results for both 1-second and 3-second.

4.3.3 VIDEO GENERATION QUALITY

NuScenes. We compare the video generation quality with past single-view and multi-view generation
methods. Most of existing methods adopt manual labeling condition, such as layout or object label,
to improve the generation quality. However, using annotations reduces the scalability of the world
model, making it difficult to train with large amounts of unlabeled data. Thus we do not use the
manual annotations as model conditions. The results are shown in Table 4. The proposed method
achieves best FID and FVD performance in methods without using manual labeling condition and
exhibits comparable results with methods using extra conditions. The visual results of Lidar and
video prediction are shown in Figure 5. Furthermore, the generation can be controlled by the action
conditions. We transform the action token into left turn, right turn, speed up and slow down, and the
generated image and Lidar can be generated according to these instructions. The visualization of
controllability are shown in Figure 6.

Carla. The generation quality on Carla is similar to that on nuScenes dataset, which demonstrates
the scalability of our method across different datasets. The quantitative results of video predictions
are shown in Table 4 with 36.80(FID 1s) and 43.12(FID 3s). Qualitative results of video predictions
are shown in the appendix.

4.3.4 BENEFIT FOR PLANNING TASKS

We further validate the effectiveness of the predicted future BEV features from latent diffusion
network for toy downstream open-loop planning task Zhai et al. (2023) on nuScenes dataset. Note
that we do not use actions of ego car in future frames here and we adopt x0-parameterization Austin
et al. (2021) for fast inference. We adopt four vectors, history trajectory, command, perception and
optional future BEV vectors, as input for planning head. History trajectory vector encodes the ego
movement from last frame to current frame. Command vector refers to the routing command such as
turning left or right. Perception vector is extracted from the object query in the detection head that
interacted with all detection queries. Future BEV vector is obtained from the pooled BEV features

9
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from the fixed diffusion model. When using future BEV vectors, PNC L2 3s metric is decreased
from 1.030m to 0.977m, which validates that the predicted BEV from world model is beneficial for
planning tasks.

Reference T=0

Multi-view Image LiDAR

Pred T=1s

Pred T=3s

Figure 5: The visualization of Lidar and video predictions.

Turn Right T=2s Speed Up T=2s Slow Down T=2sReference T=0s Turn Left T=2s

Figure 6: The visualization of controllability. Due to space limitations, we only show the results of
the front and rear views for a clearer presentation.

5 CONCLUSION

We present BEVWorld, an innovative autonomous driving framework that leverages a unified Bird’s
Eye View latent space to construct a multi-modal world model. BEVWorld’s self-supervised learning
paradigm allows it to efficiently process extensive unlabeled multimodal sensor data, leading to a
holistic comprehension of the driving environment. We validate the effectiveness of BEVWorld in
the downstream autonomous driving tasks. Furthermore, BEVWorld achieves satisfactory results
in multi-modal future predictions with latent diffusion network, showcasing its capabilities through
experiments on both real-world(nuScenes) and simulated(carla) datasets. We hope that the work
presented in this paper will stimulate and foster future developments in the domain of world models
for autonomous driving.
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APPENDIX

A QUALITATIVE RESULTS

In this section, qualitative results are presented to demonstrate the performance of the proposed
method.

A.1 TOKENIZER RECONSTRUCTIONS

The visualization of tokenizer reconstructions are shown in Figure 7 and Figure 8. The proposed
tokenizer can recover the image and Lidar with the unified BEV features.

Reconstruction GT

102

103 demo_2

Figure 7: The visualization of LiDAR and video reconstructions on nuScenes dataset.

A.2 MULTI-MODAL FUTURE PREDICTIONS

Diverse generation. The proposed diffusion-based world model can produce high-quality future
predictions with different driving conditions, and both the dynamic and static objects can be generated
properly. The qualitative results are illustrated in Figure 9 and Figure 10.

Controllability. We present more visual results of controllability in Figure 11. The generated images
and Lidar exhibit a high degree of consistency with action, which demonstrates that our world model
has the potential of being a simulator.

PSNR metric. PSNR metric has the problem of being unable to differentiate between blurring and
sharpening. As shown in Figure 12, the image quality of L & C is better the that of C, while the psnr
metric of L & C is worse than that of C.

B IMPLEMENTATION DETAILS

Training details of tokenizer. We trained our model using 32 GPUs, with a batch size of 1 per card.
We used the AdamW optimizer with a learning rate of 5e-4, beta1=0.5, and beta2=0.9, following a
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Reconstruction GT

Figure 8: The visualization of LiDAR and video reconstructions on Carla dataset.

pred_img_pred_vis_149_gpu0_gt_7.png

pred_img_pred_vis_118_gpu0_gt_7.png

Reference T=0

Pred T=1s

Pred T=3s

Reference T=0

Pred T=1s

Pred T=3s

Multi-view Image Lidar Multi-view Image Lidar

Figure 9: The visualization of LiDAR and future predictions on nuScenes dataset.
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Reference T=0

Multi-view Image LiDAR

Pred T=1s

Pred T=3s

Reference T=0

Pred T=1s

Pred T=3s

Multi-view Image LiDAR

Figure 10: The visualization of LiDAR and future predictions on Carla dataset.

Turn Right T=2s Speed Up T=2s Slow Down T=2sReference T=0s Turn Left T=2s

Figure 11: More visual results of controllability.
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C L & C GT

Figure 12: The visualization of C and L & C.

cosine learning rate decay strategy. The multi-task loss function includes a perceptual loss weight
of 0.1, a lidar loss weight of 1.0, and an RGB L1 reconstruction loss weight of 1.0. For the GAN
training, we employed a warm-up strategy, introducing the GAN loss after 30,000 iterations. The
discriminator loss weight was set to 1.0, and the generator loss weight was set to 0.1.

Details on Upsampling from 2D BEV to 3D Voxel Features. The di-

mensional transformation proceeds as follows: (4, 96, 96)
Step1: a linear layer−−−−−−−−−−→

(256, 96, 96)
Step2: Swin Blocks and upsampling−−−−−−−−−−−−−−−−−−→ (128, 192, 192)

Step3: additional Swin Blocks−−−−−−−−−−−−−−−→
(128, 192, 192)

Step4: a linear layer−−−−−−−−−−→ (4096, 192, 192)
Step5: reshaping−−−−−−−−→ (16, 64, 384, 384). For the

upsampling in Step 2, we adopt Patch Expanding, which is commonly used in ViT-based approaches
and can be seen as the reverse operation of Patch Merging. The linear layer in Step 4 predicts a local
region of shape (16, 64, ry, rx), where spatial sizes are adjusted (e.g., ry=2, rx=2), followed by
reshaping in Step 5 to the final 3D feature shape.

Composition of 3D Voxel Features. Along each ray, we perform uniform sampling, and the depth
t of the sampled points is a predefined value, not predicted by the model. The feature vi at these
sampled points is obtained through linear interpolation, while the blending weight w is predicted
from the sampled features vi (as described in Equation 1). This is a standard differentiable rendering
process.

C BROADER IMPACTS

The concept of a world model holds significant relevance and diverse applications within the realm of
autonomous driving. It serves as a versatile tool, functioning as a simulator, a generator of long-tail
data, and a pre-trained model for subsequent tasks. Our proposed method introduces a multi-modal
BEV world model framework, designed to align seamlessly with the multi-sensor configurations
inherent in existing autonomous driving models. Consequently, integrating our approach into current
autonomous driving methodologies stands to yield substantial benefits.

D LIMITATIONS

It is widely acknowledged that inferring diffusion models typically demands around 50 steps to attain
denoising results, a process characterized by its sluggishness and computational expense. Regrettably,
we encounter similar challenges. As pioneers in the exploration of constructing a multi-modal world
model, our primary emphasis lies on the generation quality within driving scenes, prioritizing it over
computational overhead. Recognizing the significance of efficiency, we identify the adoption of one-
step diffusion as a crucial direction for future improvement in the proposed method. Regarding the
quality of the generated imagery, we have noticed that dynamic objects within the images sometimes
suffer from blurriness. To address this and further improve their clarity and consistency, a dedicated
module specifically tailored for dynamic objects may be necessary in the future.
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