
Assessing the Zero-Shot Capabilities of LLMs

for Action Evaluation in RL

Eduardo Pignatelli

University College London
e.pignatelli@ucl.ac.uk

Johan Ferret

Google DeepMind
Tim Rocktäschel

University College London
& Google DeepMind

Edward Grefenstette

University College London
& Google DeepMind

Davide Paglieri

University College London
Samuel Coward

University of Oxford

Laura Toni

University College London

Abstract

The temporal credit assignment problem is a central challenge in Reinforcement
Learning (RL), concerned with attributing the appropriate influence to each ac-
tions in a trajectory for their ability to achieve a goal. However, when feedback
is delayed and sparse, the learning signal is poor, and action evaluation becomes
harder. Canonical solutions, such as reward shaping and options, require exten-
sive domain knowledge and manual intervention, limiting their scalability and ap-
plicability. In this work, we lay the foundations for Credit Assignment with Lan-
guage Models (CALM), a novel approach that leverages Large Language Models
(LLMs) to automate credit assignment via reward shaping and options discovery.
CALM uses LLMs to decompose a task into elementary subgoals and assess the
achievement of these subgoals in state-action transitions. Every time an option
terminates, a subgoal is achieved, and CALM provides an auxiliary reward. This
additional reward signal can enhance the learning process when the task reward is
sparse and delayed without the need for human-designed rewards. We provide a
preliminary evaluation of CALM using a dataset of human-annotated demonstra-
tions from MiniHack, suggesting that LLMs can be effective in assigning credit in
zero-shot settings, without examples or LLM fine-tuning. Our preliminary results
indicate that the knowledge of LLMs is a promising prior for credit assignment in
RL, facilitating the transfer of human knowledge into value functions.

1 Introduction

The Credit Assignment Problem (CAP) [Minsky, 1961, Sutton, 1984, Pignatelli et al., 2024] is a
fundamental challenge in RL. It typically involves determining the contribution of each action to
the final outcome, a process crucial for accurate policy evaluation. Effective Credit Assignment
(CA) enables agents to learn useful associations between actions and outcomes, and provides useful
directions to improve the policy.

However, when rewards are dispensed only at the end of a task [Efroni et al., 2021], as it is often
the case, the feedback becomes sparse and delayed, making CA particularly challenging. In such
scenarios, rewarding events are rare, and Deep Reinforcement Learning (Deep RL) agents often
struggle to convert occasional successes into a robust decision-making process. To exacerbate the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

issue, RL agents typically begin with no prior knowledge (tabula rasa) and must learn the nuances
and intricacies of complex tasks from scratch. The lack of controlled experimental conditions, such
as the ability to observe counterfactuals, makes it difficult for them to distinguish between correlation
and causation. As a result, tasks that are usually easy to solve for humans become hard to address
for an RL agent.

To address these challenges, many methods incorporate prior human knowledge into RL systems.
Two techniques are canon: reward shaping [Ng et al., 1999, Gupta et al., 2022] and Hierarchical Re-
inforcement Learning (HRL) [Al-Emran, 2015, Sutton et al., 1999] via options [Sutton et al., 1999].
Reward shaping involves providing an additional synthetic reward to guide the agent’s actions when
natural rewards are uninformative. HRL decomposes complex tasks into simpler ones (options),
training agents to achieve intermediate objectives that provide a signal while the Markov Decision
Process (MDP) would not. Despite their effectiveness, these methods require extensive human in-
put, making them costly and difficult to scale across different environments.

Recently, LLMs have emerged as a useful tool to transfer human knowledge into computational
agents, either through planning [Dalal et al., 2024], expressing preferences [Klissarov et al., 2023],
or grounding their abstract knowledge into practical solutions [Huang et al., 2023, Carta et al., 2023].
Notably, these models have produced strong results in causal reasoning tasks [Jin et al., 2023] with
performances comparable to humans [Kıcıman et al., 2023]. These results suggest that LLMs could
be an effective, supplementary tool to distinguish between correlation and causation more effectively
than traditional methods used in early stages of RL training.

With these results, a natural question arises: “Can the knowledge encoded in LLMs serve as a useful

prior for CA in RL?” Inspired by the successes of LLMs, we introduce CALM, a general method to
perform CA with LLMs using reward shaping. We hypothesize that the prior knowledge of a LLM
can provide valuable signals that improve CA in RL, and propose a way to transfer these priors into
the agent’s value function. On this assumption, CALM leverages a pretrained LLM to break down
tasks into smaller, composable subgoals and determine if a state-action-state transition achieves
a subgoal. This provides an additional reward signal to enhance RL algorithms, and effectively
automates reward shaping by substantially reducing the involvement of humans in the training loop.

We present a preliminary evaluation of the efficacy of CALM in zero-shot settings, with no examples
and no finetuning. We collect a dataset of demonstrations from MiniHack [Samvelyan et al., 2021]
and use it to compare the performance of LLMs against human annotations. Our results indicate
that LLMs are a viable means to transfer common human knowledge into value functions, and can
be effective in automating reward shaping. This bodes well for the prospect to improve CA in the
full RL problem.

2 Related work

LLMs for RL. Recent advancements have shown the potential of pretrained LLMs in enhancing
RL agents. Paischer et al. [2022, 2024] used CLIP encodings to improve the state representations of
Partially-observable MDPs (POMDPs). Yao et al. [2020], Du et al. [2023] investigated the ability
of pretrained LLMs to improve exploration. Huang et al. [2023], Carta et al. [2023] grounded the
abstract knowledge of these models and their capabilities into practical RL tasks. LLMs have been
used for planning, either directly as world models [Huang et al., 2022, Wang et al., 2023, Singh
et al., 2023, Brohan et al., 2023, Dasgupta et al., 2023, Shah et al., 2023, Zhong et al., 2020, 2022]
or by writing code [Liang et al., 2022]. Unlike these methods we use pretrained LLMs as a critic:
the LLM provides an evaluation of an action for how useful it is to achieve a goal in the future.
Among the methods above, Du et al. [2023] is the only method to use subgoals, but these are used
to condition a goal-oriented policy, rather than as a critic.

LLMs for reward shaping. Carta et al. [2022], Goyal et al. [2019] explore the advantages of
using pure language abstractions for reward shaping, but do not use a pretrained LLMs and its prior
knowledge. Kwon et al. [2023] use the responses of LLMs as a reward signal, but the investigation
is limited to conversational environments.

LLMs for knowledge transfer. Another set of studies used intrinsic rewards to transfer the prior
knowledge of an LLM to a value function. Wu et al. [2024] used LLMs to provide an auxiliary re-

2

ward signal in Atari [Bellemare et al., 2013], based on the information contained in a game manual.
Unlike this study, we use subgoals to extract the reward signal, and we do not focus on incorporat-
ing external knowledge material, but rely on the LLM’s prior knowledge to solve the task. Klissarov
et al. [2023] constructed a reward function from the LLM’s preferences over NetHack [Küttler
et al., 2020] in-game messages only. Instead, our method incorporates the full observation, does not
use preferences, and does not require a separate stage to fit the preference set, but uses the LLM’s
output directly.

In short, none of these methods proposes to generalise reward shaping with hierarchical skills using
pretrained LLMs. Unlike the methods above, we use pretrained LLMs as a critic: we aim to uncover
cause-effect relationships between actions and goals by both breaking down a task into valuable
subgoals and then acting as a reward function for them. This provides an intermediate signal to
shape the agent’s behaviour when rewards are sparse and delayed.

3 Preliminaries

We consider the problem of learning to solve POMDPs. A POMDP is defined by a tuple M =
(S,A, R, µ,O, O, �). Here S is the state space with elements s. A is the action space of elements
a. R : S ⇥A⇥ S ! [0, 1] is a deterministic, bounded reward function. µ : S ⇥A ! S is the state
transition function. O is the space of all observations, and O : S ! O is an observation function,
mapping a state s to a partial observation o. � 2 [0, 1] is the discount factor.

To best isolate the CAP from other problems, we focus only on environments with a discrete action
space, and deterministic state transitions. To evaluate the capabilities of LLMs in environments
where the CAP is hard, we only consider tasks where the reward signal is delayed. Here, the reward
function is 0 everywhere, and 1 when a goal state is reached.

To start the investigation, we evaluate the LLM only in language settings, and do not consider
multimodal (text, image, audio, video) settings. For this reason, we consider only environments with
an observation kernel that maps to a textual codomain, O : S ! T , where T is a set of sequences
of characters.

Finally, we consider a black box, pretrained LLM, that takes an input text and maps it to a finite set
of output characters. We consider only open-weights models that can fit an NVIDIA A100 80Gb in
either 16 bits floating point or 4 bits integer mode. We assume that the LLM has enough preliminary
knowledge of the MiniHack environment to recognise valuable actions that progress towards a win.

4 Methods

We set out to design a general method to assign credit in RL using LLMs that can generalise to
multiple tasks with little human input. Next, we formalise the method, discuss its assumptions and
provide details on the protocols we use to evaluate it.

4.1 Reward shaping

Among the available CA techniques, we focus on reward shaping [Ng et al., 1999], due to both its
effectiveness in assigning credit and its limitations to generalisation related to the costs of human
involvement in the training loop. Reward shaping aims to address the scarcity of learning signals by
introducing an auxiliary reward function, the shaping function:

r̃t+1 = R̃(st, at, st+1). (1)

Here, st is the state at time t, at is the action taken in that state, st+1 is the resulting state, and r̃t+1

is the auxiliary reward collected after taking at in st. This reward is added to the original reward
signal R(st, at, st+1) to obtain the new, shaped reward

rt+1 = R(st, at, st+1) + R̃(st, at, st+1). (2)

If there exist a function � : S ! R such that R̃(st, at, st+1) = �(st+1) � �(st), then the set of
optimal policies is preserved, and the shaping function is also a potential function [Ng et al., 1999].
In the following, we consider the more general case of non-optimality preserving functions.

3

For example, in key-door environments, a common testbed for CA methods [Hung et al., 2019,
Mesnard et al., 2021], the agent must reach a reward behind a locked door, which can only be
opened if the agent possesses a key. Here, the agent has clear subgoals: (i) go to the key, (ii) pick
it up, (iii) go to the door, (iv) unlock it, (v) go to the reward. Achieving these subgoals sequentially
leads to optimal behaviour. However, the agent struggles to recognise this hierarchical pattern due
to the lack of immediate feedback from the environment. This is particularly true in the early stages
of training, when behaviour is erratic, and two optimal actions can be separated by a long sequence
of random ones. Providing intermediate feedback for each achievement often improves the agent’s
performance [Gupta et al., 2022], and the ability of R̃ to produce an instantaneous signal indicating
progress is crucial for better CA. Thus, reward shaping can significantly accelerate the learning
process in environments with sparse or delayed rewards.

However, designing an effective shaping function is challenging. The function should be carefully
designed to provide useful guidance without leading to unintended behaviours. This often calls for
incorporating domain knowledge or heuristic information about the task, and requires deep task and
environment knowledge. Such knowledge may not be readily available or easily codifiable, limiting
the applicability of reward shaping in diverse or unknown environments. This process is complex
and time-consuming, and it might not always be possible to devise a reward function that incen-
tivizes learning, is computationally cheap, and general enough to adapt to various tasks. Improving
this limitation could enable broader use of reward shaping and enhance CA in deep RL.

4.2 LLMs as shaping functions

Encouraged by the recent successes of LLMs in RL [Klissarov et al., 2023] and of using language to
abstract skills [Jiang et al., 2019, Jacob et al., 2021, Sharma et al., 2021, Mu et al., 2022], we explore
whether these models can offer a valid alternative to humans in the reward shaping process. Our goal
is to produce a function that, given a description of the task and a state-action-state transition, pro-
duces a binary signal indicating whether the action makes progress towards solving the task or not:

LLM : desc(M)⇥ desc(S ⇥A⇥ S) ! B. (3)

Here, LLM is a pretrained LLM; desc(M) is a natural language description of the POMDP (the
task); desc(S ⇥ A ⇥ S) is a textual representation of the transition, not necessarily in natural lan-
guage (for example, a grid-arranged text), and B = {0, 1} is the Boolean domain. In this scenario,
the LLM acts as a critic: its role is to evaluate the action at in the transition (st, at, st+1) based on
the heuristics that we describe next.

We operationalise the idea using the notion of options [Sutton et al., 1999]. An option is a tempo-
rally extended action and consists of two elements: an intra-option policy ⇡i : S ! �(A), and a
termination condition � : S ! B.1

To develop an intuition of options, it is useful to visualise one as a macro-action: a set of actions
that, taken together, have precise semantics. For example, in our key-to-door example, one useful
option to consider is to pick up the key. This macro action includes a set of primitive actions – the
set of actions to navigate to the key and the action pickup – and a termination condition – whether
the key is picked up. For the purpose of our analysis, this termination is crucial, as it signals that the
subtask has been successfully achieved.

We exploit this idea to build our shaping function, set up a single-turn conversation, and prompt the
model to perform two subtasks:

(i) To identify a set of useful options in the environment, by breaking down the task into
a sequence of shorter subgoals. These options, and more specifically their termination,
effectively constitutes our set of subgoals, since a subgoal is achieved when the option
terminates (a key is picked up).

(ii) Determine whether an option terminated (thus, if a subgoal is achieved) in the transition
(st, at, st+1).

Every time an option terminates, we augment the task reward with the subtask reward as according
to our reward shaping rule, R̃(st, at, st+1) = �(st+1).

1We consider S+ = S and omit the initiation set S+

4

In essence, Equation (3) aims to mimic a human supervising an RL agent’s decisions, acting as an
auxiliary critic. Decomposing the task into multiple subgoals allows each sub-achievement to cor-
respond to a small step towards success, and composing all the subgoals sequentially results in suc-
cessful behaviour. Since achieving a subgoal is contingent on achieving all the preceding ones, the
number of subgoals achieved quantifies the agent’s progresses. To develop an intuition of the idea,
subgoals can be thought of as levels; gaining a level at the current time indicates progress in achiev-
ing a specific goal in the future. This process of actualisation, where an action is evaluated for its
future potential to achieve a goal, characterises the function as a CA method [Pignatelli et al., 2024].

4.3 Experimental protocol

The viability of CALM in online RL settings depends on the quality of the assignments provided
by the LLM. Good quality assignments – signals that reinforce optimal actions – can improve the
performance of an RL algorithm. Thus, we provide a preliminary evaluation of CALM on an offline
dataset of demonstrations.

Environment. We focus on the KeyRoom environment, a canonical testbed for CA methods
[Hung et al., 2019, Mesnard et al., 2021, 2023] originally proposed in Minigrid [Chevalier-Boisvert
et al., 2018]. We choose its MiniHack version, for it provides a textual representation of the obser-
vations that can be fed to a language system. The game presents a top-down view of a grid-like en-
vironment with two rooms. The agent starts in the first room, where a key is located. It must pick
up the key and use it to unlock the door to the second room, where a reward is located. We consider
two types of observations:

1. Cropped observations. a top-down, north-facing, 9x9 crop around the agent, which is
known to improve the performance in standard RL benchmarks on Nethack [Küttler et al.,
2020].

2. Game screens. A top-down, north-facing, 21x79 grid showing the entire game scene,
including an in-game message and a set of statistics of the current state. We also refer to
these as human observations, since they reproduce the conditions of human game play.

Both observations are partial, despite containing different amounts of information. We consider a
discrete action set: go north, go east, go south, go west, pickup, apply. The reward function is
deterministic, providing a reward of 1 if the agent reaches the goal tile and 0 otherwise. Transitions
are also deterministic.

Dataset. We collect 256 one-step transitions dt = (st, at, st+1) using a random policy. Given a
set of subgoals G ⇢ (S ⇥A⇥S), a transition dt can then be classified as either achieving a subgoal
g 2 G or not. This produces categories C = {ci : 0 i |G| + 1}, one for each subgoal, and an
additional one when no subgoal is achieved. To characterise the abilities of an LLM to assign credit
accurately, we produce a balanced dataset where each goal appears with equal probability.

Composing the prompt. For each transition we then compose a prompt using the following struc-
ture:

1. <ROLE> specifies the role we ask the LLM to simulate.
2. <ENVIRONMENT-DESCRIPTION> describes the RL environment, the source of the game-

play.
3. <SYMSET> is a list reporting Nethack wiki entries2 of what each symbols in the grid repre-

sents.
4. <TASK-DESCRIPTION> specifies the overall goal of the agent, and does not contain infor-

mation about subgoals.
5. <SUBGOALS> contains either a list of subgoals to achieve, or asks the LLM to produce one.
6. <INSTRUCTIONS> tasks the agent to determine whether a subgoal is achieved in the trajec-

tory presented in <TRANSITION>.

2https://nethackwiki.com/wiki/Symset

5

Example prompt
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:
- "." represents a floor tile.
- "|" can represent either a wall, a vertical wall, an open door.
- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,
wall, top left corner (of a room), op right corner (of a room).
- "+" represents a closed door. Doors can be locked, and require a key to open.
- "(" represents a useful item (pick-axe, key, lamp...)
- "<" represents a ladder or staircase up.
- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.
Then, consider the following game transition, which might or might not contain these subgoals.
Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:
‘‘‘python
{

<name of goal>: <bool>,
}

Observation Sequence:

<gameplay>
Time: 0
Current message:

- - - -
| . . |
| . . |

- - + - . < |
| . . . @ . |
| . (. . . |
- - - - - - -

Time: 1
Current message:

| . . |
| . . |

- - + - . < |
| |
| . (. @ . |
- - - - - - -

</gameplay>

I will not consider anything that is not in the dictionary.
You have only one shot at this, and you cannot ask for clarifications.

Prompt 1: Example of a prompt for instruction verification. Here, goals are provided externally
from a human.

7. Finally, <OUTPUT-FORMAT-REQUEST> requests the output in a format that can be easily
parsed, for example, a python dictionary.

Prompt 1 shows a concrete instantiation of this structure, where goals are provided as part of the in-
put. Here, the role is not specified, exhorting the LLM to play a generic role, and the environment
description (The environment is MiniHack) is minimal. In the symset – the list of symbols with
their meaning – the descriptions are extracted from the wiki (https://nethackwiki.com/wiki/
Symset). The task is as generic as possible (to win the game), and it is followed by the set of prede-
termined subgoals (pick up the key and unlock the door). The instructions and the request for an ap-
propriate output format follow on that. Finally, we enclose the transition within a <gameplay> tag,
and remark that this is a single-turn conversation to avoid the model asking additional clarifications.
Notice that we separate each cell in the observation with a whitespace to ensure that each cell (plus
their whitespace) corresponds to a separate token. We discuss this more in depth in Appendix D.1,
and provide more details and variations of prompts in Appendix A. To develop an intuition of the
role covered by the model, we encourage the reader to scan over them before proceeding.

6

https://nethackwiki.com/wiki/Symset
https://nethackwiki.com/wiki/Symset

Models. We use pretrained, open-weights large language models that can fit a 80Gb A100 Nvidia
GPU in either 16 bits brain floating point [Dean et al., 2012] or 4 bits integer weights representations.
When models cannot fit in memory, we use their NF4 [Dettmers et al., 2023] quantised equivalent.
These models are marked with an asterisk (⇤) in the tables below. All the models are finetuned for
instructions following, and tokens are deterministically sampled using a greedy policy.

Annotations. For each transition a human annotator produces a term of reference for comparison.
The annotator is presented with each prompt in the dataset, without any further instructions. We
then record the annotator’s answer, and use it as a term of reference for the LLM’s responses. Since
the prompt has a correct answer, these are not subjective evaluations, but rather direct verification,
with little room for interpretation.

Metrics. We then compare the LLM’s annotations with the human ones. The response is a true
positive if both the LLM and the human annotator identify that a subgoal is achieved. It is a false pos-
itive (a hallucination) if the LLM identified it, but the human has not; a false negative (a miss) if the
human identified one, but the agent has not. This effectively casts the problem as classification, with
the set of classes C, as described in the dataset description. We then compare the LLM’s hypotheses
with the human responses as ground truth, and report accuracy, F1 score, precision and recall.

5 Experiments, results, and discussion

To evaluate the effectiveness of LLMs in CA for RL, we consider environments with textual rep-
resentations. We assume that the LLM has sufficient knowledge of the game to evaluate actions.
While this assumption might be strong for NetHack, it is reasonable for MiniHack, where tasks are
simplified yet challenging models of common NetHack scenarios, requiring only partial knowledge.

Based on the set of experimental conditions described above, we then consider a spectrum of settings
requiring progressively less input from humans. We start by providing the LLM with: (a) cropped
observations focused around the agent; (b) an effective, predetermined set of subgoals; We then
proceed to progressively relax these conditions to: (a) gamescreen observations; (b) allowing the
LLM to discover useful subgoals autonomously. These conditions are set to replicate the conditions
of a human playing the game.

5.1 Can LLMs understand goal specifications and verify option termination?

This experiment aims to assess whether a pretrained LLM can function as a reward function when
subgoals are provided externally. We provide the LLM with the environment name, MiniHack, and
a list of two subgoals: pick up the key and unlock the door. We specify that the goal of the
agent is simply to win the game [Jeurissen et al., 2024], and ask it to determine if each subgoal has
been achieved in the transition. Prompt 4 shows an example prompt for this experiment.

We present results for multiple pretrained LLMs, using both cropped observations and full game
screens. The purpose of the comparison is not to determine a winning model. It is, instead, to under-
stand whether the ability to assign credit to single transitions is in the spectrum of capabilities of ex-
isting open-weights LLMs. This will lay the foundation for applying the method in full RL settings.

We report results in Tables 1 and 2, and draw the following two insights. First, LLMs, except
gemma-1.1-2b-it, probably due to its small size, are generally effective in recognising when an
instruction has been successfully completed in a state-action-state transition. This shows their ability
to understand goal specifications and to recognise when an option terminates due to completion. We
also noticed that c4ai-command-r-plus degenerates into outputting false for most transitions, most
probably due to quantisation.

Second, restricting the field of view of the observation helps improve performance. This is most
likely due to observations being more concise, and avoiding the information to drown among a high
number of tokens. This also seems to increase the lower bound, and the performance of models
drastically failing with human observations greatly improves, especially gemma-1.1-2b-it.

7

Annotator F1 " Accuracy " Precision " Recall " TP " TN " FP # FN #

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1⇤ 0.74 0.67 0.77 0.73 124 47 38 47

gemma-1.1-7b-it 0.73 0.70 0.91 0.61 105 75 10 66
Meta-Llama-3-70B-Instruct 0.66 0.65 0.97 0.50 85 82 3 86
Meta-Llama-3-8B-Instruct 0.64 0.64 0.95 0.49 83 81 4 88
c4ai-command-r-v01⇤ 0.60 0.57 0.80 0.49 83 64 21 88
Mistral-7B-Instruct-v0.2 0.48 0.54 0.96 0.32 55 83 2 116
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Random 0.33 0.33 0.33 0.33

Table 1: Performance of LLM annotations against human annotations with game screen observa-
tions and with the subgoals provided in the prompt. Models marked with an asterisk (⇤) are quan-
tised to NF4 format. TP stands for true positives, TN for true negatives, FP for false positives, and
FN for false negatives. Rows sorted by F1 score.

Annotator F1 " Accuracy " Precision " Recall " TP " TN " FP # FN #

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1⇤ 0.78 0.70 0.78 0.77 132 48 37 39

gemma-1.1-7b-it 0.76 0.69 0.79 0.73 124 52 33 47
gemma-1.1-2b-it 0.76 0.68 0.76 0.77 131 43 42 40
c4ai-command-r-v01⇤ 0.75 0.69 0.81 0.70 120 57 28 51
Meta-Llama-3-70B-Instruct 0.63 0.58 0.76 0.54 92 56 29 79
Meta-Llama-3-8B-Instruct 0.61 0.61 0.92 0.46 79 78 7 92
Mistral-7B-Instruct-v0.2 0.61 0.62 0.96 0.45 77 82 3 94

Random 0.33 0.33 0.33 0.33

Table 2: Performance with cropped observations and with the subgoals provided in the prompt.

5.1.1 Can LLMs suggest effective options?

In this experiment, we evaluate whether LLMs can autonomously suggest effective options. Instead
of providing a predetermined list, we ask the LLM to break down the task into subgoals and verify
whether these subgoals have been achieved. Despite only a small change on the surface, removing
some key information from the prompt intensively tests the LLM’s knowledge of NetHack. More
importantly, it stresses the ability of the models to come up with a viable and effective hierarchy of
subgoals such that, if reinforced, produces useful signals for progress.

This setting is more complex but also more general, as it replicates the amount of information
typically available to a human player. Prompt 5 shows an example prompt for this experiment. As
for the previous experiment, we evaluate the performance of different models using both cropped
and human observations.

Annotator F1 " Accuracy " Precision " Recall " TP " TN " FP # FN #

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.82 0.72 0.71 0.96 165 19 66 6

Meta-Llama-3-8B-Instruct 0.80 0.70 0.72 0.89 153 26 59 18
gemma-1.1-7b-it 0.77 0.66 0.71 0.85 145 25 60 26
Mixtral-8x7B-Instruct-v0.1⇤ 0.74 0.64 0.71 0.76 130 33 52 41
Mistral-7B-Instruct-v0.2 0.57 0.48 0.63 0.53 90 32 53 81
c4ai-command-r-v01⇤ 0.56 0.52 0.71 0.47 80 52 33 91
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Random 0.33 0.33 0.33 0.33

Table 3: Performance with game screen observations and with autonomously discovered subgoals.

Results in Table 3 indicate that LLMs can effectively suggest subgoals when presented with game
screen observations, and that these subgoals align with those identified by humans. Models like
Meta-Llama-3-70B-Instruct and Meta-Llama-3-8B-Instruct come close to human performance, sug-
gesting that LLMs can effectively use the additional information to suggest and validate subgoals.

8

Annotator F1 " Accuracy " Precision " Recall " TP " TN " FP # FN #

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.83 0.75 0.75 0.93 159 33 52 12
gemma-1.1-7b-it 0.81 0.70 0.71 0.95 163 17 68 8

Mixtral-8x7B-Instruct-v0.1⇤ 0.72 0.62 0.71 0.74 127 32 53 44
Mistral-7B-Instruct-v0.2 0.65 0.54 0.66 0.64 109 28 57 62
c4ai-command-r-v01⇤ 0.60 0.52 0.68 0.54 92 41 44 79
gemma-1.1-2b-it 0.47 0.52 0.89 0.32 55 78 7 116
Meta-Llama-3-8B-Instruct 0.45 0.39 0.57 0.37 63 38 47 108

Random 0.33 0.33 0.33 0.33

Table 4: Performance with cropped observations and with autonomously discovered subgoals.

These results bode well for applications of CALM where human input, while still considerably
smaller than in canonical reward shaping, is still expensive to collect.

When transitioning to cropped observations (Table 4) LLMs perform worse. This is most likely due
to a misalignment between the subgoals proposed by the models and the ones of the ground truth.
We did not observe any substantial difference in how different models propose subgoals and in the
types of subgoals they suggest. Most models correctly identify item collection and locating objects,
such as stairs, monsters and keys. They often include “going to <object>” instructions as subgoals.
We provide examples of such prompts in Appendix B.

While this evaluation can be unfair, since we compare the LLM’s response with the set of subgoals
the human identified, it still tells whether the LLM way of reasoning about a task align with the
human one. These elements, together with the ability of LLMs to verify if a subgoal is achieved,
suggest that LLMs can be an effective means to transfer human knowledge into value functions.

5.2 Conclusions, limitations, and future work

In this study, we explored whether LLMs can be a useful means to transfer human knowledge into
the value function of RL agents. By focusing on reward shaping, we highlighted its limitations in
scalability due to the cost of human involvement. To mitigate these costs, we proposed replacing
humans with LLMs, leveraging their ability to decompose tasks into shorter subgoals. Preliminary
results from an offline dataset of MiniHack demonstrations suggest that LLMs are effective in veri-
fying subgoal achievement and align with those proposed by humans. This suggests the potential of
using LLMs to enhance CA in RL.

Limitations. While preliminary results are promising, they are limited by the scope of the current
evidence. We did not conduct RL experiments to validate the method in online RL settings. The dy-
namic nature of online RL could pose unique challenges not present in offline settings. Additionally,
despite KeyRoom being representative of the CA challenges, and a common testbed for CA, evalu-
ating the method in a broader range of environments would provide more comprehensive evidence
of its robustness and applicability.

The method also has inherent limitations. Environments must provide observations in the form of
text. The LLM must hold enough knowledge of the game to evaluate actions. While this can be a
mild assumption for MiniHack, it can be an obstacle for environments requiring more specialised
knowledge, such as Nethack [Küttler et al., 2020] or Crafter [Hafner, 2021, Matthews et al., 2024].
Finally, the LLM relies solely on their prior knowledge and does not incorporate new knowledge
while assigning credit, limiting their adaptability and accuracy over time.

Future work. Future work should focus on addressing these limitations. Validating the approach
in online RL settings and exploring its applicability to a broader range of environments can tell if
CALM can enhance the learning process of RL agents in practice. A natural extension of this work
is to generalise the method beyond text-only observations. Baumli et al. [2023] follows this line of
research, testing the capability of Vision Language Models (LLMs) to evaluate the completion of an
instruction from pixels alone. The instruction completion question corresponds to ours in the LLMs
domain. Finally, a closed feedback loop where CALM helps improve the policy, the policy provides
new information to the LLM, and the LLM incorporates this information to improve its CA ability
could help scale to more complex problems requiring specialistic knowledge.

9

References

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.
ISSN 00968390. doi: 10.1109/JRPROC.1961.287775.

Richard S Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University of
Massachusetts, 1984.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, and Laura
Toni. A survey of temporal credit assignment in deep reinforcement learning. Transactions on

Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?
id=bNtr6SLgZf. Survey Certification.

Yonathan Efroni, Nadav Merlis, and Shie Mannor. Reinforcement learning with trajectory feedback.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7288–7295,
2021.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pages 278–287. Citeseer, 1999.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking re-
ward shaping: Understanding the benefits of reward engineering on sample complexity. Advances

in Neural Information Processing Systems, 35:15281–15295, 2022.

Mostafa Al-Emran. Hierarchical reinforcement learning: a survey. International journal of comput-

ing and digital systems, 4(02), 2015.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Murtaza Dalal, Tarun Chiruvolu, Devendra Singh Chaplot, and Ruslan Salakhutdinov. Plan-seq-
learn: Language model guided RL for solving long horizon robotics tasks. In The Twelfth In-

ternational Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=hQVCCxQrYN.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. 2023.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation
with grounded models for robot control. arXiv preprint arXiv:2303.00855, 2023.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pages 3676–3713. PMLR, 2023.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
nando Gonzalez, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard Schölkopf. CLadder:
Assessing causal reasoning in language models. In NeurIPS, 2023. URL https://openreview.
net/forum?id=e2wtjx0Yqu.

Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language
models: Opening a new frontier for causality. arXiv preprint arXiv:2305.00050, 2023.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference on Neural

Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL https:
//openreview.net/forum?id=skFwlyefkWJ.

10

https://openreview.net/forum?id=bNtr6SLgZf
https://openreview.net/forum?id=bNtr6SLgZf
https://openreview.net/forum?id=hQVCCxQrYN
https://openreview.net/forum?id=hQVCCxQrYN
https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models in
reinforcement learning. In International Conference on Machine Learning, pages 17156–17185.
PMLR, 2022.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic helm: A
human-readable memory for reinforcement learning. Advances in Neural Information Processing

Systems, 36, 2024.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
Language models for action generation in text-based games. arXiv preprint arXiv:2010.02903,
2020.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pages 8657–8677. PMLR, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on

Machine Learning, pages 9118–9147. PMLR, 2022.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation

(ICRA), pages 11523–11530. IEEE, 2023.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pages 287–318. PMLR, 2023.

Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix Hill,
and Rob Fergus. Collaborating with language models for embodied reasoning. arXiv preprint

arXiv:2302.00763, 2023.

Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-nav: Robotic navigation with large pre-
trained models of language, vision, and action. In Conference on robot learning, pages 492–504.
PMLR, 2023.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to new environment
dynamics via reading. In ICLR, pages 1–17. ICLR, 2020.

Victor Zhong, Jesse Mu, Luke Zettlemoyer, Edward Grefenstette, and Tim Rocktäschel. Improving
policy learning via language dynamics distillation. Advances in Neural Information Processing

Systems, 35:12504–12515, 2022.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2022. URL

https://arxiv. org/abs/2209.07753, 3, 2022.

Thomas Carta, Pierre-Yves Oudeyer, Olivier Sigaud, and Sylvain Lamprier. Eager: Asking and
answering questions for automatic reward shaping in language-guided rl. Advances in Neural

Information Processing Systems, 35:12478–12490, 2022.

Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping
in reinforcement learning. arXiv preprint arXiv:1903.02020, 2019.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models, 2023.

11

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and
reap the rewards: Learning to play atari with the help of instruction manuals. Advances in Neural

Information Processing Systems, 36, 2024.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment. Advances in Neural

Information Processing Systems, 33:7671–7684, 2020.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by trans-
porting value. Nature Communications, 10(1):5223, 2019. ISSN 2041-1723. doi: 10.1038/
s41467-019-13073-w. URL https://doi.org/10.1038/s41467-019-13073-w.

Thomas Mesnard, Theophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyun-
yan, Will Dabney, Thomas S Stepleton, Nicolas Heess, Arthur Guez, et al. Counterfactual credit
assignment in model-free reinforcement learning. In International Conference on Machine Learn-

ing, pages 7654–7664. Proceedings of Machine Learning Research, 2021.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstraction
for hierarchical deep reinforcement learning. Advances in Neural Information Processing Sys-

tems, 32, 2019.

Athul Paul Jacob, Mike Lewis, and Jacob Andreas. Multitasking inhibits semantic drift. arXiv

preprint arXiv:2104.07219, 2021.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent
language. arXiv preprint arXiv:2110.01517, 2021.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
Edward Grefenstette. Improving intrinsic exploration with language abstractions. Advances in

Neural Information Processing Systems, 35:33947–33960, 2022.

Thomas Mesnard, Wenqi Chen, Alaa Saade, Yunhao Tang, Mark Rowland, Theophane Weber, Clare
Lyle, Audrunas Gruslys, Michal Valko, Will Dabney, Georg Ostrovski, Eric Moulines, and Remi
Munos. Quantile credit assignment. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th In-

ternational Conference on Machine Learning, volume 202 of Proceedings of Machine Learning

Research, pages 24517–24531. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/mesnard23a.html.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25, 2012.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arxiv 2023. arXiv preprint arXiv:2305.14314, 2023.

Dominik Jeurissen, Diego Perez-Liebana, Jeremy Gow, Duygu Cakmak, and James Kwan. Playing
nethack with llms: Potential & limitations as zero-shot agents. arXiv preprint arXiv:2403.00690,
2024.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended rein-
forcement learning. arXiv preprint arXiv:2402.16801, 2024.

12

https://doi.org/10.1038/s41467-019-13073-w
https://proceedings.mlr.press/v202/mesnard23a.html
https://proceedings.mlr.press/v202/mesnard23a.html
https://github.com/maximecb/gym-minigrid

Kate Baumli, Satinder Baveja, Feryal Behbahani, Harris Chan, Gheorghe Comanici, Sebastian
Flennerhag, Maxime Gazeau, Kristian Holsheimer, Dan Horgan, Michael Laskin, et al. Vision-
language models as a source of rewards. arXiv preprint arXiv:2312.09187, 2023.

13

	Introduction
	Related work
	Preliminaries
	Methods
	Reward shaping
	LLMs as shaping functions
	Experimental protocol

	Experiments, results, and discussion
	Can LLMs understand goal specifications and verify option termination?
	Can LLMs suggest effective options?

	Conclusions, limitations, and future work

	Prompting
	Cropped vs gamescreen observations
	Option termination vs option discovery
	Examples of different subgoals

	Responses
	Scale
	Ablations
	Tokenisation
	Actions

