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ABSTRACT

Bioacoustics, the study of sounds produced by living organisms, plays a vital role
in conservation, biodiversity monitoring, and behavioral studies. Many tasks in
this field, such as species, individual, and behavior classification and detection,
are well-suited to machine learning. However, they often suffer from limited
annotated data, highlighting the need for a general-purpose bioacoustic encoder
capable of extracting useful representations for diverse downstream tasks. Such
encoders have been proposed before, but are often limited in scope due to a focus
on a narrow range of species (typically birds), and a reliance on a single model
architecture or training paradigm. Moreover, they are usually evaluated on a small
set of tasks and datasets. In this work, we present a large-scale empirical study
that covers aspects of bioacoustics that are relevant to research but have previ-
ously been scarcely considered: training data diversity and scale, model archi-
tectures and training recipes, and the breadth of evaluation tasks and datasets.
We obtain encoders that are state-of-the-art on the existing and newly proposed
benchmarks. We also identify what matters for training these encoders, such that
this work can be extended when more data are available or better architectures
are proposed. Specifically, across 26 datasets with tasks including species clas-
sification, detection, individual ID, and vocal repertoire discovery, we find that
self-supervised pre-training followed by supervised post-training on a mixed bioa-
coustics + general-audio corpus yields the strongest in- and out-of-distribution
performance. We show the importance of data diversity in both stages. To support
ongoing research and application, we will release the model checkpoints.

Figure 1: Our empirical study diagram, assessing (1) models, (2) training data, (3) training
paradigms, and proposing an (4) extended evaluation data and methodology.

1 INTRODUCTION

Bioacoustics is the study of animal sound production and perception (Bradbury & Vehrencamp,
1998). It is a crucial component for understanding animal behavior (Fischer et al., 2013), for
biodiversity monitoring and conservation efforts (Rutz et al., 2023; Stevens et al., 2024), and for
modeling the mechanisms underlying animal communication (Bradbury & Vehrencamp, 1998). A
variety of common tasks in bioacoustics are used to support these efforts: sound event detection or
classification of species, individuals, call-types, and behaviors. All of these tasks are well-suited
for a machine learning approach. Machine learning and deep learning are now commonly used
for bioacoustics (Stowell, 2022), and have enabled discoveries such as the use of specialized
vocalizations for labeling conspecifics in marmosets (Oren et al., 2024) or elephants (Pardo et al.,
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2024). However, due to unavoidable challenges in data collection and annotation, these studies
generally rely on small datasets strongly labeled on a few species and individuals (Stowell, 2022).
The resulting bioacoustic machine learning models are then usually designed for specific tasks and
species (Dufourq et al., 2021; Cauzinille et al., 2024), limiting their generalizability.

However, large amounts of unannotated or weakly labeled bioacoustic data are recorded regularly,
especially through Passive Acoustic Monitoring (PAM) (Gibb et al., 2019), and citizen science plat-
forms such as Xeno-Canto (Vellinga & Planqué, 2015) or iNaturalist (Chasmai et al., 2024). These
data can be leveraged to train a bioacoustic encoder, which can then be deployed in downstream
tasks, as bioacoustic features (e.g. for linear probing or clustering) or finetuning the whole model,
among other options. Two such classic and state-of-the-art bioacoustic encoders are BirdNet (Kahl
et al., 2021) and Perch (Ghani et al., 2023) which have been applied to downstream application
tasks such as multi-taxa species retrieval and detection (Pérez-Granados, 2023; Dumoulin et al.,
2025; Ghani et al., 2023).

Other bioacoustic encoders have been proposed, to be reviewed in the next section. They have in
common a supervised learning approach, usually limited to a single taxonomic group, with notable
exceptions including SurfPerch (Williams et al., 2024) and recently the models of iNatSounds
(Chasmai et al., 2025). Moreover, they evaluate the quality of the learned representations on a lim-
ited set of downstream tasks and datasets. Typically they solely evaluate on species classification,
with their training and test data containing the same species, often with an out-of-distribution effect,
as training datasets typically consists of focal recordings, while evaluation datasets are soundscape
recordings (Rauch et al., 2025b). In contrast, real-world bioacoustic applications require encoders
that generalize effectively across diverse species and tasks, often beyond those explicitly seen
during training. For example, researchers may need to recognize previously unobserved species,
identify individual animals from limited vocal data, or characterize animal vocal repertoires without
extensive annotations. Evaluating models on such diverse and realistic scenarios is critical, yet
building and measuring the performance of encoders that generalize across these conditions remains
underexplored in current works.

Our main contribution is an empirical study assessing what components matter most for training a
generalizable bioacoustic encoder. We systematically investigate (1) model architectures, (2) data-
mixes, and (3) training paradigms under a (4) broadened evaluation methodology. (1) Specifically, in
terms of models we compare CNN-based (LeCun et al., 1989) and transformer-based (Vaswani et al.,
2017) architectures alongside their associated learning approaches: supervised and self-supervised.
(2) On the data mix aspect, we train and evaluate across a broader and more taxonomically di-
verse bioacoustic dataset than previous work, examining the impact of incorporating general audio
data such as AudioSet (Gemmeke et al., 2017). (3) Additionally, we explore sequential training
paradigms (“training recipes”), pre-training and post-training, including self-supervised and super-
vised learning, and assess the influence of non-bioacoustic audio data at different training stages.
(4) By evaluating these models across established benchmarks BEANS (Hagiwara et al., 2023), and
BirdSet (Rauch et al., 2025b) alongside newly curated datasets assessing generalization to chal-
lenging real-world tasks, we provide a clearer picture of the conditions that enhance bioacoustic
representation learning. We find that under comparable training conditions, self-supervised mod-
els achieve strong out-of-distribution generalization yet under-perform supervised models on in-
distribution tasks, and that incorporating general audio into bioacoustic training significantly im-
proves model transferability. Sequential self-supervised and supervised learning yields strong per-
formance both in and out-of-distribution. Leveraging these insights, we propose a set of training
recipes and models that achieve state-of-the-art results overall on our extensive evaluation bench-
mark, offering a versatile encoder for bioacoustic research.

2 RELATED WORK

Self-Supervised Audio Encoders. An extensive number of works propose audio and speech en-
coders, most of them transformer-based, such as Wav2vec (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), AudioMAE (Huang et al., 2022), BEATs (Chen et al., 2023) or EAT (Chen et al.,
2024). Several bioacoustic-specific encoders have also been developed: BirdNet (Kahl et al., 2021)
and Perch (Ghani et al., 2023) build upon an EfficientNet (EffNet) architecture (Tan & Le, 2021),
a CNN-based vision neural network pre-trained on ImageNet (Russakovsky et al., 2015) taking au-
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dio spectrograms as input. Transformer-based bioacoustic models include AVES (Hagiwara, 2023)
based on HuBERT, Animal2Vec (Schäfer-Zimmermann et al., 2024) based on data2vec (Baevski
et al., 2023), BirdMAE (Rauch et al., 2025a) based on AudioMAE with modified decoder architec-
ture, and TweetyBert (Vengrovski et al., 2025) inspired by BERT (Devlin et al., 2019). However,
within bioacoustics these approaches lack systematic comparison across different architectures with
standardized pipelines. In contrast, we compare with a wide range of encoder baselines and aim
to have a fair comparison across different architectures, with minimal changes and near-identical
pipelines.

Text-Informed Audio Models and Their Relation to Bioacoustic Encoders. Audio encoders are
key in training text-informed models for bioacoustics. BioLingual (Robinson et al., 2024) learns a
common representation for text and bioacoustics, inspired by CLAP-LAION (Wu et al., 2023). It
allows to perform tasks like zero-shot species classification or text-to-audio retrieval, while a bioa-
coustic encoder requires further learning (like linear probing). NatureLM-audio (Robinson et al.,
2025) is a large audio-language model for bioacoustics, adding audio as input to a Llama 3 model
(Grattafiori et al., 2024) through a BEATs audio encoder and a Q-former (Li et al., 2023). In this
work, we focus on bioacoustic encoders, and this line of work is complementary to text-informed
or large language models, in the sense these models could benefit from a better encoder. It can
also be considered as a “post-training” stage for any bioacoustic encoder, that can then be extracted
to be used in downstream bioacoustic tasks, for example doing linear probing. As a baseline, we
consider extracting the BEATs encoder of NatureLM-audio, which was unfrozen during training on
large-scale bioacoustic data.

Data mixing in bioacoustics training. In terms of data composition, existing bioacoustic encoders
typically use limited data sources: BirdNet and Perch are post-trained on bird data mostly from
Xeno-Canto, while Williams et al. (2024) extended Perch to Surfperch by adding coral reef bioa-
coustic data. Animal2Vec focuses specifically on meerkats data, and TweetyBert on canary song.
General audio encoders are evaluated in extensive audio (Turian et al., 2022) and speech benchmarks
(Yang et al., 2021) but contain little bioacoustic data in their training mix. While these general-
purpose encoders can be used for bioacoustic tasks, Sarkar & Doss (2025) found that pre-training
on bioacoustic data provides only marginal improvements, though other studies reach different con-
clusions (Ghani et al., 2023; Rauch et al., 2025a). Our work differs by considering larger and more
taxonomically diverse bioacoustic training data, examining the impact of adding general audio data
alongside bioacoustic data, and evaluating the impact of data mix under fair settings rather than only
evaluating pre-existing models.

Training Paradigms: Self-Supervised, Supervised, and Two-Stage Approaches. Regarding
the training paradigm, current bioacoustic modeling approaches use either self-supervised learning
(AVES, Animal2Vec, BirdMAE, TweetyBert) or supervised learning (BirdNet, Perch, Surfperch)
exclusively. However, no existing work systematically explores the combination of both paradigms
or examines the impact of including bioacoustic data at different training stages. We address this
gap by considering the combination of both self-supervised and supervised learning. To that extent,
our pre- and post-training formalization may be seen as a form of curriculum learning (Bengio et al.,
2009) with two stages, similar to the iterative training of BEATs and commonly used in training
LLMs (Robinson et al., 2025).

Evaluation Limitations in Bioacoustic Benchmarks. Bioacoustic encoders have been evaluated
primarily in the context of species classification and detection (Rauch et al., 2025b; Hamer et al.,
2023; Ghani et al., 2023; Chasmai et al., 2025; Kather et al., 2025) while other important tasks such
as vocal repertoire discovery(Anikin et al., 2018) or individual identification(Stowell et al., 2019)
have been scarcely addressed. These tasks, which are critical to the study of animal communication
yet lack large-scale annotated data, are a natural test-bed for generalization of learned represen-
tations. Research on these two topics has so far used a limited number of private datasets or has
not compared with state-of-the-art bioacoustic encoders (Best et al., 2023; Nolasco et al., 2025;
Stowell et al., 2019; Wierucka et al., 2025). To give a broader overview of the capabilities of a
bioacoustic encoder, we address these limitations by adding 8 public datasets, not considered in any
previous benchmark. Further, related work from Kather et al. (2025) and from Best et al. (2023)
has gained insight into bioacoustic encoders by analyzing their embeddings with clustering metrics,
including a qualitative finding that self-supervised encoders better generalized from birds to frogs.
We introduce a similar evaluation methodology, enhancing BEANS (Hagiwara et al., 2023) and
BirdSet (Rauch et al., 2025b) with clustering and retrieval metrics, scaling a related analysis from
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two datasets to twenty-six. For a comparison with current bioacoustics benchmarks, we present
Table 4, Appx A, which includes training and evaluation configurations.

3 METHODS

This section provides the details of our empirical study which we summarize in Figure 1.

3.1 TRAINING DATA

State-of-the art bioacoustic encoders are either trained in a self-supervised manner on large datasets
comprising general audio (Hagiwara, 2023) and birds (Rauch et al., 2025a), or in a supervised man-
ner to predict the species in focal recordings of birds (Rauch et al., 2025b; Hamer et al., 2023;
Van Merriënboer et al., 2024; Rauch et al., 2025a; Ghani et al., 2023). We extend these paradigms
by comparing the self-supervised and supervised learning on both types of data, general audio and
bioacoustic data, both comprising labels. The data are used for two approaches, self-supervised
learning (in which case the labels are ignored) and supervised learning. The general audio dataset is
AudioSet (Gemmeke et al., 2017) comprising labels for sound event detection within the AudioSet
ontology. With respect to bioacoustics data, we compile a large dataset from multiple sources, in-
cluding Xeno-canto (Vellinga & Planqué, 2015), the largest source of bird signals, iNaturalist (Chas-
mai et al., 2024), Animal Sound Archive (Museum für Naturkunde Berlin), which includes diverse
taxa, and the Watkins Marine Mammal database “all cuts” (Sayigh et al., 2016) offering the most
diverse collection of marine mammal signals. Outside of our core training mix, we consider addi-
tional bioacoustic soundscape datasets to study their effect on the learned representations, in par-
ticular WABAD (Pérez-Granados et al., 2025) and Sapsucker Woods (Kahl et al., 2022a). To join
diverse bioacoustic datasets, we curate species’ scientific names and link all species to a common
taxonomic backbone (GBIF) (Telenius, 2011). We summarize the training data in Table 1.

We train models with noise augmentation (see Section 3.3) using non-animal environmental sounds
from the following datasets: ShipsEar (Santos-Domı́nguez et al., 2016), Deepship (Irfan et al., 2021)
and Orcalab (Poupard et al., 2020), FSD50K (Fonseca et al., 2021), Urbansound (Salamon & Jacoby,
2014), TUT2016 (Mesaros et al., 2016b), IDMT (Abeßer et al., 2021), Demand (Thiemann et al.,
2013), and Wham (Wichern et al., 2019).

Table 1: Datasets used in pre-training and post-training. a denotes datasets used solely in ablations.
Dataset # Hours Description

AudioSet (Gemmeke et al., 2017) 5700 general audio
Xeno-canto (Vellinga & Planqué, 2015) 10416 birds
iNaturalist (Chasmai et al., 2024) 1539 diverse taxa
Watkins (Sayigh et al., 2016) 27 marine mammals
Animal Sound Archive (Museum für Naturkunde Berlin) 78 diverse taxa
Sapsucker Woodsa (Kahl et al., 2022a) 285 birds
WABADa (Pérez-Granados et al., 2025) 84 birds

3.2 PRE-EXISTING ENCODERS

We consider various pre-existing encoders, as baselines and for further benchmarking and analysis.
First, we consider general audio encoders, more specifically BEATs (Chen et al., 2023) and EAT
(Chen et al., 2024), BEATs because it is a state-of-the-art encoder, and EAT because we will modify
its self-supervised training recipe; Chen et al. (2023) do not provide the training code, only trained
checkpoints, and EAT is a good and (fully) open-sourced model.

We also include bioacoustic encoders as baselines, namely BirdNet (Kahl et al., 2021) and Perch
(Ghani et al., 2023) as state-of-the-art baselines. In addition, we evaluate SurfPerch (Williams et al.,
2024) because it uses more diverse taxa in training. We also consider AVES (Hagiwara, 2023) and
BirdMAERauch et al. (2025a) as a representative self-supervised models for bioacoustics.
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For the last baseline, we extract the BEATs encoder from NatureLM-audio (Robinson et al., 2025),
that we call NatureBEATs, as a representative of an unorthodox post-trained encoder. Comparing
it to BEATs can provide clues about the influence of text-audio training and of post-training with
bioacoustic data, in addition to the experiments to be described now.

3.3 PROPOSED MODELS AND TRAINING RECIPES

We provide a summary of the models we train according to data used in pre- and post-training in
Table 2. As explained before, both BirdNet and Perch build upon an EffNet post-trained on (mostly)
Xeno-Canto, using a multi-label supervised learning loss. To mimic this approach, we also con-
sider an EffNet architecture, with a checkpoint pre-trained on ImageNet, which we post-train with
supervised learning and a binary cross-entropy loss. To assess the utility of using bioacoustic data,
possibly complemented by general audio data, we consider post-training this model on bioacous-
tic data only, on AudioSet only, or on both. The version post-trained solely on bioacoustic data is
reminiscent of BirdNet or Perch, even if it is not an apple-to-apple comparison (each model uses
a different bioacoustic dataset, normalization method, sampling rate, spectrogram parameters, and
augmentation details). We take advantage of the efficiency of the architecture to test various data-
mixes, including the addition of soundscape data, and the ablation of large taxonomic subgroups
such as birds, whales, or all non-birds. The results for this ablation are presented in Figures 4 and 5
in the Appendix.

Our approach does not rely specifically on the EffNet architecture. Therefore, we propose to do
the post-training of another, transformer-based, audio encoder. We chose BEATs, as it is a state-
of-the-art encoder, pre-trained on speech and general audio data with a self-supervised approach.
We post-train it in a supervised manner on our bioacoustic data only, or on both bioacoustic data
and AudioSet. We exclude post-training BEATs on AudioSet only as this corresponds to the public
checkpoint BEATs (SFT).

We can also envision modifying the self-supervised pre-training phase. Unfortunately, the training
code for BEATs is not available and is not straightforward to reproduce. Therefore, we turn to the
EAT model (Chen et al., 2024), which also provides good results, is fully open-source, and has the
advantage of being fast to train. We consider pre-training EAT without modifying its self-supervised
learning approach (which is a mix of teacher distillation and reconstruction of masked patches of
the spectrogram), on our bioacoustic data only, on AudioSet only, and on both. Then, we consider
not post-training this model (to assess if post-training is useful, especially given that it is the same
dataset, up to ignoring or not the labels), and also post-training it as before (bioacoustic data only,
or bioacoustic data plus AudioSet). Similar to BEATs, we do not post-train EAT on AudioSet only
as this matches an existing checkpoint, “EAT (SFT)”. We use the “EAT-all” SSL checkpoint as the
basis for post-training.

For a fair comparison with pre-existing models we train and evaluate all our models at 16kHz, whilst
we acknowledge that some species contain important auditory information above 8kHz and we plan
to extend this study in future work. We evaluate Perch and BirdNet at their proposed sample rates
32kHz and 48 kHz, and to their advantage, they observe a broader frequency spectrogram than our
base EffNet.

To increase generalization and robustness to noise of the learned representation we found it impor-
tant to use two augmentations. Namely, during pre-training and post-training we add noise randomly
with a probability of 0.5 at a random signal-to-noise ratio (SNR) sampled from a uniform distribu-
tion between −10dB and 20dB using the datasets introduced in Section 3.1. During post-training,
with probability 0.5 we linearly mix random pairs of audio clips within a batch and set the target to
the union of their labels (element-wise OR).

3.4 EVALUATION SETUP: DATA, TASKS, AND METRICS

Evaluation Tasks. We consider two tasks commonly addressed in the literature: classification on
audio excerpts into discrete category labels and detection of events in longer audio files. We employ
three distinct evaluation setups to assess model representations comprehensively. Linear probing
trains a linear classifier on train split using time-averaged embeddings from the final layer of the
model (excluding classification heads), and then evaluates this probe on the test split. Retrieval
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Table 2: Pre- and post-training datasets with resulting model checkpoints. † Indicates checkpoints
released by prior work. “AS”=AudioSet. All post-trained EAT models use the EAT-all checkpoint
as the base.
Arch. Pre-train data Pre-trained checkpoint Post-train

data
Resulting checkpoint(s)

EffNetB0 ImageNet† – Bio / All / AS EffNetB0-bio, EffNetB0-all,
EffNetB0-AS

BEATs AS† BEATs (pre)† Bio / All / AS sl-BEATs-bio, sl-BEATs-all, BEATs
(SFT)†

EAT AS† EAT-base (pre)† AS EAT-base (SFT)†

EAT Bio / All / AS EAT-bio, EAT-all, EAT-AS Bio / All sl-EAT-bio, sl-EAT-all

evaluation directly investigates model embedding spaces by treating each test set item as a query
and ranking remaining items by cosine similarity. Clustering evaluation performs K-means with
known cluster counts on single-label datasets, evaluating similarity to ground truth classes using
normalized mutual information (marked as NMI).

Evaluation Paradigms: Probing, Retrieval, and Clustering. Current bioacoustics benchmarks
consider either an in-domain multiple taxa setup, such as BEANS (Hagiwara et al., 2023) and
(Robinson et al., 2024), or out-of-domain bird species detection, such as BIRB (Hamer et al.,
2023) and BirdSet (Rauch et al., 2025b), focusing on generalization. Here we extend these
benchmarks in multiple ways. (1) We expand the tasks to include individual identification and vocal
repertoire discovery, along with the curation of eight additional benchmark datasets. This extends
the evaluation of bioacoustic encoders from a focus on species classification of birds to a focus
on generality across multiple tasks and taxa. (2) Extending the work of Kather et al. (2025), we
also augment existing benchmarks with clustering and retrieval metrics, allowing us to examine a
model’s embedding spaces directly. Each of these benchmarks, tasks, and metrics is directly tied
to downstream research or conservation applications and allows us to analyze both pre-existing and
new models from a different perspective.

Evaluation datasets. We present the datasets and tasks we consider as part of our evaluation in
Table 4, Appendix A. We evaluate on the classification and detection tasks in the already existing
benchmarks BEANS (Hagiwara et al., 2023) and BirdSet (Rauch et al., 2025b). For BEANS we
follow the official train/validation/test splits in the original benchmark. We exclude the auxiliary
dataset SpeechCommands from BEANS but we include ESC-50 because it still may be useful for
conservation tasks relevant to bioacoustics e.g. habitat classification, poaching monitoring. For
BirdSet, we match their “Dedicated Train” setup, considering separate train and test splits for each of
the datasets. Accordingly, we derive the validation dataset as a stratified split on the species from the
train with 0.8, 0.2 ratios and seed 42. We exclude SSW (Kahl et al., 2022b) from BirdSet evaluation
as we consider it within some of our data-mix. We formulate detection similarly to BEANS and
BirdSet as segment-based multi-class classification and we use segment-based sound event detection
metrics to evaluate it (Mesaros et al., 2016a), allowing for the negative class (no class detected). We
leave frame-based (Mesaros et al., 2016a) or event-based (Mahon et al., 2025) temporally-strong
detection for future work. Importantly, solely for BirdSet which contains an important covariate shift
from train (focal recordings) to test (soundscapes) we use the same noise and mixup augmentations
in pre-training and post-training.

New Evaluation Datasets: Individual Identification and Vocal Repertoire Evaluation. For the
two new evaluation tasks we compile public datasets and create label-stratified train/validation/test
splits (seed 42, ratios 0.6/0.2/0.2). The Individual Identification task (Stowell et al., 2019;
Fukushima et al., 2015) is a supervised single-label classification problem over individuals of
the same species. The Vocal Repertoire Discovery setting (Elie & Theunissen, 2016; Mumm &
Knörnschild, 2014; Cohen et al., 2020; Palmer et al., 2025) evaluates how well embeddings discrim-
inate between the different call types within a species’ vocal repertoire. We treat this as a structure-
recovery problem with known K (the number of annotated call types): no probes are trained; labels
are used only as a reference to assess representation quality via (i) clustering (K-means with K equal
to the number of call types; scored by normalized mutual information, NMI) and (ii) audio-to-audio
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retrieval within call type (ROC AUC, R-AUC). This matches repertoire discovery when K is known.
Supervised call-type classification is also a useful formulation of the task, but performance on sev-
eral datasets was near-ceiling while others were too small for quality splits, so we exclude linear
probing for this task.

Probing Evaluation Setup To directly evaluate learned representations, we use linear probing on
time-averaged embeddings rather than full fine-tuning as Hagiwara (2023); Rauch et al. (2025b).
This avoids confounding effects from model size differences, ensuring fair comparison between
CNN and transformer representations. While performance may vary across embedding layers, all
models show similar trends (Cauzinille et al., 2024; Sarkar & Doss, 2025). Evaluating all layers
would exponentially increase computational cost, so we extract embeddings from the final layer (ex-
cluding classification heads) and leave comprehensive layer analysis for future work. Considering a
frozen representation (rather than fully finetuning) is also especially important for many downstream
applications, as it allows notably precomputing the embeddings (Dumoulin et al., 2025). In terms
of hyperparameters we use a learning rate of 1e-4, weight decay of 0.1, batch size of 32, and 900
epochs.

Metrics. For all tasks other than Vocal Repertoire Discovery we report classic performance metrics
on linear probing (top-1 accuracy for single-label tasks, macro-averaged mean average precision for
multilabel tasks). To evaluate retrieval, we consider each item in the test set as a query. We rank
the remaining elements of the test set according to their cosine similarity with the query under the
model’s embedding function, and evaluate the ordering. For single-label tasks (BEANS Classifica-
tion, Individual ID, and Vocal Repertoire), we consider items as relevant to the query if they share
the same label as the query. For multi-label tasks (BEANS Detection, BirdSet) we consider items to
be relevant if they share at least one label with the ground-truth item. We exclude queries with no
labels, while ground-truth items with no labels are included in the evaluation as negatives. We mea-
sure this ranking using ROC AUC as the primary metric (marked as R-AUC with R for retrieval).
For Individual Identification evaluation datasets Pipit and Chiffchaff (Stowell et al., 2019), the train-
ing set follows an intentionally different background noise distribution than the test set following
original design in Stowell et al. (2019). To evaluate generalization in this scenario, we report ROC
AUC by using each example in the train set as a query, rather than each example in the test set as a
query. For single-label datasets in all benchmarks, we also consider a clustering task. For each eval-
uation set, we perform K-means clustering given a known number of clusters (labels). We evaluate
similarity of these clusters compared to the known class groups by measuring normalized mutual
information (marked as NMI) between the two. These two additional evaluations offer insight into
the pre-trained embeddings of a model, but are also relevant to downstream tasks in bioacoustics,
namely audio-to-audio retrieval (Hamer et al., 2023) (retrieval) and repertoire discovery (Best et al.,
2023) (clustering) or call-type classification. For vocal repertoire discovery, we use clustering and
retrieval as the primary evaluations. All metrics are formalized in the Appendix in B.2.

4 RESULTS

4.1 WHAT DATA MATTERS IN POST-TRAINING EFFICIENTNET

We present results for our EffNet models aggregated across benchmarks in Table 3, the shaded
rows. We compare to Perch, SurfPerch, and BirdNet - all EffNet-based and considered state-of-the-
art bioacoustic encoders. The results highlight the value of our diverse curated bioacoustic datasets,
with our best EffNet model outperforming on eight of ten metrics. We observe a consistent per-
formance gain of including general audio in the data-mix, transferring across focal classification,
multi-label classification on soundscapes, vocal repertoire, and individual ID tasks. Consistent with
other works (Ghani et al., 2023), supervised training on general audio alone transfers poorly com-
pared to bioacoustic data. Interestingly, this holds for the newly benchmarked Vocal Repertoire and
Individual ID tasks, suggesting large-scale species-prediction is an effective approach for transfer
to these tasks, which are often studied independently. We further characterize what supervised data
transfers to which tasks and species through further ablations in the Appendix in Figure 3.
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Figure 2: (a) Win-rate of adding AudioSet in self-supervised pre-training vs. pure bioacoustic
data, with average relative gain per metric. (b) Supervised encoders outperform self-supervised on
BEANS classification, which is primarily focal recordings. However, self-supervised encoders suf-
fer markedly smaller performance drops than supervised encoders when moving from focal record-
ings to soundscape (BEANS Detection), showing strong out-of-distribution performance. In con-
trast, self-supervised encoders post-trained with supervised learning on bioacoustic data enjoy the
strongest performance both in and out-of distribution.

4.2 SELF-SUPERVISED PRE-TRAINING HELPS OUT-OF-DISTRIBUTION

Comparing the results of EAT models trained with self-supervised learning, we find a strong effect
of including general audio in the data-mix, with the model trained with the addition of AudioSet
significantly outperforming the bioacoustics-only model across tasks (Figure 2a).

We further compare our supervised and self-supervised models (Figure 2b) alongside existing mod-
els, and alongside post-trained SSL models, discussed in the following section. For this comparison
we want to see how discriminative raw representations from the models are with respect to the tar-
get datasets, and we use ROC AUC as a training-free metric. Compared across benchmarks, this
analysis should give an idea about how generalizable the embedding space is. In this analysis we
trade-off experimental control for scale, using large datasets. Running the same analysis on datasets
where we control for species distribution, noise conditions, and other confounders should give a
better explanation on how robust these representations are. Because we are not aware of any dataset
that offers this controlled conditions we leave this for future work.

While supervised models excel in tasks closely matching their training distribution, self-supervised
models demonstrate superior generalization capabilities on out-of-distribution tasks. Specifically,
we find when generalizing from BEANS classification (typically focal recordings) to BEANS De-
tection (entirely soundscape recordings) the self-supervised models drop on average only 0.01 re-
trieval ROC AUC compared to a drop of 0.09 retrieval ROC AUC for the supervised models. The
strength of the effect is sufficient that the best pure self-supervised model, the pre-trained BEATs,
outperforms the strongest pure supervised models by retrieval on BEANS Detection. This finding
underscores the strong potential of self-supervised learning in bioacoustics, where supervised learn-
ing is still considered state-of-the-art, yet models are challenged by huge distribution shifts between
training and deployment (Hamer et al., 2023).

4.3 POST-TRAINING RECIPES FOR SELF-SUPERVISED BACKBONES

We show the results of self-supervised backbones post-trained on our bioacoustic dataset, compared
to state-of-the-art bioacoustic encoders in Table 3. Our best post-trained models outperform overall,
achieving state-of-the-art performance across the established BEANS Classification, BEANS Detec-
tion, and BirdSet benchmarks, outperforming both their self-supervised base models and supervised
baselines. On the newly-proposed Vocal Repertoire Discovery and Individual Identification bench-
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BEANS Classification BEANS Detection BirdSet Individual ID Vocal Repertoire
Model Probe R-auc C-nmi Probe R-auc Probe R-auc Probe R-auc R-auc C-nmi

BEATS (SFT)SSL 0.724 0.739 0.504 0.339 0.692 0.101 0.675 0.375 0.602 0.755 0.485
BEATS (pretrained)SSL 0.774 0.734 0.542 0.381 0.722 0.129 0.686 0.380 0.637 0.775 0.498
EAT-base (pretrained)SSL 0.679 0.675 0.424 0.252 0.692 0.104 0.650 0.363 0.623 0.768 0.467
EAT-base (SFT)SL-SSL 0.758 0.748 0.478 0.358 0.714 0.143 0.676 0.418 0.632 0.817 0.527
Bird-AVES-biox-baseSSL 0.705 0.646 0.410 0.340 0.689 0.092 0.670 0.402 0.622 0.726 0.453
NatureBEATsSL-SSL 0.804 0.774 0.560 0.385 0.724 0.223 0.723 0.410 0.645 0.811 0.552
Bird-MAE-HugeSSL 0.766 0.674 0.432 0.354 0.680 0.168 0.636 0.404 0.637 0.812 0.485
SurfPerchSL 0.760 0.745 0.484 0.301 0.664 0.160 0.694 0.457 0.656 0.751 0.492
BirdNetSL 0.796 0.772 0.523 0.392 0.687 N/A N/A 0.472 0.708 0.795 0.545
PerchSL 0.768 0.759 0.478 0.368 0.674 0.233 0.656 0.530 0.705 0.758 0.493

EffNetB0-AudioSetSL 0.651 0.721 0.486 0.246 0.670 0.098 0.655 0.397 0.612 0.760 0.481
EffNetB0-bioSL 0.786 0.799 0.563 0.365 0.695 0.279 0.704 0.457 0.683 0.806 0.568
EffNetB0-allSL 0.800 0.809 0.584 0.362 0.712 0.279 0.707 0.531 0.701 0.830 0.582
EAT-ASSSL 0.704 0.714 0.473 0.311 0.704 0.125 0.685 0.362 0.627 0.801 0.533
EAT-bioSSL 0.692 0.671 0.410 0.311 0.679 0.143 0.631 0.378 0.627 0.757 0.466
EAT-allSSL 0.709 0.704 0.448 0.315 0.694 0.166 0.677 0.348 0.611 0.788 0.512
sl-BEATS-bioSL-SSL 0.840 0.811 0.594 0.390 0.719 0.288 0.726 0.484 0.681 0.789 0.516
sl-BEATS-allSL-SSL 0.832 0.813 0.604 0.408 0.726 0.294 0.732 0.511 0.690 0.798 0.529
sl-EAT-bioSL-SSL 0.797 0.792 0.562 0.353 0.687 0.249 0.705 0.495 0.672 0.806 0.565
sl-EAT-allSL-SSL 0.788 0.791 0.536 0.356 0.704 0.255 0.706 0.456 0.637 0.798 0.530

Table 3: Aggregate results across bioacoustic benchmarks and tasks (best per metric in bold). We
report ROC AUC for retrieval, accuracy for probing on BEANS classification and Individual ID,
mean-average precision for probe on BEANS Detection and BirdSet. We report the mean of each
metric over datasets per benchmark. †BirdNet results on BirdSet are excluded following the authors
(Rauch et al., 2025b) due to data leakageModel labels carry training tags: SSL self-supervised, SL

supervised, SL-SSL supervised fine-tuning after SSL pretraining. Models above the midrule are exist-
ing/pretrained checkpoints; below are new models from this work. EfficientNet models are shaded.

marks, the post-trained models maintain competitive performance, but the newly-trained EffNet on
mixed bioacoustic and general audio data performs best, and BirdNet performs strongest by retrieval
on Individual Identification. With respect to the the data-mix, the BEATs model trained on the mix of
general audio and bioacoustic audio outperforms overall, while the mixed training has a more vari-
able effect on EAT. We additionally find that post-training retains some of the out-of-distribution
gains of the pre-trained backbone, yielding models which are strong both in and out of distribution,
maintaining the benefits of both paradigms - we visualize this in Figure 2b. While post-training
both EAT and BEATs gave consistent improvements vs. their raw SSL models (Figure 3 in the
Appendix), solely the post-trained BEATs achieved SOTA results overall, possibly suggesting that
stronger SSL backbones may lead to better post-trained models. The other existing bioacoustic post-
trained self-supervised backbone NatureBEATs follows closely on several benchmarks, significantly
outperforming pre-trained BEATs and outperforming supervised baselines on multiple benchmarks.
Interestingly, we observe the pre-trained NatureBEATs extends the line of the self-supervised mod-
els, while our post-trained models behave more like stronger supervised models (Figure 2b.) This
discovery provides interesting signal for future work on post-training under different paradigms.
Overall, these results strongly support our proposed recipe of self-supervised training on diverse
data-mixes of bioacoustics and general audio, followed by supervised post-training on the same
mix. They also show supervised and self-supervised learning in bioacoustics are complementary
for representation learning, and suggest a simple step to improve overall quality of self-supervised
bioacoustic encoders, not yet commonly adopted (Hagiwara, 2023; Rauch et al., 2025a). We share
full, non-aggregated results for all models in the Appendix in Tables 6, 7, 8 and 9.
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5 CONCLUSION

We presented the first large-scale empirical study and a recipe for developing a generalizable bioa-
coustic encoder. With few architectural assumptions, we believe this recipe can scale as both labeled
bioacoustic data continue to grow and self-supervised learning continues to improve.

We benchmarked 19 CNN- and Transformer-based models across 26 datasets and four task families.
We demonstrated that self-supervised pre-training on a mixture of broad bioacoustic and general-
audio data, followed by supervised post-training on the same mix, yields the best in- and out-of-
distribution results, outperforming state-of-the-art baselines such as BirdNET, Perch and BEATs on
existing benchmarks (BEANS, BirdSet), and also on newly introduced benchmarks for individual
identification and vocal repertoire. Diverse training audio, especially adding AudioSet, consistently
improved transfer, whereas supervised training on general audio alone transferred poorly.

Beyond models, we broaden bioacoustic evaluation by curating new benchmarks for individual iden-
tification and vocal repertoire classification from public datasets, and by augmenting existing suites
with retrieval and clustering metrics. These additions probe representation quality directly and are
aligned with practical tasks such as audio-to-audio retrieval and repertoire discovery. We observe
that large-scale bioacoustic pre-training is an effective path toward representations that generalize to
these under-studied tasks.

Together, these findings provide actionable recipes for building versatile encoders and a richer
benchmark for future research. By open-sourcing our encoders (upon paper acceptance) we hope
this line of work will be used to accelerate research in animal communication and conservation
applications through bioacoustics.
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van Merriënboer, Amanda Navine, Patrick Hart, Ben Williams, Timothy A. C. Lamont, Tries B.
Razak, Mars Coral Restoration Team, Sheryn Brodie, Brendan Doohan, Phil Eichinski, Paul Roe,
Lin Schwarzkopf, and Tom Denton. The search for squawk: Agile modeling in bioacoustics,
2025. URL https://arxiv.org/abs/2505.03071.

Julie E Elie and Frederic E Theunissen. The vocal repertoire of the domesticated zebra finch: a data-
driven approach to decipher the information-bearing acoustic features of communication signals.
Animal cognition, 19(2):285–315, 2016.

Julia Fischer, Rahel Noser, and Kurt Hammerschmidt. Bioacoustic field research: a primer to acous-
tic analyses and playback experiments with primates. American journal of primatology, 75(7):
643–663, 2013.

E Fonseca, X Favory, J Pons, F Font, and X Serra. Fsd50k: an open dataset of human-labeled sound
events. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30:829–852, 2021.

Makoto Fukushima, Alex M Doyle, Matthew P Mullarkey, Mortimer Mishkin, and Bruno B Aver-
beck. Distributed acoustic cues for caller identity in macaque vocalization. Royal Society open
science, 2(12):150432, 2015.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 776–780. IEEE, 2017.

Burooj Ghani, Tom Denton, Stefan Kahl, and Holger Klinck. Global birdsong embeddings enable
superior transfer learning for bioacoustic classification. Scientific Reports, 13(1):22876, 2023.

Rory Gibb, Ella Browning, Paul Glover-Kapfer, and Kate E Jones. Emerging opportunities and
challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology
and Evolution, 10(2):169–185, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, et al. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Masato Hagiwara. Aves: Animal vocalization encoder based on self-supervision. In ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1–5. IEEE, 2023.

11

https://arxiv.org/abs/2505.03071
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Masato Hagiwara, Benjamin Hoffman, Jen-Yu Liu, Maddie Cusimano, Felix Effenberger, and Katie
Zacarian. Beans: The benchmark of animal sounds. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Jenny Hamer, Eleni Triantafillou, Bart van Merriënboer, Stefan Kahl, Holger Klinck, Tom Denton,
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Willem-Pier Vellinga and Robert Planqué. The xeno-canto collection and its relation to sound recog-
nition and classification. CLEF (Working Notes), 1391, 2015.

George Vengrovski, Miranda R. Hulsey-Vincent, Melissa A. Bemrose, and Timothy J. Gardner.
Tweetybert: Automated parsing of birdsong through self-supervised machine learning. bioRxiv,
2025. doi: 10.1101/2025.04.09.648029. URL https://www.biorxiv.org/content/
early/2025/04/10/2025.04.09.648029.

Gordon Wichern, Joe Antognini, Michael Flynn, Licheng Richard Zhu, Emmett McQuinn, Dwight
Crow, Ethan Manilow, and Jonathan Le Roux. Wham!: Extending speech separation to noisy
environments. In Proceedings of Interspeech, September 2019.

14

https://asa.scitation.org/doi/abs/10.1121/2.0000358
https://arxiv.org/abs/2406.01253
https://doi.org/10.1121/1.4799597
https://www.biorxiv.org/content/early/2025/04/10/2025.04.09.648029
https://www.biorxiv.org/content/early/2025/04/10/2025.04.09.648029


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Kaja Wierucka, Derek Murphy, Stuart K Watson, Nikola Falk, Claudia Fichtel, Julian León,
Stephan T Leu, Peter M Kappeler, Elodie F Briefer, Marta B Manser, et al. Same data, dif-
ferent results? machine learning approaches in bioacoustics. Methods in Ecology and Evolution,
2025.
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A TRAINING AND EVALUATION DATA COMPARISON

To complement the related works discussion in Section 2, we provide a comparison with current
bioacoustics benchmarks in Table 4, including both training and evaluation configurations.

Table 4: Training and evaluation data comparison for papers comparing audio encoders across multi-
ple species benchmarks. The ones from Robinson et al. (2025) were reframed for zero-shot learning.

Dataset Papers
Ours Robinson et al. (2025) Robinson et al. (2024) Hagiwara (2023) Rauch et al. (2025b) Rauch et al. (2025a) Ghani et al. (2023) Williams et al. (2024) Hamer et al. (2023)

Pre-training Data
AS
XC
WTK
ASA
INAT

Post-training Data
AS
XC
WTK
ASA
INAT

BEANS Classification
DOG
BAT
HBDB
CBI
BWTK

BEANS Detection
ENA
RFCX
HIC
GIB
DCASE

BirdSet
POW
PER
NBP
HSN
UHH
SNE
SSW

Individual ID
PIP
CHIF
MAC
OWL

Vocal Repertoire
ZFIN
OTT
BFIN
ORCA
Other data 6 3

B EXPERIMENTAL SETUP

B.1 EVALUATION METRICS

B.2 PERFORMANCE METRICS

We formalize the evaluation metrics we introduce in Section 3.4. We evaluate linear probing with
accuracy for classification, and macro-averaged mean-average precision for detection. We evaluate
retrieval with ROC AUC and clustering with NMI. We formalize all evaluation metrics below.

• Linear Probing Performance
1a. Top-1 Accuracy (for classification):

A =
1

N

N∑
i=1

I(yi = ŷi) (1)

where N is the number of samples, yi is the true label, ŷi is the predicted label, and I
is the indicator function (Hagiwara, 2023; Rauch et al., 2025b).

1b. Average Precision (AP). For each class k, let πk be the permutation of {1, . . . , N}
that sorts examples by decreasing score for class k. Define

ti := 1{yπk(i),k = 1}, TPi :=

i∑
j=1

tj , P (i) :=
TPi

i
.
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The (non-interpolated) average precision for class k is

APk =
1

max
(
1,
∑N

n=1 yn,k

) N∑
i=1

P (i) ti,

and the mean average precision is the macro average over classses

mAP =
1

K

K∑
k=1

APk .

• Retrieval Performance (Area Under the ROC Curve):

AUC =

∫ 1

0

TPR(FPR) dFPR (2)

where TPR = TP
TP+FN and FPR = FP

FP+TN , with TP, FP, TN, FN being true/false posi-
tives/negatives (Rauch et al., 2025b; Hamer et al., 2023).

• Clustering Performance (Normalized Mutual Information):

NMI(U, V ) =
2 · I(U, V )

H(U) +H(V )
(3)

where U and V are cluster assignments, I(U, V ) is their mutual information, and H(U),
H(V ) are their entropies (Kather et al., 2025).

B.3 WIN-RATE

We quantify the benefit of post-training self-supervised learning (SSL) backbones through a win-rate
analysis that compares post-trained models against their corresponding base models across multiple
benchmarks and evaluation metrics. For each post-training pair (Mpost,Mbase), where Mpost denotes
a post-trained model and Mbase its corresponding base model, we compute the relative percentage
improvement for each metric m and dataset d as:

∆m,d(Mpost,Mbase) =
Sm,d(Mpost)− Sm,d(Mbase)

Sm,d(Mbase)
× 100% (4)

where Sm,d(M) represents the score of model M on metric m for dataset d, defined as: Sm,d(M) =
Ad(M) for linear probing accuracy on classification tasks, Sm,d(M) = mAPd(M) for mean
average precision on detection tasks, Sm,d(M) = AUCd(M) for retrieval performance, and
Sm,d(M) = NMId(M) for clustering performance. Cases where Sm,d(Mbase) = 0 are excluded
from the analysis to avoid division by zero.

For each benchmark B, we define the set of valid metric-dataset combinations MB = {(m, d) :
m ∈ Metrics(B), d ∈ Datasets(B)}, where Metrics(B) and Datasets(B) denote the metrics and
datasets associated with benchmark B, respectively. For a given post-training pair (Mpost,Mbase)
and benchmark B, we define a binary win indicator Wm,d ∈ {0, 1} for each metric-dataset combi-
nation (m, d) ∈ MB :

Wm,d =

{
1 if ∆m,d(Mpost,Mbase) > 0

0 otherwise
(5)

The win-rate ωB for benchmark B and post-training pair (Mpost,Mbase) is then computed as the
percentage of wins:

ωB(Mpost,Mbase) =
1

|MB |
∑

(m,d)∈MB

Wm,d × 100% (6)

where |MB | denotes the cardinality of MB (i.e., the total number of valid metric-dataset combina-
tions for benchmark B). Note that Wm,d is a binary indicator for individual comparisons, while ωB

is the aggregated win-rate percentage. To obtain an overall assessment of post-training benefits, we
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aggregate win-rates across all post-training pairs P = {(M (i)
post,M

(i)
base)}Ni=1, where N is the number

of post-training pairs. The aggregated win-rate for benchmark B is:

ωagg
B =

∑N
i=1

∑
(m,d)∈MB

W
(i)
m,d∑N

i=1 |M
(i)
B |

× 100% (7)

where W
(i)
m,d denotes the win indicator for pair i and metric-dataset combination (m, d), and |M(i)

B |
is the number of valid combinations for pair i on benchmark B. Additionally, we compute the
average percentage improvement across all comparisons:

∆̄B =
1∑N

i=1 |M
(i)
B |

N∑
i=1

∑
(m,d)∈M(i)

B

∆
(i)
m,d (8)

where ∆
(i)
m,d is the improvement for pair i on metric-dataset combination (m, d). Our analysis

considers the following post-training pairs: EAT-AS: (sl-EAT-AS, EAT-all), EAT-bio: (sl-EAT-bio,
EAT-all), EAT-all: (sl-EAT-all, EAT-all), BEATS-bio: (sl-BEATS-bio, BEATS (pretrained)), and
BEATS-all: (sl-BEATS-all, BEATS (pretrained)), where the notation “sl-” indicates a model that
has been post-trained with supervised learning on downstream tasks.

B.4 DATA SOURCES

For training we use a 2021 version of AudioSet, 2023 versions of Watkins “All cuts” and Animal
Sound Archive, June 2023 versions of Xeno-canto, iNaturalist. All the training data was released un-
der Creative Commons licenses on the respective platforms, with the exception of Watkins for which
we received appropriate licensing agreements, including permission to redistribute. We downloaded
BirdSet using the Huggingface dataset library1. For BEANS we used the respective scripts the
authors provide in their repository2.

For the new benchmarks we use the public repositories of Bengalese Finch3, Zebra Finch4, Giant
Otters5, DCLDE 2026 Killer Whale6, Bird ID7, Macaques Coo Calls8.

B.5 SOFTWARE IMPLEMENTATION

Our experimental pipeline is implemented in Python using the Pytorch library. We have used a fixed
random seed (42) for generating the datasets and as initial seeds for Pytorch and numpy.

We used open-source implementations for: BEATs9, EAT10, and EfficientNetB0 from torchvision11.
We wrote pytorch wrappers for BirdNet and Perch using tensorflow-lite.

B.6 HYPERPARAMETERS

We include the full hyperparameters for our trained models in Table 5.

To select the hyperparameters we started from the ones proposed in their original papers. In the case
of BEATs the learning rate we started from 1e-4 which is the original peak learning rate. We did

1https://huggingface.co/datasets/DBD-research-group/BirdSet
2https://github.com/earthspecies/beans
3https://figshare.com/articles/dataset/Bengalese_Finch_song_repository/

4805749
4https://www.nature.com/articles/s41467-018-06394-9
5https://archive.org/details/giant_otters
6https://catalog.data.gov/dataset/dclde-2026-killer-whale-orcinus-orca-ecotype-and-other-species-annotations-for-the-detecti-2026
7https://zenodo.org/records/1413495
8https://archive.org/details/macaque_coo_calls
9https://github.com/microsoft/unilm/tree/master/beats

10http://github.com/cwx-worst-one/EAT
11https://docs.pytorch.org/vision/main/models/generated/torchvision.

models.efficientnet_b0.html
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Table 5: Training hyperparameters for all model variants
Model Training

Data
Stage-1 Stage-1 Epochs LR Batch Optimizer Weight Scheduler Warmup

Epochs LR Size Decay Steps
EfficientNet Variants
EffNetB0-AS AudioSet NA NA 50 5e-4 256 AdamW 0.01 Cosine 4000
EffNetB0-bio bio NA NA 50 5e-4 256 AdamW 0.01 Cosine 4000
EffNetB0-all AS + Bio NA NA 50 5e-4 256 AdamW 0.01 Cosine 4000
EffNetB0-soundscape Bio +

Soundscape
NA NA 50 5e-4 128 AdamW 0.01 Cosine 4000

EffNetB0-nobirds‡ Bio(no
birds)

NA NA 50 5e-4 256 AdamW 0.01 Cosine 4000

EffNetB0-nowhales‡ Bio + AS
(no whales)

NA NA 50 5e-4 256 AdamW 0.01 Cosine 4000

EffNetB0-birds‡ Bio + AS
(birds only)

NA NA 50 5e-4 256 AdamW 0.01 Cosine 4000

BEATs Variants
sl-BEATs-all All datasets 2 5e-4 10 1e-4 256 AdamW 0.01 Cosine 5000
sl-BEATs-bio Bio 2 5e-4 10 1e-4 256 AdamW 0.01 Cosine 5000

EAT Variants
EAT-bio Bio NA NA 30 1e-4 48 AdamW 0.01 Cosine 53333
EAT-all AS + Bio NA NA 30 1e-4 48 AdamW 0.01 Cosine 53333
EAT-AS AudioSet NA NA 30 1e-4 48 AdamW 0.01 Cosine 53333
sl-EAT-bio SSL + Bio 2 1e-4 10 8e-5 256 AdamW 0.01 Cosine 2000
sl-EAT-all SSL + All 2 1e-4 10 8e-5 256 AdamW 0.01 Cosine 2000

‡ Ablation studies with filtered training data.
BEATs and EAT sl models have an initial stage with backbone frozen, with cosine scheduler for stage-1 epochs
with Stage-1 lr
Bio = core bioacoustic data, AS = AudioSet, SSL = Self-supervised learning.

5k warmup steps, the same as the original paper. We found that several works, particularly DCASE
challenges are doing the same. For EAT we found it important to decrease the learning rate with
respect to the original paper (5e-4) because of the larger batch size. For AVES we keep the learning
rate (1e-4) which was used in the BEANS benchmark, the test-bed for this model. For probing we
use a learning rate of 1e-4, weight decay of 0.1, batch size of 32, and 900 epochs.

C ADDITIONAL RESULTS

C.1 BENEFITS OF POST-TRAINING VS. RAW SSL

As shown in Figure 3, post-training SSL encoders with supervised learning provides a consistent
improvement vs. raw SSL backbones, sometimes with large relative gains. These results show that
supervised learning can have complementary benefits to self-supervised learning for bioacoustic
representation learning. They also give clear evidence for those developing self-supervised models
to post-train supervised learning, even when the objective is transfer to out-of-distribution tasks.

C.2 ABLATION ON TRANSFER OF TRAINING DATA TO DOWNSTREAM TASKS

We show additional ablations on transfer of various data-mixes to downstream tasks in Figure 4
and Figure 5. From a baseline of (focal) bioacoustic data only, we show the performance of adding
general audio, adding soundscape recordings, and ablating different taxonomic groups (whales, and
then all taxa but birds.) Adding general audio to the training mix improved results overall, but in
particular transferred consistently across our vocal repertoire datasets. This data mix yields large
gains on the ESC-50 dataset evaluating representations of general audio; though unsurprising, this is
a relevant benefit for bioacoustic encoders in tasks such as classifying environmental noise. Training
on only general audio data dropped performance very significantly overall, but the drops were most
severe on BEANS Classification tasks well-informed by species prediction, and relatively smaller on
detection. Adding soundscape data into the training mix with focal is a tempting strategy for learning
improved representations useful for downstream tasks on soundscapes, used e.g. by later versions
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Figure 3: Win-rate of post-trained SSL models vs. their raw SSL backbones. We plot the win-rates
summing over all metrics for all our post-trained (EAT and BEATs) models, and show the average
relative gain per model with respect to its base model.

Figure 4: Detailed transfer of training data to taxa and tasks in the BEANS benchmark. Heatmap
shows the performance change for an EfficientNet trained on each data mix as compared to a base-
line “bio” dataset. “- Bio + General” is trained on only AudioSet, “+ Soundscape” adds sound-
scape datasets, “- Whales” ablates all marine mammal recordings, “Birds only” removes all non-bird
recordings.

of BirdNet (Kahl et al., 2021). However, in our ablation, this did not give consistent improvements,
possibly due to the lack of diversity in the easily accessible soundscape data.
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Figure 5: Detailed transfer of training data to taxa and tasks in the BirdSet, Individual Identifica-
tion, and Vocal Repertoire Discovery benchmarks. Heatmap shows the performance change for an
EfficientNet trained on each data mix as compared to a baseline “bio” dataset. “- Bio + General” is
trained on only AudioSet, “+ Soundscape” adds soundscape datasets, “- Whales” ablates all marine
mammal recordings, “Birds only” removes all non-bird recordings.
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Table 6: BEANS Classification datasets only (best per metric in bold). We report R-AUC
for retrieval; probe accuracy; clustering reported as NMI. Models above the midrule are exist-
ing/pretrained checkpoints; below are new models from this work.

Watkins CBI HBDB BATS Dogs ESC-50
Model Probe R-AUC NMI Probe R-AUC NMI Probe R-AUC NMI Probe R-AUC NMI Probe R-AUC NMI Probe R-AUC NMI

BEATS (SFT)SSL 0.820 0.775 0.610 0.332 0.710 0.567 0.769 0.702 0.391 0.639 0.614 0.184 0.842 0.647 0.350 0.945 0.984 0.921
BEATS (pretrained)SSL 0.903 0.806 0.694 0.359 0.679 0.564 0.810 0.702 0.564 0.705 0.635 0.191 0.935 0.666 0.427 0.930 0.917 0.813
EAT-base (pretrained)SSL 0.850 0.744 0.585 0.247 0.617 0.502 0.778 0.630 0.482 0.635 0.588 0.125 0.705 0.585 0.194 0.858 0.884 0.655
EAT-base (SFT)SL-SSL 0.867 0.808 0.613 0.388 0.714 0.558 0.782 0.686 0.328 0.654 0.631 0.216 0.899 0.659 0.216 0.958 0.992 0.938
Bird-AVES-biox-baseSSL 0.852 0.703 0.556 0.318 0.613 0.521 0.769 0.594 0.435 0.662 0.593 0.091 0.770 0.585 0.233 0.858 0.791 0.624
NatureBEATsSL-SSL 0.926 0.872 0.761 0.580 0.756 0.586 0.804 0.731 0.503 0.720 0.648 0.274 0.885 0.684 0.436 0.912 0.951 0.798
Bird-MAE-HugeSSL 0.888 0.744 0.567 0.457 0.623 0.537 0.829 0.695 0.470 0.733 0.580 0.083 0.827 0.577 0.244 0.860 0.823 0.691
SurfPerchSL 0.841 0.787 0.581 0.570 0.798 0.635 0.756 0.687 0.437 0.622 0.615 0.168 0.878 0.664 0.309 0.890 0.921 0.777
BirdNetSL 0.897 0.826 0.616 0.702 0.835 0.661 0.782 0.734 0.488 0.706 0.655 0.225 0.885 0.704 0.490 0.805 0.878 0.660
PerchSL 0.831 0.780 0.565 0.792 0.868 0.669 0.628 0.611 0.187 0.605 0.627 0.185 0.928 0.758 0.556 0.823 0.907 0.703

EffNetB0-AudioSetSL 0.708 0.759 0.753 0.235 0.660 0.531 0.732 0.666 0.310 0.566 0.621 0.156 0.799 0.649 0.312 0.868 0.969 0.852
EffNetB0-bioSL 0.906 0.894 0.762 0.780 0.912 0.768 0.752 0.693 0.395 0.633 0.639 0.214 0.921 0.764 0.539 0.723 0.894 0.702
EffNetB0-allSL 0.900 0.899 0.723 0.772 0.910 0.772 0.750 0.710 0.436 0.649 0.645 0.226 0.899 0.762 0.579 0.830 0.930 0.770
EAT-ASSSL 0.855 0.802 0.640 0.266 0.633 0.520 0.800 0.718 0.489 0.654 0.632 0.212 0.784 0.604 0.236 0.868 0.897 0.743
EAT-bioSSL 0.823 0.732 0.574 0.330 0.629 0.514 0.758 0.701 0.455 0.639 0.596 0.151 0.863 0.583 0.196 0.740 0.782 0.568
EAT-allSSL 0.873 0.773 0.618 0.326 0.644 0.516 0.791 0.722 0.475 0.655 0.612 0.162 0.755 0.593 0.227 0.853 0.878 0.689
sl-BEATS-bioSL-SSL 0.935 0.911 0.786 0.798 0.933 0.801 0.775 0.702 0.470 0.696 0.656 0.205 0.942 0.730 0.499 0.897 0.934 0.805
sl-BEATS-allSL-SSL 0.914 0.896 0.781 0.789 0.931 0.788 0.789 0.718 0.488 0.681 0.654 0.218 0.906 0.730 0.499 0.912 0.949 0.849
sl-EAT-bioSL-SSL 0.903 0.945 0.840 0.818 0.941 0.829 0.754 0.685 0.407 0.657 0.626 0.170 0.871 0.690 0.407 0.778 0.865 0.720
sl-EAT-allSL-SSL 0.885 0.932 0.761 0.755 0.943 0.802 0.754 0.657 0.340 0.650 0.635 0.183 0.863 0.681 0.384 0.818 0.895 0.747

Table 7: BEANS Detection datasets only (best per metric in bold). We report R-AUC for retrieval
and mean-average precision for probe. Models above the midrule are existing/pretrained check-
points; below are new models from this work.

enabirds rfcx hiceas gibbons dcase
Model Probe R-AUC Probe R-AUC Probe R-AUC Probe R-AUC Probe R-AUC

BEATS (SFT)SSL 0.428 0.643 0.094 0.713 0.577 0.584 0.216 0.673 0.381 0.847
BEATS (pretrained)SSL 0.525 0.678 0.110 0.720 0.544 0.627 0.351 0.686 0.373 0.897
EAT-base (pretrained)SSL 0.403 0.631 0.077 0.706 0.475 0.564 0.041 0.660 0.265 0.899
EAT-base (SFT)SL-SSL 0.467 0.672 0.106 0.709 0.541 0.584 0.247 0.699 0.430 0.904
Bird-AVES-biox-baseSSL 0.465 0.646 0.111 0.711 0.472 0.612 0.344 0.626 0.309 0.850
NatureBEATsSL-SSL 0.601 0.714 0.124 0.764 0.596 0.624 0.159 0.627 0.447 0.893
Bird-MAE-HugeSSL 0.572 0.656 0.116 0.690 0.496 0.545 0.219 0.626 0.367 0.884
SurfPerchSL 0.465 0.598 0.131 0.714 0.443 0.595 0.083 0.609 0.383 0.803
BirdNetSL 0.648 0.743 0.148 0.747 0.431 0.532 0.279 0.584 0.455 0.827
PerchSL 0.610 0.643 0.149 0.783 0.464 0.530 0.252 0.622 0.365 0.792

EffNetB0-AudioSetSL 0.343 0.627 0.060 0.679 0.398 0.561 0.145 0.589 0.285 0.893
EffNetB0-bioSL 0.501 0.701 0.120 0.732 0.486 0.521 0.258 0.643 0.459 0.879
EffNetB0-allSL 0.528 0.692 0.129 0.736 0.505 0.555 0.166 0.678 0.482 0.901
EAT-ASSSL 0.418 0.654 0.086 0.717 0.534 0.579 0.255 0.665 0.263 0.903
EAT-bioSSL 0.428 0.660 0.087 0.665 0.571 0.515 0.081 0.667 0.389 0.890
EAT-allSSL 0.475 0.668 0.103 0.723 0.569 0.511 0.155 0.666 0.275 0.901
sl-BEATS-bioSL-SSL 0.555 0.712 0.109 0.750 0.536 0.571 0.303 0.667 0.448 0.897
sl-BEATS-allSL-SSL 0.566 0.716 0.118 0.741 0.527 0.566 0.366 0.700 0.465 0.906
sl-EAT-bioSL-SSL 0.516 0.666 0.099 0.708 0.546 0.580 0.190 0.638 0.415 0.842
sl-EAT-allSL-SSL 0.528 0.665 0.099 0.739 0.536 0.618 0.170 0.667 0.445 0.832

C.3 FULL RESULTS

We include full results for each benchmark in Tables 6 (BEANs Classification) 7 (BEANS Detec-
tion) 8 (BirdSet) and Table 9 (Vocal Repertoire and Individual ID).
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Table 8: BirdSet benchmark results: Multi-label bird detection tasks (best per metric in bold). We
report ROC AUC for retrieval as R-AUC and mean-average precision for probe. No clustering
metrics are reported. †BirdNet results are excluded following the authors (Rauch et al., 2025b).
Models above the midrule are existing/pretrained checkpoints; below are new models from this
work.

POW PER NES NBP HSN SNE UHH
Model Probe R-AUC Probe R-AUC Probe R-AUC Probe R-AUC Probe R-AUC Probe R-AUC Probe R-AUC

BEATS (SFT)SSL 0.108 0.654 0.046 0.642 0.062 0.726 0.213 0.649 0.107 0.625 0.079 0.725 0.094 0.704
BEATS (pretrained)SSL 0.157 0.703 0.070 0.649 0.095 0.731 0.248 0.648 0.105 0.568 0.116 0.753 0.109 0.751
EAT-base (pretrained)SSL 0.137 0.658 0.053 0.621 0.064 0.712 0.188 0.627 0.094 0.548 0.092 0.679 0.098 0.706
EAT-base (SFT)SL-SSL 0.163 0.649 0.066 0.634 0.097 0.745 0.290 0.651 0.140 0.585 0.124 0.741 0.124 0.724
Bird-AVES-biox-baseSSL 0.142 0.679 0.044 0.615 0.050 0.755 0.196 0.631 0.050 0.556 0.082 0.714 0.081 0.740
NatureBEATsSL-SSL 0.244 0.722 0.132 0.690 0.177 0.819 0.419 0.708 0.251 0.574 0.197 0.796 0.143 0.749
Bird-MAE-HugeSSL 0.243 0.718 0.092 0.621 0.148 0.686 0.314 0.599 0.104 0.527 0.132 0.618 0.141 0.686
SurfPerchSL 0.186 0.691 0.067 0.619 0.151 0.811 0.252 0.639 0.183 0.582 0.120 0.747 0.164 0.766
BirdNetSL N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
PerchSL 0.236 0.686 0.132 0.626 0.341 0.803 0.374 0.595 0.183 0.512 0.160 0.658 0.203 0.713

EffNetB0-AudioSetSL 0.115 0.637 0.045 0.569 0.054 0.728 0.181 0.615 0.087 0.609 0.087 0.725 0.115 0.701
EffNetB0-bioSL 0.283 0.717 0.128 0.621 0.263 0.832 0.454 0.717 0.383 0.544 0.212 0.738 0.231 0.759
EffNetB0-allSL 0.276 0.719 0.137 0.616 0.273 0.845 0.473 0.727 0.375 0.525 0.196 0.770 0.220 0.749
EAT-ASSSL 0.147 0.698 0.060 0.638 0.074 0.761 0.230 0.646 0.138 0.588 0.112 0.723 0.114 0.739
EAT-bioSSL 0.214 0.658 0.069 0.618 0.105 0.662 0.257 0.637 0.119 0.542 0.114 0.657 0.125 0.642
EAT-allSSL 0.188 0.702 0.065 0.649 0.113 0.731 0.303 0.648 0.185 0.568 0.147 0.708 0.158 0.734
sl-BEATS-bioSL-SSL 0.304 0.707 0.150 0.629 0.279 0.836 0.496 0.737 0.349 0.627 0.226 0.766 0.213 0.781
sl-BEATS-allSL-SSL 0.322 0.720 0.152 0.612 0.257 0.834 0.493 0.737 0.404 0.640 0.211 0.786 0.221 0.796
sl-EAT-bioSL-SSL 0.274 0.670 0.143 0.596 0.224 0.813 0.436 0.713 0.283 0.636 0.190 0.760 0.191 0.748
sl-EAT-allSL-SSL 0.265 0.700 0.129 0.600 0.219 0.828 0.452 0.707 0.328 0.586 0.192 0.760 0.203 0.763

Table 9: Complex bioacoustic tasks: Individual ID and Vocal Repertoire analysis (best per metric in
bold). We report ROC AUC for retrieval as R-AUC. Individual ID probe is accuracy; Vocal Reper-
toire reports both R-AUC and NMI. Models above the midrule are existing/pretrained checkpoints;
below are new models from this work.

chiffchaff-cross littleowls-cross pipit-cross macaques zebrafinch-je-call Giant Otters Bengalese Finch SRKW Orca
Model Probe R-AUC* Probe R-AUC* Probe R-AUC* Probe R-AUC R-AUC NMI R-AUC NMI R-AUC NMI R-AUC NMI

BEATS (SFT)SSL 0.185 0.470 0.290 0.663 0.061 0.500 0.963 0.775 0.651 0.295 0.815 0.545 0.898 0.742 0.657 0.359
BEATS (pretrained)SSL 0.180 0.536 0.263 0.700 0.093 0.486 0.985 0.827 0.707 0.352 0.848 0.577 0.848 0.653 0.697 0.409
EAT-base (pretrained)SSL 0.205 0.544 0.317 0.676 0.058 0.469 0.872 0.804 0.684 0.231 0.788 0.503 0.974 0.871 0.626 0.265
EAT-base (SFT)SL-SSL 0.245 0.511 0.391 0.714 0.054 0.456 0.981 0.848 0.742 0.341 0.855 0.591 0.984 0.820 0.687 0.357
Bird-AVES-biox-baseSSL 0.230 0.521 0.292 0.634 0.118 0.492 0.967 0.840 0.660 0.253 0.751 0.484 0.872 0.757 0.621 0.318
NatureBEATsSL-SSL 0.185 0.489 0.359 0.711 0.112 0.524 0.984 0.857 0.704 0.351 0.862 0.586 0.943 0.835 0.736 0.438
Bird-MAE-HugeSSL 0.195 0.503 0.361 0.706 0.104 0.497 0.956 0.841 0.678 0.278 0.998 0.519 0.917 0.811 0.653 0.331
SurfPerchSL 0.280 0.550 0.383 0.713 0.179 0.518 0.986 0.843 0.626 0.225 0.810 0.537 0.959 0.927 0.608 0.279
BirdNetSL 0.200 0.555 0.501 0.801 0.204 0.558 0.984 0.916 0.707 0.378 0.798 0.539 0.987 0.911 0.689 0.353
PerchSL 0.210 0.500 0.649 0.847 0.288 0.570 0.973 0.904 0.657 0.284 0.854 0.585 0.959 0.896 0.561 0.206

EffNetB0-AudioSetSL 0.225 0.506 0.290 0.627 0.109 0.492 0.966 0.823 0.701 0.354 0.760 0.438 0.966 0.863 0.611 0.270
EffNetB0-bioSL 0.140 0.532 0.346 0.730 0.361 0.557 0.982 0.912 0.717 0.350 0.828 0.574 0.964 0.903 0.717 0.443
EffNetB0-allSL 0.273 0.546 0.496 0.776 0.372 0.567 0.984 0.915 0.742 0.381 0.842 0.582 0.987 0.921 0.748 0.444
EAT-ASSSL 0.165 0.544 0.251 0.643 0.073 0.473 0.957 0.848 0.707 0.301 0.833 0.566 0.977 0.885 0.688 0.379
EAT-bioSSL 0.175 0.540 0.307 0.689 0.115 0.474 0.914 0.804 0.654 0.246 0.809 0.543 0.934 0.816 0.630 0.260
EAT-allSSL 0.200 0.547 0.152 0.575 0.109 0.487 0.929 0.836 0.709 0.333 0.820 0.549 0.977 0.847 0.646 0.321
sl-BEATS-bioSL-SSL 0.235 0.558 0.339 0.722 0.390 0.570 0.972 0.873 0.700 0.369 0.840 0.572 0.880 0.675 0.735 0.448
sl-BEATS-allSL-SSL 0.225 0.574 0.413 0.755 0.428 0.580 0.977 0.850 0.718 0.426 0.832 0.554 0.897 0.681 0.746 0.457
sl-EAT-bioSL-SSL 0.245 0.532 0.474 0.702 0.281 0.572 0.980 0.882 0.703 0.381 0.817 0.540 0.989 0.937 0.716 0.402
sl-EAT-allSL-SSL 0.195 0.509 0.354 0.688 0.326 0.557 0.949 0.795 0.718 0.338 0.789 0.501 0.980 0.898 0.703 0.383

C.4 BEANS CLASSIFICATION - DATA MIX WITH/WITHOUT ESC-50

The BEANS benchmark contains two auxiliary non-bioacoustics datasets ESC-50 and SpeechCom-
mands. We excluded SpeechCommands because this dataset is irrelevant for non-human bioacous-
tics applications and speech is a well researched area beyond bioacoustics. In contrast, we included
ESC-50 because general sound classification is useful for some conservation tasks like habitat clas-
sification, poaching monitoring (gunshots, explosions) and this is the reason why we included it in
Tables 3. To disentangle the effects of the data mix and answering the question: ”does including
general sound in training give better representation?” we report the averaged results without ESC-50.
We include the original tables side-by-side for comparison.
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Figure 6: Supervised encoders outperform self-supervised on BEANS classification, which is pri-
marily focal recordings. However, self-supervised encoders suffer markedly smaller performance
drops than supervised encoders when moving from focal recordings to soundscape (BEANS Detec-
tion), showing strong out-of-distribution performance. In contrast, self-supervised encoders post-
trained with supervised learning on bioacoustic data enjoy the strongest performance both in and
out-of distribution.

We note that the ranking per-model has not changed e.g. sl-BEATs models are better than EffNetB0
models. However, there is less of a gap between ‘bio’ and ‘all’ setups, with ‘bio’ being slightly
better in some cases such as EffNetB0.

We include a version of Figure 3b without including ESC-50 when aggregating the results. We note
that there is a gap between ‘-all’ and ‘-bio’ models on BEANS detection, with the former models
having superior R-AUC.

C.5 BIRDSET DIRECT POST-TRAINING EVALUATION

We take the SL checkpoints we trained for the post-training phase and we directly evaluate them
on the BirdSet dataset by considering solely the logits corresponding to the datasets in BirdSet.
This evaluation setup is comparable to the LT (large training) setup in the BirdSet paper with the
following additions: (1) more training data and (2) fine-tuning a whole model, hence we call it LT+.
It contrasts with the DT (dedicated training) setup which we reported initially in Table 8 i.e. linear
probing of a model on each BirdSet subset. Notably, in our case DT is done on top of LT+ and it
shows degraded performance. Similarly to the BirdSet paper the LT, and aforementioned LT+, have
better results than DT.

Why is LT+ better than DT for BirdSet? Both of the setups contain a domain shift and although we
add the same augmentations in LT+ and DT, DT seems to overfit to often small training set originat-
ing in Xeno-Cantto, whereas LT+ sees more data, and learns to discriminate with high granularity a
high number of classes by learning the time-frequency priors, useful for the domain shift.
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Table 10: Aggregate results for BEANS Classification with and without ESC-50. We report ROC
AUC for retrieval, accuracy for probing on BEANS classification. We report the mean of each
metric over datasets per benchmark. Model labels carry training tags: SSL self-supervised, SL su-
pervised, SL-SSL supervised fine-tuning after SSL pretraining. Models above the midrule are exist-
ing/pretrained checkpoints; below are new models from this work.

BEANS Classification (w/o ESC-50) BEANS Classification (w/ ESC-50)
Model Probe R-auc C-nmi Probe R-auc C-nmi

BEATS (SFT)SSL 0.680 0.690 0.420 0.724 0.739 0.504
BEATS (pretrained)SSL 0.742 0.698 0.488 0.774 0.734 0.542
EAT-base (pretrained)SSL 0.643 0.633 0.378 0.679 0.675 0.424
EAT-base (SFT)SL-SSL 0.718 0.700 0.386 0.758 0.748 0.478
Bird-AVES-biox-baseSSL 0.674 0.618 0.367 0.705 0.646 0.410
NatureBEATsSL-SSL 0.783 0.738 0.512 0.804 0.774 0.560
SurfPerchSL 0.733 0.710 0.426 0.760 0.745 0.484
BirdNetSL 0.794 0.751 0.496 0.796 0.772 0.523
PerchSL 0.757 0.729 0.432 0.768 0.759 0.478
Bird-MAE-HugeSSL 0.747 0.644 0.380 0.766 0.674 0.432

EffNetB0-AudioSetSL 0.608 0.671 0.412 0.651 0.721 0.486
EffNetB0-bioSL 0.798 0.780 0.536 0.786 0.799 0.563
EffNetB0-allSL 0.794 0.785 0.547 0.800 0.809 0.584
EAT-ASSSL 0.672 0.678 0.419 0.704 0.714 0.473
EAT-bioSSL 0.683 0.648 0.378 0.692 0.671 0.410
EAT-allSSL 0.680 0.669 0.400 0.709 0.704 0.448
sl-BEATS-bioSL-SSL 0.829 0.786 0.552 0.840 0.811 0.594
sl-BEATS-allSL-SSL 0.816 0.786 0.555 0.832 0.813 0.604
sl-EAT-bioSL-SSL 0.801 0.777 0.531 0.797 0.792 0.562
sl-EAT-allSL-SSL 0.781 0.770 0.494 0.788 0.791 0.536

Table 11: BirdSet benchmark results: Comparison of post-training (LT+) vs adding a dataset-wise
probing afterwards, on top of post-training (DT) for sl-BEATS models.

Model POW PER NES NBP HSN SNE UHH

sl-BEATS-bio (DT) 0.304 0.150 0.279 0.496 0.349 0.226 0.213
sl-BEATS-bio (LT+) 0.355 0.167 0.372 0.535 0.377 0.261 0.271
sl-BEATS-all (DT) 0.322 0.152 0.257 0.493 0.404 0.211 0.221
sl-BEATS-all (LT+) 0.343 0.167 0.356 0.535 0.406 0.268 0.224

C.6 PROBING ABLATION LINEAR VS ATTENTION

In our initial evaluation, the embeddings extracted from the model are averaged on the time axis. To
model the temporal dependencies between the embeddings we evaluate some of the models on the
BEANS and BirdSet benchmarks using an attention-based probe.

The attention has a single multi-head self-attention layer on top of the extracted backbone represen-
tations. The output of this attention operation is added back to the original embeddings through a
residual connection, followed by layer normalization and optional dropout. The resulting sequence
is then aggregated by taking the mean across tokens, and finally passed through a linear classifier to
produce the prediction.

For a fair comparison and to reduce computational cost we train both probe heads for each dataset
in BEANS and BirdSET for 50 epochs, instead of the 900 used in our initial experiments. To reduce
overfitting, we introduced a cosine learning rate scheduler with the first 5 epochs being the learning
stage. We use a learning rate of 0.0001 and an AdamW optimizer. The BirdSet models are trained
with the noise and mixup augmentations introduced in Section 3.4.

The results presented in Table 7 show that in general attention probes have superior performance to
linear probes. This slightly alters the ranking of the models, e.g. BEATs (pretrained) is now the top
model on BEANS Detection, EffNetB0 is surpassed by the transformers, our sl-BEATs-all is still
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Figure 7: Linear vs Attention probing comparison. The results are aggregated across bioacoustic
benchmarks and tasks . We accuracy for BEANs Classification, mean-average precision for BEANs
Detection and BirdSet. We report the mean of each metric over datasets per benchmark.Model labels
carry training tags: SSL self-supervised, SL supervised, SL-SSL supervised fine-tuning after SSL
pretraining. PT denotes pretrained. Models above the red line are existing checkpoints; below are
new models from this work.

one of the best models, EAT models improve a lot with the attention head. There are less differences
between the top and the bottom models in the ranking.

SSL models benefit more from an attention head. This effect may stem from the training dynam-
ics of SSL models, which emphasize capturing temporal structure in audio rather than developing
species-specific inductive biases, as is more common in supervised learning. Consequently, when
the backbone is a transformer trained via SSL, pairing it with a transformer-based probe is more ef-
fective, as it better aligns with and leverages the backbone’s representational properties. Moreover,
for EffNetB0-all and sl-BEATs-all the attention probes did not yield considerable gains.
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