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ABSTRACT

Bioacoustics, the study of sounds produced by living organisms, plays a vital role
in conservation, biodiversity monitoring, and behavioral studies. Many tasks in
this field, such as species, individual, and behavior classification and detection,
are well-suited to machine learning. However, they often suffer from limited
annotated data, highlighting the need for a general-purpose bioacoustic encoder
capable of extracting useful representations for diverse downstream tasks. Such
encoders have been proposed before, but are often limited in scope due to a focus
on a narrow range of species (typically birds), and a reliance on a single model
architecture or training paradigm. Moreover, they are usually evaluated on a small
set of tasks and datasets. In this work, we present a large-scale empirical study
that covers aspects of bioacoustics that are relevant to research but have previ-
ously been scarcely considered: training data diversity and scale, model archi-
tectures and training recipes, and the breadth of evaluation tasks and datasets.
We obtain encoders that are state-of-the-art on the existing and newly proposed
benchmarks. We also identify what matters for training these encoders, such that
this work can be extended when more data are available or better architectures
are proposed. Specifically, across 26 datasets with tasks including species clas-
sification, detection, individual ID, and vocal repertoire discovery, we find that
self-supervised pre-training followed by supervised post-training on a mixed bioa-
coustics + general-audio corpus yields the strongest in- and out-of-distribution
performance. We show the importance of data diversity in both stages. To support
ongoing research and application, we will release the model checkpoints.
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2013)), for biodiversity monitoring and conservation efforts (Rutz et al., 2023} [Stevens et al., |2024),
and for modeling the mechanisms underlying animal communication (Bradbury & Vehrencamp)
1998). A variety of common tasks in bioacoustics are used to support these efforts: sound event
detection or classification of species, individuals, call-types, and behaviors. All of these tasks
are well-suited for a machine learning approach. Machine learning and deep learning are now
commonly used for bioacoustics (Stowell, 2022), and have enabled discoveries such as the use of
specialized vocalizations for labeling conspecifics in marmosets (Oren et al.| 2024) or elephants
(Pardo et al.,[2024). However, due to unavoidable challenges in data collection and annotation, these
studies generally rely on small datasets strongly labeled on a few species and individuals (Stowell,
2022). The resulting bioacoustic machine learning models are then usually designed for specific
tasks and species (Dufourq et al.,[2021}; (Cauzinille et al.,[2024), limiting their generalizability.

However, large amounts of unannotated or weakly labeled bioacoustic data are recorded regularly,
especially through Passive Acoustic Monitoring (PAM) (Gibb et al.|[2019), and citizen science plat-
forms such as Xeno-Canto (Vellinga & Planqué} 2015) or iNaturalist (Chasmai et al.| 2024). These
data can be leveraged to train a bioacoustic encoder, which can then be deployed in downstream
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tasks, as bioacoustic features (e.g. for linear probing or clustering) or finetuning the whole model,
among other options. Two such classic and state-of-the-art bioacoustic encoders are BirdNet (Kahl
et al.l |2021) and Perch (Ghani et al., |2023) which have been applied to downstream application
tasks such as multi-taxa species retrieval and detection (Pérez-Granados, 2023 [Dumoulin et al.,
2025; |Ghan et al., [2023)).

Other bioacoustic encoders have been proposed, to be reviewed in the next section. They have in
common a supervised learning approach, usually limited to a single taxonomic group, with notable
exceptions including SurfPerch (Williams et al., |2024) and recently the models of iNatSounds
(Chasmai et al.} |2025)). Moreover, they evaluate the quality of the learned representations on a lim-
ited set of downstream tasks and datasets. Typically they solely evaluate on species classification,
with their training and test data containing the same species, often with an out-of-distribution effect,
as training datasets typically consists of focal recordings, while evaluation datasets are soundscape
recordings (Rauch et al.| 2025b). In contrast, real-world bioacoustic applications require encoders
that generalize effectively across diverse species and tasks, often beyond those explicitly seen
during training. For example, researchers may need to recognize previously unobserved species,
identify individual animals from limited vocal data, or characterize animal vocal repertoires without
extensive annotations. Evaluating models on such diverse and realistic scenarios is critical, yet
building and measuring the performance of encoders that generalize across these conditions remains
underexplored in current works.

Our main contribution is an empirical study assessing what components matter most for training a
generalizable bioacoustic encoder. We systematically investigate (1) model architectures, (2) data-
mixes, and (3) training paradigms under a (4) broadened evaluation methodology. (1) Specifically, in
terms of models we compare CNN-based (LeCun et al.,{1989) and transformer-based (Vaswani et al.}
2017) architectures alongside their associated learning approaches: supervised and self-supervised.
(2) On the data mix aspect, we train and evaluate across a broader and more taxonomically di-
verse bioacoustic dataset than previous work, examining the impact of incorporating general audio
data such as AudioSet (Gemmeke et al., |2017). (3) Additionally, we explore sequential training
paradigms (“training recipes”), pre-training and post-training, including self-supervised and super-
vised learning, and assess the influence of non-bioacoustic audio data at different training stages.
(4) By evaluating these models across established benchmarks BEANS (Hagiwara et al.,2023)), and
BirdSet (Rauch et al.| [2025b) alongside newly curated datasets assessing generalization to chal-
lenging real-world tasks, we provide a clearer picture of the conditions that enhance bioacoustic
representation learning. We find that under comparable training conditions, self-supervised mod-
els achieve strong out-of-distribution generalization yet under-perform supervised models on in-
distribution tasks, and that incorporating general audio into bioacoustic training significantly im-
proves model transferability. Sequential self-supervised and supervised learning yields strong per-
formance both in and out-of-distribution. Leveraging these insights, we propose a set of training
recipes and models that achieve state-of-the-art results overall on our extensive evaluation bench-
mark, offering a versatile encoder for bioacoustic research.

2 RELATED WORK

An extensive number of works propose audio and speech encoders, most of them transformer-based,
such as Wav2vec (Baevski et al.| [2020), HuBERT (Hsu et al., [2021), AudioMAE (Huang et al.
2022), BEATsS (Chen et al.,[2023)) or EAT (Chen et al.|[2024). Several bioacoustic-specific encoders
have also been developed: BirdNet (Kahl et al., 2021) and Perch (Ghani et al.,|2023)) build upon an
EfficientNet (EffNet) architecture (Tan & Lel[2021), a CNN-based vision neural network pre-trained
on ImageNet (Russakovsky et al., |2015) taking audio spectrograms as input. Transformer-based
bioacoustic models include AVES (Hagiwara, |2023) based on HuBERT, Animal2Vec (Schifer-
Zimmermann et al., [2024) based on data2vec (Baevski et al., 2023)), BirdMAE (Rauch et al., 2025a)
based on AudioMAE with modified decoder architecture, and TweetyBert (Vengrovski et al., 2025))
inspired by BERT (Devlin et al.,|2019). However, within bioacoustics these approaches lack system-
atic comparison across different architectures with standardized pipelines. In contrast, we compare
with a wide range of encoder baselines and aim to have a fair comparison across different architec-
tures, with minimal changes and near-identical pipelines.
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Audio encoders are key in training text-informed models for bioacoustics. BioLingual (Robinson
et al., 2024) learns a common representation for text and bioacoustics, inspired by CLAP-LAION
(Wu et al.l 2023). It allows to perform tasks like zero-shot species classification or text-to-audio
retrieval, while a bioacoustic encoder requires further learning (like linear probing). NatureLM-
audio (Robinson et al.,[2025])) is a large audio-language model for bioacoustics, adding audio as input
to a Llama 3 model (Grattafiori et al., 2024) through a BEATs audio encoder and a Q-former (L1
et al.,|2023)). In this work, we focus on bioacoustic encoders, and this line of work is complementary
to text-informed or large language models, in the sense these models could benefit from a better
encoder. It can also be considered as a “post-training” stage for any bioacoustic encoder, that can
then be extracted to be used in downstream bioacoustic tasks, for example doing linear probing.
As a baseline, we consider extracting the BEATs encoder of NatureLM-audio, which was unfrozen
during training on large-scale bioacoustic data.

In terms of data composition, existing bioacoustic encoders typically use limited data sources: Bird-
Net and Perch are post-trained on bird data mostly from Xeno-Canto, while |Williams et al.| (2024
extended Perch to Surfperch by adding coral reef bioacoustic data. Animal2Vec focuses specifically
on meerkats data, and TweetyBert on canary song. General audio encoders are evaluated in extensive
audio (Turian et al., 2022) and speech benchmarks (Yang et al., 2021) but contain little bioacoustic
data in their training mix. While these general-purpose encoders can be used for bioacoustic tasks,
Sarkar & Doss|(2025) found that pre-training on bioacoustic data provides only marginal improve-
ments, though other studies reach different conclusions (Ghani et al., 2023; Rauch et al.| 2025a).
Our work differs by considering larger and more taxonomically diverse bioacoustic training data,
examining the impact of adding general audio data alongside bioacoustic data, and evaluating the
impact of data mix under fair settings rather than only evaluating pre-existing models.

Regarding the training paradigm, current bioacoustic modeling approaches use either self-supervised
learning (AVES, Animal2Vec, BirdMAE, TweetyBert) or supervised learning (BirdNet, Perch, Surf-
perch) exclusively. However, no existing work systematically explores the combination of both
paradigms or examines the impact of including bioacoustic data at different training stages. We
address this gap by considering the combination of both self-supervised and supervised learning. To
that extent, our pre- and post-training formalization may be seen as a form of curriculum learning
(Bengio et al., 2009) with two stages, similar to the iterative training of BEATs and commonly used
in training LLMs (Robinson et al., 2025).

Bioacoustic encoders have been evaluated primarily in the context of species classification and
detection (Rauch et al.l [2025b; [Hamer et al., 2023 |Ghani et al.| [2023; |Chasmai et al.| [2025}; [Kather
et al.| [2025) while other important tasks such as vocal repertoire discovery(Anikin et al., 2018) or
individual identification(Stowell et al., 2019) have been scarcely addressed. These tasks, which
are critical to the study of animal communication yet lack large-scale annotated data, are a natural
test-bed for generalization of learned representations. Research on these two topics has so far used
a limited number of private datasets or has not compared with state-of-the-art bioacoustic encoders
(Best et al.,[2023;|Nolasco et al., 2025} |Stowell et al.,|2019;|Wierucka et al.| [2025)). To give a broader
overview of the capabilities of a bioacoustic encoder, we address these limitations by adding 8 public
datasets, not considered in any previous benchmark. Further, related work from Kather et al.|(2025)
and from Best et al.| (2023)) has gained insight into bioacoustic encoders by analyzing their embed-
dings with clustering metrics, including a qualitative finding that self-supervised encoders better
generalized from birds to frogs. We introduce a similar evaluation methodology, enhancing BEANS
(Hagiwara et al.,|2023)) and BirdSet (Rauch et al.,[2025b) with clustering and retrieval metrics, scal-
ing a related analysis from two datasets to twenty-six. For a comparison with current bioacoustics
benchmarks, we present Table[5] Appx [Al which includes training and evaluation configurations.

3 METHODS

This section provides the details of our empirical study which we summarize in Figure [T}

3.1 TRAINING DATA

State-of-the art bioacoustic encoders are either trained in a self-supervised manner on large datasets
comprising general audio (Hagiwara, |2023)) and birds (Rauch et al.| [2025a)), or in a supervised man-
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ner to predict the species in focal recordings of birds (Rauch et al.| 2025b; Hamer et al.| 2023
Van Merriénboer et al., 2024; Rauch et al.| [2025a; |Ghani et al.l [2023). We extend these paradigms
by comparing the self-supervised and supervised learning on both types of data, general audio and
bioacoustic data, both comprising labels. The data are used for two approaches, self-supervised
learning (in which case the labels are ignored) and supervised learning. The general audio dataset is
AudioSet (Gemmeke et al.| 2017)) comprising labels for sound event detection within the AudioSet
ontology. With respect to bioacoustics data, we compile a large dataset from multiple sources, in-
cluding Xeno-canto (Vellinga & Planquél [2015)), the largest source of bird signals, iNaturalist (Chas-
mai et al., |2024), Animal Sound Archive (Museum fiir Naturkunde Berlin)), which includes diverse
taxa, and the Watkins Marine Mammal database “all cuts” (Sayigh et al.| [2016) offering the most
diverse collection of marine mammal signals. Outside of our core training mix, we consider addi-
tional bioacoustic soundscape datasets to study their effect on the learned representations, in par-
ticular WABAD (Pérez-Granados et al., [2025) and Sapsucker Woods (Kahl et al.l [2022a). To join
diverse bioacoustic datasets, we curate species’ scientific names and link all species to a common
taxonomic backbone (GBIF) (Telenius, 2011). We summarize the training data in Tablem

We train models with noise augmentation (see Section [3.3) using non-animal environmental sounds
from the following datasets: ShipsEar (Santos-Dominguez et al.,[2016), Deepship (Irfan et al.,[2021])
and Orcalab (Poupard et al.|[2020), FSD50K (Fonseca et al.|2021)), Urbansound (Salamon & Jacoby,
2014), TUT2016 (Mesaros et al., [2016b)), IDMT (AbeBer et al., [2021), Demand (Thiemann et al.}
2013)), and Wham (Wichern et al., 2019).

Table 1: Datasets used in pre-training and post-training. “ denotes datasets used solely in ablations.

Dataset # Hours  Description
AudioSet (Gemmeke et al.,[2017) 5700  general audio
Xeno-canto (Vellinga & Planqué, 2015) 10416  birds
iNaturalist (Chasmai et al.l[2024) 1539  diverse taxa
Watkins (Sayigh et al.f[2016) 27  marine mammals
Animal Sound Archive (Museum fiir Naturkunde Berlin) 78  diverse taxa
Sapsucker Woods® (Kahl et al.,[2022a) 285  Dbirds

WABAD? (Pérez-Granados et al.}[2025) 84  birds

3.2 PRE-EXISTING ENCODERS

We consider various pre-existing encoders, as baselines and for further benchmarking and analysis.
First, we consider general audio encoders, more specifically BEATs (Chen et al., 2023) and EAT
(Chen et al.,2024), BEATS because it is a state-of-the-art encoder, and EAT because we will modify
its self-supervised training recipe; |(Chen et al.| (2023)) do not provide the training code, only trained
checkpoints, and EAT is a good and (fully) open-sourced model.

We also include bioacoustic encoders as baselines, namely BirdNet (Kahl et al., [2021) and Perch
(Ghani et al .} |2023) as state-of-the-art baselines. In addition, we evaluate SurfPerch (Williams et al.}
2024])) because it uses more diverse taxa in training. We also consider AVES (Hagiwara, [2023)) as a
representative self-supervised model for bioacoustics.

For the last baseline, we extract the BEAT's encoder from NatureLM-audio (Robinson et al., [2025)),
that we call NatureBEATS, as a representative of an unorthodox post-trained encoder. Comparing
it to BEATSs can provide clues about the influence of text-audio training and of post-training with
bioacoustic data, in addition to the experiments to be described now.

3.3 PROPOSED MODELS AND TRAINING RECIPES

We provide a summary of the models we train according to data used in pre- and post-training in
Table[2] As explained before, both BirdNet and Perch build upon an EffNet pre-trained on ImageNet
and post-trained on (mostly) Xeno-Canto, using a multi-label supervised learning loss. To mimic
this approach, we also consider an EffNet architecture, with a checkpoint pre-trained on ImageNet,
which we post-train with supervised learning and a binary cross-entropy loss. To assess the utility of
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using bioacoustic data, possibly complemented by general audio data, we consider post-training this
model on bioacoustic data only, on AudioSet only, or on both. The version post-trained solely on
bioacoustic data is reminiscent of BirdNet or Perch, even if it is not an apple-to-apple comparison
(each model uses a different bioacoustic dataset, normalization method, sampling rate, spectrogram
parameters, and augmentation details). We take advantage of the efficiency of the architecture to test
various data-mixes, including the addition of soundscape data, and the ablation of large taxonomic
subgroups such as birds, whales, or all non-birds. The results for this ablation are presented in
Figures @ and[5]in the Appendix.

Our approach does not rely specifically on the EffNet architecture. Therefore, we propose to do
the post-training of another, transformer-based, audio encoder. We chose BEATS, as it is a state-
of-the-art encoder, pre-trained on speech and general audio data with a self-supervised approach.
We post-train it in a supervised manner on our bioacoustic data only, or on both bioacoustic data
and AudioSet. We exclude post-training BEATs on AudioSet only as this corresponds to the public
checkpoint BEATs (SFT).

We can also envision modifying the self-supervised pre-training phase. Unfortunately, the training
code for BEATS is not available and is not straightforward to reproduce. Therefore, we turn to the
EAT model (Chen et al., [2024), which also provides good results, is fully open-source, and has the
advantage of being fast to train. We consider pre-training EAT without modifying its self-supervised
learning approach (which is a mix of teacher distillation and reconstruction of masked patches of
the spectrogram), on our bioacoustic data only, on AudioSet only, and on both. Then, we consider
not post-training this model (to assess if post-training is useful, especially given that it is the same
dataset, up to ignoring or not the labels), and also post-training it as before (bioacoustic data only,
or bioacoustic data plus AudioSet). Similar to BEATSs, we do not post-train EAT on AudioSet only
as this matches an existing checkpoint, “EAT (SFT)”. We use the “EAT-all” SSL checkpoint as the
basis for post-training.

For a fair comparison with pre-existing models we train and evaluate all our models at 16kHz, whilst
we acknowledge that some species contain important auditory information above 8kHz and we plan
to extend this study in future work. We evaluate Perch and BirdNet at their proposed sample rates
32kHz and 48 kHz, and to their advantage, they observe a broader frequency spectrogram than our
base EffNet.

To increase generalization and robustness to noise of the learned representation we found it impor-
tant to use two augmentations. Namely, during pre-training and post-training we add noise randomly
with a probability of 0.5 at a random signal-to-noise ratio (SNR) sampled from a uniform distribu-
tion between —10dB and 20dB using the datasets introduced in Section [3.1] During post-training,
with probability 0.5 we linearly mix random pairs of audio clips within a batch and set the target to
the union of their labels (element-wise OR).

Table 2: Pre- and post-training datasets with resulting model checkpoints. T Indicates checkpoints
released by prior work. “AS”=AudioSet. All post-trained EAT models use the EAT-all checkpoint
as the base.

Arch. Pre-train data Pre-trained checkpoint  Post-train data Resulting checkpoint(s)

EffNetBO ImageNetJr - Bio/ All/ AS  EffNetBO-bio, EffNetB0-all, EffNetB0O-AS
BEATs  ASt BEATS (pre)T Bio/All/AS  sI-BEATs-bio, sI-BEATs-all, BEATs (SFT)
EAT AST EAT-base (pre)’ AS EAT-base (SFT)'

EAT Bio/ All/ AS EAT-bio, EAT-all, EAT-AS Bio/ All sI-EAT-bio, sl-EAT-all

3.4 EVALUATION SETUP: DATA, TASKS, AND METRICS

We consider two tasks commonly addressed in the literature: classification on audio excerpts into
discrete category labels and detection of events in longer audio files. We employ three distinct
evaluation setups to assess model representations comprehensively. Linear probing trains a linear
classifier on train split using time-averaged embeddings from the final layer of the model (excluding
classification heads), and then evaluates this probe on the test split. Retrieval evaluation directly
investigates model embedding spaces by treating each test set item as a query and ranking remaining
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items by cosine similarity. Clustering evaluation performs K-means with known cluster counts on
single-label datasets, evaluating similarity to ground truth classes using normalized mutual informa-
tion (marked as NMI).

Current bioacoustics benchmarks consider either an in-domain multiple taxa setup, such as BEANS
(Hagiwara et al., |2023) and (Robinson et al., [2024)), or out-of-domain bird species detection, such
as BIRB (Hamer et al.| 2023)) and BirdSet (Rauch et al., [2025b)), focusing on generalization. Here
we extend these benchmarks in multiple ways. (1) We expand the tasks to include individual
identification and vocal repertoire discovery, along with the curation of eight additional benchmark
datasets. This extends the evaluation of bioacoustic encoders from a focus on species classification
of birds to a focus on generality across multiple tasks and taxa. (2) Extending the work of Kather
et al.| (2025), we also augment existing benchmarks with clustering and retrieval metrics, allowing
us to examine a model’s embedding spaces directly. Each of these benchmarks, tasks, and metrics
is directly tied to downstream research or conservation applications and allows us to analyze both
pre-existing and new models from a different perspective.

We present the datasets and tasks we consider as part of our evaluation in Table [§] Appendix
We evaluate on the classification and detection tasks in the already existing benchmarks BEANS
(Hagiwara et al.| [2023)) and BirdSet (Rauch et al., [2025b). For BEANS we follow the official
train/validation/test splits in the original benchmark. For BirdSet, we match their “Dedicated Train”
setup, considering separate train and test splits for each of the datasets. Accordingly, we derive the
validation dataset as a stratified split on the species from the train with 0.8, 0.2 ratios and seed 42.
We exclude SSW (Kabhl et al.l [2022b) from BirdSet evaluation as we consider it within some of our
data-mix. We formulate detection similarly to BEANS and BirdSet as segment-based multi-class
classification and we use segment-based sound event detection metrics to evaluate it (Mesaros et al.}
2016a)), allowing for the negative class (no class detected). We leave frame-based (Mesaros et al.,
2016a) or event-based (Mahon et al., [2025) temporally-strong detection for future work. Impor-
tantly, solely for BirdSet which contains an important covariate shift from train (focal recordings) to
test (soundscapes) we use the same noise and mixup augmentations in pre-training and post-training.

For the two new evaluation tasks we compile public datasets and create label-stratified
train/validation/test splits (seed 42, ratios 0.6/0.2/0.2). The Individual Identification task (Stow-
ell et al., 2019; [Fukushima et all 2015) is a supervised single-label classification problem over
individuals of the same species. The Vocal Repertoire Discovery setting (Elie & Theunissen) 2016;
Mumm & Knornschild, [2014; (Cohen et al., |2020; |Palmer et al., 2025) evaluates how well embed-
dings discriminate between the different call types within a species’ vocal repertoire. We treat this
as a structure-recovery problem with known K (the number of annotated call types): no probes are
trained; labels are used only as a reference to assess representation quality via (i) clustering (K-
means with K equal to the number of call types; scored by normalized mutual information, NMI)
and (ii) audio-to-audio retrieval within call type (ROC AUC, R-AUC). This matches repertoire dis-
covery when K is known. Supervised call-type classification is also a useful formulation of the task,
but performance on several datasets was near-ceiling while others were too small for quality splits,
so we exclude linear probing for this task.

To directly evaluate learned representations, we use linear probing on time-averaged embeddings
rather than full fine-tuning as Hagiwara (2023); [Rauch et al.| (2025b). This avoids confounding
effects from model size differences, ensuring fair comparison between CNN and transformer repre-
sentations. While performance may vary across embedding layers, all models show similar trends
(Cauzinille et al., 2024} Sarkar & Doss, [2025). Evaluating all layers would exponentially increase
computational cost, so we extract embeddings from the final layer (excluding classification heads)
and leave comprehensive layer analysis for future work. Considering a frozen representation (rather
than fully finetuning) is also especially important for many downstream applications, as it allows
notably precomputing the embeddings (Dumoulin et al.,2025) ADD REF TO AGILE PAPER

For all tasks other than Vocal Repertoire Discovery we report classic performance metrics on linear
probing (top-1 accuracy for single-label tasks, macro-averaged mean average precision for multi-
label tasks). To evaluate retrieval, we consider each item in the test set as a query. We rank the
remaining elements of the test set according to their cosine similarity with the query under the
model’s embedding function, and evaluate the ordering. For single-label tasks (BEANS Classifica-
tion, Individual ID, and Vocal Repertoire), we consider items as relevant to the query if they share
the same label as the query. For multi-label tasks (BEANS Detection, BirdSet) we consider items to
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Table 3: Comparison of EfficientNet models trained on mixes of AudioSet and large-scale bioacous-
tic data. We report ROC AUC for retrieval as R-AUC, accuracy for probing on BEANs Classification
and Individual ID, mean-average precision for probe on BEANs Detection and BirdSet, and clus-
tering as NMI where applicable. We report the mean of each metric over datasets per benchmark.
TBirdNet results on BirdSet are excluded following Rauch et al.[(2025b) due to data leakage.

BEANS Classification BEANS Detection BirdSet Individual ID Vocal Repertoire

Model Probe R-AUC NMI || Probe R-AUC || Probe R-AUC || Probe R-AUC[|[R-AUC ~ NMI
Perch 0.768 0.759 0.478]/ 0368 0.674 || 0.233 0.656 || 0.530 0.705 || 0.758  0.493
SurfPerch 0.760 0.745 0.484( 0301  0.664 || 0.160 0.694 || 0457 0.656 || 0.751  0.492
BirdNet! 0.796 0.772 0.523(0.392  0.687 N/A N/A [/0472 0.708 || 0.795  0.545
EffNetB0-AudioSet || 0.651 0.721 0.486 ]| 0246  0.670 | 0.098 0.655 || 0.397 0.612 || 0.760  0.481
EffNetB0-bio 0.78 0.799 0.563 |/ 0.365 0.695 || 0.279 0.704 || 0457 0.683 || 0.806  0.568
EffNetB0-all 0.800 0.809 0.584( 0362 0.712 || 0.279 0.707 || 0.531 0.701 || 0.830  0.582

be relevant if they share at least one label with the ground-truth item. We exclude queries with no
labels, while ground-truth items with no labels are included in the evaluation as negatives. We mea-
sure this ranking using ROC AUC as the primary metric (marked as R-AUC with R for retrieval).
For Individual Identification evaluation datasets Pipit and Chiffchaff (Stowell et al.,2019), the train-
ing set follows an intentionally different background noise distribution than the test set following
original design in |Stowell et al.| (2019). To evaluate generalization in this scenario, we report ROC
AUC by using each example in the train set as a query, rather than each example in the test set as a
query. For single-label datasets in all benchmarks, we also consider a clustering task. For each eval-
uation set, we perform K-means clustering given a known number of clusters (labels). We evaluate
similarity of these clusters compared to the known class groups by measuring normalized mutual
information (marked as NMI) between the two. These two additional evaluations offer insight into
the pre-trained embeddings of a model, but are also relevant to downstream tasks in bioacoustics,
namely audio-to-audio retrieval (Hamer et al.,2023) (retrieval) and repertoire discovery (Best et al.,
2023)) (clustering) or call-type classification. For vocal repertoire discovery, we use clustering and
retrieval as the primary evaluations. All metrics are formalized in the Appendix in[C.T]

4 RESULTS

4.1 WHAT DATA MATTERS IN POST-TRAINING EFFICIENTNET

We present results for our EffNet models aggregated across benchmarks in Table [3] We compare
to Perch, SurfPerch, and BirdNet - all EffNet-based and considered state-of-the-art bioacoustic en-
coders. The results highlight the value of our diverse curated bioacoustic datasets, with our best
EffNet model outperforming on eight of ten metrics. We observe a consistent performance gain of
including general audio in the data-mix, transferring across focal classification, multi-label classifi-
cation on soundscapes, vocal repertoire, and individual ID tasks. Consistent with other works (Ghani
et al., |2023), supervised training on general audio alone transfers poorly compared to bioacoustic
data. Interestingly, this holds for the newly benchmarked Vocal Repertoire and Individual ID tasks,
suggesting large-scale species-prediction is an effective approach for transfer to these tasks, which
are often studied independently. We further characterize what supervised data transfers to which
tasks and species through further ablations in the Appendix in Figure

4.2 SELF-SUPERVISED PRE-TRAINING HELPS OUT-OF-DISTRIBUTION

Comparing the results of EAT models trained with self-supervised learning, we find a strong effect
of including general audio in the data-mix, with the model trained with the addition of AudioSet
significantly outperforming the bioacoustics-only model across tasks (Figure Zh). We further com-
pare our supervised and self-supervised models (Figure[2b) alongside existing models, and alongside
post-trained SSL models, discussed in the following section. While supervised models excel in tasks
closely matching their training distribution, self-supervised models demonstrate superior generaliza-
tion capabilities on out-of-distribution tasks. Specifically, we find when generalizing from BEANS



Under review as a conference paper at ICLR 2026

Benefit of mixing general audio

(a) in pretraining 1000 (b) by training paradigm

+10.1%
100 Training Approach

s8.9% BEATS Naggyel M-audio * H > % Newst
ene g BEATS (ggptrained) @ Existing SL
2 072 S+BEATS-bio % NewssL
@ Existing SSL
Post.trained SSL

g EATbage (SFT) g0l 2

$on

@

e H I-EAT-all
7 s

= 5.0% 2 S o
q g
£ o7
g ®
o a g EffNggpO-bio
L3 2 EAT-base ggretrained) BEATG(SFT)
£ < 0,69 { BirggVES
H FR e o

3

s

£ 0.68 & io

£ &

]

“ w"

067 EffNetBgudioset
surgerch
066

BEANS BirdSet Individual Vocal 0650 0675 0700 0725 0750 0775 0800 0825
Detection I

D Repertoire Retrieval BEANS Classification R-AUC

BEANS
Classification

Figure 2: (a) Win-rate of adding AudioSet in self-supervised pre-training vs. pure bioacoustic
data, with average relative gain per metric. (b) Supervised encoders outperform self-supervised on
BEANS classification, which is primarily focal recordings. However, self-supervised encoders suf-
fer markedly smaller performance drops than supervised encoders when moving from focal record-
ings to soundscape (BEANS Detection), showing strong out-of-distribution performance. In con-
trast, self-supervised encoders post-trained with supervised learning on bioacoustic data enjoy the
strongest performance both in and out-of distribution.

classification (typically focal recordings) to BEANS Detection (entirely soundscape recordings) the
self-supervised models drop on average only 0.01 retrieval ROC AUC compared to a drop of 0.09 re-
trieval ROC AUC for the supervised models. The strength of the effect is sufficient that the best pure
self-supervised model, the pre-trained BEATS, outperforms the strongest pure supervised models by
retrieval on BEANS Detection. This finding underscores the strong potential of self-supervised
learning in bioacoustics, where supervised learning is still considered state-of-the-art, yet models
are challenged by huge distribution shifts between training and deployment (Hamer et al., 2023)).

4.3 POST-TRAINING RECIPES FOR SELF-SUPERVISED BACKBONES

We show the results of self-supervised backbones post-trained on our bioacoustic dataset, compared
to state-of-the-art bioacoustic encoders in Table[d] Our best post-trained models outperform overall,
achieving state-of-the-art performance across the established BEANS Classification, BEANS Detec-
tion, and BirdSet benchmarks, outperforming both their self-supervised base models and supervised
baselines. On the newly-proposed Vocal Repertoire Discovery and Individual Identification bench-
marks, the post-trained models maintain competitive performance, but the newly-trained EffNet on
mixed bioacoustic and general audio data performs best, and BirdNet performs strongest by retrieval
on Individual Identification. With respect to the the data-mix, the BEATs model trained on the mix of
general audio and bioacoustic audio outperforms overall, while the mixed training has a more vari-
able effect on EAT. We additionally find that post-training retains some of the out-of-distribution
gains of the pre-trained backbone, yielding models which are strong both in and out of distribution,
maintaining the benefits of both paradigms - we visualize this in Figure Zb. While post-training
both EAT and BEATs gave consistent improvements vs. their raw SSL models (Figure 3] in the
Appendix), solely the post-trained BEATs achieved SOTA results overall, possibly suggesting that
stronger SSL backbones may lead to better post-trained models. The other existing bioacoustic post-
trained self-supervised backbone NatureBEAT' follows closely on several benchmarks, significantly
outperforming pre-trained BEAT's and outperforming supervised baselines on multiple benchmarks.
Interestingly, we observe the pre-trained NatureBEAT's extends the line of the self-supervised mod-
els, while our post-trained models behave more like stronger supervised models (Figure 2p.) This
discovery provides interesting signal for future work on post-training under different paradigms.
Overall, these results strongly support our proposed recipe of self-supervised training on diverse
data-mixes of bioacoustics and general audio, followed by supervised post-training on the same
mix. They also show supervised and self-supervised learning in bioacoustics are complementary
for representation learning, and suggest a simple step to improve overall quality of self-supervised
bioacoustic encoders, not yet commonly adopted (Hagiwaral [2023; Rauch et al.| 2025a). We share
full, non-aggregated results for all models in the Appendix in Tables |8} 9] [10|and [11]
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Table 4: Aggregate results across bioacoustic benchmarks and tasks (best per metric in bold). We
report ROC AUC for retrieval as R-AUC, accuracy for probing on BEANs Classification and In-
dividual ID, mean-average precision for probe on BEANs Detection and BirdSet, and normalized
information for clustering as NMI where applicable. We report the mean of each metric over datasets
per benchmark. TBirdNet results on BirdSet are excluded following Rauch et al.[(2025b) due to data
leakage. Model labels carry training tags: SSU self-supervised, S& supervised, S-55& supervised fine-
tuning after SSL pretraining. Models above the midrule are existing checkpoints; below are new
models from this work.

BEANS Classification BEANS Detection BirdSet Individual ID Vocal Repertoire
Model Probe R-AUC NMI || Probe R-AUC || Probe R-AUC || Probe R-AUC|[R-AUC ~ NMI
BEATs (SFT)SSt 0.724 0739 0.504 (/0339 0692 || 0.101 0.675 |[0.375 0.602 || 0.755  0.485
BEATS (pretrained)>S" 0.774 0.734 0.542( 0381 0722 || 0.129 0.686 || 0.380 0.637 || 0.775  0.498
EAT-base (pretrained)™L || 0.679 0.675 0424 0252  0.692 || 0.104 0.650 || 0.363 0.623 || 0.768  0.467
EAT-base (SFT)S-SSL 0.758 0.748 047810358 0714 |/ 0.143 0.676 || 0.418 0.632 || 0.817  0.527
Bird-AVES-biox-baseSL || 0.705 0.646 0.410( 0.340  0.689 || 0.092 0.670 || 0.402 0.622 || 0.726  0.453
NatureBEATsS-SS¢ 0.804 0.774 0.560 || 0.385 0724 |/ 0.223 0.723 || 0.410 0.645 || 0.811  0.552
SurfPerchS" 0.760 0.745 0.484 (0301  0.664 || 0.160 0.694 || 0.457 0.656 || 0.751  0.492
BirdNetS" 0.796 0772 0.523(/0.392  0.687 N/A N/A [[0472 0.708 || 0.795  0.545
Perch®t 0.768 0.759 0.478 (0368  0.674 || 0.233 0.656 || 0.530 0.705 || 0.758  0.493
EffNetB0-AudioSet’" 0.651 0.721 0.4861]/0.246 0670 |[0.098 0.655 || 0.397 0.612 || 0.760  0.481
EffNetB0-bio" 0.786 0.799 0.563 || 0365  0.695 || 0.279 0.704 || 0.457 0.683 || 0.806  0.568
EffNetB0-all’" 0.800 0.809 0.584 (0362 0712 [|0.279 0.707 || 0.531 0.701 || 0.830  0.582
EAT-ASSS" 0.704 0.714 0.473] 0311 0704 [/ 0.125 0.685 || 0.362 0.627 || 0.801  0.533
EAT-bio*S" 0.692 0.671 0.410( 0311 0679 || 0.143 0.631 || 0.378 0.627 || 0.757  0.466
EAT-all®s" 0.709 0.704 0.448 | 0315  0.694 || 0.166 0.677 || 0.348 0.611 || 0.788  0.512
sI-BEATSs-bioS"-SSL 0.840 0.811 0.594(0.390 0.719 || 0.288 0.726 || 0.484 0.681 || 0.789  0.516
sI-BEATs-all5L-SSt 0.832 0.813 0.604 || 0.408  0.726 || 0.294 0.732 || 0.511 0.690 || 0.798  0.529
sI-EAT-bioS!-SSF 0.797 0.792 0.562{0.353  0.687 |/ 0.249 0.705 || 0.495 0.672 || 0.806  0.565
sl-EAT-allSt-SSt 0.788 0.791 0.536 || 0.356  0.704 || 0.255 0.706 || 0.456 0.637 || 0.798  0.530

5 CONCLUSION

We presented the first large-scale empirical study and a recipe for developing a generalizable bioa-
coustic encoder. With few architectural assumptions, we believe this recipe can scale as both labeled
bioacoustic data continue to grow and self-supervised learning continues to improve.

We benchmarked 19 CNN- and Transformer-based models across 26 datasets and four task families.
We demonstrated that self-supervised pre-training on a mixture of broad bioacoustic and general-
audio data, followed by supervised post-training on the same mix, yields the best in- and out-of-
distribution results, outperforming state-of-the-art baselines such as BirdNET, Perch and BEATSs on
existing benchmarks (BEANS, BirdSet), and also on newly introduced benchmarks for individual
identification and vocal repertoire. Diverse training audio, especially adding AudioSet, consistently
improved transfer, whereas supervised training on general audio alone transferred poorly.

Beyond models, we broaden bioacoustic evaluation by curating new benchmarks for individual iden-
tification and vocal repertoire classification from public datasets, and by augmenting existing suites
with retrieval and clustering metrics. These additions probe representation quality directly and are
aligned with practical tasks such as audio-to-audio retrieval and repertoire discovery. We observe
that large-scale bioacoustic pre-training is an effective path toward representations that generalize to
these under-studied tasks.

Together, these findings provide actionable recipes for building versatile encoders and a richer
benchmark for future research. By open-sourcing our encoders (upon paper acceptance) we hope
this line of work will be used to accelerate research in animal communication and conservation
applications through bioacoustics.
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A TRAINING AND EVALUATION DATA COMPARISON

To complement the related works discussion in Section [2] we provide a comparison with current
bioacoustics benchmarks in Table[3] including both training and evaluation configurations.

Table 5: Training and evaluation data comparison for papers comparing audio encoders across multi-
ple species benchmarks. The ones from|Robinson et al.|(2025) were reframed for zero-shot learning.

Papers
Ours [Robinson et al. (2025] [Robinson et al. (2024] [Hagiwara{2023] [Rauch et al. {2025b] |Rauch et al. {2025a] |Ghani et al. 2023} |Williams et al.|(2024] |Hamer et al. (2023
Pre-training Data
AS
Xc
WTK
ASA
INAT
Post-training Data
AS
Xc
WTK
ASA
INAT
BEANS Classification
DOG
BAT
HBDB
CBI
BWTK
BEANS Detection
ENA
RFCX
HIC
GIB
DCASE
BirdSet
POW
PER
NBP
HSN
UHH
SNE
SSW
Individual ID
PIP
CHIF
MAC
OWL
Vocal Repertoire
ZFIN
OTT
BFIN
ORCA
Other data 6 3

Dataset

B EVALUATION BENCHMARKS AND DATASETS

Table [6] provides the full list of datasets and tasks we consider as part of our evaluation, see also
Section 3.4

C EXPERIMENTAL SETUP

C.1 EVALUATION METRICS

We formalize the evaluation metrics we introduce in Section [3.4] We evaluate linear probing with
accuracy for classification, and macro-averaged mean-average precision for detection. We evaluate
retrieval with ROC AUC and clustering with NMI. We formalize all evaluation metrics below.

* Linear Probing Performance

la. Top-1 Accuracy (for classification):

A=) Wy =) (D

where NV is the number of samples, y; is the true label, g; is the predicted label, and I
is the indicator function (Hagiwaral 2023 Rauch et al., 2025b)).
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Table 6: Evaluation benchmarks and datasets included in our evaluation, along with the expanded
evaluation methodologies used in each: linear probe, retrieval, and clustering. BEANS CLS and
BEANS DET refer to BEANS classification and detection (Hagiwara et al., [2023)). Individual ID
and Repertoire are the newly added Individual Identification and Vocal Repertoire Discovery tasks.

Benchmark Dataset # Labels (type) Evaluation methods
BEANS CLS BwTk (Sayigh et al}[2016) 31 (marine mammal species) Retrieval, Probe, Clustering
BEANS CLS BAT (Prat et al.}[2017) 10 (bat individuals) Retrieval, Probe, Clustering
BEANS CLS cB1 (of Ornithology} 2020) 264 (bird species) Retrieval, Probe, Clustering
BEANS CLS oG (Yin & McCowan}2004) 10 (dog individuals) Retrieval, Probe, Clustering
BEANS CLS  #BDB (Kiskin et al.| 2021) 14 (mosquito species) Retrieval, Probe, Clustering
BEANS DET pcask (Morfi et al}[2021) 20 (species) Retrieval, Probe
BEANS DET ENa (Chronister et al.}[2021) 34 (bird species) Retrieval, Probe
BEANS DET H1c (Center}[2022) 1 (species) Retrieval, Probe
BEANS DET rrcx (LeBien et al.} 2020) 24 (species) Retrieval, Probe
BEANS DET  G1B (Dufourq et al.|[2021) 3 (call types) Retrieval, Probe
BirdSet POW (Chronister et al.|[2021) 49 (bird species) Retrieval, Probe
BirdSet PER (Hopping et al.}[2024) 133 (bird species) Retrieval, Probe
BirdSet HSN (Clapp et al.| [2023) 22 (bird species) Retrieval, Probe
BirdSet NBP (Morfi et al.,[2019) 51 (bird species) Retrieval, Probe
BirdSet UHH (Navine et al.}[2022) 27 (bird species) Retrieval, Probe
BirdSet NES (Vega-Hidalgo et al.}|2023) 89 (bird species) Retrieval, Probe
BirdSet SNE (Kahl et al.}[2022b) 56 (bird species) Retrieval, Probe
Individual ID  p1P (Stowell et al.}[2019) 10 (individuals) Retrieval, Probe, Clustering
Individual ID  cHIF (Stowell et al.}[2019) 13 (individuals) Retrieval, Probe, Clustering
Individual ID  owL (Stowell et al.}[2019) 16 (individuals) Retrieval, Probe, Clustering
Individual ID  Mac (Fukushima et al.}2015) 8 (individuals) Retrieval, Probe, Clustering
Repertoire  zrIN (Elie & Theunissen2016) 5 (call types) Retrieval, Clustering
Repertoire  OTT (Mumm & Knérnschild)[2014) 32 (call types) Retrieval, Clustering
Repertoire  BFIN (Cohen et al|[2020) 9 (call types) Retrieval, Clustering
Repertoire  ORCA (Palmer et al.|[2025) 25 (call types) Retrieval, Clustering
1b. Average Precision (AP). For each class k, let 7 be the permutation of {1,..., N}
that sorts examples by decreasing score for class k. Define
i
. TP,
ti = HYnoi)e = 1} TP, .= th, P(i) := - .
Jj=1
The (non-interpolated) average precision for class k is
1 N
APy = ~ Z P(i)t;,
maX(L anl ynk) i=1
and the mean average precision is the macro average over classses
1 K
mAP = % Z AP}
k=1
¢ Retrieval Performance (Area Under the ROC Curve):
1
AUC = / TPR(FPR) dFPR 2)
0

where TPR = g and FPR = o, with TP, FP, TN, FN being true/false posi-

tives/negatives (Rauch et al., 2025b; Hamer et al., [ 2023).
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¢ Clustering Performance (Normalized Mutual Information):
2-1(U,V)
HU)+ H(V)

where U and V are cluster assignments, (U, V') is their mutual information, and H(U),
H (V) are their entropies (Kather et al., [2025).

NMI(U, V) = 3)

C.2 DATA SOURCES

For training we use a 2021 version of AudioSet, 2023 versions of Watkins “All cuts” and Animal
Sound Archive, June 2023 versions of Xeno-canto, iNaturalist. All the training data was released un-
der Creative Commons licenses on the respective platforms, with the exception of Watkins for which
we received appropriate licensing agreements, including permission to redistribute. We downloaded
BirdSet using the Huggingface dataset libraryﬂ For BEANS we used the respective scripts the
authors provide in their repositor

For the new benchmarks we use the public repositories of Bengalese Finclﬂ Zebra Finclﬂ Giant
Otter§’] DCLDE 2026 Killer Whald} Bird ID/| Macaques Coo Callg}

C.3 SOFTWARE IMPLEMENTATION

Our experimental pipeline is implemented in Python using the Pytorch library. We have used a fixed
random seed (42) for generating the datasets and as initial seeds for Pytorch and numpy.

We used open-source implementations for: BEATY} EATV| and EfficientNetBO from torchvision.
We wrote pytorch wrappers for BirdNet and Perch using tensorflow-lite.

C.4 HYPERPARAMETERS

We include the full hyperparameters for our trained models in Table[7]

D ADDITIONAL RESULTS

D.1 BENEFITS OF POST-TRAINING VS. RAw SSL

As shown in Figure [3] post-training SSL encoders with supervised learning provides a consistent
improvement vs. raw SSL backbones, sometimes with large relative gains. These results show that
supervised learning can have complementary benefits to self-supervised learning for bioacoustic
representation learning. They also give clear evidence for those developing self-supervised models
to post-train supervised learning, even when the objective is transfer to out-of-distribution tasks.

D.2 ABLATION ON TRANSFER OF TRAINING DATA TO DOWNSTREAM TASKS

We show additional ablations on transfer of various data-mixes to downstream tasks in Figure [
and Figure[5} From a baseline of (focal) bioacoustic data only, we show the performance of adding

1https://huggingface.co/datasets/DBD—research—group/BirdSet
Zhttps://github.com/earthspecies/beans
3https://fiqshare.com/articles/dataset/Benqalese_Finch_sonq_repository/
4805749
‘https://www.nature.com/articles/s41467-018-06394-9
*https://archive.org/details/giant_otters
6https://catalog.data.qov/dataset/dclde—2026—killer—whale—orcinus—orca—ecotype—and—other—sp
"https://zenodo.org/records/1413495
$https://archive.org/details/macaque_coo_calls
‘https://github.com/microsoft/unilm/tree/master/beats
Yhttp://github.com/cwx-worst—one/EAT
11https://docs.pytorch.orq/vision/main/models/generated/torchvision.
models.efficientnet_bO.html
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Table 7: Training hyperparameters for all model variants

Model Training Stage-1 Stage-1 Epochs LR Batch Optimizer Weight Scheduler Warmup
Data
Epochs LR Size Decay Steps
EfficientNet Variants
EffNetB0O-AS AudioSet NA NA 50 Se-4 256 AdamW 0.01 Cosine 4000
EffNetB0-bio bio NA NA 50 Se-4 256 AdamW 0.01 Cosine 4000
EffNetBO0-all AS + Bio NA NA 50 Se-4 256 AdamW 0.01 Cosine 4000
EffNetB0-soundscape  Bio + NA NA 50 Se-4 128 AdamW 0.01 Cosine 4000
Soundscape
EffNetBO-nobirds* Bio(no NA NA 50 Se-4 256 AdamW 0.01 Cosine 4000
birds)
EffNetBO-nowhales*  Bio + AS NA NA 50 Se-4 256 AdamW 0.01 Cosine 4000
(no whales)
EffNetB0-birds* Bio + AS NA NA 50 Se-4 256 AdamW 0.01 Cosine 4000
(birds only)
BEATs Variants
sl-BEATs-all All datasets 2 Se-4 10 le-4 256 AdamW 0.01 Cosine 5000
sI-BEATs-bio Bio 2 Se-4 10 le-4 256 AdamW 0.01 Cosine 5000
EAT Variants
EAT-bio Bio NA NA 30 le-4 48 AdamW 0.01 Cosine 53333
EAT-all AS + Bio NA NA 30 le-4 48 AdamW 0.01 Cosine 53333
EAT-AS AudioSet NA NA 30 le-4 48 AdamW 0.01 Cosine 53333
sl-EAT-bio SSL + Bio 2 le-4 10 8e-5 256 AdamW 0.01 Cosine 2000
sl-EAT-all SSL + All 2 le-4 10 8e-5 256 AdamW 0.01 Cosine 2000

¥ Ablation studies with filtered training data.

BEATSs and EAT sl_models have an initial stage with backbone frozen, with cosine scheduler for stage-1 epochs
with Stage-1 Ir

Bio = core bioacoustic data, AS = AudioSet, SSL = Self-supervised learning.

Benefit of Post-training SSL Backbones

100 4
89.3%
50/56
+51.1%
81.2%
26/32
+52.5%
80 70.8%

51/72 68.8%

+17.5% 22/32

+4.8%
9
S
>
[
-
©
(-9
"
£

BEANS BEANS BirdSet Individual Vocal

Classification Detection ID Repertoire

Figure 3: Win-rate of post-trained SSL models vs. their raw SSL backbones. We plot the win-rates
summing over all metrics for all our post-trained (EAT and BEATs) models, and show the average
relative gain per model with respect to its base model.

general audio, adding soundscape recordings, and ablating different taxonomic groups (whales, and
then all taxa but birds.) Adding general audio to the training mix improved results overall, but in
particular transferred consistently across our vocal repertoire datasets. This data mix yields large
gains on the ESC-50 dataset evaluating representations of general audio; though unsurprising, this is
a relevant benefit for bioacoustic encoders in tasks such as classifying environmental noise. Training
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BEANS Benchmarks: Training Mix Effects Across Taxa & Tasks
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Figure 4: Detailed transfer of training data to taxa and tasks in the BEANS benchmark. Heatmap
shows the performance change for an EfficientNet trained on each data mix as compared to a base-
line “bio” dataset. “- Bio + General” is trained on only AudioSet, “+ Soundscape” adds sound-
scape datasets, - Whales” ablates all marine mammal recordings, “Birds only” removes all non-bird

recordings.
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Figure 5: Detailed transfer of training data to taxa and tasks in the BirdSet, Individual Identifica-
tion, and Vocal Repertoire Discovery benchmarks. Heatmap shows the performance change for an
EfficientNet trained on each data mix as compared to a baseline “bio” dataset. “- Bio + General” is
trained on only AudioSet, “+ Soundscape” adds soundscape datasets, “- Whales™ ablates all marine
mammal recordings, “Birds only” removes all non-bird recordings.

on only general audio data dropped performance very significantly overall, but the drops were most
severe on BEANS Classification tasks well-informed by species prediction, and relatively smaller on
detection. Adding soundscape data into the training mix with focal is a tempting strategy for learning
improved representations useful for downstream tasks on soundscapes, used e.g. by later versions
of BirdNet 2021). However, in our ablation, this did not give consistent improvements,
possibly due to the lack of diversity in the easily accessible soundscape data.

20




Under review as a conference paper at ICLR 2026

Table 8: BEANS Classification datasets only (best per metric in bold). We report R-AUC
for retrieval; probe accuracy; clustering reported as NMI. Models above the midrule are exist-
ing/pretrained checkpoints; below are new models from this work.

‘ Watkins CBI HBDB BATS Dogs ESC-50
Model |Probe R-AUC NMI |Probe R-AUC NMI |Probe R-AUC NMI |Probe R-AUC NMI [Probe R-AUC NMI [Probe R-AUC NMI
BEATS (SFT) 0.820 0.775 0.610{0.332 0.710 0.567|0.769 0.702 0.391|0.639 0.614 0.184]0.842 0.647 0.350|{0.945 0.984 0.921
BEATS (pretrained) 0.903 0.806 0.694]0.359 0.679 0.564|0.810 0.702 0.564|0.705 0.635 0.191]0.935 0.666 0.427/0.930 0.917 0.813
EAT-base (pretrained) |0.850 0.744 0.585/0.247 0.617 0.502]0.778 0.630 0.482|0.635 0.588 0.125/0.705 0.585 0.194|0.858 0.884 0.655
EAT-base (SFT) 0.867 0.808 0.613]0.388 0.714 0.558(0.782 0.686 0.328|0.654 0.631 0.216]0.899 0.659 0.216/0.958 0.992 0.938
Bird-AVES-biox-base 0.852 0.703 0.556]0.318 0.613 0.521]0.769 0.594 0.435|0.662 0.593 0.091|0.770 0.585 0.233|0.858 0.791 0.624
BEATs-NatureLM-audio| 0.926 0.872 0.761|0.580 0.756 0.586|0.804 0.731 0.503|0.720 0.648 0.274|0.885 0.684 0.436|0.912 0.951 0.798
SurfPerch 0.841 0.787 0.581]0.570 0.798 0.635|0.756 0.687 0.437|0.622 0.615 0.168|0.878 0.664 0.309/0.890 0.921 0.777
BirdNet 0.897 0.826 0.616]0.702 0.835 0.661|0.782 0.734 0.488|0.706 0.655 0.225|0.885 0.704 0.490/0.805 0.878 0.660
Perch 0.831 0.780 0.565[0.792 0.868 0.669|0.628 0.611 0.187|0.605 0.627 0.185/0.928 0.758 0.556|0.823 0.907 0.703
EffNetB0-AudioSet 0.708 0.759 0.753]0.235 0.660 0.531{0.732 0.666 0.310|0.566 0.621 0.156|0.799 0.649 0.312/0.868 0.969 0.852
EffNetB0-bio 0.906 0.894 0.762]0.780 0.912 0.768|0.752 0.693 0.395|0.633 0.639 0.214|0.921 0.764 0.539|0.723 0.894 0.702
EffNetB0-all 0.900 0.899 0.723]0.772 0.910 0.772{0.750 0.710 0.436|0.649 0.645 0.226|0.899 0.762 0.579|0.830 0.930 0.770
EAT-AS 0.855 0.802 0.640|0.266 0.633 0.520{0.800 0.718 0.489|0.654 0.632 0.212]0.784 0.604 0.236/0.868 0.897 0.743
EAT-bio 0.823 0.732 0.574]0.330 0.629 0.514]0.758 0.701 0.455|0.639 0.596 0.151]0.863 0.583 0.196]/0.740 0.782 0.568
EAT-all 0.873 0.773 0.618]0.326 0.644 0.516]0.791 0.722 0.475|0.655 0.612 0.162|0.755 0.593 0.227|0.853 0.878 0.689
sI-BEATs-bio 0.935 0911 0.786]0.798 0.933 0.801|0.775 0.702 0.470|0.696 0.656 0.205|0.942 0.730 0.499/0.897 0.934 0.805
sI-BEATs-all 0914 0.896 0.781]0.789 0.931 0.788|0.789 0.718 0.488|0.681 0.654 0.218|0.906 0.730 0.499/0.912 0.949 0.849
sl-EAT-bio 0.903 0.945 0.840|0.818 0.941 0.829|0.754 0.685 0.407|0.657 0.626 0.170{0.871 0.690 0.407|0.778 0.865 0.720
sl-EAT-all 0.885 0.932 0.761]0.755 0.943 0.802|0.754 0.657 0.340|0.650 0.635 0.183]|0.863 0.681 0.384/0.818 0.895 0.747

Table 9: BEANS Detection datasets only (best per metric in bold). We report R-AUC for retrieval
and mean-average precision for probe. Models above the midrule are existing/pretrained check-
points; below are new models from this work.

enabirds rfex hiceas gibbons dcase
Model Probe R-AUC|Probe R-AUC|Probe R-AUC|Probe R-AUC|Probe R-AUC
BEATSs (SFT) 0.428 0.643 |0.094 0.713 [0.577 0.584 |0.216 0.673 [0.381 0.847
BEATS (pretrained) 0.525 0.678 |0.110 0.720 [0.544 0.627 |0.351 0.686 [0.373 0.897
EAT-base (pretrained) |0.403 0.631 [0.077 0.706 |0.475 0.564 |0.041 0.660 [0.265 0.899
EAT-base (SFT) 0.467 0.672 |0.106 0.709 |0.541 0.584 [0.247 0.699 |0.430 0.904
Bird-AVES-biox-base 0.465 0.646 [0.111 0.711 [0.472 0.612 |0.344 0.626 |0.309 0.850
BEATSs-NatureLM-audio| 0.601 0.714 [0.124 0.764 | 0.596 0.624 |0.159 0.627 |0.447 0.893
SurfPerch 0.465 0.598 |0.131 0.714 |0.443 0.595 [0.083 0.609 |0.383 0.803
BirdNet 0.648 0.743 |0.148 0.747 |0.431 0.532 [0.279 0.584 |0.455 0.827
Perch 0.610 0.643 |0.149 0.783 |0.464 0.530 [0.252 0.622 |0.365 0.792
EffNetB0-AudioSet 0.343 0.627 |0.060 0.679 [0.398 0.561 [0.145 0.589 |0.285 0.893
EffNetB0-bio 0.501 0.701 |0.120 0.732 [0.486 0.521 {0.258 0.643 [0.459 0.879
EffNetB0-all 0.528 0.692 [0.129 0.736 [0.505 0.555 |0.166 0.678 |0.482 0.901
EAT-AS 0.418 0.654 |0.086 0.717 [0.534 0.579 [0.255 0.665 |0.263 0.903
EAT-bio 0.428 0.660 |0.087 0.665 [0.571 0.515 [0.081 0.667 |0.389 0.890
EAT-all 0.475 0.668 |0.103 0.723 [0.569 0.511 [0.155 0.666 |0.275 0.901
sl-BEAT's-bio 0.555 0.712 |0.109 0.750 [0.536 0.571 [0.303 0.667 |0.448 0.897
sl-BEATs-all 0.566 0.716 [0.118 0.741 [0.527 0.566 |0.366 0.700 |0.465 0.906
sl-EAT-bio 0.516 0.666 |0.099 0.708 [0.546 0.580 [0.190 0.638 |0.415 0.842
sl-EAT-all 0.528 0.665 |0.099 0.739 [0.536 0.618 |0.170 0.667 |0.445 0.832

D.3 FULL RESULTS

We include full results for each benchmark in Tables [§] (BEANs Classification) 0] (BEANS Detec-
tion) [T0| (BirdSet) and Table [T (Vocal Repertoire and Individual ID).
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Table 10: BirdSet benchmark results: Multi-label bird detection tasks (best per metric in bold).
We report ROC AUC for retrieval as R-AUC and mean-average precision for probe. No clustering
metrics are reported. BirdNet results are excluded following the authors (Rauch et al., [2025b).
Models above the midrule are existing/pretrained checkpoints; below are new models from this
work.

POW PER NES NBP HSN SNE UHH
Model Probe R-AUC|Probe R-AUC|Probe R-AUC|Probe R-AUC|Probe R-AUC|Probe R-AUC|Probe R-AUC
BEATS (SFT) 0.108 0.654 |0.046 0.642 [0.062 0.726 {0.213 0.649 |0.107 0.625 [0.079 0.725 {0.094 0.704
BEATS (pretrained) 0.157 0.703 |0.070 0.649 [0.095 0.731 {0.248 0.648 |0.105 0.568 [0.116 0.753 {0.109 0.751
EAT-base (pretrained) 0.137 0.658 |0.053 0.621 [0.064 0.712 {0.188 0.627 |0.094 0.548 [0.092 0.679 {0.098 0.706
EAT-base (SFT) 0.163 0.649 |0.066 0.634 [0.097 0.745 {0.290 0.651 |0.140 0.585 [0.124 0.741 |0.124 0.724
Bird-AVES-biox-base 0.142 0.679 |0.044 0.615 [0.050 0.755 {0.196 0.631 |0.050 0.556 [0.082 0.714 {0.081 0.740
BEATSs-NatureLM-audio| 0.244 0.722 [0.132 0.690 | 0.177 0.819 |0.419 0.708 [0.251 0.574 {0.197 0.796 |0.143 0.749
SurfPerch 0.186 0.691 |0.067 0.619 [0.151 0.811 {0.252 0.639 |0.183 0.582 [0.120 0.747 | 0.164 0.766
BirdNet N/A N/A | NNA N/A | NJA N/A | NNJA N/A | NNA N/A | NJA  N/A | NNA  N/A
Perch 0.236 0.686 |0.132 0.626 [0.341 0.803 |0.374 0.595 |0.183 0.512 [0.160 0.658 {0.203 0.713
EffNetB0-AudioSet 0.115 0.637 |0.045 0.569 [0.054 0.728 {0.181 0.615 |0.087 0.609 [0.087 0.725 |0.115 0.701
EffNetB0-bio 0.283 0.717 |0.128 0.621 [0.263 0.832 | 0.454 0.717 |0.383 0.544 [0.212 0.738 {0.231 0.759
EffNetB0-all 0.276 0.719 |0.137 0.616 [0.273 0.845 |0.473 0.727 |0.375 0.525 [0.196 0.770 {0.220 0.749
EAT-AS 0.147 0.698 |0.060 0.638 [0.074 0.761 {0.230 0.646 |0.138 0.588 [0.112 0.723 |0.114 0.739
EAT-bio 0.214 0.658 |0.069 0.618 [0.105 0.662 {0.257 0.637 |0.119 0.542 [0.114 0.657 {0.125 0.642
EAT-all 0.188 0.702 |0.065 0.649 [0.113 0.731 {0.303 0.648 |0.185 0.568 [0.147 0.708 {0.158 0.734
sl-BEATs-bio 0.304 0.707 [0.150 0.629 {0.279 0.836 |0.496 0.737 |0.349 0.627 |0.226 0.766 [0.213 0.781
sl-BEATs-all 0.322 0.720 |0.152 0.612 [0.257 0.834 {0.493 0.737 |0.404 0.640 [0.211 0.786 |0.221 0.796
sl-EAT-bio 0.274 0.670 |0.143 0.596 [0.224 0.813 {0.436 0.713 |0.283 0.636 [0.190 0.760 |{0.191 0.748
sl-EAT-all 0.265 0.700 |0.129 0.600 [0.219 0.828 |0.452 0.707 |0.328 0.586 [0.192 0.760 {0.203 0.763

Table 11: Complex bioacoustic tasks: Individual ID and Vocal Repertoire analysis (best per metric
in bold). We report ROC AUC for retrieval as R-AUC. Individual ID probe is accuracy; Vocal Reper-
toire reports both R-AUC and NMI. Models above the midrule are existing/pretrained checkpoints;

below are new models from this work.
\chiffchaff—cmss littleowls-cross  pipit-cross macaques zebrafinch-je-call Giant_Otters B lese_Finch SRKW _Orca

Model [Probe R-AUC* [Probe R-AUC*|Probe R-AUC¥|Probe R-AUC|R-AUC NMI |R-AUC NMI[RAUC NMI |R-AUC NMI
BEATSs (SFT) 0185 0470 [0290 0.663 |0.061 0.500 |0.963 0775 | 0651 0295 | 0815 0545/ 0.898 0742 | 0.657 0359
BEATS (pretrained)  [0.180 0.536 |0263 0700 [0.093 0486 [0.985 0.827 | 0.707 0352 | 0848 0577| 0.848 0.653 | 0.697 0.409
EAT-base (pretrained) 0205 0.544 |0317 0676 |0.058 0469 [0.872 0.804 | 0684 0231 | 0.788 0503|0974 0.871 | 0.626 0.265
EAT-base (SFT) 0245 0511 [0391 0714 |0.054 0456 |0.981 0848 | 0.742 0341 | 0.855 0.591| 0.984 0.820 | 0.687 0357
Bird-AVES-biox-base 0230 0521 |0292 0.634 |0.118 0492 [0.967 0.840 | 0660 0253 | 0751 0484| 0.872 0757 | 0.621 0318
BEATs-NatureLM-audio | 0.185  0.489 |0359 0711 |0.112 0524 [0.984 0857 | 0.704 0351 | 0.862 0586| 0.943 0.835 | 0.736 0438
SurfPerch 0280 0550 [0383 0713 |0.179 0518 |0.986 0843 | 0626 0225 | 0.810 0537|0959 0927 | 0.608 0279
BirdNet 0200 0555 |0501 0.801 |0.204 0.558 |0.984 0916 | 0707 0378 | 0798 0539 0.987 0911 |0.689 0353
Perch 0210 0500 |0.649 0.847 0288 0.570 |0.973 0904 | 0657 0284 | 0854 0585|0959 0.896 | 0.561 0.206
EffNetB0-AudioSet 0225 0506 [0290 0.627 [0.109 0492 |0.966 0823 | 0.701 0354 | 0.760 0438] 0.966 0.863 | 0.611 0.270
EffNetB0-bio 0140 0532 |0346 0730 |0361 0.557 |0.982 0912 | 0717 0350 | 0.828 0574/ 0964 0.903 |0.717 0443
EffNetB0-all 0273 0546 [0496 0776 |0372 0.567 |0.984 0915 | 0.742 0381 |0.842 0582| 0.987 0921 | 0.748 0444
EAT-AS 0.165 0544 |0251 0.643 |0.073 0473 |0.957 0.848 | 0707 0301 |0.833 0566/ 0.977 0.885 | 0.688 0.379
EAT-bio 0175 0540 [0307 0.689 |0.115 0474 |0.914 0804 | 0.654 0246 | 0.809 0543 0.934 0816 | 0.630 0.260
EAT-all 0200 0547 (0152 0575 |0.109 0487 |0.929 0836 | 0709 0333 | 0.820 0549 0.977 0.847 | 0.646 0.321
sl-BEATs-bio 0235 0558 [0339 0722 |0390 0.570 |0.972 0873 | 0700 0369 | 0.840 0572/ 0.880 0.675 | 0.735 0448
sl-BEATSs-all 0225 0574 |0413 0755 |0.428 0.580 |0.977 0850 | 0.718 0426 | 0.832 0554| 0.897 0.681 | 0.746 0.457
sl-EAT-bio 0245 0532|0474 0702 |0281 0.572 |0.980 0.882 | 0703 0381 | 0817 0540/ 0.989 0.937 | 0.716 0.402
sl-EAT-all 0195 0509 |0354 0.688 0326 0.557 |0.949 0795 | 0718 0338 | 0789 0501 0.980 0.898 | 0.703 0383
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