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Abstract

We propose VE-KD, a novel method that bal-001
ances knowledge distillation and vocabulary002
expansion with the aim of training efficient003
domain-specific language models. Compared004
with traditional pre-training approaches, VE-005
KD exhibits competitive performance in down-006
stream tasks while reducing model size and007
using fewer computational resources. Addi-008
tionally, VE-KD refrains from overfitting in009
domain adaptation. Our experiments with dif-010
ferent biomedical domain tasks demonstrate011
that VE-KD performs well compared with mod-012
els such as BioBERT (+1% at HoC) and Pub-013
MedBERT (+1% at PubMedQA), with about014
96% less training time. Furthermore, it outper-015
forms DistilBERT and Adapt-and-Distill, show-016
ing a significant improvement in document-017
level tasks. Investigation of vocabulary size018
and tolerance, which are hyperparameters of019
our method, provides insights for further model020
optimization. The fact that VE-KD consistently021
maintains its advantages, even when the corpus022
size is small, suggests that it is a practical ap-023
proach for domain-specific language tasks and024
is transferrable to different domains for broader025
applications.026

1 Introduction027

Language models such as BERT (Devlin et al.,028

2019) and RoBERTa (Liu et al., 2019) have pro-029

vided significant performance improvements in030

solving natural language processing (NLP) tasks,031

enabling many practical applications that have in-032

creased productivity, understanding, and accessibil-033

ity in diverse industries.034

These traditional models still hold value in terms035

of cost-effectiveness and ease of deployment, even036

though large language models (LLMs) demonstrate037

remarkable few-shot capabilities in NLP tasks. One038

reason is that training or fine-tuning LLMs such039

as GPT-3 requires an immense amount of data and040

computational resources. Another reason is the 041

growing demand for artificial intelligence (AI) ap- 042

plications that run on local machines because some 043

applications require independence from network 044

connectivity or have concerns about information se- 045

curity and confidentiality when using LLM-based 046

application programming interface (API) services 047

such as GPT-4. 048

Many industrial and academic fields use special- 049

ized terminology and concepts that general lan- 050

guage models might not fully understand. These 051

potential gaps in understanding may result in less 052

effective or even erroneous solutions, making it 053

essential to adapt language models to specific do- 054

mains. 055

However, LLMs such as GPT-3 and GPT-4 are 056

difficult to use because it is expensive and chal- 057

lenging to obtain high-quality labeled data for addi- 058

tional pre-training and because domain knowledge 059

must be added through the API. In contrast, general 060

BERT models have the advantage of easy of fine- 061

tuning and specialization in different domains. For 062

example, BERT performs better in Named-entity 063

recognition tasks compared with GPT-family mod- 064

els such as BioGPT (Luo et al., 2022). 065

In industrial applications, operational efficiency 066

is often the primary concern. For example, high 067

latency can be detrimental for applications that 068

require real-time response or that process large 069

amounts of input data, such as monitoring systems 070

or predictive analytics. Larger models need more 071

powerful and thus more expensive hardware setups 072

but typically have capacity constraints imposed 073

to manage costs. This also limits the model size 074

that can feasibly be realized. Therefore, reducing 075

resource consumption by compressing a model im- 076

proves its deployment adaptability. 077

Although the need for domain adaptation and 078

model compression is particularly prominent in 079

industrial applications within a specific domain, 080

given the complexities inherent in these processes, 081
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Figure 1: Architecture of VE-KD. New and original tokens are processed separately during tokenization, masking,
and loss calculation. The student model soaks up two types of knowledge: common knowledge via original tokens
and domain-specific knowledge via new tokens.

a simplistic sequential approach may not yield the082

best results. First, both tasks require high-quality083

data, which can be difficult to obtain. Second, us-084

ing general methods such as domain-adaptation085

followed by distillation or distilling an already086

domain-adapted model requires two or more steps087

or training and hyperparameter tuning (Yao et al.,088

2021), which makes the learning process difficult089

to optimize.090

During the domain-adaptation phase (secondary-091

stage unsupervised pre-training), there is a sig-092

nificant risk of losing general knowledge due to093

overfitting when a small corpus is used. More-094

over, 2-step training requires more computational095

resources and time, possibly requiring further it-096

erations to achieve the most effective outcomes.097

Therefore, a method that can proficiently perform098

domain adaptation and model compression simul-099

taneously is needed to overcome these issues.100

In this paper, we propose VE-KD, a novel101

method that can simultaneously perform domain102

adaptation and model compression from a teacher103

model such as BERT. We also show that our104

method significantly outperforms the teacher model105

on related tasks with a corpus, is robust and easy106

to optimize, and has lower requirements in terms107

of computational resources and time.108

2 Related Work109

Large pre-trained models such as BERT (Devlin110

et al., 2019) and RoBERTa (Liu et al., 2019) have111

become ubiquitous in the NLP field (Ramponi and112

Plank, 2020). In terms of domain shifts, secondary- 113

stage unsupervised pre-training on a new domain 114

has proven to be advantageous. Contextualized 115

tokenizations are adapted to text from the target 116

domain through masked language modeling, as 117

introduced by Han and Eisenstein (2019) and Guru- 118

rangan et al. (2020). Meanwhile, Lee et al. (2020) 119

performed continual pre-training to adapt the BERT 120

model to the biomedical domain, utilizing both 121

PubMed abstracts and PMC full-text resources. 122

The use of contrastive learning also increases the 123

representation ability for specific domains. Xu 124

et al. (2023) investigated the use of contrastive 125

learning to develop discriminative entity represen- 126

tations in the field of cross-domain named entity 127

recognition. 128

However, many specialized domains contain 129

unique terms that are not included in the vocab- 130

ulary of pre-trained language models. Gu et al. 131

(2021) proposed a biomedical pre-trained model 132

called PubMedBERT in which the vocabulary was 133

constructed from scratch and the model was pre- 134

trained from scratch. Furthermore, in many special- 135

ized domains, sufficiently large corpora may not 136

be available to support pre-training from scratch. 137

General domain vocabulary can be extended with 138

in-domain vocabulary (Yao et al., 2021) in order to 139

solve this out-of-vocabulary issue. 140

Knowledge distillation (KD) (Hinton et al., 141

2015) aims to transfer the knowledge from a large 142

teacher model to a small student model. Distil- 143

BERT (Sanh et al., 2019) uses soft labels and 144

embedding outputs to supervise the student model. 145
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TinyBERT (Jiao et al., 2020) and MobileBERT146

(Sun et al., 2020) includes self-attention distribu-147

tions and hidden-states for training the student148

model. MiniLMv2 (Wang et al., 2021) avoids re-149

strictions on the number of student layers and super-150

vises the student model by using the self-attention151

distributions and value relation of the teacher’s last152

transformer layer. The AD-KD approach (Wu153

et al., 2023) explores the token-level rationale be-154

hind the teacher model based on Integrated Gra-155

dients and transfers attribution knowledge to the156

student model.157

Several frameworks for general knowledge dis-158

tillation using LLMs have also been proposed.159

GKD (Tan et al., 2023) is a general-knowledge160

distillation framework that supports distillation on161

larger-scale PLMs using various distillation meth-162

ods and f -DISTILL (Wen et al., 2023) formu-163

lates sequence level knowledge distillation through164

minimization of a generalized f-divergence func-165

tion. Hsieh et al. (2023) and Li et al. (2023) have166

proved that distillation using extracted rationales167

from black box LLMs is effective.168

In this paper, we focus on task-agnostic knowl-169

edge distillation approaches, where a smaller dis-170

tilled pre-trained model can be directly fine-tuned171

on downstream tasks.172

3 Methods173

In this study, we propose VE-KD, a knowledge174

distillation method with vocabulary expansion, as175

shown in Figure 1. Unlike Adapt-and-Distill (Yao176

et al., 2021), which requires 4-step training, our177

approach simultaneously lightens the model and178

resolves the adaptability issues of special domains,179

which have been a problem in general-purpose180

models pre-trained on large corpora. By contin-181

ually distilling knowledge from the teacher model,182

VE-KD effectively avoids overfitting, a common is-183

sue that arises during the domain adaptation phase,184

especially when working with small corpora.185

In the knowledge distillation aspect of VE-KD,186

a larger BERT model serves as the teacher model,187

instructing a smaller student model. Through the188

distillation process, the student model learns to189

mimic the behavior of the larger teacher model in190

general terms. Simultaneously, the vocabulary ex-191

pansion aspect broadens the model’s vocabulary to192

capture domain-specific terms, thereby enhancing193

the method’s ability to adapt to domain-specific194

tasks.195

3.1 Vocabulary Expansion 196

We add domain-specific terms (which we call “new 197

tokens”) through vocabulary expansion, which dis- 198

tinguishes between general and domain knowledge 199

by separating the new tokens from the original 200

tokens. By processing them separately, such as 201

through different masking and loss functions, we 202

enable simultaneous learning of domain knowledge 203

from the corpus as well as general knowledge from 204

the teacher model via two separate pathways. 205

The vocabulary of the student model Vs is ex- 206

panded based on the teacher model’s vocabulary 207

Vt. We use tensor2tensor’s WordPiece generation 208

script1 to perform vocabulary expansion. Building 209

on the research of Yao et al. (2021), we chose a 210

vocabulary size of 60,000 words. 211

3.2 Tokenization and Separate Token 212

Masking 213

The process of separating two terms is accom- 214

plished through tokenization and token masking. 215

Typically, model distillation necessitates that both 216

the teacher and student models possess identical 217

dictionaries. However, because of vocabulary ex- 218

pansion, new tokens emerge that cannot be incor- 219

porated into the teacher model. 220

As shown in Figure 1, we employ text tokeniza- 221

tion with an expanded vocabulary Vs. There are 222

new tokens that cannot be accommodated in the 223

teacher model. To circumvent this, we designed 224

the unique mask method shown below. 225

We denote the input sequence as x = 226

[x1, x2, x3, ..., xn], where n is the sequence length 227

and each xi represents a token that has been tok- 228

enized by expanded vocabulary Vs. Let us suppose 229

that x1 and x3 are new tokens and thus not included 230

in Vt. We replace them with a [MASK] token as 231

new input, as follows: 232

xinput = [[MASK], x2, [MASK]..., xn]. 233

We simultaneously acquire the position information 234

of new tokens Pnewtoken(i) = 1 if xi /∈ Vt else 0, 235

and use it to calculate the loss function. 236

In areas other than new tokens, tokens are 237

masked and swapped at random by the same rule, 238

similar to BERT’s MLM (masked language model) 239

task. The tokens used for replacement are picked 240

from the vocabulary of the teacher model. 241

1https://github.com/tensorflow/tensor2tensor
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3.3 Loss Functions242

This section explains the mechanism of calculating243

the loss function by separating new tokens from244

general terms. In the right half of Figure 1, we245

input the two entries into the teacher model (t) and246

the student model (s) and obtain the hidden-state247

vectors Ht,s from the final layer as well as the token248

prediction logits Lt,s.249

At the new token position, the output logits and250

the hidden-state vectors of the teacher model con-251

flict with the student model because the student252

model has a bigger vocabulary and new knowl-253

edge. To learn the knowledge of the teacher model254

successfully, similarity calculations are made only255

within the scope of general terms (without the new256

token position). The new H ′
t,s and L′

t,s are formu-257

lated as follows:258

H ′
t,s = {Ht,s(i)|Pnewtoken(i) = 0},259

260
L′
t,s = {Lt,s(i)|Pnewtoken(i) = 0}.261

Following DistilBERT (Sanh et al., 2019),262

the loss function is calculated using measures263

such as cosine similarity, Kullback-Leibler diver-264

gence (KL), and mean squared error (MSE), which265

are defined as follows:266

LCosine(H
′
t, H

′
s) =

H ′
t ·H ′

s

∥H ′
s∥∥H ′

t∥
,267

268

LKL(L
′
t, L

′
s) =

∑
i

L′
t(i) log

L′
t(i)

L′
s(i)

,269

270

LMSE(L
′
t, L

′
s) =

1

n

n∑
i=1

(
L′
t(i)− L′

s(i)
)2

.271

By doing so, we facilitate learning of the teacher272

model’s knowledge.273

Next, similar to BERT, we calculate the MLM274

loss function LMLM in order to estimate the masked275

words, using the student model’s Logits Ls and276

labels Llabel.277

The new token may lead to conflict between278

the KD loss and MLM loss even if the calculation279

range is split. . Knowledge about general terms280

may differ between the teacher model and student281

model because the meaning or grammar of general282

terms around the new token may differ. Because283

taking 100% of the knowledge from the teacher284

model might have adverse effects on creating new285

domain knowledge for the student model, we use286

tolerance to control the KD loss as follows:287

L′
KD(i) = max(WKD × LKD(i)− ε, 0).288

Here, LKD refers to each KD loss, WKD represents 289

the weight for each KD loss, and ε denotes the toler- 290

ance for the KD loss. This implies that after being 291

multiplied by the weight, if the value is smaller 292

than ε, the model will consider the KD loss to be 293

0 and refrain from further optimization for lower 294

loss. If a conflict arises, the student model will first 295

optimize the MLM loss. Thereby ensuring that the 296

student model learns the new domain knowledge 297

the teacher model without straying too far from it. 298

The final loss Lfinal is obtained by calculating 299

the sum of the above individual losses, as follows: 300

Lfinal = L′
Cosine + L′

KL + L′
MSE + αLMLM. 301

Here, α is the positive weight parameter for the 302

loss in the MLM task and is used to control the 303

intensity of learning new tokens. 304

4 Experiment Details and Results 305

In this section, we conduct our experiments in the 306

biomedical domain. 307

4.1 Datasets 308

We collected a PubMed abstract corpus for distil- 309

lation, and used BLURB2 (see Appendix A) for 310

performance evaluation. 311

For the biomedical domain, we gathered a small 312

corpus from PubMed (1.3GB) abstracts and com- 313

pared it with PubMedBERT, which used a 21-GB 314

corpus for pre-training. We omitted any abstracts 315

containing fewer than 128 words in order to reduce 316

noise. 317

We evaluate downstream tasks by using 12 tasks 318

of the BLURB benchmark (excluding BIOSSES, 319

a sentence similarity task that employs the [CLS] 320

token, which is not well trained with this method). 321

We adhere to the same evaluation and hyperparam- 322

eter (see Appendix B) as those used by PubMed- 323

BERT following Yasunaga et al. (2022). 324

4.2 Implementation 325

We use the uncased version of BERTBASE
3 (12 lay- 326

ers, 768 dimensions) as the teacher model and the 327

baseline. We perform distillation of BERT to a 328

small student model4 (6 layers, 768 dimensions) 329

with vocabulary expansion. The weights of the stu- 330

dent model’s layers is initialized with those of the 331

2https://microsoft.github.io/BLURB/leaderboard.html
3https://github.com/google-research/bert
4Our models, evaluation data and training code are avail-

able at: https://github.com/pZvfkv3t8PA9vAc/VE-KD
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BERT-base BERT-base_DA5
DistilBERT

PubMed Adapt-and-Distill VE-KD
Layers Number 12 12 6 6 6

NER
BC5CDR-chem 89.25 90.96 88.81 89.40 89.83
BC5CDR-disease 81.44 82.90 78.94 82.25 81.65
NCBI-disease 85.67 85.64 84.07 85.01 86.50
BC2GM 80.90 80.91 79.94 79.61 80.03
JNLPBA 77.69 77.20 76.64 76.57 76.34

PICO extraction
ebmnlp 72.34 73.26 71.22 71.03 72.08

Relation extraction
chemprot 71.86 72.64 70.77 68.16 69.28
DDI 80.04 80.64 74.20 76.78 76.69
GAD 80.41 79.40 78.29 79.31 77.82

Document classification
HoC 80.20 81.37 80.76 81.64 83.21

Question answering
Pubmedqa 51.62 56.20 53.40 54.00 55.80
BioASQ 70.36 66.43 67.86 72.86 75.71

Average of all tasks 76.82 77.30 75.41 76.38 77.08
Macro-average 74.79 75.41 73.74 74.68 75.70

Table 1: Comparison with distillation models trained by the PubMed corpus. DistilBERTPubMed: using the same
method with DistilBERT, Adapt-and-Distill: using the same method with Yao et al. (2021), VE-KD: using our
method. Bold indicates the best performance of 6-layer models.

teacher model’s layers 0, 2, 4, 7, 9, and 11. Addi-332

tionally, we perform distillation of BERT by follow-333

ing the normal method which uses the same corpus334

and hyperparameters as a DistilBERTPubMed (Sanh335

et al., 2019) and a Adapt-and-Distill model (Yao336

et al., 2021) (Appendix C). The mid product of337

Adapt-and-Distill method, BERT-base_DA5 ob-338

tained by domain adaptation from BERT-base is339

also the baseline.340

Additionally, we chose some small (6 layers)341

BERT or distilled BERT models for general pur-342

poses, including BERTL6H768
3(6 layers, 768 dimen-343

sions), TinyBERT, MiniLMv2 and DistilBERTwiki.344

For comparison with domain adaptation ability,345

we additionally trained these models using the346

PubMed corpus with an MLM task.347

We also performed distillation experiments348

across different dimensions, such as from BERT-349

large to a smaller student model (6 layers, 384350

dimensions) as shown in Appendix D.351

We made additional attempts, applying the VE-352

KD method to generative language models, such as353

GPT2 (Radford et al., 2019) and T5 (Raffel et al.,354

2020). Unfortunately, the results did not meet ex-355

pectations, showing some performance drop com-356

pared to traditional distillation methods. Detailed357

data will be provided in the Appendix E.358

5“DA” indicates that the model is under domain adaptation.

4.3 Comparison with BERT, DistilBERT and 359

Adapt-and-Distill 360

The results for the performance comparison of 361

the distillation model using the same PubMed 362

corpus are shown in Table 1. VE-KD outper- 363

formed teacher model BERT on 6 tasks, and 364

showed an improved performance of 0.3% on aver- 365

age and 0.9% on Macro-average. VE-KD outper- 366

formed DistilBERTPubMed on 10 tasks, showed an 367

increased absolute performance of 1.6% on aver- 368

age and 2.0% on Macro-average. VE-KD outper- 369

formed Adapt-and-Distill on 8 tasks, showed an 370

increased absolute performance of 0.7% on aver- 371

age and 1.0% on Macro-average. VE-KD obtained 372

the highest Macro-average score including BERT- 373

base_DA5 (+0.3%). 374

Moreover, we observed significantly larger im- 375

provements on document-level tasks compared 376

with BERT-base, document classification (+3% 377

on HoC) and question answering (+4% on Pub- 378

MedQA, +5% on BioASQ), as well as significant 379

improvements in document classification (+2% 380

on HoC) and question answering (+6% on Pub- 381

MedQA, +13% on BioASQ) compared with Distil- 382

BERT, document classification (+2% on HoC) and 383

question answering (+2% on PubMedQA, +3% on 384

BioASQ) compared with Adapt-and-Distill. Doc- 385

ument classification and question answering are 386

tasks that require a deep understanding of sen- 387
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BERTL6H768 TinyBERT MiniLMv2
DistilBERT

wiki
DistilBERT

PubMed VE-KD
Domain Adaptation o w o w o w o w o w

NER
BC5CDR-chem 88.64 90.51 87.98 90.34 88.93 90.13 88.81 90.34 88.97 89.83 89.83
BC5CDR-disease 80.27 81.90 79.20 80.60 80.04 80.24 78.94 80.60 80.84 80.74 81.65
NCBI-disease 85.53 85.54 84.16 84.77 83.81 84.37 84.07 84.77 86.05 84.52 86.50
BC2GM 79.64 80.22 79.56 80.17 80.09 80.18 79.94 80.17 79.96 79.83 80.03
JNLPBA 76.53 77.27 76.83 76.75 75.92 76.65 76.64 76.75 76.86 76.60 76.34

PICO extraction
EBM PICO 71.09 72.21 70.41 72.31 71.29 72.53 71.22 72.31 71.56 72.16 72.08

Relation extraction
ChemProt 69.74 69.97 69.87 70.09 69.50 70.64 70.77 70.09 69.68 71.11 69.28
DDI 75.91 77.57 75.01 75.95 74.91 76.92 74.20 75.95 75.96 75.48 76.69
GAD 78.79 79.60 76.87 78.98 79.05 79.74 78.29 78.98 76.66 79.53 77.82

Doc classification
HoC 81.73 82.66 73.98 81.21 77.72 81.41 80.76 81.21 81.41 82.20 83.21

Question answering
PubMedQA 50.40 51.80 54.00 51.80 52.60 54.60 53.40 51.80 50.00 53.80 55.80
BioASQ 75.71 80.00 80.00 67.86 67.14 76.43 67.86 67.86 62.86 72.14 75.71

Average of all tasks 76.16 77.44 75.66 75.90 75.08 76.99 75.41 75.90 75.07 75.98 77.08
Macro-average 74.56 75.91 73.37 74.18 73.03 75.51 73.74 74.18 73.26 75.04 75.70

Table 2: Comparison of small models, where w indicates domain adaptation and o indicates no domain adaptation.
Bold indicates the best performance, and underline indicates the second best.

tences. We propose that our method excels in tasks388

that focus on understanding the meaning of sen-389

tences, rather than tasks that involve token-level390

information extraction.391

BERT-base_DA5 which is the mid product of392

Adapt-and-Distill potentially suffered from over-393

fitting due to small corpora. Compare with394

BERTL6H768_DA5 in Table 2, we observed that395

the larger model yields worse performance. This396

could be attributed to the fact that larger models397

require larger corpora to avoid overfitting. Conse-398

quently, when dealing with smaller corpora, the per-399

formance of larger models may be compromised.400

In contrast, VE-KD, offers improved stability be-401

cause it does not require multiple phases like Adapt-402

and-Distill. This stability enables VE-KD to bet-403

ter address the challenges of overfitting in domain404

adaptation scenarios.405

VE-KD did not perform as well in the relation-406

extraction task as the other 6-layer models did,407

experiencing an average performance decrease of408

3% compared with BERT-base. This might be at-409

tributable to the divergence between the datasets410

used in tasks such as DDI and GAD (which411

were not built from the PubMed corpus), and the412

PubMed corpus we used to train VE-KD. There-413

fore, we postulate that the performance of VE-KD414

is significantly influenced by the gap between the415

training corpus and the downstream task.416

4.4 Comparison with Models Having the 417

Same Layer Size 418

Table 2 shows the results of performance compari- 419

son versus the small model having the same layers 420

and hidden-state size as VE-KD. Compared with 421

small models without domain adaptation, VE-KD 422

achieves the highest performance on average. Even 423

after domain adaption, VE-KD is still the second- 424

highest model just behind BERTL6H768. Compared 425

with DistilBERTPubMed_DA5, which uses the same 426

corpus, VE-KD also attains a 1.1% performance in- 427

crease on average and 0.7% on Macro-average, and 428

in particular obtains a 2% increase for PubMedQA 429

and 3.6% in BioASQ tasks. Our results suggest 430

that a vocabulary expansion distillation method us- 431

ing one-time training can achieve or exceed the 432

performance of adaptation followed by distillation. 433

5 Analysis 434

In this section, we analyze the impact of training 435

time and various settings on performance. 436

5.1 Impact of Training Time 437

Pre-training and fine-tuning typically require sub- 438

stantial computational resources. We benchmark 439

our model against BioBERT and PubMedBERT, 440

using the HoC and PubMedQA tasks. To facili- 441

tate a fair comparison, we equate the training time 442

of BioBERT and PubMedBERT to the duration it 443
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would potentially take with the same computational444

resources used in this study (8 A100 GPUs).445

As shown in Table 3 for the HoC and Pub-446

MedQA tasks, VE-KD outperforms BERT in the447

HoC task after 3 h of training and surpasses448

BioBERT and PubMedBERT after 6 and 9 h of449

training, respectively. For the PubMedQA task,450

VE-KD outperforms BERT and PubMedBERT af-451

ter 6 and 9 h of training, respectively. These ob-452

servations highlight the efficiency of our method,453

which can match or surpass the performance of454

models pre-trained from scratch, all while using455

less than 10% of the computational resources and456

corpus.457

The training time for VE-KD is mostly analo-458

gous to the distillation phase time of the Adapt-and-459

Distill method. Compared with fine-tuned Distil-460

BERT and BERT, VE-KD achieves a higher per-461

formance while using only about half the training462

time. In comparison with Adapt-and-Distil, VE-463

KD achieves a higher performance while using only464

about 15% the training time.465

Model Training
Time

Corpus
Words HoC PubMed

QA

VE-KD
3 h 0.2B 81.64 54.00
6 h 0.2B 81.74 55.30
9 h 0.2B 82.64 56.60

DistilBERT 9 h 0.2B 80.76 53.40
DistilBERT_DA5 19 h 0.2B 81.21 53.80
BERT_DA5 25 h 0.2B 81.37 56.20
Adapt-and-Distil 62 h 0.2B 81.64 54.00
BERT 0 h 3.3B 80.20 51.62
BioBERT 240 h 4.5B 81.54 60.24
PubMedBERT 240 h 3.1B 82.32 55.84

Table 3: Results with different model training. Bold
and underline indicate the first best and the second best,
respectively.

5.2 Impact of Vocabulary Size466

To understand the impact of vocabulary size, we467

conduct several experiments using varying vocab-468

ulary sizes in the biomedical domain. We use the469

same experimental conditions with two types of470

models: with or without tolerance setting. Figure 2471

shows the performance of the model for different472

vocabulary sizes.473

We observe that both types of models deliver474

the best results with a vocabulary size of 60,000475

words in our study. Interestingly, models with476

larger vocabularies of 70,000 and 80,000 words477

do not exhibit better performance but instead ex-478

hibit a significant performance loss. A reasonable 479

explanation for these results is that a larger vocabu- 480

lary set might potentially include more complex but 481

less common tokens, which cannot be sufficiently 482

learned through continuous pre-training, especially 483

in a small-scale corpus. 484

Figure 2: Average performance of VE-KD with different
vocabulary sizes.

5.3 Impact of Tolerance 485

To understand the impact of tolerance, we con- 486

ducted several experiments in which the tolerance 487

is adjusted within a 60,000-word vocabulary by 488

utilizing HoC, PubMedQA, and BioASQ and then 489

averaged across all 12 tasks. 490

As shown in Figure 3, there is a noticeable 491

change in performance between the model with- 492

out tolerance setting and each task, and the average 493

over the 12 tasks exhibits a peak performance when 494

the tolerance is set to 0.5. We observe that as the 495

tolerance increases up to 1.0 and 2.0, the perfor- 496

mance continually decreases compared with the 497

model without tolerance setting. This implies that 498

when the tolerance is excessively high, the instruc- 499

tional knowledge from the teacher model may not 500

be effectively assimilated by the student model. 501

Given that the current tolerance setting might be 502

too restrictive for this method, we are considering 503

modifying as a softer approach in the future. 504

Figure 3: HoC, PubMedQA, BioASQ and the average
performance of VE-KD with different tolerances.
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5.4 Smaller Corpus505

To understand the potential of our method on506

smaller corpora, we conducted several experiments507

on VE-KD (with 40,000 and 60,000-word vocabu-508

laries) and DistilBERT trained on various percent-509

ages of the PubMed corpus.510

Figure 4 shows the performance-evaluation re-511

sults for the average score and the PubMedQA512

task. We observe that when VE-KD_40k6 and VE-513

KD_60k6 trained on more than 20% of the corpus,514

the VE-KD_40k had larger fluctuations in average515

score compared with VE-KD_60k at the same time.516

Interestingly, for the PubMedQA task, VE-KD_60k517

performed worse than VE-KD_40k up until reach-518

ing 100% of the dataset. One potential explanation519

for this is that the VE-KD_60k has more param-520

eters, implying that it requires additional training521

to achieve comparable performance. However, a522

model that implements a smaller vocabulary expan-523

sion may offer greater potential when applied to a524

small corpus.525

(a) Average score of 12 tasks

(b) PubMedQA score

Figure 4: Performance on varying percentages of the
PubMed corpus.

5.5 Inference Speed and Model Size526

We compare the parameter size and inference speed527

of VE-KD with the BERT model and DistilBERT,528

and the results are shown in Table 4. Compared529

with BERT-base, the half-layers of DistilBERT and530

6VE-KD_40k and VE-KD_60k denote VE-KD with
40,000 and 60,000-word vocabulary sizes, respectively.

VE-KD are about 0.5 times faster. We find that 531

vocabulary expansion delivers only marginal im- 532

provements on the model’s inference speed, in line 533

with the results of Yao et al. (2021). 534

For the VE-KD_40k and VE-KD_60k yields 535

about 8 million and 22 million parameters, respec- 536

tively, in the tokenization weights. The model light- 537

ening effect is thus smaller. For further model light- 538

ening, it may be necessary to have smaller hidden 539

dimensions, few layers, or lower numbers of atten- 540

tion heads. 541

Model Parameters Speedup

BERT 110 M ×1.00
DistilBERT 67 M ×1.48
VE-KD_40k 75 M ×1.50
VE-KD_60k 90 M ×1.56

Table 4: Comparison of parameter size and inference
speed. The inference speed was tested by the EBM
PICO task and evaluated on a single RTX 6000 GPU.

6 Conclusion 542

In this paper, we proposed VE-KD, a novel method 543

that merges vocabulary expansion and knowledge 544

distillation. We also showed that our method 545

achieves competitive performance on various down- 546

stream tasks. Our experimental results demonstrate 547

that VE-KD is effective; Its performance is com- 548

petitive with well-known models such as BioBERT 549

and PubMedBERT, and its training efficiency is 550

noteworthy. It outperforms DistilBERT and Adapt- 551

and-Distill method, especially in document-level 552

tasks. Furthermore, VE-KD is more robust com- 553

pared to general domain adaptation. VE-KD using 554

distillation mechanism which can avoid overfitting, 555

especially work with small corpora. 556

We thoroughly investigated the effects of vo- 557

cabulary size and tolerance and obtained insights 558

that can help us configure more efficient models. 559

Because of its efficiency across various domain- 560

specific NLP tasks, VE-KD lays the groundwork 561

for further research in task-specific model optimiza- 562

tion and application across diverse domains. 563

One limitation of our study is that we did not 564

evaluate the model’s generalization abilities on out- 565

of-domain tasks. Another limitation is that we have 566

not yet fully explored the applicability of the VE- 567

KD method to other model structures. For instance, 568

we are looking for more efficient and fitting meth- 569

ods of knowledge segmentation and aggregation 570

for generative language models. 571
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A Fine-tuning Dataset782

BLURB benchmark consists of five named-783

entity-recognition tasks (BC5-Chemical, BC5-784

Disease, NCBI-disease, BC2GM and JNLPBA),785

a PICO (population, intervention, comparison,786

and outcome) extraction task (EBM PICO), three787

relation-extraction tasks (ChemProt, DDI and788

GAD), a document-classification task (HoC), and789

two question-answering tasks (PubMedQA and790

BioASQ). We adhere to the same fine-tuning791

method and evaluation metrics as those used by792

PubMedBERT, following Yasunaga et al. (2022).793

We list the statistics of those tasks in Table 5.794

Dataset Train Dev Test

BC5-chem (2016) 5,203 5,347 5,385
BC5-disease (2016) 4,182 4,244 4,424
NCBI-disease (2014) 5,134 787 960
BC2GM (2008) 15,197 3,061 6,325
JNLPBA (2004) 46,750 4,551 8,662
EBM PICO (2018) 339,167 85,321 16,364
ChemProt (2010) 18,035 11,268 5,745
DDI (2013) 25,296 2,496 5,716
GAD (2004) 4,261 535 534
HoC (2016) 1,295 186 371
PubMedQA (2019) 450 50 500
BioASQ (2015) 670 75 140

Table 5: numbers of instances included in the BLURB
biomedical NLP benchmark datasets we used.

B Hyperparameter Details795

For all distillations, including the baseline with the796

same default training seed, we train for 5 epochs797

by using batch size of 240 and a peak learning rate798

of 5× 10−4, which is warmed up in the first 10%799

of steps and then is decayed linearly.800

For all domain adaptation, including the base-801

line with same defaults training seed, we train for802

100,000 steps by using batch size of 80 and a peak803

learn rate of 5× 10−4, which is warmed up in the804

first 10% of steps and then is decayed linearly.805

For BLURB fine-tuning, including the base-806

line with same defaults training seed, we set807

max_seq_length to 512 and choose learning rates808

from 1 × 10−5, 2 × 10−5, 3 × 10−5, 5 × 10−5,809

6× 10−5, batch sizes from 16, 32, 64 and epochs810

from 1 to 120.811

C Experiment Using Adapt-and-Distill 812

Method 813

To comparison with Adapt-and-Distill (Yao et al., 814

2021) method, we conducted a comparative exper- 815

iment using same method. The Adapt-and-Distill 816

method comprises four steps: 817

1. perform domain adaptation for the teacher 818

model T to T ′. 819

2. perform distillation from the teacher model T 820

to the student model S, 821

3. perform domain adaptation for the student 822

model S to S′. 823

4. perform distillation from the teacher model T ′ 824

to S′′, using the intermediate student model 825

S′ as initialization. 826

D Distillation with Different Dimensions 827

When the output dimensions of the teacher model 828

and the student model differ, we add a learnable 829

transformation Wh ∈ Rd′×d to convert hidden- 830

state vectors to the same dimensions as 831

H ′
s = H ′

sWh. 832

But initialization from teacher to student is not 833

available because of different dimensions. We ran- 834

domly initial student model. 835

D.1 Distillation from BERT-large 836

To investigate the effect of this method on larger 837

models, we also conducted a comparative experi- 838

ment on BERT-large. 839

BERT-large has 24 layers of 1,024 hidden dimen- 840

sions. We distilled it to 6 layers of 768 and 384 841

dimensions, respectively. using VE-KD method 842

and DistilBERT method. 843

The results for the performance comparison us- 844

ing the same PubMed corpus are shown in Ta- 845

ble 6, which shows that VE-KD768 outperforms 846

teacher model BERT-large only on 2 tasks. VE- 847

KD768 outperforms DistilBERT on 8 tasks, achiev- 848

ing an increased absolute performance of 1.5% on 849

average. VE-KD768 obtained the highest Macro- 850

average score. VE-KD384 exhibited a considerable 851

drop in performance, possibly due to the simplicity 852

of the transformation method that was used. 853

Compared with the performance of BERT-base, 854

BERT-large is harder to distill, implying that it 855

requires a larger corpus to achieve comparable per- 856

formance. 857
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BERT-large DistilBERT VE-KD VE-KD

Hidden dimension 1024 768 768 384

NER
BC5CDR-chem 90.45 88.43 88.75 87.18
BC5CDR-disease 82.17 79.27 79.10 78.09
NCBI-disease 85.57 84.09 82.64 82.37
BC2GM 81.23 77.75 77.64 76.27
JNLPBA 77.89 75.26 75.27 72.96

PICO extraction
ebmnlp 72.23 70.51 70.98 70.10

Relation extraction
chemprot 72.52 65.73 68.28 64.08
DDI 82.35 70.28 72.96 67.97
GAD 75.00 79.09 78.99 76.68

Document classification
HoC 78.37 80.54 80.62 77.14

Question answering
Pubmedqa 50.80 53.60 52.80 50.00
BioASQ 67.14 65.71 80.00 62.86

Average of all tasks 76.31 74.19 75.67 72.14
Macro-average 73.93 72.67 74.42 70.52

Table 6: Comparison of models distilled from BERT-large. Bold indicates the best performance, and underline
indicate the second best.

D.2 Distillation to Smaller Hidden858

Dimensions859

We investigated the effect of this method on smaller860

models, and conducted a comparative experiment861

to 6 layers of 384 hidden dimensions from BERT-862

base, using VE-KD method, DistilBERT method,863

and Adapt-and-Distill method.864

Table 7 shows the results for the performance865

comparison using the same PubMed corpus. Com-866

pared with BERT-base with 768 dimensions, the867

model with 384 dimensions presents a significant868

challenge to surpass. Both our 1-step VE-KD869

method and the 4-step Adapt-and-Distill method870

outperforms DistilBERT.871

The Adapt-and-Distill method outperforms VE-872

KD by about 1% on average, and by 0.5% on873

Macro-average. This difference in performance874

could potentially be attributed to the initialization875

of the student model. Further investigation into the876

initialization process may help shed light on this877

performance difference between the two methods.878

By incorporating an additional domain adapta-879

tion to VE-KD using same hyperparameter with880

third step of Adapt-and-Distill method, we ob-881

tain VE-KD_DA5 (2-step), which achieved perfor-882

mance comparable to the Adapt-and-Distill model883

with less training time and fewer computational884

resources. It suggesting that VE-KD may be under-885

fitting across different dimensions. Further explo-886

ration and analysis could provide insights into the887

underlying factors contributing to this underfitting 888

in VE-KD. 889

E Distillation on Models with Having 890

Different Architecture 891

To investigate the effect of this method on models 892

having different architecture, we also conducted 893

comparative experiments involving GPT27 and T5- 894

small8. We used the same tasks as in the pre- 895

training phase: 896

• GPT2: predict-the-next-word task 897

• T5: fill-in-the-blank task 898

E.1 Separate Token Masking 899

As we did for BERT, we separated the knowledge 900

by using separate token masking. The absence of 901

the [MASK] token in the vocabulary of GPT2 and 902

T5 necessitates replacing it with other tokens. 903

• GPT2: using the [UNK] token as the [MASK] 904

token: 905

xinput = [[UNK], x2, [UNK], ..., xn] 906
907

xlabel = [x1, x2, x3..., xn] 908

• T5: using sentinel tokens [extra_id_0] ~[ex- 909

tra_id_99] as the [MASK] token: 910

7https://huggingface.co/openai-community/gpt2
8https://huggingface.co/google-t5/t5-small
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BERT-base DistilBERT VE-KD VE-KD_DA5 Adapt-and-Distill

Hidden dimension 768 384 384 384 384

NER
BC5CDR-chem 89.25 86.95 87.39 88.05 89.00
BC5CDR-disease 81.44 77.42 78.53 79.36 80.49
NCBI-disease 85.67 82.75 83.19 82.09 83.58
BC2GM 80.90 76.47 77.12 77.28 77.93
JNLPBA 77.69 73.88 72.92 74.16 75.16

PICO extraction
ebmnlp 72.34 69.02 69.72 70.62 70.75

Relation extraction
chemprot 71.86 62.04 64.03 65.29 66.67
DDI 80.04 67.80 67.10 68.95 68.24
GAD 80.41 76.60 76.14 78.99 77.60

Document classification
HoC 80.20 75.90 79.40 78.69 78.56

Question answering
Pubmedqa 51.62 50.40 53.60 52.60 49.00
BioASQ 70.36 66.43 67.86 67.86 70.71

Average of all tasks 76.82 72.14 73.08 73.66 73.97
Macro-average 74.79 70.33 71.75 72.16 72.25

Table 7: Comparison of models with smaller hidden dimensions. Bold indicates the best performance, and underline
indicate the second best.

xinput = [[extra_id_0], x2, [extra_id_1], ..., xn].911
912

xlabel_s = [[extra_id_0], x1, [extra_id_1], x3].913
914

xlabel_t = [[extra_id_0], x1[0], x1[1],

[extra_id_1], x3].
915

Because of the differences between the tokeniz-916

ers used by the teacher and the student, the length917

of the labels varies between them. For instance, a918

domain-specific token such as x1, which is recog-919

nized by the teacher’s tokenizer, may be divided920

into multiple tokens, such as x1[0], x1[1].921

Masked tokens for GPT2 and T5 constructed922

with the 50% to 50% proportion from the general923

and domain-specific terms.924

E.2 Experimental Setting925

For domain-specific terms (domain knowledge), we926

used pre-training tasks to extract knowledge from927

the corpus. For general terms (and general knowl-928

edge), we used the same similarity loss function929

with Distil-BERT. As with VE-KD for BERT, simi-930

larity calculations were made only within the scope931

of general terms (without the new token position932

for GPT2, and without the new token or sentinel933

token for T5).934

E.3 Result and Analysis935

Regrettably, the defined usage of the VE-KD936

method for the generation of language models did937

not enhance the performance of our student models, 938

as Table 8 and Table 9 show. 939

Compared with GPT2, GPT2Distillation achieved 940

nearly identical performance. However, 941

GPT2VE-KD experienced a 4% degradation 942

in performance, suggesting that the [UNK] token 943

may not be adequately trained to handle masked 944

token problems. Hence, a more optimal model 945

design or the use of distinct alternate tokens is 946

needed. This would allow GPT-2 to improve 947

its learning capacity, both from the teacher’s 948

knowledge and corpus, concurrently. 949

Similarly, compared with T5, T5Distillation 950

achieved nearly the same performance levels. Nev- 951

ertheless, T5VE-KD saw only a minor reduction in 952

performance of about 1%. This result indicates that 953

T5’s fill-in-the-blank task might be more suitable 954

for VE-KD’s concept than for GPT2’s predict-the- 955

next-word task. A potential explanation for this 956

decrease in performance is the dissimilarity in la- 957

bel length, which leads to different position em- 958

beddings, thereby causing confusion for the model. 959

However, to surpass the performance of the teacher 960

model, more in-depth exploration may be neces- 961

sary. 962
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GPT2 GPT2 GPT2
distillation VE-KD

NER
BC5CDR-chem 75.69 75.05 68.55
BC5CDR-disease 64.34 65.59 60.24
NCBI-disease 67.94 67.44 61.00
BC2GM 57.68 56.62 53.67
JNLPBA 59.60 61.01 57.84

PICO extraction
ebmnlp 66.87 67.24 64.28

Relation extraction
chemprot 68.71 66.31 63.03
DDI 68.55 68.07 62.47
GAD 80.13 75.59 74.52

Document classification
HoC 80.48 81.03 76.76

Question answering
pubmedqa 53.80 53.00 50.60
BioASQ 64.29 68.57 70.00

Average of all tasks 67.34 67.13 63.58
Macro-average 68.78 68.84 65.66

Table 8: Comparison of GPT2 models using different
methods. Bold indicates the best performance.

T5 T5 T5
distillation VE-KD

NER
BC5CDR-chem 84.68 83.22 81.03
BC5CDR-disease 67.21 71.45 67.83
NCBI-disease 81.16 77.69 77.25
BC2GM 75.48 71.20 70.29
JNLPBA 62.34 66.67 63.98

PICO extraction
ebmnlp 59.86 62.16 59.08

Relation extraction
chemprot 57.47 54.84 54.43
DDI 58.46 58.60 55.51
GAD 77.54 76.42 78.49

Document classification
HoC 75.48 75.58 74.66

Question answering
pubmedqa 55.20 56.40 56.20
BioASQ 67.14 70.71 77.14

Average of all tasks 68.50 68.74 67.99
Macro-average 67.04 67.73 67.06

Table 9: Comparison of T5 models using different meth-
ods Bold indicates the best performance.
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