

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WHAT MATTERS FOR BIOACOUSTIC ENCODING

Anonymous authors

Paper under double-blind review

ABSTRACT

Bioacoustics, the study of sounds produced by living organisms, plays a vital role in conservation, biodiversity monitoring, and behavioral studies. Many tasks in this field, such as species, individual, and behavior classification and detection, are well-suited to machine learning. However, they often suffer from limited annotated data, highlighting the need for a general-purpose bioacoustic encoder capable of extracting useful representations for diverse downstream tasks. Such encoders have been proposed before, but are often limited in scope due to a focus on a narrow range of species (typically birds), and a reliance on a single model architecture or training paradigm. Moreover, they are usually evaluated on a small set of tasks and datasets. In this work, we present a large-scale empirical study that covers aspects of bioacoustics that are relevant to research but have previously been scarcely considered: training data diversity and scale, model architectures and training recipes, and the breadth of evaluation tasks and datasets. We obtain encoders that are state-of-the-art on the existing and newly proposed benchmarks. We also identify *what matters* for training these encoders, such that this work can be extended when more data are available or better architectures are proposed. Specifically, across 26 datasets with tasks including species classification, detection, individual ID, and vocal repertoire discovery, we find that self-supervised pre-training followed by supervised post-training on a mixed bioacoustics + general-audio corpus yields the strongest in- and out-of-distribution performance. We show the importance of data diversity in both stages. To support ongoing research and application, we will release the model checkpoints.

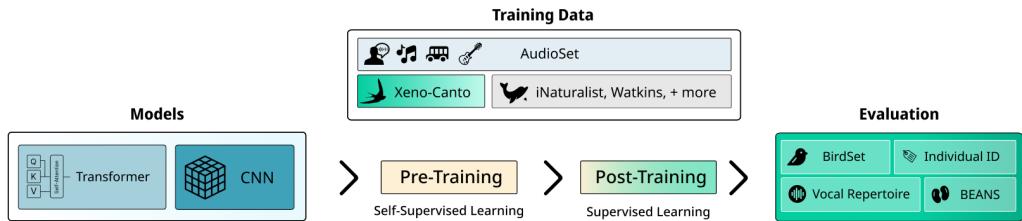


Figure 1: Our empirical study diagram, assessing (1) models, (2) training data, (3) training paradigms, and proposing an (4) extended evaluation data and methodology.

1 INTRODUCTION

Bioacoustics is the study of animal sound production and perception (Bradbury & Vehrencamp, 1998). It is a crucial component for understanding animal behavior (Fischer et al., 2013), for biodiversity monitoring and conservation efforts (Rutz et al., 2023; Stevens et al., 2024), and for modeling the mechanisms underlying animal communication (Bradbury & Vehrencamp, 1998). A variety of common tasks in bioacoustics are used to support these efforts: sound event detection or classification of species, individuals, call-types, and behaviors. All of these tasks are well-suited for a machine learning approach. Machine learning and deep learning are now commonly used for bioacoustics (Stowell, 2022), and have enabled discoveries such as the use of specialized vocalizations for labeling conspecifics in marmosets (Oren et al., 2024) or elephants (Pardo et al.,

054 2024). However, due to unavoidable challenges in data collection and annotation, these studies
 055 generally rely on small datasets strongly labeled on a few species and individuals (Stowell, 2022).
 056 The resulting bioacoustic machine learning models are then usually designed for specific tasks and
 057 species (Dufourq et al., 2021; Cauzinille et al., 2024), limiting their generalizability.

058 However, large amounts of unannotated or weakly labeled bioacoustic data are recorded regularly,
 059 especially through Passive Acoustic Monitoring (PAM) (Gibb et al., 2019), and citizen science plat-
 060 forms such as Xeno-Canto (Vellinga & Planqué, 2015) or iNaturalist (Chasmai et al., 2024). These
 061 data can be leveraged to train a bioacoustic encoder, which can then be deployed in downstream
 062 tasks, as bioacoustic features (*e.g.* for linear probing or clustering) or finetuning the whole model,
 063 among other options. Two such classic and state-of-the-art bioacoustic encoders are BirdNet (Kahl
 064 et al., 2021) and Perch (Ghani et al., 2023) which have been applied to downstream application
 065 tasks such as multi-taxa species retrieval and detection (Pérez-Granados, 2023; Dumoulin et al.,
 066 2025; Ghani et al., 2023).

067 Other bioacoustic encoders have been proposed, to be reviewed in the next section. They have in
 068 common a supervised learning approach, usually limited to a single taxonomic group, with notable
 069 exceptions including SurfPerch (Williams et al., 2024) and recently the models of iNatSounds
 070 (Chasmai et al., 2025). Moreover, they evaluate the quality of the learned representations on a lim-
 071 ited set of downstream tasks and datasets. Typically they solely evaluate on species classification,
 072 with their training and test data containing the same species, often with an out-of-distribution effect,
 073 as training datasets typically consists of focal recordings, while evaluation datasets are soundscape
 074 recordings (Rauch et al., 2025b). In contrast, real-world bioacoustic applications require encoders
 075 that generalize effectively across diverse species and tasks, often beyond those explicitly seen
 076 during training. For example, researchers may need to recognize previously unobserved species,
 077 identify individual animals from limited vocal data, or characterize animal vocal repertoires without
 078 extensive annotations. Evaluating models on such diverse and realistic scenarios is critical, yet
 079 building and measuring the performance of encoders that generalize across these conditions remains
 080 underexplored in current works.

081 Our main contribution is an empirical study assessing what components matter most for training a
 082 generalizable bioacoustic encoder. We systematically investigate (1) model architectures, (2) data-
 083 mixes, and (3) training paradigms under a (4) broadened evaluation methodology. **(1)** Specifically, in
 084 terms of models we compare CNN-based (LeCun et al., 1989) and transformer-based (Vaswani et al.,
 085 2017) architectures alongside their associated learning approaches: supervised and self-supervised.
 086 **(2)** On the data mix aspect, we train and evaluate across a broader and more taxonomically di-
 087 verse bioacoustic dataset than previous work, examining the impact of incorporating general audio
 088 data such as AudioSet (Gemmeke et al., 2017). **(3)** Additionally, we explore sequential training
 089 paradigms (“training recipes”), pre-training and post-training, including self-supervised and super-
 090 vised learning, and assess the influence of non-bioacoustic audio data at different training stages.
 091 **(4)** By evaluating these models across established benchmarks BEANS (Hagiwara et al., 2023), and
 092 BirdSet (Rauch et al., 2025b) alongside newly curated datasets assessing generalization to chal-
 093 lenging real-world tasks, we provide a clearer picture of the conditions that enhance bioacoustic
 094 representation learning. We find that under comparable training conditions, self-supervised mod-
 095 els achieve strong out-of-distribution generalization yet under-perform supervised models on in-
 096 distribution tasks, and that incorporating general audio into bioacoustic training significantly im-
 097 proves model transferability. Sequential self-supervised and supervised learning yields strong per-
 098 formance both in and out-of-distribution. Leveraging these insights, we propose a set of training
 099 recipes and models that achieve state-of-the-art results overall on our extensive evaluation bench-
 100 mark, offering a versatile encoder for bioacoustic research.

101 2 RELATED WORK

102 **Self-Supervised Audio Encoders.** An extensive number of works propose audio and speech encoders,
 103 most of them transformer-based, such as Wav2vec (Baevski et al., 2020), HuBERT (Hsu
 104 et al., 2021), AudioMAE (Huang et al., 2022), BEATs (Chen et al., 2023) or EAT (Chen et al.,
 105 2024). Several bioacoustic-specific encoders have also been developed: BirdNet (Kahl et al., 2021)
 106 and Perch (Ghani et al., 2023) build upon an EfficientNet (EffNet) architecture (Tan & Le, 2021),
 107 a CNN-based vision neural network pre-trained on ImageNet (Russakovsky et al., 2015) taking au-

108 dio spectrograms as input. Transformer-based bioacoustic models include AVES (Hagiwara, 2023)
 109 based on HuBERT, Animal2Vec (Schäfer-Zimmermann et al., 2024) based on data2vec (Baevski
 110 et al., 2023), BirdMAE (Rauch et al., 2025a) based on AudioMAE with modified decoder architec-
 111 ture, and TweetyBert (Vengrovska et al., 2025) inspired by BERT (Devlin et al., 2019). However,
 112 within bioacoustics these approaches lack systematic comparison across different architectures with
 113 standardized pipelines. In contrast, we compare with a wide range of encoder baselines and aim
 114 to have a fair comparison across different architectures, with minimal changes and near-identical
 115 pipelines.

116 **Text-Informed Audio Models and Their Relation to Bioacoustic Encoders.** Audio encoders are
 117 key in training text-informed models for bioacoustics. BioLingual (Robinson et al., 2024) learns a
 118 common representation for text and bioacoustics, inspired by CLAP-LAION (Wu et al., 2023). It
 119 allows to perform tasks like zero-shot species classification or text-to-audio retrieval, while a bioa-
 120 coustic encoder requires further learning (like linear probing). NatureLM-audio (Robinson et al.,
 121 2025) is a large audio-language model for bioacoustics, adding audio as input to a Llama 3 model
 122 (Grattafiori et al., 2024) through a BEATs audio encoder and a Q-former (Li et al., 2023). In this
 123 work, we focus on bioacoustic encoders, and this line of work is complementary to text-informed
 124 or large language models, in the sense these models could benefit from a better encoder. It can
 125 also be considered as a “post-training” stage for any bioacoustic encoder, that can then be extracted
 126 to be used in downstream bioacoustic tasks, for example doing linear probing. As a baseline, we
 127 consider extracting the BEATs encoder of NatureLM-audio, which was unfrozen during training on
 128 large-scale bioacoustic data.

129 **Data mixing in bioacoustics training.** In terms of data composition, existing bioacoustic encoders
 130 typically use limited data sources: BirdNet and Perch are post-trained on bird data mostly from
 131 Xeno-Canto, while Williams et al. (2024) extended Perch to Surfperch by adding coral reef bioa-
 132 coustic data. Animal2Vec focuses specifically on meerkats data, and TweetyBert on canary song.
 133 General audio encoders are evaluated in extensive audio (Turian et al., 2022) and speech benchmarks
 134 (Yang et al., 2021) but contain little bioacoustic data in their training mix. While these general-
 135 purpose encoders can be used for bioacoustic tasks, Sarkar & Doss (2025) found that pre-training
 136 on bioacoustic data provides only marginal improvements, though other studies reach different con-
 137 clusions (Ghani et al., 2023; Rauch et al., 2025a). Our work differs by considering larger and more
 138 taxonomically diverse bioacoustic training data, examining the impact of adding general audio data
 139 alongside bioacoustic data, and evaluating the impact of data mix under fair settings rather than only
 evaluating pre-existing models.

140 **Training Paradigms: Self-Supervised, Supervised, and Two-Stage Approaches.** Regarding
 141 the training paradigm, current bioacoustic modeling approaches use either self-supervised learning
 142 (AVES, Animal2Vec, BirdMAE, TweetyBert) or supervised learning (BirdNet, Perch, Surfperch)
 143 exclusively. However, no existing work systematically explores the combination of both paradigms
 144 or examines the impact of including bioacoustic data at different training stages. We address this
 145 gap by considering the combination of both self-supervised and supervised learning. To that extent,
 146 our pre- and post-training formalization may be seen as a form of curriculum learning (Bengio et al.,
 147 2009) with two stages, similar to the iterative training of BEATs and commonly used in training
 148 LLMs (Robinson et al., 2025).

149 **Evaluation Limitations in Bioacoustic Benchmarks.** Bioacoustic encoders have been evaluated
 150 primarily in the context of species classification and detection (Rauch et al., 2025b; Hamer et al.,
 151 2023; Ghani et al., 2023; Chasmai et al., 2025; Kather et al., 2025) while other important tasks such
 152 as vocal repertoire discovery (Anikin et al., 2018) or individual identification (Stowell et al., 2019)
 153 have been scarcely addressed. These tasks, which are critical to the study of animal communication
 154 yet lack large-scale annotated data, are a natural test-bed for generalization of learned represen-
 155 tations. Research on these two topics has so far used a limited number of private datasets or has
 156 not compared with state-of-the-art bioacoustic encoders (Best et al., 2023; Nolasco et al., 2025;
 157 Stowell et al., 2019; Wierucka et al., 2025). To give a broader overview of the capabilities of a
 158 bioacoustic encoder, we address these limitations by adding 8 public datasets, not considered in any
 159 previous benchmark. Further, related work from Kather et al. (2025) and from Best et al. (2023)
 160 has gained insight into bioacoustic encoders by analyzing their embeddings with clustering metrics,
 161 including a qualitative finding that self-supervised encoders better generalized from birds to frogs.
 We introduce a similar evaluation methodology, enhancing BEANS (Hagiwara et al., 2023) and
 BirdSet (Rauch et al., 2025b) with clustering and retrieval metrics, scaling a related analysis from

162 two datasets to twenty-six. For a comparison with current bioacoustics benchmarks, we present
 163 Table 4, Appx A, which includes training and evaluation configurations.
 164

166 3 METHODS

168 This section provides the details of our empirical study which we summarize in Figure 1.
 169

170 3.1 TRAINING DATA

172 State-of-the art bioacoustic encoders are either trained in a self-supervised manner on large datasets
 173 comprising general audio (Hagiwara, 2023) and birds (Rauch et al., 2025a), or in a supervised manner
 174 to predict the species in focal recordings of birds (Rauch et al., 2025b; Hamer et al., 2023;
 175 Van Merriënboer et al., 2024; Rauch et al., 2025a; Ghani et al., 2023). We extend these paradigms
 176 by comparing the self-supervised and supervised learning on both types of data, general audio and
 177 bioacoustic data, both comprising labels. The data are used for two approaches, self-supervised
 178 learning (in which case the labels are ignored) and supervised learning. The general audio dataset is
 179 AudioSet (Gemmeke et al., 2017) comprising labels for sound event detection within the AudioSet
 180 ontology. With respect to bioacoustics data, we compile a large dataset from multiple sources, in-
 181 cluding Xeno-canto (Vellinga & Planqué, 2015), the largest source of bird signals, iNaturalist (Chas-
 182 mai et al., 2024), Animal Sound Archive (Museum für Naturkunde Berlin), which includes diverse
 183 taxa, and the Watkins Marine Mammal database “all cuts” (Sayigh et al., 2016) offering the most
 184 diverse collection of marine mammal signals. Outside of our core training mix, we consider addi-
 185 tional bioacoustic soundscape datasets to study their effect on the learned representations, in par-
 186 ticular WABAD (Pérez-Granados et al., 2025) and Sapsucker Woods (Kahl et al., 2022a). To join
 187 diverse bioacoustic datasets, we curate species’ scientific names and link all species to a common
 188 taxonomic backbone (GBIF) (Telenius, 2011). We summarize the training data in Table 1.

189 We train models with noise augmentation (see Section 3.3) using non-animal environmental sounds
 190 from the following datasets: ShipsEar (Santos-Domínguez et al., 2016), Deepship (Irfan et al., 2021)
 191 and Orcalab (Poupard et al., 2020), FSD50K (Fonseca et al., 2021), Urbansound (Salamon & Jacoby,
 192 2014), TUT2016 (Mesaros et al., 2016b), IDMT (Abeßer et al., 2021), Demand (Thiemann et al.,
 193 2013), and Wham (Wichern et al., 2019).

194 **Table 1: Datasets used in pre-training and post-training. ^a denotes datasets used solely in ablations.**

196 Dataset	# Hours	Description
197 AudioSet (Gemmeke et al., 2017)	5700	general audio
198 Xeno-canto (Vellinga & Planqué, 2015)	10416	birds
199 iNaturalist (Chasmai et al., 2024)	1539	diverse taxa
200 Watkins (Sayigh et al., 2016)	27	marine mammals
201 Animal Sound Archive (Museum für Naturkunde Berlin)	78	diverse taxa
202 Sapsucker Woods ^a (Kahl et al., 2022a)	285	birds
203 WABAD ^a (Pérez-Granados et al., 2025)	84	birds

204 3.2 PRE-EXISTING ENCODERS

208 We consider various pre-existing encoders, as baselines and for further benchmarking and analysis.
 209 First, we consider general audio encoders, more specifically BEATs (Chen et al., 2023) and EAT
 210 (Chen et al., 2024), BEATs because it is a state-of-the-art encoder, and EAT because we will modify
 211 its self-supervised training recipe; Chen et al. (2023) do not provide the training code, only trained
 212 checkpoints, and EAT is a good and (fully) open-sourced model.

213 We also include bioacoustic encoders as baselines, namely BirdNet (Kahl et al., 2021) and Perch
 214 (Ghani et al., 2023) as state-of-the-art baselines. In addition, we evaluate SurfPerch (Williams et al.,
 215 2024) because it uses more diverse taxa in training. We also consider AVES (Hagiwara, 2023) and
 BirdMAERauch et al. (2025a) as a representative self-supervised models for bioacoustics.

216 For the last baseline, we extract the BEATs encoder from NatureLM-audio (Robinson et al., 2025),
 217 that we call NatureBEATs, as a representative of an unorthodox post-trained encoder. Comparing
 218 it to BEATs can provide clues about the influence of text-audio training and of post-training with
 219 bioacoustic data, in addition to the experiments to be described now.
 220

221 3.3 PROPOSED MODELS AND TRAINING RECIPES

223 We provide a summary of the models we train according to data used in pre- and post-training in
 224 Table 2. As explained before, both BirdNet and Perch [build upon an EffNet post-trained](#) on (mostly)
 225 Xeno-Canto, using a multi-label supervised learning loss. To mimic this approach, we also con-
 226 sider an EffNet architecture, with a checkpoint pre-trained on ImageNet, which we post-train with
 227 supervised learning and a binary cross-entropy loss. To assess the utility of using bioacoustic data,
 228 possibly complemented by general audio data, we consider post-training this model on bioacous-
 229 tic data only, on AudioSet only, or on both. The version post-trained solely on bioacoustic data is
 230 reminiscent of BirdNet or Perch, even if it is not an apple-to-apple comparison (each model uses
 231 a different bioacoustic dataset, normalization method, sampling rate, spectrogram parameters, and
 232 augmentation details). We take advantage of the efficiency of the architecture to test various data-
 233 mixes, including the addition of soundscape data, and the ablation of large taxonomic subgroups
 234 such as birds, whales, or all non-birds. The results for this ablation are presented in Figures 4 and 5
 235 in the Appendix.

236 Our approach does not rely specifically on the EffNet architecture. Therefore, we propose to do
 237 the post-training of another, transformer-based, audio encoder. We chose BEATs, as it is a state-
 238 of-the-art encoder, pre-trained on speech and general audio data with a self-supervised approach.
 239 We post-train it in a supervised manner on our bioacoustic data only, or on both bioacoustic data
 240 and AudioSet. We exclude post-training BEATs on AudioSet only as this corresponds to the public
 241 checkpoint BEATs (SFT).

242 We can also envision modifying the self-supervised pre-training phase. Unfortunately, the training
 243 code for BEATs is not available and is not straightforward to reproduce. Therefore, we turn to the
 244 EAT model (Chen et al., 2024), which also provides good results, is fully open-source, and has the
 245 advantage of being fast to train. We consider pre-training EAT without modifying its self-supervised
 246 learning approach (which is a mix of teacher distillation and reconstruction of masked patches of
 247 the spectrogram), on our bioacoustic data only, on AudioSet only, and on both. Then, we consider
 248 not post-training this model (to assess if post-training is useful, especially given that it is the same
 249 dataset, up to ignoring or not the labels), and also post-training it as before (bioacoustic data only,
 250 or bioacoustic data plus AudioSet). Similar to BEATs, we do not post-train EAT on AudioSet only
 251 as this matches an existing checkpoint, “EAT (SFT)”. We use the “EAT-all” SSL checkpoint as the
 252 basis for post-training.

253 For a fair comparison with pre-existing models we train and evaluate all our models at 16kHz, whilst
 254 we acknowledge that some species contain important auditory information above 8kHz and we plan
 255 to extend this study in future work. We evaluate Perch and BirdNet at their proposed sample rates
 256 32kHz and 48 kHz, and to their advantage, they observe a broader frequency spectrogram than our
 257 base EffNet.

258 To increase generalization and robustness to noise of the learned representation we found it impor-
 259 tant to use two augmentations. Namely, during pre-training and post-training we add noise randomly
 260 with a probability of 0.5 at a random signal-to-noise ratio (SNR) sampled from a uniform distribu-
 261 tion between -10dB and 20dB using the datasets introduced in Section 3.1. During post-training,
 262 with probability 0.5 we linearly mix random pairs of audio clips within a batch and set the target to
 263 the union of their labels (element-wise OR).

264 3.4 EVALUATION SETUP: DATA, TASKS, AND METRICS

265 **Evaluation Tasks.** We consider two tasks commonly addressed in the literature: *classification* on
 266 audio excerpts into discrete category labels and *detection* of events in longer audio files. We employ
 267 three distinct evaluation setups to assess model representations comprehensively. *Linear probing*
 268 trains a linear classifier on train split using time-averaged embeddings from the final layer of the
 269 model (excluding classification heads), and then evaluates this probe on the test split. *Retrieval*

270

271 Table 2: Pre- and post-training datasets with resulting model checkpoints. \dagger Indicates checkpoints
272 released by prior work. “AS”=AudioSet. All post-trained EAT models use the EAT-all checkpoint
273 as the base.

Arch.	Pre-train data	Pre-trained checkpoint	Post-train data	Resulting checkpoint(s)
EffNetB0	ImageNet \dagger	–	Bio / All / AS	EffNetB0-bio, EffNetB0-AS
BEATs	AS \dagger	BEATs (pre) \dagger	Bio / All / AS	sl-BEATs-bio, sl-BEATs-all, BEATs (SFT) \dagger
EAT	AS \dagger	EAT-base (pre) \dagger	AS	EAT-base (SFT) \dagger
EAT	Bio / All / AS	EAT-bio, EAT-all, EAT-AS	Bio / All	sl-EAT-bio, sl-EAT-all

282

283

284

evaluation directly investigates model embedding spaces by treating each test set item as a query and ranking remaining items by cosine similarity. *Clustering evaluation* performs K-means with known cluster counts on single-label datasets, evaluating similarity to ground truth classes using normalized mutual information (marked as NMI).

288

Evaluation Paradigms: Probing, Retrieval, and Clustering. Current bioacoustics benchmarks consider either an in-domain multiple taxa setup, such as BEANS (Hagiwara et al., 2023) and (Robinson et al., 2024), or out-of-domain bird species detection, such as BIRB (Hamer et al., 2023) and BirdSet (Rauch et al., 2025b), focusing on generalization. Here we extend these benchmarks in multiple ways. **(1)** We expand the tasks to include individual identification and vocal repertoire discovery, along with the curation of eight additional benchmark datasets. This extends the evaluation of bioacoustic encoders from a focus on species classification of birds to a focus on generality across multiple tasks and taxa. **(2)** Extending the work of Kather et al. (2025), we also augment existing benchmarks with clustering and retrieval metrics, allowing us to examine a model’s embedding spaces directly. Each of these benchmarks, tasks, and metrics is directly tied to downstream research or conservation applications and allows us to analyze both pre-existing and new models from a different perspective.

300

Evaluation datasets. We present the datasets and tasks we consider as part of our evaluation in Table 4, Appendix A. We evaluate on the classification and detection tasks in the already existing benchmarks BEANS (Hagiwara et al., 2023) and BirdSet (Rauch et al., 2025b). For BEANS we follow the official train/validation/test splits in the original benchmark. We exclude the auxiliary dataset SpeechCommands from BEANS but we include ESC-50 because it still may be useful for conservation tasks relevant to bioacoustics e.g. habitat classification, poaching monitoring. For BirdSet, we match their “Dedicated Train” setup, considering separate train and test splits for each of the datasets. Accordingly, we derive the validation dataset as a stratified split on the species from the train with 0.8, 0.2 ratios and seed 42. We exclude SSW (Kahl et al., 2022b) from BirdSet evaluation as we consider it within some of our data-mix. We formulate detection similarly to BEANS and BirdSet as segment-based multi-class classification and we use segment-based sound event detection metrics to evaluate it (Mesaros et al., 2016a), allowing for the negative class (no class detected). We leave frame-based (Mesaros et al., 2016a) or event-based (Mahon et al., 2025) temporally-strong detection for future work. Importantly, solely for BirdSet which contains an important covariate shift from train (focal recordings) to test (soundscapes) we use the same noise and mixup augmentations in pre-training and post-training.

315

New Evaluation Datasets: Individual Identification and Vocal Repertoire Evaluation. For the two new evaluation tasks we compile public datasets and create label-stratified train/validation/test splits (seed 42, ratios 0.6/0.2/0.2). The Individual Identification task (Stowell et al., 2019; Fukushima et al., 2015) is a supervised single-label classification problem over individuals of the same species. The Vocal Repertoire Discovery setting (Elie & Theunissen, 2016; Mumm & Knörnschild, 2014; Cohen et al., 2020; Palmer et al., 2025) evaluates how well embeddings discriminate between the different call types within a species’ vocal repertoire. We treat this as a structure-recovery problem with *known K* (the number of annotated call types): no probes are trained; labels are used only as a reference to assess representation quality via (i) clustering (K-means with *K* equal to the number of call types; scored by normalized mutual information, NMI) and (ii) audio-to-audio

324 retrieval within call type (ROC AUC, R-AUC). This matches repertoire discovery when K is known.
 325 Supervised call-type classification is also a useful formulation of the task, but performance on sev-
 326 eral datasets was near-ceiling while others were too small for quality splits, so we exclude linear
 327 probing for this task.

328 **Probing Evaluation Setup** To directly evaluate learned representations, we use linear probing on
 329 time-averaged embeddings rather than full fine-tuning as Hagiwara (2023); Rauch et al. (2025b).
 330 This avoids confounding effects from model size differences, ensuring fair comparison between
 331 CNN and transformer representations. While performance may vary across embedding layers, all
 332 models show similar trends (Cauzinille et al., 2024; Sarkar & Doss, 2025). Evaluating all layers
 333 would exponentially increase computational cost, so we extract embeddings from the final layer (ex-
 334 cluding classification heads) and leave comprehensive layer analysis for future work. Considering a
 335 frozen representation (rather than fully finetuning) is also especially important for many downstream
 336 applications, as it allows notably precomputing the embeddings (Dumoulin et al., 2025). **In terms
 337 of hyperparameters we use a learning rate of 1e-4, weight decay of 0.1, batch size of 32, and 900
 338 epochs.**

339 **Metrics.** For all tasks other than Vocal Repertoire Discovery we report classic performance metrics
 340 on linear probing (top-1 accuracy for single-label tasks, macro-averaged mean average precision for
 341 multilabel tasks). To evaluate retrieval, we consider each item in the test set as a query. We rank
 342 the remaining elements of the test set according to their cosine similarity with the query under the
 343 model’s embedding function, and evaluate the ordering. For single-label tasks (BEANS Classifica-
 344 tion, Individual ID, and Vocal Repertoire), we consider items as relevant to the query if they share
 345 the same label as the query. For multi-label tasks (BEANS Detection, BirdSet) we consider items to
 346 be relevant if they share at least one label with the ground-truth item. We exclude queries with no
 347 labels, while ground-truth items with no labels are included in the evaluation as negatives. We mea-
 348 sure this ranking using ROC AUC as the primary metric (marked as R-AUC with R for retrieval).
 349 For Individual Identification evaluation datasets Pipit and Chiffchaff (Stowell et al., 2019), the train-
 350 ing set follows an intentionally different background noise distribution than the test set following
 351 original design in Stowell et al. (2019). To evaluate generalization in this scenario, we report ROC
 352 AUC by using each example in the train set as a query, rather than each example in the test set as a
 353 query. For single-label datasets in all benchmarks, we also consider a clustering task. For each eval-
 354 uation set, we perform K-means clustering given a known number of clusters (labels). We evaluate
 355 similarity of these clusters compared to the known class groups by measuring normalized mutual
 356 information (marked as NMI) between the two. These two additional evaluations offer insight into
 357 the pre-trained embeddings of a model, but are also relevant to downstream tasks in bioacoustics,
 358 namely audio-to-audio retrieval (Hamer et al., 2023) (retrieval) and repertoire discovery (Best et al.,
 359 2023) (clustering) or call-type classification. For vocal repertoire discovery, we use clustering and
 360 retrieval as the primary evaluations. All metrics are formalized in the Appendix in B.2.

4 RESULTS

4.1 WHAT DATA MATTERS IN POST-TRAINING EFFICIENTNET

368 We present results for our EffNet models aggregated across benchmarks in Table 3, **the shaded**
 369 **rows**. We compare to Perch, SurfPerch, and BirdNet - all EffNet-based and considered state-of-the-
 370 art bioacoustic encoders. The results highlight the value of our diverse curated bioacoustic datasets,
 371 with our best EffNet model outperforming on eight of ten metrics. We observe a consistent per-
 372 formance gain of including general audio in the data-mix, transferring across focal classification,
 373 multi-label classification on soundscapes, vocal repertoire, and individual ID tasks. Consistent with
 374 other works (Ghani et al., 2023), supervised training on general audio alone transfers poorly com-
 375 pared to bioacoustic data. Interestingly, this holds for the newly benchmarked Vocal Repertoire and
 376 Individual ID tasks, suggesting large-scale species-prediction is an effective approach for transfer
 377 to these tasks, which are often studied independently. We further characterize what supervised data
 378 transfers to which tasks and species through further ablations in the Appendix in Figure 3.

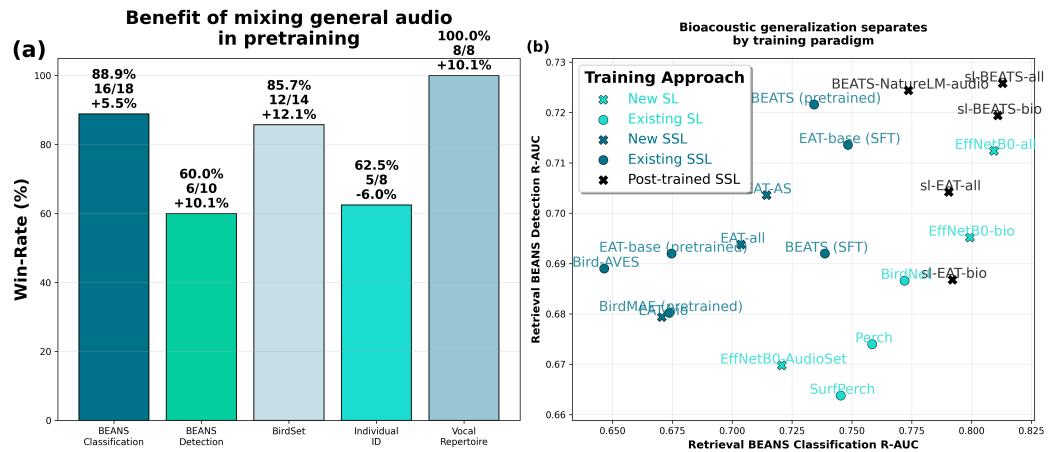


Figure 2: (a) Win-rate of adding AudioSet in self-supervised pre-training vs. pure bioacoustic data, with average relative gain per metric. (b) Supervised encoders outperform self-supervised on BEANS classification, which is primarily focal recordings. However, self-supervised encoders suffer markedly smaller performance drops than supervised encoders when moving from focal recordings to soundscape (BEANS Detection), showing strong out-of-distribution performance. In contrast, self-supervised encoders post-trained with supervised learning on bioacoustic data enjoy the strongest performance both in and out-of distribution.

4.2 SELF-SUPERVISED PRE-TRAINING HELPS OUT-OF-DISTRIBUTION

Comparing the results of EAT models trained with self-supervised learning, we find a strong effect of including general audio in the data-mix, with the model trained with the addition of AudioSet significantly outperforming the bioacoustics-only model across tasks (Figure 2a).

We further compare our supervised and self-supervised models (Figure 2b) alongside existing models, and alongside post-trained SSL models, discussed in the following section. For this comparison we want to see how discriminative raw representations from the models are with respect to the target datasets, and we use ROC AUC as a training-free metric. Compared across benchmarks, this analysis should give an idea about how generalizable the embedding space is. In this analysis we trade-off experimental control for scale, using large datasets. Running the same analysis on datasets where we control for species distribution, noise conditions, and other confounders should give a better explanation on how robust these representations are. Because we are not aware of any dataset that offers this controlled conditions we leave this for future work.

While supervised models excel in tasks closely matching their training distribution, self-supervised models demonstrate superior generalization capabilities on out-of-distribution tasks. Specifically, we find when generalizing from BEANS classification (typically focal recordings) to BEANS Detection (entirely soundscape recordings) the self-supervised models drop on average only 0.01 retrieval ROC AUC compared to a drop of 0.09 retrieval ROC AUC for the supervised models. The strength of the effect is sufficient that the best pure self-supervised model, the pre-trained BEATs, outperforms the strongest pure supervised models by retrieval on BEANS Detection. This finding underscores the strong potential of self-supervised learning in bioacoustics, where supervised learning is still considered state-of-the-art, yet models are challenged by huge distribution shifts between training and deployment (Hamer et al., 2023).

4.3 POST-TRAINING RECIPES FOR SELF-SUPERVISED BACKBONES

We show the results of self-supervised backbones post-trained on our bioacoustic dataset, compared to state-of-the-art bioacoustic encoders in Table 3. Our best post-trained models outperform overall, achieving state-of-the-art performance across the established BEANS Classification, BEANS Detection, and BirdSet benchmarks, outperforming both their self-supervised base models and supervised baselines. On the newly-proposed Vocal Repertoire Discovery and Individual Identification bench-

Model	BEANS Classification			BEANS Detection		BirdSet		Individual ID		Vocal Repertoire	
	Probe	R-auc	C-nmi	Probe	R-auc	Probe	R-auc	Probe	R-auc	R-auc	C-nmi
BEATS (SFT) ^{SSL}	0.724	0.739	0.504	0.339	0.692	0.101	0.675	0.375	0.602	0.755	0.485
BEATS (pretrained) ^{SSL}	0.774	0.734	0.542	0.381	0.722	0.129	0.686	0.380	0.637	0.775	0.498
EAT-base (pretrained) ^{SSL}	0.679	0.675	0.424	0.252	0.692	0.104	0.650	0.363	0.623	0.768	0.467
EAT-base (SFT) ^{SL-SSL}	0.758	0.748	0.478	0.358	0.714	0.143	0.676	0.418	0.632	0.817	0.527
Bird-AVES-biox-base ^{SSL}	0.705	0.646	0.410	0.340	0.689	0.092	0.670	0.402	0.622	0.726	0.453
NatureBEATs ^{SL-SSL}	0.804	0.774	0.560	0.385	0.724	0.223	0.723	0.410	0.645	0.811	0.552
Bird-MAE-Huge^{SSL}	0.766	0.674	0.432	0.354	0.680	0.168	0.636	0.404	0.637	0.812	0.485
SurfPerch ^{SL}	0.760	0.745	0.484	0.301	0.664	0.160	0.694	0.457	0.656	0.751	0.492
BirdNet ^{SL}	0.796	0.772	0.523	0.392	0.687	N/A	N/A	0.472	0.708	0.795	0.545
Perch ^{SL}	0.768	0.759	0.478	0.368	0.674	0.233	0.656	0.530	0.705	0.758	0.493
EffNetB0-AudioSet ^{SL}	0.651	0.721	0.486	0.246	0.670	0.098	0.655	0.397	0.612	0.760	0.481
EffNetB0-bio ^{SL}	0.786	0.799	0.563	0.365	0.695	0.279	0.704	0.457	0.683	0.806	0.568
EffNetB0-all ^{SL}	0.800	0.809	0.584	0.362	0.712	0.279	0.707	0.531	0.701	0.830	0.582
EAT-AS ^{SSL}	0.704	0.714	0.473	0.311	0.704	0.125	0.685	0.362	0.627	0.801	0.533
EAT-bio ^{SSL}	0.692	0.671	0.410	0.311	0.679	0.143	0.631	0.378	0.627	0.757	0.466
EAT-all ^{SSL}	0.709	0.704	0.448	0.315	0.694	0.166	0.677	0.348	0.611	0.788	0.512
sl-BEATS-bio ^{SL-SSL}	0.840	0.811	0.594	0.390	0.719	0.288	0.726	0.484	0.681	0.789	0.516
sl-BEATS-all ^{SL-SSL}	0.832	0.813	0.604	0.408	0.726	0.294	0.732	0.511	0.690	0.798	0.529
sl-EAT-bio ^{SL-SSL}	0.797	0.792	0.562	0.353	0.687	0.249	0.705	0.495	0.672	0.806	0.565
sl-EAT-all ^{SL-SSL}	0.788	0.791	0.536	0.356	0.704	0.255	0.706	0.456	0.637	0.798	0.530

Table 3: Aggregate results across bioacoustic benchmarks and tasks (best per metric in bold). We report ROC AUC for retrieval, accuracy for probing on BEANS classification and Individual ID, mean-average precision for probe on BEANS Detection and BirdSet. We report the mean of each metric over datasets per benchmark. [†]BirdNet results on BirdSet are excluded following the authors (Rauch et al., 2025b) due to data leakageModel labels carry training tags: ^{SSL} self-supervised, ^{SL} supervised, ^{SL-SSL} supervised fine-tuning after SSL pretraining. Models above the midrule are existing/pretrained checkpoints; below are new models from this work. EfficientNet models are shaded.

marks, the post-trained models maintain competitive performance, but the newly-trained EffNet on mixed bioacoustic and general audio data performs best, and BirdNet performs strongest by retrieval on Individual Identification. With respect to the the data-mix, the BEATs model trained on the mix of general audio and bioacoustic audio outperforms overall, while the mixed training has a more variable effect on EAT. We additionally find that post-training retains some of the out-of-distribution gains of the pre-trained backbone, yielding models which are strong both in and out of distribution, maintaining the benefits of both paradigms - we visualize this in Figure 2b. While post-training both EAT and BEATs gave consistent improvements vs. their raw SSL models (Figure 3 in the Appendix), solely the post-trained BEATs achieved SOTA results overall, possibly suggesting that stronger SSL backbones may lead to better post-trained models. The other existing bioacoustic post-trained self-supervised backbone NatureBEATs follows closely on several benchmarks, significantly outperforming pre-trained BEATs and outperforming supervised baselines on multiple benchmarks. Interestingly, we observe the pre-trained NatureBEATs extends the line of the self-supervised models, while our post-trained models behave more like stronger supervised models (Figure 2b.) This discovery provides interesting signal for future work on post-training under different paradigms. Overall, these results strongly support our proposed recipe of self-supervised training on diverse data-mixes of bioacoustics and general audio, followed by supervised post-training on the same mix. They also show supervised and self-supervised learning in bioacoustics are complementary for representation learning, and suggest a simple step to improve overall quality of self-supervised bioacoustic encoders, not yet commonly adopted (Hagiwara, 2023; Rauch et al., 2025a). We share full, non-aggregated results for all models in the Appendix in Tables 6, 7, 8 and 9.

486 5 CONCLUSION
487488 We presented the first large-scale empirical study and a recipe for developing a generalizable bio-
489 acoustic encoder. With few architectural assumptions, we believe this recipe can scale as both labeled
490 bioacoustic data continue to grow and self-supervised learning continues to improve.
491492 We benchmarked 19 CNN- and Transformer-based models across 26 datasets and four task families.
493 We demonstrated that self-supervised pre-training on a mixture of broad bioacoustic and general-
494 audio data, followed by supervised post-training on the same mix, yields the best in- and out-of-
495 distribution results, outperforming state-of-the-art baselines such as BirdNET, Perch and BEATs on
496 existing benchmarks (BEANS, BirdSet), and also on newly introduced benchmarks for individual
497 identification and vocal repertoire. Diverse training audio, especially adding AudioSet, consistently
498 improved transfer, whereas supervised training on general audio alone transferred poorly.
499500 Beyond models, we broaden bioacoustic evaluation by curating new benchmarks for individual iden-
501 tification and vocal repertoire classification from public datasets, and by augmenting existing suites
502 with retrieval and clustering metrics. These additions probe representation quality directly and are
503 aligned with practical tasks such as audio-to-audio retrieval and repertoire discovery. We observe
504 that large-scale bioacoustic pre-training is an effective path toward representations that generalize to
505 these under-studied tasks.
506507 Together, these findings provide actionable recipes for building versatile encoders and a richer
508 benchmark for future research. By open-sourcing our encoders (upon paper acceptance) we hope
509 this line of work will be used to accelerate research in animal communication and conservation
510 applications through bioacoustics.
511512 REFERENCES
513514 Jakob Abeßer, Saichand Gourishetti, András Kátai, Tobias Clauß, Prachi Sharma, and Judith Liebe-
515 trau. IDMT-Traffic: an open benchmark dataset for acoustic traffic monitoring research. In *2021*
516 *29th European Signal Processing Conference (EUSIPCO)*, pp. 551–555. IEEE, 2021.
517518 Andrey Anikin, Rasmus Bååth, and Tomas Persson. Human non-linguistic vocal repertoire: call
519 types and their meaning. *Journal of nonverbal behavior*, 42(1):53–80, 2018.
520521 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
522 work for self-supervised learning of speech representations. *Advances in neural information*
523 *processing systems*, 33:12449–12460, 2020.
524525 Alexei Baevski, Arun Babu, Wei-Ning Hsu, and Michael Auli. Efficient self-supervised learning
526 with contextualized target representations for vision, speech and language. In *International Con-
527 ference on Machine Learning*, pp. 1416–1429. PMLR, 2023.
528529 Joshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
530 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.
531532 Paul Best, Sébastien Paris, Hervé Glotin, and Ricard Marixer. Deep audio embeddings for vocalisa-
533 tion clustering. *Plos one*, 18(7):e0283396, 2023.
534535 Jack W Bradbury and Sandra Lee Vehrencamp. *Principles of animal communication*, volume 132.
536 Sinauer Associates Sunderland, MA, 1998.
537538 Jules Cauzinille, Benoît Favre, Ricard Marixer, Dena Clink, Abdul Hamid Ahmad, and Arnaud Rey.
539 Investigating self-supervised speech models’ ability to classify animal vocalizations: The case of
540 gibbon’s vocal signatures. In *Interspeech 2024*, pp. 132–136. ISCA; ISCA, 2024.
541542 Mustafa Chasmai, Alexander Shepard, Subhransu Maji, and Grant Van Horn. The inaturalist sounds
543 dataset. *Advances in Neural Information Processing Systems*, 37:132524–132544, 2024.
544545 Mustafa Chasmai, Alexander Shepard, Subhransu Maji, and Grant Van Horn. The inaturalist sounds
546 dataset, May 2025. URL <https://arxiv.org/abs/2506.00343>.
547

540 Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, Wanxiang Che,
 541 Xiangzhan Yu, and Furu Wei. Beats: Audio pre-training with acoustic tokenizers. In *International*
 542 *Conference on Machine Learning*, pp. 5178–5193. PMLR, 2023.

543 Wenxi Chen, Yuzhe Liang, Ziyang Ma, Zhisheng Zheng, and Xie Chen. Eat: self-supervised pre-
 544 training with efficient audio transformer. In *Proceedings of the Thirty-Third International Joint*
 545 *Conference on Artificial Intelligence*, pp. 3807–3815, 2024.

546 Yarden Cohen, David Nicholson, Alexa Sanchioni, Emily K Mallaber, Viktoriya Skidanova, and
 547 Timothy J Gardner. Tweetynet: a neural network that enables high-throughput, automated anno-
 548 tation of birdsong. *BioRxiv*, pp. 2020–08, 2020.

549 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 550 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 551 *the North American chapter of the association for computational linguistics: human language*
 552 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

553 Emmanuel Dufourq, Ian Durbach, James P Hansford, Amanda Hoepfner, Heidi Ma, Jessica V
 554 Bryant, Christina S Stender, Wenyong Li, Zhiwei Liu, Qing Chen, et al. Automated detection
 555 of hainan gibbon calls for passive acoustic monitoring. *Remote Sensing in Ecology and Conser-*
 556 *vation*, 7(3):475–487, 2021.

557 Vincent Dumoulin, Otilia Stretcu, Jenny Hamer, Lauren Harrell, Rob Laber, Hugo Larochelle, Bart
 558 van Merriënboer, Amanda Navine, Patrick Hart, Ben Williams, Timothy A. C. Lamont, Tries B.
 559 Razak, Mars Coral Restoration Team, Sheryn Brodie, Brendan Doohan, Phil Eichinski, Paul Roe,
 560 Lin Schwarzkopf, and Tom Denton. The search for squawk: Agile modeling in bioacoustics,
 561 2025. URL <https://arxiv.org/abs/2505.03071>.

562 Julie E Elie and Frederic E Theunissen. The vocal repertoire of the domesticated zebra finch: a data-
 563 driven approach to decipher the information-bearing acoustic features of communication signals.
 564 *Animal cognition*, 19(2):285–315, 2016.

565 Julia Fischer, Rahel Noser, and Kurt Hammerschmidt. Bioacoustic field research: a primer to acous-
 566 tic analyses and playback experiments with primates. *American journal of primatology*, 75(7):
 567 643–663, 2013.

568 E Fonseca, X Favory, J Pons, F Font, and X Serra. Fsd50k: an open dataset of human-labeled sound
 569 events. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 30:829–852, 2021.

570 Makoto Fukushima, Alex M Doyle, Matthew P Mullarkey, Mortimer Mishkin, and Bruno B Aver-
 571 beck. Distributed acoustic cues for caller identity in macaque vocalization. *Royal Society open*
 572 *science*, 2(12):150432, 2015.

573 Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
 574 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
 575 audio events. In *2017 IEEE international conference on acoustics, speech and signal processing*
 576 (*ICASSP*), pp. 776–780. IEEE, 2017.

577 Burooj Ghani, Tom Denton, Stefan Kahl, and Holger Klinck. Global birdsong embeddings enable
 578 superior transfer learning for bioacoustic classification. *Scientific Reports*, 13(1):22876, 2023.

579 Rory Gibb, Ella Browning, Paul Glover-Kapfer, and Kate E Jones. Emerging opportunities and
 580 challenges for passive acoustics in ecological assessment and monitoring. *Methods in Ecology*
 581 *and Evolution*, 10(2):169–185, 2019.

582 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 583 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 584 Anirudh Goyal, Anthony Hartshorn, et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

585 Masato Hagiwara. Aves: Animal vocalization encoder based on self-supervision. In *ICASSP 2023-
 586 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
 587 1–5. IEEE, 2023.

594 Masato Hagiwara, Benjamin Hoffman, Jen-Yu Liu, Maddie Cusimano, Felix Effenberger, and Katie
 595 Zaccarian. Beans: The benchmark of animal sounds. In *ICASSP 2023-2023 IEEE International*
 596 *Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.
 597

598 Jenny Hamer, Eleni Triantafillou, Bart van Merriënboer, Stefan Kahl, Holger Klinck, Tom Denton,
 599 and Vincent Dumoulin. Birb: A generalization benchmark for information retrieval in bioacous-
 600 tics, 2023. URL <https://arxiv.org/abs/2312.07439>.

601 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhota, Ruslan Salakhutdinov,
 602 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
 603 prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language processing*,
 604 29:3451–3460, 2021.

605 Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian
 606 Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. *Advances in Neural Infor-
 607 mation Processing Systems*, 35:28708–28720, 2022.

608 Muhammad Irfan, Zheng Jiangbin, Shahid Ali, Muhammad Iqbal, Zafar Masood, and Umar Hamid.
 609 Deepship: An underwater acoustic benchmark dataset and a separable convolution based autoen-
 610 coder for classification. *Expert Systems with Applications*, 183:115270, 2021. ISSN 0957-4174.
 611 doi: <https://doi.org/10.1016/j.eswa.2021.115270>. URL <https://www.sciencedirect.com/science/article/pii/S0957417421007016>.

612 Stefan Kahl, Connor M Wood, Maximilian Eibl, and Holger Klinck. Birdnet: A deep learning
 613 solution for avian diversity monitoring. *Ecological Informatics*, 61:101236, 2021.

614 Stefan Kahl, Russell Charif, and Holger Klinck. A collection of fully-annotated soundscape record-
 615 ings from the Northeastern United States, September 2022a. URL <https://doi.org/10.5281/zenodo.7079380>.

616 Stefan Kahl, Connor M Wood, Philip Chaon, M Zachariah Peery, and Holger Klinck. A collection
 617 of fully-annotated soundscape recordings from the western united states. *Zenodo* <https://doi.org/10.5281/zenodo.7050014>, 2022b.

618 Vincent S Kather, Burooj Ghani, and Dan Stowell. Clustering and novel class recognition: evaluat-
 619 ing bioacoustic deep learning feature extractors. In *Forum Acusticum Euronoise*, 2025.

620 Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
 621 and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. *Advances*
 622 *in neural information processing systems*, 2, 1989.

623 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 624 pre-training with frozen image encoders and large language models. In *International conference*
 625 *on machine learning*, pp. 19730–19742. PMLR, 2023.

626 Louis Mahon, Benjamin Hoffman, Logan S James, Maddie Cusimano, Masato Hagiwara, Sarah C
 627 Woolley, and Olivier Pietquin. Robust detection of overlapping bioacoustic sound events, 2025.
 628 URL <https://arxiv.org/abs/2503.02389>.

629 Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Metrics for polyphonic sound event
 630 detection. *Applied Sciences*, 6(6):162, 2016a.

631 Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. TUT database for acoustic scene classi-
 632 fication and sound event detection. In *2016 24th European Signal Processing Conference (EUS-
 633 PCO)*, pp. 1128–1132. IEEE, 2016b.

634 Christina AS Mumm and Mirjam Knörnschild. The vocal repertoire of adult and neonate giant otters
 635 (*pteronura brasiliensis*). *PloS one*, 9(11):e112562, 2014.

636 Museum für Naturkunde Berlin. Animal sound archive. <https://doi.org/10.15468/0bpalr>. Accessed via gbif.org 2023-05-09.

648 Ines Nolasco, Ilyass Moummad, Dan Stowell, and Emmanouil Benetos. Acoustic identification of
 649 individual animals with hierarchical contrastive learning. In *ICASSP 2025-2025 IEEE Interna-*
 650 *tional Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.
 651

652 Guy Oren, Aner Shapira, Reuven Lifshitz, Ehud Vinepinsky, Roni Cohen, Tomer Fried, Guy P
 653 Hadad, and David Omer. Vocal labeling of others by nonhuman primates. *Science*, 385(6712):
 654 996–1003, 2024.

655 K. J. Palmer, Emma Cummings, Michael G. Dowd, Kait Frasier, Fabio Frazao, Alex Harris, April
 656 Houweling, Jasper Kanes, Oliver S. Kirsebom, Holger Klinck, Holly LeBlond, Lauren Laturnus,
 657 Craig Matkin, Olivia Murphy, Hannah Myers, Dan Olsen, Caitlin O’Neill, Bruno Padovese, James
 658 Pilkington, Lucy Quayle, Amalis Riera Vuibert, Krista Trounce, Svein Vagle, Scott Veirs, Val
 659 Veirs, Jen Wladichuk, Jason Wood, Tina Yack, Harald Yerk, and Ruth Joy. A public dataset of
 660 annotated *Orcinus orca* acoustic signals for detection and ecotype classification. *Scientific Data*,
 661 12:1137, 2025. doi: 10.1038/s41597-025-05281-5. URL <https://doi.org/10.1038/s41597-025-05281-5>. Data descriptor for the DCLDE 2026 killer-whale annotation dataset.
 662

663 Michael A Pardo, Kurt Fistrup, David S Lolchuragi, Joyce H Poole, Petter Granli, Cynthia Moss,
 664 Iain Douglas-Hamilton, and George Wittemyer. African elephants address one another with indi-
 665 vidualy specific name-like calls. *Nature Ecology & Evolution*, 8(7):1353–1364, 2024.

666 Cristian Pérez-Granados. Birdnet: applications, performance, pitfalls and future opportunities. *Ibis*,
 667 165(3):1068–1075, 2023.

668 Cristian Pérez-Granados, Jon Morant Etxebarría, Kevin Félix Arno Darras, Oscar Humberto Marín
 669 Gómez, Irene Mendoza, Miguel Ángel Mohedano-Muñoz, Eduardo Santamaría, Giulia Bas-
 670 tianelli, Alba Márquez-Rodríguez, Michał Budka, et al. Wabad: A world annotated bird acoustic
 671 dataset for passive acoustic monitoring. 2025.

672 M Poupard, P Best, M Ferrari, P Spong, H Symonds, J-M Prévot, T Soriano, and H Glotin. From
 673 massive detections and localisations of orca at orcalab over three years to real-time survey joint
 674 to environmental conditions. In *e-Forum Acusticum 2020*, pp. 3235–3237, 2020.

675 Lukas Rauch, René Heinrich, Ilyass Moummad, Alexis Joly, Bernhard Sick, and Christoph Scholz.
 676 Can masked autoencoders also listen to birds?, 2025a. URL <https://arxiv.org/abs/2504.12880>.

677 Lukas Rauch, Raphael Schwinger, Moritz Wirth, René Heinrich, Denis Huseljic, Marek Herde,
 678 Jonas Lange, Stefan Kahl, Bernhard Sick, Sven Tomforde, et al. Birdset: A large-scale dataset
 679 for audio classification in avian bioacoustics. In *The Thirteenth International Conference on
 Learning Representations*, 2025b.

680 David Robinson, Adelaide Robinson, and Lily Akrapongpisak. Transferable models for bioacoustics
 681 with human language supervision. In *ICASSP 2024-2024 IEEE International Conference on
 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1316–1320. IEEE, 2024.

682 David Robinson, Marius Miron, Masato Hagiwara, and Olivier Pietquin. Naturelm-audio: an audio-
 683 language foundation model for bioacoustics. In *The Thirteenth International Conference on
 Learning Representations*, 2025.

684 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 685 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 686 recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015.

687 Christian Rutz, Michael Bronstein, Aza Raskin, Sonja C Vernes, Katherine Zacarian, and Damián E
 688 Blasi. Using machine learning to decode animal communication. *Science*, 381(6654):152–155,
 689 2023.

690 J Salamon and JP Jacoby, Cand Bello. A dataset and taxonomy for urban sound research. In
 691 *Proceedings of the 22nd ACM international conference on Multimedia*, pp. 1041–1044, 2014.

692 D Santos-Domínguez, S Torres-Guijarro, A Cardenal-López, and A Pena-Gimenez. ShipsEar: An
 693 underwater vessel noise database. *Applied Acoustics*, 113:64–69, 2016.

702 Eklavya Sarkar and Mathew Magimai Doss. Comparing self-supervised learning models pre-trained
 703 on human speech and animal vocalizations for bioacoustics processing. In *ICASSP 2025-2025*
 704 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5.
 705 IEEE, 2025.

706 Laela Sayigh, Mary Ann Daher, Julie Allen, Helen Gordon, Katherine Joyce, Claire Stuhlmann,
 707 and Peter Tyack. The Watkins marine mammal sound database: An online, freely accessible
 708 resource. *Proceedings of Meetings on Acoustics*, 27(1):040013, 2016. doi: 10.1121/2.0000358.
 709 URL <https://asa.scitation.org/doi/abs/10.1121/2.0000358>.

710 Julian C. Schäfer-Zimmermann, Vlad Demartsev, Baptiste Averly, Kiran Dhanjal-Adams, Mathieu
 711 Duteil, Gabriella Gall, Marius Faiß, Lily Johnson-Ulrich, Dan Stowell, Marta B. Manser, Marie A.
 712 Roch, and Ariana Strandburg-Peshkin. animal2vec and meerkat: A self-supervised transformer
 713 for rare-event raw audio input and a large-scale reference dataset for bioacoustics, 2024. URL
 714 <https://arxiv.org/abs/2406.01253>.

715 Samuel Stevens, Jiaman Wu, Matthew J Thompson, Elizabeth G Campolongo, Chan Hee Song,
 716 David Edward Carlyn, Li Dong, Wasila M Dahdul, Charles Stewart, Tanya Berger-Wolf, et al.
 717 Bioclip: A vision foundation model for the tree of life. In *Proceedings of the IEEE/CVF confer-
 718 ence on computer vision and pattern recognition*, pp. 19412–19424, 2024.

719 Dan Stowell. Computational bioacoustics with deep learning: a review and roadmap. *PeerJ*, 10:
 720 e13152, 2022.

721 Dan Stowell, Tereza Petrusková, Martin Šálek, and Pavel Linhart. Automatic acoustic identification
 722 of individuals in multiple species: improving identification across recording conditions. *Journal
 723 of the Royal Society Interface*, 16(153):20180940, 2019.

724 Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In *International
 725 conference on machine learning*, pp. 10096–10106. PMLR, 2021.

726 Anders Telenius. Biodiversity information goes public: Gbif at your service. *Nordic Journal of
 727 Botany*, 29(3):378–381, 2011.

728 Joachim Thiemann, Nobutaka Ito, and Emmanuel Vincent. The diverse environments multi-channel
 729 acoustic noise database (demand): A database of multichannel environmental noise recordings.
 730 *Proceedings of Meetings on Acoustics*, 19(1):035081, 05 2013. ISSN 1939-800X. doi: 10.1121/
 731 1.4799597. URL <https://doi.org/10.1121/1.4799597>.

732 Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj, Björn W Schuller, Christian J Stein-
 733 metz, Colin Malloy, George Tzanetakis, Gissel Velarde, Kirk McNally, et al. Hear: Holistic
 734 evaluation of audio representations. In *NeurIPS 2021 Competitions and Demonstrations Track*,
 735 pp. 125–145. PMLR, 2022.

736 Bart Van Merriënboer, Jenny Hamer, Vincent Dumoulin, Eleni Triantafillou, and Tom Denton. Birds,
 737 bats and beyond: Evaluating generalization in bioacoustics models. *Frontiers in Bird Science*, 3:
 738 1369756, 2024.

739 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 740 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 741 tion processing systems*, 30, 2017.

742 Willem-Pier Vellinga and Robert Planqué. The xeno-canto collection and its relation to sound recog-
 743 nition and classification. *CLEF (Working Notes)*, 1391, 2015.

744 George Vengrofski, Miranda R. Hulsey-Vincent, Melissa A. Bemrose, and Timothy J. Gardner.
 745 Tweetybert: Automated parsing of birdsong through self-supervised machine learning. *bioRxiv*,
 746 2025. doi: 10.1101/2025.04.09.648029. URL <https://www.biorxiv.org/content/early/2025/04/10/2025.04.09.648029>.

747 Gordon Wichern, Joe Antognini, Michael Flynn, Licheng Richard Zhu, Emmett McQuinn, Dwight
 748 Crow, Ethan Manilow, and Jonathan Le Roux. Wham!: Extending speech separation to noisy
 749 environments. In *Proceedings of Interspeech*, September 2019.

756 Kaja Wierucka, Derek Murphy, Stuart K Watson, Nikola Falk, Claudia Fichtel, Julian León,
757 Stephan T Leu, Peter M Kappeler, Elodie F Briefer, Marta B Manser, et al. Same data, dif-
758 ferent results? machine learning approaches in bioacoustics. *Methods in Ecology and Evolution*,
759 2025.

760 Ben Williams, Bart van Merriënboer, Vincent Dumoulin, Jenny Hamer, Eleni Triantafillou,
761 Abram B. Fleishman, Matthew McKown, Jill E. Munger, Aaron N. Rice, Ashlee Lillis,
762 Clemency E. White, Catherine A. D. Hobbs, Tries B. Razak, Kate E. Jones, and Tom Denton.
763 Leveraging tropical reef, bird and unrelated sounds for superior transfer learning in marine bio-
764 acoustics, 2024. URL <https://arxiv.org/abs/2404.16436>.

765 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
766 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
767 augmentation. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*
768 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

769 Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhota, Yist Y Lin,
770 Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing
771 universal performance benchmark. *arXiv preprint arXiv:2105.01051*, 2021.

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A TRAINING AND EVALUATION DATA COMPARISON
811812 To complement the related works discussion in Section 2, we provide a comparison with current
813 bioacoustics benchmarks in Table 4, including both training and evaluation configurations.
814815 Table 4: Training and evaluation data comparison for papers comparing audio encoders across multi-
816 ple species benchmarks. The ones from Robinson et al. (2025) were reframed for zero-shot learning.
817

Dataset	Ours	Robinson et al. (2025)	Robinson et al. (2024)	Hagiwara (2023)	Rauch et al. (2025b)	Rauch et al. (2025a)	Ghani et al. (2023)	Williams et al. (2024)	Hamer et al. (2023)	Papers
Pre-training Data										
AS										
XC										
WTK										
ASA										
INAT										
Post-training Data										
AS										
XC										
WTK										
ASA										
INAT										
BEANS Classification										
DOG										
BAT										
HBDB										
CBI										
BWTK										
BEANS Detection										
ENA										
RFCX										
HIC										
GIB										
DCASE										
BirdSet										
POW										
PER										
NBP										
HSN										
UIHH										
SNE										
SSW										
Individual ID										
PIP										
CHIF										
MAC										
OWL										
Vocal Repertoire										
ZFIN										
OTT										
BFIN										
ORCA										
Other data	6					3				

843 B EXPERIMENTAL SETUP

844 B.1 EVALUATION METRICS

845 B.2 PERFORMANCE METRICS

846 We formalize the evaluation metrics we introduce in Section 3.4. We evaluate linear probing with
847 accuracy for classification, and macro-averaged mean-average precision for detection. We evaluate
848 retrieval with ROC AUC and clustering with NMI. We formalize all evaluation metrics below.
849

850 • Linear Probing Performance

851 1a. Top-1 Accuracy (for classification):

852
$$A = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(y_i = \hat{y}_i) \quad (1)$$

853 where N is the number of samples, y_i is the true label, \hat{y}_i is the predicted label, and \mathbb{I} is the indicator function (Hagiwara, 2023; Rauch et al., 2025b).

854 1b. Average Precision (AP). For each class k , let π_k be the permutation of $\{1, \dots, N\}$ that sorts examples by decreasing score for class k . Define

855
$$t_i := \mathbf{1}\{y_{\pi_k(i),k} = 1\}, \quad TP_i := \sum_{j=1}^i t_j, \quad P(i) := \frac{TP_i}{i}.$$

16

864 The (non-interpolated) average precision for class k is
 865

$$866 \quad AP_k = \frac{1}{\max\left(1, \sum_{n=1}^N y_{n,k}\right)} \sum_{i=1}^N P(i) t_i, \\ 867 \quad 868$$

869 and the mean average precision is the macro average over classes
 870

$$871 \quad mAP = \frac{1}{K} \sum_{k=1}^K AP_k. \\ 872 \quad 873$$

874 • **Retrieval Performance (Area Under the ROC Curve):**

$$875 \quad AUC = \int_0^1 TPR(FPR) dFPR \quad (2) \\ 876 \quad 877$$

878 where $TPR = \frac{TP}{TP+FN}$ and $FPR = \frac{FP}{FP+TN}$, with TP, FP, TN, FN being true/false
 879 positives/negatives (Rauch et al., 2025b; Hamer et al., 2023).

880 • **Clustering Performance (Normalized Mutual Information):**

$$882 \quad NMI(U, V) = \frac{2 \cdot I(U, V)}{H(U) + H(V)} \quad (3) \\ 883$$

884 where U and V are cluster assignments, $I(U, V)$ is their mutual information, and $H(U)$,
 885 $H(V)$ are their entropies (Kather et al., 2025).

886
 887
 888
 889 **B.3 WIN-RATE**

890 We quantify the benefit of post-training self-supervised learning (SSL) backbones through a win-rate
 891 analysis that compares post-trained models against their corresponding base models across multiple
 892 benchmarks and evaluation metrics. For each post-training pair $(M_{\text{post}}, M_{\text{base}})$, where M_{post} denotes
 893 a post-trained model and M_{base} its corresponding base model, we compute the relative percentage
 894 improvement for each metric m and dataset d as:

$$895 \quad \Delta_{m,d}(M_{\text{post}}, M_{\text{base}}) = \frac{S_{m,d}(M_{\text{post}}) - S_{m,d}(M_{\text{base}})}{S_{m,d}(M_{\text{base}})} \times 100\% \quad (4)$$

896 where $S_{m,d}(M)$ represents the score of model M on metric m for dataset d , defined as: $S_{m,d}(M) =$
 897 $A_d(M)$ for linear probing accuracy on classification tasks, $S_{m,d}(M) = mAP_d(M)$ for mean
 898 average precision on detection tasks, $S_{m,d}(M) = AUC_d(M)$ for retrieval performance, and
 899 $S_{m,d}(M) = NMI_d(M)$ for clustering performance. Cases where $S_{m,d}(M_{\text{base}}) = 0$ are excluded
 900 from the analysis to avoid division by zero.

901 For each benchmark B , we define the set of valid metric-dataset combinations $\mathcal{M}_B = \{(m, d) : m \in \text{Metrics}(B), d \in \text{Datasets}(B)\}$, where $\text{Metrics}(B)$ and $\text{Datasets}(B)$ denote the metrics and
 902 datasets associated with benchmark B , respectively. For a given post-training pair $(M_{\text{post}}, M_{\text{base}})$
 903 and benchmark B , we define a binary win indicator $W_{m,d} \in \{0, 1\}$ for each metric-dataset combi-
 904 nation $(m, d) \in \mathcal{M}_B$:

$$905 \quad W_{m,d} = \begin{cases} 1 & \text{if } \Delta_{m,d}(M_{\text{post}}, M_{\text{base}}) > 0 \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

906 The win-rate ω_B for benchmark B and post-training pair $(M_{\text{post}}, M_{\text{base}})$ is then computed as the
 907 percentage of wins:

$$913 \quad \omega_B(M_{\text{post}}, M_{\text{base}}) = \frac{1}{|\mathcal{M}_B|} \sum_{(m,d) \in \mathcal{M}_B} W_{m,d} \times 100\% \quad (6) \\ 914 \quad 915$$

916 where $|\mathcal{M}_B|$ denotes the cardinality of \mathcal{M}_B (i.e., the total number of valid metric-dataset combi-
 917 nations for benchmark B). Note that $W_{m,d}$ is a binary indicator for individual comparisons, while ω_B
 918 is the aggregated win-rate percentage. To obtain an overall assessment of post-training benefits, we

918 aggregate win-rates across all post-training pairs $\mathcal{P} = \{(M_{\text{post}}^{(i)}, M_{\text{base}}^{(i)})\}_{i=1}^N$, where N is the number
 919 of post-training pairs. The aggregated win-rate for benchmark B is:
 920

$$\omega_B^{\text{agg}} = \frac{\sum_{i=1}^N \sum_{(m,d) \in \mathcal{M}_B} W_{m,d}^{(i)}}{\sum_{i=1}^N |\mathcal{M}_B^{(i)}|} \times 100\% \quad (7)$$

924 where $W_{m,d}^{(i)}$ denotes the win indicator for pair i and metric-dataset combination (m, d) , and $|\mathcal{M}_B^{(i)}|$
 925 is the number of valid combinations for pair i on benchmark B . Additionally, we compute the
 926 average percentage improvement across all comparisons:
 927

$$\bar{\Delta}_B = \frac{1}{\sum_{i=1}^N |\mathcal{M}_B^{(i)}|} \sum_{i=1}^N \sum_{(m,d) \in \mathcal{M}_B^{(i)}} \Delta_{m,d}^{(i)} \quad (8)$$

931 where $\Delta_{m,d}^{(i)}$ is the improvement for pair i on metric-dataset combination (m, d) . Our analysis
 932 considers the following post-training pairs: EAT-AS: (sl-EAT-AS, EAT-all), EAT-bio: (sl-EAT-bio,
 933 EAT-all), EAT-all: (sl-EAT-all, EAT-all), BEATS-bio: (sl-BEATS-bio, BEATS (pretrained)), and
 934 BEATS-all: (sl-BEATS-all, BEATS (pretrained)), where the notation “sl-” indicates a model that
 935 has been post-trained with supervised learning on downstream tasks.
 936

937 B.4 DATA SOURCES

939 For training we use a 2021 version of AudioSet, 2023 versions of Watkins “All cuts” and Animal
 940 Sound Archive, June 2023 versions of Xeno-canto, iNaturalist. All the training data was released under
 941 Creative Commons licenses on the respective platforms, with the exception of Watkins for which we
 942 received appropriate licensing agreements, including permission to redistribute. We downloaded
 943 BirdSet using the Huggingface dataset library¹. For BEANS we used the respective scripts the
 944 authors provide in their repository².

945 For the new benchmarks we use the public repositories of Bengalese Finch³, Zebra Finch⁴, Giant
 946 Otters⁵, DCLDE 2026 Killer Whale⁶, Bird ID⁷, Macaques Coo Calls⁸.
 947

948 B.5 SOFTWARE IMPLEMENTATION

950 Our experimental pipeline is implemented in Python using the Pytorch library. We have used a fixed
 951 random seed (42) for generating the datasets and as initial seeds for Pytorch and numpy.

952 We used open-source implementations for: BEATS⁹, EAT¹⁰, and EfficientNetB0 from torchvision¹¹.
 953 We wrote pytorch wrappers for BirdNet and Perch using tensorflow-lite.
 954

955 B.6 HYPERPARAMETERS

956 We include the full hyperparameters for our trained models in Table 5.

957 To select the hyperparameters we started from the ones proposed in their original papers. In the case
 958 of BEATs the learning rate we started from 1e-4 which is the original peak learning rate. We did
 959

960 ¹<https://huggingface.co/datasets/DBD-research-group/BirdSet>

961 ²<https://github.com/earthspecies/beans>

962 ³https://figshare.com/articles/dataset/Bengalese_Finch_song_repository/4805749

963 ⁴<https://www.nature.com/articles/s41467-018-06394-9>

964 ⁵https://archive.org/details/giant_otters

965 ⁶<https://catalog.data.gov/dataset/dclde-2026-killer-whale-orcinus-orca-ecotype-and-other-sp>

966 ⁷<https://zenodo.org/records/1413495>

967 ⁸https://archive.org/details/maaque_coo_calls

968 ⁹<https://github.com/microsoft/unilm/tree/master/beats>

969 ¹⁰<https://github.com/cwx-worst-one/EAT>

970 ¹¹https://docs.pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b0.html

972

973

Table 5: Training hyperparameters for all model variants

Model	Training Data	Stage-1	Stage-1	Epochs	LR	Batch	Optimizer	Weight	Scheduler	Warmup
		Epochs	LR							
<i>EfficientNet Variants</i>										
EffNetB0-AS	AudioSet	NA	NA	50	5e-4	256	AdamW	0.01	Cosine	4000
EffNetB0-bio	bio	NA	NA	50	5e-4	256	AdamW	0.01	Cosine	4000
EffNetB0-all	AS + Bio	NA	NA	50	5e-4	256	AdamW	0.01	Cosine	4000
EffNetB0-soundscape	Bio + Soundscape	NA	NA	50	5e-4	128	AdamW	0.01	Cosine	4000
EffNetB0-nobirds [‡]	Bio(no birds)	NA	NA	50	5e-4	256	AdamW	0.01	Cosine	4000
EffNetB0-nowhales [‡]	Bio + AS (no whales)	NA	NA	50	5e-4	256	AdamW	0.01	Cosine	4000
EffNetB0-birds [‡]	Bio + AS (birds only)	NA	NA	50	5e-4	256	AdamW	0.01	Cosine	4000
<i>BEATs Variants</i>										
sl-BEATs-all	All datasets	2	5e-4	10	1e-4	256	AdamW	0.01	Cosine	5000
sl-BEATs-bio	Bio	2	5e-4	10	1e-4	256	AdamW	0.01	Cosine	5000
<i>EAT Variants</i>										
EAT-bio	Bio	NA	NA	30	1e-4	48	AdamW	0.01	Cosine	53333
EAT-all	AS + Bio	NA	NA	30	1e-4	48	AdamW	0.01	Cosine	53333
EAT-AS	AudioSet	NA	NA	30	1e-4	48	AdamW	0.01	Cosine	53333
sl-EAT-bio	SSL + Bio	2	1e-4	10	8e-5	256	AdamW	0.01	Cosine	2000
sl-EAT-all	SSL + All	2	1e-4	10	8e-5	256	AdamW	0.01	Cosine	2000

[‡] Ablation studies with filtered training data.

BEATs and EAT sl_— models have an initial stage with backbone frozen, with cosine scheduler for stage-1 epochs with Stage-1 lr

Bio = core bioacoustic data, AS = AudioSet, SSL = Self-supervised learning.

996

997

5k warmup steps, the same as the original paper. We found that several works, particularly DCASE challenges are doing the same. For EAT we found it important to decrease the learning rate with respect to the original paper (5e-4) because of the larger batch size. For AVES we keep the learning rate (1e-4) which was used in the BEANS benchmark, the test-bed for this model. For probing we use a learning rate of 1e-4, weight decay of 0.1, batch size of 32, and 900 epochs.

1003

1004

C ADDITIONAL RESULTS

1005

1006

C.1 BENEFITS OF POST-TRAINING VS. RAW SSL

1008

1009

As shown in Figure 3, post-training SSL encoders with supervised learning provides a consistent improvement vs. raw SSL backbones, sometimes with large relative gains. These results show that supervised learning can have complementary benefits to self-supervised learning for bioacoustic representation learning. They also give clear evidence for those developing self-supervised models to post-train supervised learning, even when the objective is transfer to out-of-distribution tasks.

1013

1014

C.2 ABLATION ON TRANSFER OF TRAINING DATA TO DOWNSTREAM TASKS

1016

1017

We show additional ablations on transfer of various data-mixes to downstream tasks in Figure 4 and Figure 5. From a baseline of (focal) bioacoustic data only, we show the performance of adding general audio, adding soundscape recordings, and ablating different taxonomic groups (whales, and then all taxa but birds.) Adding general audio to the training mix improved results overall, but in particular transferred consistently across our vocal repertoire datasets. This data mix yields large gains on the ESC-50 dataset evaluating representations of general audio; though unsurprising, this is a relevant benefit for bioacoustic encoders in tasks such as classifying environmental noise. Training on only general audio data dropped performance very significantly overall, but the drops were most severe on BEANS Classification tasks well-informed by species prediction, and relatively smaller on detection. Adding soundscape data into the training mix with focal is a tempting strategy for learning improved representations useful for downstream tasks on soundscapes, used e.g. by later versions

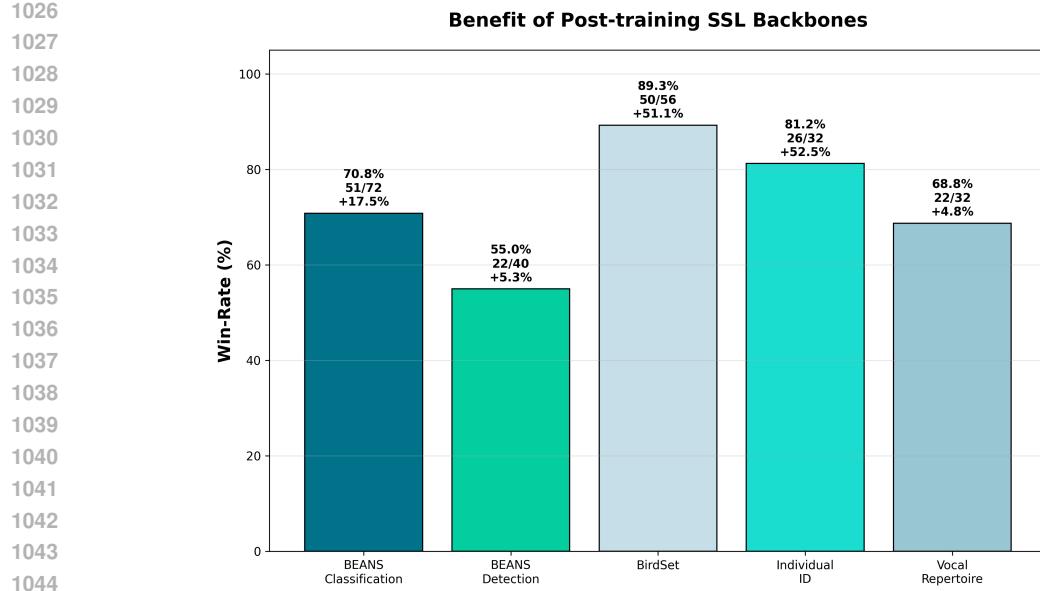


Figure 3: Win-rate of post-trained SSL models vs. their raw SSL backbones. We plot the win-rates summing over all metrics for all our post-trained (EAT and BEATs) models, and show the average relative gain per model with respect to its base model.

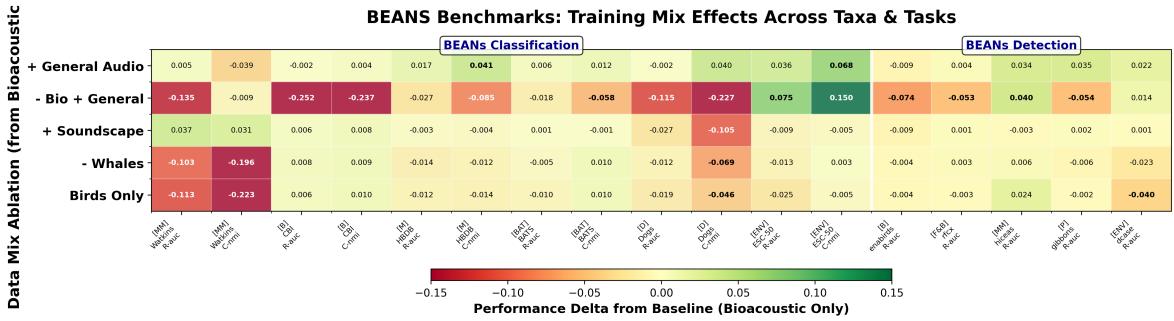


Figure 4: Detailed transfer of training data to taxa and tasks in the BEANS benchmark. Heatmap shows the performance change for an EfficientNet trained on each data mix as compared to a baseline “bio” dataset. “- Bio + General” is trained on only AudioSet, “+ Soundscape” adds soundscape datasets, “- Whales” ablates all marine mammal recordings, “Birds only” removes all non-bird recordings.

of BirdNet (Kahl et al., 2021). However, in our ablation, this did not give consistent improvements, possibly due to the lack of diversity in the easily accessible soundscape data.

Figure 5: Detailed transfer of training data to taxa and tasks in the BirdSet, Individual Identification, and Vocal Repertoire Discovery benchmarks. Heatmap shows the performance change for an EfficientNet trained on each data mix as compared to a baseline “bio” dataset. “- Bio + General” is trained on only AudioSet, “+ Soundscape” adds soundscape datasets, “- Whales” ablates all marine mammal recordings, “Birds only” removes all non-bird recordings.

1134

1135 Table 6: BEANS Classification datasets only (best per metric in bold). We report R-AUC
1136 for retrieval; probe accuracy; clustering reported as NMI. Models above the midrule are exist-
1137 ing/pretrained checkpoints; below are new models from this work.

Model	Watkins			CBI			HBDB			BATS			Dogs			ESC-50		
	Probe	R-AUC	NMI															
BEATS (SFT) ^{SSL}	0.820	0.775	0.610	0.332	0.710	0.567	0.769	0.702	0.391	0.639	0.614	0.184	0.842	0.647	0.350	0.945	0.984	0.921
BEATS (pretrained) ^{SSL}	0.903	0.806	0.694	0.359	0.679	0.564	0.810	0.702	0.564	0.705	0.635	0.191	0.935	0.666	0.427	0.930	0.917	0.813
EAT-base (pretrained) ^{SSL}	0.850	0.744	0.585	0.247	0.617	0.502	0.778	0.630	0.482	0.635	0.588	0.125	0.705	0.585	0.194	0.858	0.884	0.655
EAT-base (SFT) ^{SL-SSL}	0.867	0.808	0.613	0.388	0.714	0.558	0.782	0.686	0.328	0.654	0.631	0.216	0.899	0.659	0.216	0.958	0.992	0.938
Bird-AVES-biox-base ^{SSL}	0.852	0.703	0.556	0.318	0.613	0.521	0.769	0.594	0.435	0.662	0.593	0.091	0.770	0.585	0.233	0.858	0.791	0.624
NatureBEATS ^{SL-SSL}	0.926	0.872	0.761	0.580	0.756	0.586	0.804	0.731	0.503	0.720	0.648	0.274	0.885	0.684	0.436	0.912	0.951	0.798
Bird-MAE-Huge^{SSL}	0.888	0.744	0.567	0.457	0.623	0.537	0.829	0.695	0.470	0.733	0.580	0.083	0.827	0.577	0.244	0.860	0.823	0.691
SurfPerch ^{SL}	0.841	0.787	0.581	0.570	0.798	0.635	0.756	0.687	0.437	0.622	0.615	0.168	0.878	0.664	0.309	0.890	0.921	0.777
BirdNet ^{SL}	0.897	0.826	0.616	0.702	0.835	0.661	0.782	0.734	0.488	0.706	0.655	0.225	0.885	0.704	0.490	0.805	0.878	0.660
Perch ^{SL}	0.831	0.780	0.565	0.792	0.868	0.669	0.628	0.611	0.187	0.605	0.627	0.185	0.928	0.758	0.556	0.823	0.907	0.703
EffNetB0-AudioSet ^{SL}	0.708	0.759	0.753	0.235	0.660	0.531	0.732	0.666	0.310	0.566	0.621	0.156	0.799	0.649	0.312	0.868	0.969	0.852
EffNetB0-bio ^{SL}	0.906	0.894	0.762	0.780	0.912	0.768	0.752	0.693	0.395	0.633	0.639	0.214	0.921	0.764	0.539	0.723	0.894	0.702
EffNetB0-all ^{SL}	0.900	0.899	0.723	0.772	0.910	0.772	0.750	0.710	0.436	0.649	0.645	0.226	0.899	0.762	0.579	0.830	0.930	0.770
EAT-AS ^{SSL}	0.855	0.802	0.640	0.266	0.633	0.520	0.800	0.718	0.489	0.654	0.632	0.212	0.784	0.604	0.236	0.868	0.897	0.743
EAT-bio ^{SSL}	0.823	0.732	0.574	0.330	0.629	0.514	0.758	0.701	0.455	0.639	0.596	0.151	0.863	0.583	0.196	0.740	0.782	0.568
EAT-all ^{SSL}	0.873	0.773	0.618	0.326	0.644	0.516	0.791	0.722	0.475	0.655	0.612	0.162	0.755	0.593	0.227	0.853	0.878	0.689
sl-BEATS-bio ^{SL-SSL}	0.935	0.911	0.786	0.798	0.933	0.801	0.775	0.702	0.470	0.696	0.656	0.205	0.942	0.730	0.499	0.897	0.934	0.805
sl-BEATS-all ^{SL-SSL}	0.914	0.896	0.781	0.789	0.931	0.788	0.789	0.718	0.488	0.681	0.654	0.218	0.906	0.730	0.499	0.912	0.949	0.849
sl-EAT-bio ^{SL-SSL}	0.903	0.945	0.840	0.818	0.941	0.829	0.754	0.685	0.407	0.657	0.626	0.170	0.871	0.690	0.407	0.778	0.865	0.720
sl-EAT-all ^{SL-SSL}	0.885	0.932	0.761	0.755	0.943	0.802	0.754	0.657	0.340	0.650	0.635	0.183	0.863	0.681	0.384	0.818	0.895	0.747

1153

1154

1155

1156 Table 7: BEANS Detection datasets only (best per metric in bold). We report R-AUC for retrieval
1157 and mean-average precision for probe. Models above the midrule are existing/pretrained check-
1158 points; below are new models from this work.

Model	enabirds			rfcx			hiceas			gibbons			dcase			
	Probe	R-AUC	Probe	R-AUC	Probe	R-AUC	Probe	R-AUC								
BEATS (SFT) ^{SSL}	0.428	0.643	0.094	0.713	0.577	0.584	0.216	0.673	0.381	0.847						
BEATS (pretrained) ^{SSL}	0.525	0.678	0.110	0.720	0.544	0.627	0.351	0.686	0.373	0.897						
EAT-base (pretrained) ^{SSL}	0.403	0.631	0.077	0.706	0.475	0.564	0.041	0.660	0.265	0.899						
EAT-base (SFT) ^{SL-SSL}	0.467	0.672	0.106	0.709	0.541	0.584	0.247	0.699	0.430	0.904						
Bird-AVES-biox-base ^{SSL}	0.465	0.646	0.111	0.711	0.472	0.612	0.344	0.626	0.309	0.850						
NatureBEATS ^{SL-SSL}	0.601	0.714	0.124	0.764	0.596	0.624	0.159	0.627	0.447	0.893						
Bird-MAE-Huge^{SSL}	0.572	0.656	0.116	0.690	0.496	0.545	0.219	0.626	0.367	0.884						
SurfPerch ^{SL}	0.465	0.598	0.131	0.714	0.443	0.595	0.083	0.609	0.383	0.803						
BirdNet ^{SL}	0.648	0.743	0.148	0.747	0.431	0.532	0.279	0.584	0.455	0.827						
Perch ^{SL}	0.610	0.643	0.149	0.783	0.464	0.530	0.252	0.622	0.365	0.792						
EffNetB0-AudioSet ^{SL}	0.343	0.627	0.060	0.679	0.398	0.561	0.145	0.589	0.285	0.893						
EffNetB0-bio ^{SL}	0.501	0.701	0.120	0.732	0.486	0.521	0.258	0.643	0.459	0.879						
EffNetB0-all ^{SL}	0.528	0.692	0.129	0.736	0.505	0.555	0.166	0.678	0.482	0.901						
EAT-AS ^{SSL}	0.418	0.654	0.086	0.717	0.534	0.579	0.255	0.665	0.263	0.903						
EAT-bio ^{SSL}	0.428	0.660	0.087	0.665	0.571	0.515	0.081	0.667	0.389	0.890						
EAT-all ^{SSL}	0.475	0.668	0.103	0.723	0.569	0.511	0.155	0.666	0.275	0.901						
sl-BEATS-bio ^{SL-SSL}	0.555	0.712	0.109	0.750	0.536	0.571	0.303	0.667	0.448	0.897						
sl-BEATS-all ^{SL-SSL}	0.566	0.716	0.118	0.741	0.527	0.566	0.366	0.700	0.465	0.906						
sl-EAT-bio ^{SL-SSL}	0.516	0.666	0.099	0.708	0.546	0.580	0.190	0.638	0.415	0.842						
sl-EAT-all ^{SL-SSL}	0.528	0.665	0.099	0.739	0.536	0.618	0.170	0.667	0.445	0.832						

1181

1182

1183

1184

C.3 FULL RESULTS

1185

1186

1187 We include full results for each benchmark in Tables 6 (BEANS Classification) 7 (BEANS Detection) 8 (BirdSet) and Table 9 (Vocal Repertoire and Individual ID).

1188
1189 Table 8: BirdSet benchmark results: Multi-label bird detection tasks (best per metric in bold). We
1190 report ROC AUC for retrieval as R-AUC and mean-average precision for probe. No clustering
1191 metrics are reported. [†]BirdNet results are excluded following the authors (Rauch et al., 2025b).
1192 Models above the midrule are existing/pretrained checkpoints; below are new models from this
1193 work.

Model	POW		PER		NES		NBP		HSN		SNE		UHH	
	Probe R-AUC													
BEATS (SFT) ^{SSL}	0.108	0.654	0.046	0.642	0.062	0.726	0.213	0.649	0.107	0.625	0.079	0.725	0.094	0.704
BEATS (pretrained) ^{SSL}	0.157	0.703	0.070	0.649	0.095	0.731	0.248	0.648	0.105	0.568	0.116	0.753	0.109	0.751
EAT-base (pretrained) ^{SSL}	0.137	0.658	0.053	0.621	0.064	0.712	0.188	0.627	0.094	0.548	0.092	0.679	0.098	0.706
EAT-base (SFT) ^{SL-SSL}	0.163	0.649	0.066	0.634	0.097	0.745	0.290	0.651	0.140	0.585	0.124	0.741	0.124	0.724
Bird-AVES-biox-base ^{SSL}	0.142	0.679	0.044	0.615	0.050	0.755	0.196	0.631	0.050	0.556	0.082	0.714	0.081	0.740
NatureBEATS ^{SL-SSL}	0.244	0.722	0.132	0.690	0.177	0.819	0.419	0.708	0.251	0.574	0.197	0.796	0.143	0.749
Bird-MAE-Huge^{SSL}	0.243	0.718	0.092	0.621	0.148	0.686	0.314	0.599	0.104	0.527	0.132	0.618	0.141	0.686
SurfPerch ^{SL}	0.186	0.691	0.067	0.619	0.151	0.811	0.252	0.639	0.183	0.582	0.120	0.747	0.164	0.766
BirdNet ^{SL}	N/A													
Perch ^{SL}	0.236	0.686	0.132	0.626	0.341	0.803	0.374	0.595	0.183	0.512	0.160	0.658	0.203	0.713
EffNetB0-AudioSet^{SL}	0.115	0.637	0.045	0.569	0.054	0.728	0.181	0.615	0.087	0.609	0.087	0.725	0.115	0.701
EffNetB0-bio ^{SL}	0.283	0.717	0.128	0.621	0.263	0.832	0.454	0.717	0.383	0.544	0.212	0.738	0.231	0.759
EffNetB0-all ^{SL}	0.276	0.719	0.137	0.616	0.273	0.845	0.473	0.727	0.375	0.525	0.196	0.770	0.220	0.749
EAT-AS ^{SSL}	0.147	0.698	0.060	0.638	0.074	0.761	0.230	0.646	0.138	0.588	0.112	0.723	0.114	0.739
EAT-bio ^{SSL}	0.214	0.658	0.069	0.618	0.105	0.662	0.257	0.637	0.119	0.542	0.114	0.657	0.125	0.642
EAT-all ^{SSL}	0.188	0.702	0.065	0.649	0.113	0.731	0.303	0.648	0.185	0.568	0.147	0.708	0.158	0.734
sl-BEATS-bio ^{SL-SSL}	0.304	0.707	0.150	0.629	0.279	0.836	0.496	0.737	0.349	0.627	0.226	0.766	0.213	0.781
sl-BEATS-all ^{SL-SSL}	0.322	0.720	0.152	0.612	0.257	0.834	0.493	0.737	0.404	0.640	0.211	0.786	0.221	0.796
sl-EAT-bio ^{SL-SSL}	0.274	0.670	0.143	0.596	0.224	0.813	0.436	0.713	0.283	0.636	0.190	0.760	0.191	0.748
sl-EAT-all ^{SL-SSL}	0.265	0.700	0.129	0.600	0.219	0.828	0.452	0.707	0.328	0.586	0.192	0.760	0.203	0.763

1213
1214 Table 9: Complex bioacoustic tasks: Individual ID and Vocal Repertoire analysis (best per metric in
1215 bold). We report ROC AUC for retrieval as R-AUC. Individual ID probe is accuracy; Vocal Repertoires
1216 reports both R-AUC and NMI. Models above the midrule are existing/pretrained checkpoints;
below are new models from this work.

Model	chiffchaff-cross		littleowls-cross		pippit-cross		macaques		zebrafinch-je-call		Giant.Otters		Bengalese.Finch		SRKW.Orca	
	Probe R-AUC*	Probe R-AUC*	Probe R-AUC*	Probe R-AUC*	Probe R-AUC	R-AUC	NMI	Probe R-AUC	R-AUC	NMI	Probe R-AUC	NMI	Probe R-AUC	NMI	Probe R-AUC	NMI
BEATS (SFT) ^{SSL}	0.185	0.470	0.290	0.663	0.061	0.500	0.963	0.775	0.651	0.295	0.815	0.545	0.898	0.742	0.657	0.359
BEATS (pretrained) ^{SSL}	0.180	0.536	0.263	0.700	0.093	0.486	0.985	0.827	0.707	0.352	0.848	0.577	0.848	0.653	0.697	0.409
EAT-base (pretrained) ^{SSL}	0.205	0.544	0.317	0.676	0.058	0.469	0.872	0.804	0.684	0.231	0.788	0.503	0.974	0.871	0.626	0.265
EAT-base (SFT) ^{SL-SSL}	0.245	0.511	0.391	0.714	0.054	0.456	0.981	0.848	0.742	0.341	0.855	0.591	0.984	0.820	0.687	0.357
Bird-AVES-biox-base ^{SSL}	0.230	0.521	0.292	0.634	0.118	0.492	0.967	0.840	0.660	0.253	0.751	0.484	0.872	0.757	0.621	0.318
NatureBEATS ^{SL-SSL}	0.185	0.489	0.359	0.711	0.112	0.524	0.984	0.857	0.704	0.351	0.862	0.586	0.943	0.835	0.736	0.438
Bird-MAE-Huge^{SSL}	0.195	0.503	0.361	0.706	0.104	0.497	0.956	0.841	0.678	0.278	0.998	0.519	0.917	0.811	0.653	0.331
SurfPerch ^{SL}	0.280	0.550	0.383	0.713	0.179	0.518	0.986	0.843	0.626	0.225	0.810	0.537	0.959	0.927	0.608	0.279
BirdNet ^{SL}	0.200	0.555	0.501	0.801	0.204	0.558	0.984	0.916	0.707	0.378	0.798	0.539	0.987	0.911	0.689	0.353
Perch ^{SL}	0.210	0.500	0.649	0.847	0.288	0.570	0.973	0.904	0.657	0.284	0.854	0.585	0.959	0.896	0.561	0.206
EffNetB0-AudioSet^{SL}	0.225	0.506	0.290	0.627	0.109	0.492	0.966	0.823	0.701	0.354	0.760	0.438	0.966	0.863	0.611	0.270
EffNetB0-bio ^{SL}	0.140	0.532	0.346	0.730	0.361	0.557	0.982	0.912	0.717	0.350	0.828	0.574	0.964	0.903	0.717	0.443
EffNetB0-all ^{SL}	0.273	0.546	0.496	0.776	0.372	0.567	0.984	0.915	0.742	0.381	0.842	0.582	0.987	0.921	0.748	0.444
EAT-AS ^{SSL}	0.165	0.544	0.251	0.643	0.073	0.473	0.957	0.848	0.707	0.301	0.833	0.566	0.977	0.885	0.688	0.379
EAT-bio ^{SSL}	0.175	0.540	0.307	0.689	0.115	0.474	0.914	0.804	0.654	0.246	0.809	0.543	0.934	0.816	0.630	0.260
EAT-all ^{SSL}	0.200	0.547	0.152	0.575	0.109	0.487	0.929	0.836	0.709	0.333	0.820	0.549	0.977	0.847	0.646	0.321
sl-BEATS-bio ^{SL-SSL}	0.235	0.558	0.339	0.722	0.390	0.570	0.972	0.873	0.700	0.369	0.840	0.572	0.880	0.675	0.735	0.448
sl-BEATS-all ^{SL-SSL}	0.225	0.574	0.413	0.755	0.428	0.580	0.977	0.850	0.718	0.426	0.832	0.554	0.897	0.681	0.746	0.457
sl-EAT-bio ^{SL-SSL}	0.245	0.532	0.474	0.702	0.281	0.572	0.980	0.882	0.703	0.381	0.817	0.540	0.989	0.937	0.716	0.402
sl-EAT-all ^{SL-SSL}	0.195	0.509	0.354	0.688	0.326	0.557	0.949	0.795	0.718	0.338	0.789	0.501	0.980	0.898	0.703	0.383

C.4 BEANS CLASSIFICATION - DATA MIX WITH/WITHOUT ESC-50

1235 The BEANS benchmark contains two auxiliary non-bioacoustics datasets ESC-50 and SpeechCom-
1236 mands. We excluded SpeechCommands because this dataset is irrelevant for non-human bioacous-
1237 tics applications and speech is a well researched area beyond bioacoustics. In contrast, we included
1238 ESC-50 because general sound classification is useful for some conservation tasks like habitat clas-
1239 sification, poaching monitoring (gunshots, explosions) and this is the reason why we included it in
1240 Tables 3. To disentangle the effects of the data mix and answering the question: "does including
1241 general sound in training give better representation?" we report the averaged results without ESC-50.
1242 We include the original tables side-by-side for comparison.

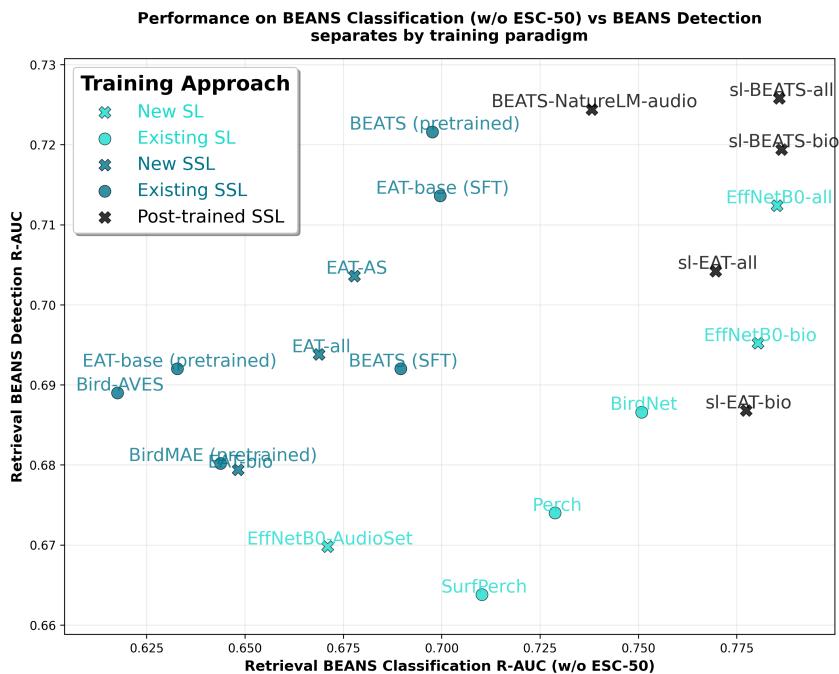


Figure 6: Supervised encoders outperform self-supervised on BEANS classification, which is primarily focal recordings. However, self-supervised encoders suffer markedly smaller performance drops than supervised encoders when moving from focal recordings to soundscape (BEANS Detection), showing strong out-of-distribution performance. In contrast, self-supervised encoders post-trained with supervised learning on bioacoustic data enjoy the strongest performance both in and out-of distribution.

We note that the ranking per-model has not changed e.g. sl-BEATs models are better than EffNetB0 models. However, there is less of a gap between ‘bio’ and ‘all’ setups, with ‘bio’ being slightly better in some cases such as EffNetB0.

We include a version of Figure 3b without including ESC-50 when aggregating the results. We note that there is a gap between ‘-all’ and ‘-bio’ models on BEANS detection, with the former models having superior R-AUC.

C.5 BIRDSET DIRECT POST-TRAINING EVALUATION

We take the SL checkpoints we trained for the post-training phase and we directly evaluate them on the BirdSet dataset by considering solely the logits corresponding to the datasets in BirdSet. This evaluation setup is comparable to the LT (large training) setup in the BirdSet paper with the following additions: (1) more training data and (2) fine-tuning a whole model, hence we call it LT+. It contrasts with the DT (dedicated training) setup which we reported initially in Table 8 i.e. linear probing of a model on each BirdSet subset. Notably, in our case DT is done on top of LT+ and it shows degraded performance. Similarly to the BirdSet paper the LT, and aforementioned LT+, have better results than DT.

Why is LT+ better than DT for BirdSet? Both of the setups contain a domain shift and although we add the same augmentations in LT+ and DT, DT seems to overfit to often small training set originating in Xeno-Canto, whereas LT+ sees more data, and learns to discriminate with high granularity a high number of classes by learning the time-frequency priors, useful for the domain shift.

1296
1297 Table 10: Aggregate results for BEANS Classification with and without ESC-50. We report ROC
1298 AUC for retrieval, accuracy for probing on BEANS classification. We report the mean of each
1299 metric over datasets per benchmark. Model labels carry training tags: ^{SSL} self-supervised, ^{SL} su-
1300 pervised, ^{SL-SSL} supervised fine-tuning after SSL pretraining. Models above the midrule are exist-
1301 ing/pretrained checkpoints; below are new models from this work.

Model	BEANS Classification (w/o ESC-50)			BEANS Classification (w/ ESC-50)		
	Probe	R-auc	C-nmi	Probe	R-auc	C-nmi
BEATS (SFT) ^{SSL}	0.680	0.690	0.420	0.724	0.739	0.504
BEATS (pretrained) ^{SSL}	0.742	0.698	0.488	0.774	0.734	0.542
EAT-base (pretrained) ^{SSL}	0.643	0.633	0.378	0.679	0.675	0.424
EAT-base (SFT) ^{SL-SSL}	0.718	0.700	0.386	0.758	0.748	0.478
Bird-AVES-biox-base ^{SSL}	0.674	0.618	0.367	0.705	0.646	0.410
NatureBEATS ^{SL-SSL}	0.783	0.738	0.512	0.804	0.774	0.560
SurfPerch ^{SL}	0.733	0.710	0.426	0.760	0.745	0.484
BirdNet ^{SL}	0.794	0.751	0.496	0.796	0.772	0.523
Perch ^{SL}	0.757	0.729	0.432	0.768	0.759	0.478
Bird-MAE-Huge ^{SSL}	0.747	0.644	0.380	0.766	0.674	0.432
EffNetB0-AudioSet ^{SL}	0.608	0.671	0.412	0.651	0.721	0.486
EffNetB0-bio ^{SL}	0.798	0.780	0.536	0.786	0.799	0.563
EffNetB0-all ^{SL}	0.794	0.785	0.547	0.800	0.809	0.584
EAT-AS ^{SSL}	0.672	0.678	0.419	0.704	0.714	0.473
EAT-bio ^{SSL}	0.683	0.648	0.378	0.692	0.671	0.410
EAT-all ^{SSL}	0.680	0.669	0.400	0.709	0.704	0.448
sl-BEATS-bio ^{SL-SSL}	0.829	0.786	0.552	0.840	0.811	0.594
sl-BEATS-all ^{SL-SSL}	0.816	0.786	0.555	0.832	0.813	0.604
sl-EAT-bio ^{SL-SSL}	0.801	0.777	0.531	0.797	0.792	0.562
sl-EAT-all ^{SL-SSL}	0.781	0.770	0.494	0.788	0.791	0.536

1323
1324 Table 11: BirdSet benchmark results: Comparison of post-training (LT+) vs adding a dataset-wise
1325 probing afterwards, on top of post-training (DT) for sl-BEATS models.

Model	POW	PER	NES	NBP	HSN	SNE	UHH
sl-BEATS-bio (DT)	0.304	0.150	0.279	0.496	0.349	0.226	0.213
sl-BEATS-bio (LT+)	0.355	0.167	0.372	0.535	0.377	0.261	0.271
sl-BEATS-all (DT)	0.322	0.152	0.257	0.493	0.404	0.211	0.221
sl-BEATS-all (LT+)	0.343	0.167	0.356	0.535	0.406	0.268	0.224

C.6 PROBING ABLATION LINEAR VS ATTENTION

1334 In our initial evaluation, the embeddings extracted from the model are averaged on the time axis. To
1335 model the temporal dependencies between the embeddings we evaluate some of the models on the
1336 BEANS and BirdSet benchmarks using an attention-based probe.

1337 The attention has a single multi-head self-attention layer on top of the extracted backbone represen-
1338 tations. The output of this attention operation is added back to the original embeddings through a
1339 residual connection, followed by layer normalization and optional dropout. The resulting sequence
1340 is then aggregated by taking the mean across tokens, and finally passed through a linear classifier to
1341 produce the prediction.

1342 For a fair comparison and to reduce computational cost we train both probe heads for each dataset
1343 in BEANS and BirdSET for 50 epochs, instead of the 900 used in our initial experiments. To reduce
1344 overfitting, we introduced a cosine learning rate scheduler with the first 5 epochs being the learning
1345 stage. We use a learning rate of 0.0001 and an AdamW optimizer. The BirdSet models are trained
1346 with the noise and mixup augmentations introduced in Section 3.4.

1347 The results presented in Table 7 show that in general attention probes have superior performance to
1348 linear probes. This slightly alters the ranking of the models, e.g. BEATS (pretrained) is now the top
1349 model on BEANS Detection, EffNetB0 is surpassed by the transformers, our sl-BEATS-all is still

	BEANS Classification		BEANS Detection		BirdSet	
	Attention	Linear	Attention	Linear	Attention	Linear
BEATs (PT) (SSL)	0.79	0.71	0.44	0.27	0.16	0.10
NatureBAGs (SL-SSL)	0.78	0.60	0.37	0.25	0.21	0.11
EAT-base (PT) (SSL)	0.77	0.69	0.38	0.32	0.15	0.12
EAT-base (SFT) (SL-SSL)	0.76	0.47	0.35	0.22	0.12	0.07
AVES (SSL)	0.57	0.32	0.26	0.11	0.10	0.06
EffNetB0-all (SL)	0.72	0.73	0.21	0.22	0.18	0.18
EAT-all (SSL)	0.77	0.51	0.39	0.23	0.16	0.11
sl-EAT-all (SL-SSL)	0.80	0.70	0.34	0.27	0.24	0.17
sl-BEATs-all (SL-SSL)	0.80	0.80	0.40	0.38	0.26	0.25

Figure 7: Linear vs Attention probing comparison. The results are aggregated across bioacoustic benchmarks and tasks. We accuracy for BEANs Classification, mean-average precision for BEANs Detection and BirdSet. We report the mean of each metric over datasets per benchmark. Model labels carry training tags: **SSL** self-supervised, **SL** supervised, **SL-SSL** supervised fine-tuning after SSL pretraining. **PT** denotes pretrained. Models above the red line are existing checkpoints; below are new models from this work.

one of the best models, EAT models improve a lot with the attention head. There are less differences between the top and the bottom models in the ranking.

SSL models benefit more from an attention head. This effect may stem from the training dynamics of SSL models, which emphasize capturing temporal structure in audio rather than developing species-specific inductive biases, as is more common in supervised learning. Consequently, when the backbone is a transformer trained via SSL, pairing it with a transformer-based probe is more effective, as it better aligns with and leverages the backbone’s representational properties. Moreover, for EffNetB0-all and sl-BEATs-all the attention probes did not yield considerable gains.