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ABSTRACT

Accurately measuring discrimination in machine learning-based automated decision
systems is required to address the vital issue of fairness between subpopulations
and/or individuals. Any bias in measuring discrimination can lead to either amplifi-
cation or underestimation of the true value of discrimination. This paper focuses
on a class of bias originating in the way training data is generated and/or collected.
We call such class causal biases and use tools from the field of causality to for-
mally define and analyze such biases. Four sources of bias are considered, namely,
confounding, selection, measurement, and interaction. The main contribution of
this paper is to provide, for each source of bias, a closed-form expression in terms
of the model parameters. This makes it possible to analyze the behavior of each
source of bias, in particular, in which cases they are absent and in which other
cases they are maximized. We hope that the provided characterizations help the
community better understand the sources of bias in machine learning applications.

1 INTRODUCTION

Machine learning (ML) is being used to inform decisions with critical consequences on human lives
such as job hiring, college admission, loan granting, and criminal risk assessment. Unfortunately, these
automated decision systems have been found to consistently discriminate against certain individuals
or sub-populations, typically minorities Angwin et al. (2016); Buolamwini & Gebru (2018); O’Neill
(2016); Quick (2015); Obermeyer et al. (2019). Addressing the problem of discrimination involves
two main tasks. First, measuring discrimination as accurately and reliably as possible. Second,
mitigating discrimination. The first task is clearly a prerequisite for the appropriate implementation of
the second task. Proposing mitigation policies on the ground that discrimination is significant while it
is in fact less significant (let alone not existing) may lead to undesirable consequences.

In this paper, we make a distinction between discrimination and bias. We use the term discrimination
to refer to the unjust or prejudicial treatment of different categories of people, on the ground of race,

age, gender, disability, religion, political belief, etc.. Whereas the term bias is used to refer to the

deviation of the expected value from the quantity it estimates.

Discrimination in ML decisions can originate from several types of bias as described in the literature.
For instance, The Centre for Evidence-Based Medicine (CEBM) at the University of Oxford is
maintaining a list of 62 different sources of bias of Oxford (2021). More related to ML, Mehrabi et
al. Mehrabi et al. (2021) classify the sources of bias into three categories depending on when the
bias is introduced in the automated decision loop. In this paper we focus on a class of biases, we call
causal biases, which arise from the way data is generated and/or collected. We use tools from the
field of causality Pearl (2009); Imbens & Rubin (2015) as the latter emerged as a way to reliably
estimate the effects between variables in presence of data imbalance leading to a deviation between
the population distribution and the training data distribution.

The main contribution of the paper is to use tools and existing results from the field of causality to
generate closed-form expressions of four sources of bias. These sources of biases correspond to four
different causal structures, namely, confounding, colliding (selection), measurement, and interaction.
This has at least two advantages. First, understand how bias is expressed in terms of model parameters.
Second, analyze the magnitude of each type of bias, in particular, when it is absent and when it is
optimal. Finally, we empirically show the extent of causal biases in ML fairness benchmark datasets.
All proofs of the closed-form expressions can be found in the supplementary material.
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2 TYPES OF BIAS

Measuring discrimination without taking into consideration the causal structure underlying the
relationships between variables may lead to misleading conclusions. That is, a biased estimation
of discrimination. In extreme cases, such as Simpson’s paradox, the bias may lead to reversing
the conclusions (e.g. the biased estimation indicates a positive discrimination, while the unbiased
estimation is actually a negative discrimination).
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2.1 CONFOUNDING BIAS

The first type of bias, confounding bias, is due to a failure to consider a confounder variable. Consider
the hypothetical example in Figure 1 of an automated system to select candidates for job positions.
Assume that the system takes as input two features, namely, the socio-economic status (SES) denoted
as Z and the political belief of the candidate A. The outcome Y is whether the candidate is selected for
the next stage of hiring (or the probability the candidate is selected). The outcome Y is influenced by
the SES (A better SES makes it possible for candidates to attend more reputable academic institutions
and to be enrolled in costly trainings). Both variables can be either binary (Z might be either rich or
poor while A might be either liberal or conservative) or continuous (how rich/poor a candidate is for
Z and the degree of conservativeness of the candidate for A). The political belief A of a candidate
can be influenced by several variables, but in this example, assume that it is only influenced by the
SES of the candidate. Finally, assume that the automated decision system is suspected to be biased
by the political belief of candidates. That is, it is claimed that the system will more likely select
candidates with a particular political belief.

A simple approach to check the fairness of the automated selection Y with respect to the sensitive
attribute A is to contrast the conditional probabilities: PpY “ 1 | A “ 0q and PpY “ 1 | A “ 1q1,
corresponding to statistical disparity, which quantifies the disparity in the selection rates between both
types of candidates (conservatives and liberals). However such estimation of discrimination is biased
due to the confounding path through Z. As Z variable causes both the sensitive variable A and the
outcome Y , it creates a correlation between A and Y which is not causal. In other words, high SES
(rich) candidates tend to have a more conservative political belief and at the same time more chances
to be selected for the job (better academic institutions and training) which creates the following
correlation in the data: employers will have more candidates with convervative political beliefs, and
hence less candidates with liberal political beliefs. Such correlation is due to the confounder Z and
should not count as discrimination. We call such bias in estimating discrimination, confounding bias.

2.2 SELECTION BIAS

The second type of bias, selection bias, is due to the presence of common effect (collider) variable
and a data generation process implicitly conditioning on that variable. Using the same hypothetical
example of job selection, consider the causal graph in Figure 2. A and Y are the same as in the
previous example. Assume that data for training the automated decision system is collected from
different sources, but mainly from labor union records. Assume also that variable W representing the
labor union activism of the candidate is caused by both A and Y . On one hand, the political belief A
influences whether a candidate is an active member of labor union (individuals with liberal political
beliefs are more likely to enroll in labor unions). On the other hand, if a candidate is selected/hired,
then there are higher chances that she becomes a member of labor union and consequently that her
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case is recorded in the labor union records. Consistent with previous work, a box around a variable
(W ) indicates that data is generated by implicitly conditioning on that variable.

Again the simple approach of constrasting the selection rates between both types of candidates
(conservatives and liberals) leads to a biased estimation of discrimination due to the colliding path
through W . Intuitively, an individual has a record in the collected data either because she has liberal
political beliefs or because she is selected for the job. Individuals who happen to have liberal political
beliefs and at the same time selected for the job are still present in the data, however conditioning on
labor union activism creates a correlation between A and Y which is not causal: data coming from
labor union records includes fewer liberal candidates which are selected for the job than conservative
candidates. Again, this is a discrimination against candidates with liberal political beliefs. Such
correlation is due to the colliding structure and should not count as discrimination. We call such bias
in estimating discrimination, selection bias.

2.3 MEASUREMENT BIAS

The third type of bias, measurement bias, is due to the use of a proxy variable to estimate dis-
crimination instead of an ideal but unmeasurable variable. Consider a third variant of the same job
selection example having the causal graph of Figure 3. Unlike in the causal graph of confounding
bias (Figure 1), the confounder variable Z is unmeasurable (empty bullet instead of a filled one). In
practice, it is difficult to find a variable that represents accurately the socio-economic status (salary,
possessions, etc.). Being unmeasurable, Z cannot be used to estimate discrimination while blocking
the confounding path through Z. For practical reasons, the (measurable) variable T representing the
postal/zip code of the candidate’s address can be used instead. T is considered a proxy of Z as it is
highly correlated with (but not identical to) Z2. Using variable T as a proxy to measure Z may lead
to an additional bias, we call measurement bias.

2.4 INTERACTION BIAS

The fourth type of bias, interaction bias, is observed when two causes of the outcome interact with
each other, making the joint effect smaller or greater than the sum of individual effects. Consider the
same job hiring example but where two sensitive attributes, political belief (liberals vs conservatives)
and gender have an effect on the hiring decision. In the presence of interaction between political
belief and gender, statistical disparity will not accurately measure the individual effects of Political
Belief and Gender even if no confounding condition is satisfied. For example, it is possible to observe
a situation where statistical parity is almost satisfied for both individual sensitive variables, but the
intersectional sensitive group is discriminated Buolamwini & Gebru (2018). Following our previous
example, we would define liberal females as an unprivileged intersectional group and conservative
males as a privileged intersectional group. In the presence of interaction, the discrimination against
liberal females is not equal to the sum of discrimination against conservative and females individually.
In addition, the average discrimination value for liberals or females, as measured by statistical
disparity, will also be biased, as it does not take into account the interaction between the two sensitive
variables.

3 CONFOUNDING BIAS

Confounding bias occurs when both the sensitive variable and the outcome have a common cause,
the counfounder variable. Consequently, the mechanism of selecting samples from the two groups
(protected and privileged) is not independent of the outcome. This creates a bias when measuring the
causal effect of the sensitive attribute on the outcome.

For a concise notation, let y1 and y0 denote the propositions Y “ 1 and Y “ 0, respectively, and the
same for the variables A and Z. For instance, PpY “ 1|A “ 0q is written simply as Ppy1|a0q.
Theorem 3.1. Assuming A, Y , and Z binary variables and that Ppa0q “ Ppa1q “ 1

2
3
, the difference

in discrimination due to confounding is equal to:

ConfBiaspY,Aq “ p1 ´ Ppz0|a0q ´ Ppz1qqp↵ ´ � ` � ´ �q. (1)
2The candidate’s address gives a strong indicator of the socio-economic status.
3A result without this assumption can be found in the supplementary material.
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Figure 5: Confound-
ing structure in linear
model

Figure 6: Simple col-
lider structure

Figure 7: Simple mea-
surement bias struc-
ture

Figure 8: Interaction
Bias, where A and B
are sensitive variables
and Y is an outcome.

Theorem 3.2. Let A, Y , and Z variables with linear regressions coefficients as in Figure 5 which

represents the basic confounding structure. The confounding bias can be expressed in terms of

covariances of pairs of variables as follows:

ConfBiaspY,Aq “
�za�yz ´ �ya

�2
a
�2
za

�2
a�

2
z ´ �2

za

(2)

where �2
x denotes the variance of X and �xy denotes the covariance of X and Y .

Confounding bias can also be expressed in terms of the linear regression coefficients as follows:

ConfBiaspY,Aq “ �z
2

�a
2
�� (3)

Corollary 3.3. For standardized variables
4 A, Y , and Z, confounding bias can be expressed in terms

of covariances as:

ConfBiaspY,Aq “ �za�yz ´ �ya�2
za

1 ´ �2
za

(4)

And in terms of regression coefficient, simply as ( Pearl (2013)):

ConfBiaspY,Aq “ �� (5)

Equations (4) and (5) can be obtained from Equations (2) and (3) as �z “ �a “ 1.

We provide in the supplementary material (Appendix B.3) the closed-form expression of confounding
bias in presence of two (or several confounders) in the linear case.

4 SELECTION BIAS

Selection bias occurs when there is collider variable caused by both the sensitive attribute A and the
outcome variable Y and the data generation process implicitly conditions on that collider variable.
The simplest case is illustrated in Figure 6. Consistent with previous work, a box around a variable
indicates that data is generated by conditioning on that variable.
Theorem 4.1. Assuming A, Y , and W binary variables and that Ppa0q “ Ppa1q “ 1

2 , the difference

in discrimination due to collider structure is equal to:

SelBiaspY,Aq “ p1 ´ Ppw0|a0q ´ Ppw1qqp´↵ ` � ´ � ` �q (6)
where, ↵ “ Ppy1|a0, w0q, � “ Ppy1|a0, w1q, � “ Ppy1|a1, w0q, and � “ Ppy1|a1, w1q.
Theorem 4.2. Let A, Y , and Z variables with linear regressions coefficients as in Figure 6 which

represents the basic collider structure. Bias due to selection is equal to:

SelBiaspY,Aq “
�ya

�2
a
�2
wa ´ �wa�yw

�2
a�

2
w ´ �2

wa

(7)

Selection bias can also be expressed in terms of the linear regression coefficients as follows:

SelBiaspY,Aq “ ✏
�4
a↵

2⌘ ` �4
a↵

3✏ ´ �2
y�

2
a⌘ ´ �2

y�
2
a↵✏

�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2

(8)

4Variables normalized to have a mean 0 and standard deviation 1.

4



Under review as a conference paper at ICLR 2024

Corollary 4.3. For standardized variables A, Y , and W , selection bias can be expressed in terms of

convariances as:

SelBiaspY,Aq “ �ya�2
wa ´ �wa�yw

1 ´ �2
wa

(9)

And in terms of regression coefficient:

SelBiaspY,Aq “ ✏
↵2⌘ ` ↵3✏ ´ ⌘ ´ ↵✏

1 ´ p⌘ ` ↵✏q2 (10)

Equations (9) and (10) can be obtained from Equations (7) and (8) as �a “ �w “ �y “ 1.

5 MEASUREMENT BIAS

Measurement bias arises from how particular variable(s) are measured. A common example is when
the ideal variable for a model is not measurable/observable and instead we rely on a proxy variable
which behaves differently in different groups. Figure 7 shows a simple scenario when measuring
accurately the discrimination based on A requires adjusting on variable Z. However, if Z is not
measurable but a proxy variable T is measurable, measurement bias occurs when we adjust on T
instead of Z.
Theorem 5.1. Assuming A, Y , and Z binary variables such that Z is not measurable, but only the

error mechanism (PpT |Zq) is available, and that Ppa0q “ Ppa1q “ 1
2 , the difference in discrimination

due to measurement bias, MeasBiaspY,Aq can be expressed in terms of PpT |Zq as follows:

✏p� ´ �q ` p1 ´ ✏qp� ´ ↵q
´ ✏

`
� ´ � ` 4Ppt1|z0qp� ´ � ` ��` � q

˘
Q

´ p1 ´ ✏q
`
� ´ ↵ ` 4Ppt0|z1qp↵ ´ � ` � ` � ´1 ` ��´1q

˘
R (11)

where:

↵ “ Ppy1|a0, t0q � “ Ppy1|a1, t0q Q “ 1 ´ Ppt0|z1q
✏

1 ´ Ppt0|z1q
2✏

� “ ✏ ` ⌧
2 ´ 1

✏ ` ⌧
2 ´ 1

2

✏ “ Ppt1q

� “ Ppy1|a0, t1q � “ Ppy1|a1, t1q R “
1 ´ Ppt1|z0q

1´✏

1 ´ Ppt1|z0q
2´2✏

 “ 1 ´ ⌧

⌧
⌧ “ Ppt0|a0q

Theorem 5.2. Let A, Y , Z, and T variables with linear regressions coefficients as in Figure 7 which

represents the basic measurement bias structure. Bias due to measurement error is equal to:

MeasBiaspY,Aq “ �z
2��p�t

2 ´ �z
2�2q

�a
2�t

2 ´ �z
4�2�2

(12)

Corollary 5.3. For standardized variables A, Y , Z, and T , measurement bias is equal to:

MeasBiaspY,Aq “ ��p1 ´ �2q
1 ´ �2�2

(13)

6 INTERACTION BIAS

Interaction bias takes place in the presence of two sensitive attributes when the value of one sensitive
attribute influences the effect of the other sensitive attribute on the outcome (Figure 8).
Theorem 6.1. Under the assumption of no confounders between A and Y on one hand, and between B
and Y on the other hand, adding up the single effects of A and B on Y to estimate the discrimination

due to both sensitive variables leads to a biased estimation. The amount of the bias (IntBias)

coincides with the interaction term as follows:

IntBiaspY,A,Bq “ InteractionpA,Bq
“ P py1|a1, b1q ´ P py1|a0, b1q ´ P py1|a1, b0q ` P py1|a0, b0q (14)
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Theorem 6.2. Under the assumption of no confounders between A and Y on one hand, and between

B and Y on the other hand, the interaction bias when estimating discrimination with respect to only

A is equal to:

IntBiaspY,Aq “ P pb1qInteractionpA,Bq (15)

IntBiaspY,Bq is defined similarly as P pa1qInteractionpA,Bq. For the linear model case, consider
the true model:

Y “ �0 ` �1A ` �2B ` �3AB (16)
and a biased model, that does not include interaction term �3:

Y “ �
1
0 ` �

1
1A ` �

1
2B (17)

Where A and B are binary sensitive attributes and Y is a continuous value outcome. The change in Y
due to A is �1 `�3B and, similarly the change in Y due to B is �2 `�3A Keele & Stevenson (2021).
In this case, a measure of effect of A (�

1
1) or B (�

1
2) without an interaction term would be inaccurate.

Theorem 6.3. Let A,B and Y be variables with linear regression coefficients as in Equation 17. In a

linear model with binary A and B the bias due to interaction, when measuring the discrimination

with respect to both A and B is equal to:

IntBiaspY,A,Bq “ p�1
1 ` �

1
2q ´ p�1 ` �2 ` �3q “ �3

Intuitively, �3 is part of an effect of the intersectional sensitive variable A1B1 on Y that is left out of
the estimation when fitting linear regression without the interaction term.
Theorem 6.4. Let A,B and Y be variables with linear regression coefficients as in Equation 17. In a

linear model with binary A and B the bias due to interaction, when measuring the discrimination

with respect to only A is equal to:

IntBiaspY,Aq “ �3PpB1q (18)

Intuitively, IntBiaspY,Aq measures how wrong is the evaluation of effect of A “ 1 on average, for
cases where B “ 1 or B “ 0. Similarly, IntBiaspY,Bq “ �3PpA1q.

7 BIAS ANALYSIS

Expressing different types of bias in terms of the model parameters (conditional probabilities and
regression coefficients) allows to study the behavior of bias and how it is impacted by the different
parameters. In particular, at which parameters value it is peaked and at which other values it is absent.
The aim is to identify the cases where a given estimation of discrimination is biased and at which
extent.

7.1 BINARY CASE

Confounder Bias is absent when at least one of the two terms of Equation 1 is equal to 0. For the
first term (1 ´ Ppz0|a0q ´ Ppz1q “ 0), it is easy to show that it is equivalent to Ppz0|a1q “ Ppz0q
which is in turn means that Z and A are independent (A KK Z).

The second term is equal to 0 when :

Ppy1|a0, z0q ´ Ppy1|a0, z1q “ ´pPpy1|a1, z0q ´ Ppy1|a1, z1qq (19)

Thre right-hand side can be interpreted as the Contolled Direct Effect (CDE) VanderWeele (2011)
of Z on Y when A “ 0 whereas the left-hand side is the opposite of Ppy1|a1, z0q ´ Ppy1|a1, z1q
which is the CDE of Z on Y when A “ 1. Confounding bias is equal zero, when the CDE of Z on Y
when A “ 1 is the exact opposite of to that when A “ 0. In the job hiring example of Figure 1, it
means that we privilege poor liberals as much as we privilege rich conservatives, therefore the effect
Z´ ° Y is canceled out. Equation 19 can also hold when both sides are equal to 0. This means
that Z has no direct effect on Y (no edge between Z and Y ). Z can still have effect on Y which is
mediated through A, but it does not have a role as a confounder. To summarize, confounding bias is
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absent in three cases: either A KK Z (A and Z are independent) or the edge Z Ñ Y is absent, or the
CDE of Z on Y when A “ 0 and A “ 1 are opposite and hence cancel each others.

Confounding bias is peaked when the first term (1 ´ Ppz0|a0q ´ Ppz1q) is equal to 1 or ´1 and the
second term (´↵ ` � ´ � ` �) is equal to 2 or ´2. The first term is equal to 1 when Ppz1q “ 0 and
Ppz0|a0q “ 0. This is an extreme situation when all data instances have the same values of A and
Z variables, that is, a1 and z0. The same term is equal to ´1 when Ppz1q “ 1 and Ppz0|a0q “ 1
which corresponds to the other extreme situation of all data instances have a0 and z0. In the job
hiring example, both cases correspond to a situation when all candidates are of the same type: poor
liberals or rich liberals. The second term reaches a peak value (2.0 or ´2.0) when the CDE of Z on
Y is maximum (1 or ´1) for both a0 and a1. To summarize, confounding bias is optimal when the
effect through the edge Z Ñ A is very strong (first term) and the effect through the edge Z Ñ Y
is very strong (second term). This optimal situation can be seen as an extreme case of Simpson’s
paradox Simpson (1951).

Collider Bias Collider bias can be viewed as an inverse case of a confounder bias. While confounder
bias compromises internal validity, selection bias is a threat to external validity Haneuse (2016).
Similarly as confounder bias, collider bias does not manifest if the direct link between A and W or Y
and W is absent, or the link between W and Y is the opposite for the values A “ 1 and A “ 0. The
bias is maximized when the group corresponding to A “ 1 and W “ 0 is very large (the negative bias
case would occur if the group A “ 1 and W “ 1 is dominant). Maximization of bias also requires
that the link from Y to W is deterministic and has the same direction for both values of A.

Measurement Bias depends heavily on PpT |Zq. For instance, from Theorem 5.1, it is easy to show
that if Ppt0|z1q “ Ppt1|z0q “ 0 (T and Z are fully dependent), then Q “ R “ 1, and consequently
measurement bias disappears. Conversely, if Ppt0|z1q “ Ppt1q “ ✏ and Ppt1|z0q “ Ppt0q “ 1 ´ ✏ (T
and Z are independent), then Q “ R “ 0, and consequently, measurement bias is maximized as the
two negative terms of Equation equation 11 disappear. The maximum value of measurement bias in
that case is ✏p� ´ �q ` p1 ´ ✏qp� ´ ↵q.

Interaction Bias Interaction bias for the intersectional case coincides with the interaction term. More
precisely, it is maximized when the interaction is maximized and diminishes when the interaction is
small. Note that the interaction is equal 0 when one of the sensitive attributes does not have an effect
on Y Rothman et al. (2008). The interaction bias when measuring the effect of one sensitive attribute
A or B on Y depends on the interaction term and the probability of B “ 1 and A “ 1, respectively.
The bias increases with the probability of A “ 1 or B “ 1 and the interaction term. Interaction bias
is equal to zero when either interaction, to the probability of B “ 1 or A “ 1, respectively, is equal
to 0.

7.2 LINEAR CASE

To analyze the different types of bias in the linear case, we generate synthetic data according to
the following models. Without loss of generality, the range of possible values of all coefficients
(↵,�, �, ⌘, ✏, and �) is r´1.0, 1.0s (Appendix D.2). Figure 9 shows the magnitude of each type of bias
based on the expressions obtained in Sections 3, 4, and 5. In particular, Equations 3 for confounding
bias, 8 for selection bias, and 12 for measurement bias. Three dimensions plot is used for confounding
bias (Figure 9(a)) as bias is expressed in terms of two variables (� and �) whereas four dimensions
plots are used for selection and measurement biases (three variables). Confounding bias is maximized
when both � and � have extreme values (`1.0 or ´1.0): positive bias when � and � are of the same
sign, and negative otherwise. Bias is absent when at least one of the coefficients is zero. In between
these extreme cases, confounding bias has strictly linear relation with � whereas a non-linear relation
with �. More importantly, confounding bias is more sensitive to � than to � particularly for extreme
values (when coefficients are close to `1.0 or ´1.0). That is, modifying the effect of the confounder
(e.g. Z) on the sensitive variable (e.g. A) has more impact on the confounding bias than modifying
the effect of the confounder on the outcome variable (e.g. Y ) with the same amount. In the job hiring
example (Section 2.1) this means that the effect of Socio-Economic status on politicial belief has more
impact on the counfounding bias than the effect of socio-economic status on job hiring. However, if
the variables are standardized, both effects contribute equally to confounding bias (Corollary 3.3).

Unlike confounding bias, the magnitude of selection bias (Figure 9(b)) depends also on the regression
coefficient of Y on A (↵). Selection bias is peaked in two cases depending on the value of ↵. First,
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when ⌘ and ✏ have the same extreme values (1 or ´1) and ↵ “ 1. This leads to maximal negative
bias. Second, when ⌘ and ✏ have extreme but different sign values (1 or ´1) and ↵ “ ´1. This
corresponds to maximal positive bias. Intuitively, conditioning on the collider variable W introduces
a spurious effect between the two causes A on Y : any information “explaining away” one cause will
make the other cause more plausible. Using the job hiring example (Figure 2), if there is maximum
negative discrimination based on the political beliefs of the candidates (↵ “ ´1) and we measure
discrimination using only labor union records, while political belief and job hiring have strong but
opposite effects on labor union membership, the selection bias will be maximum to the point it cancels
out all positive discrimination and leads to a conclusion of no discrimination. Figure 9(b) shows also
that selection bias disappears when ✏ is zero, but not when ⌘ is zero. When ✏ ‰ 0, selection bias can
be zero depending on the value of ✏ as follows: ✏ “ 1 and ↵ “ ´⌘ or ✏ “ ´1 and ↵ “ ⌘. Overall,
selection bias has linear relation with both ↵ and ⌘, whereas non-linear relation with ✏5.

Similarly to confounding and selection, measurement bias (Figure 9(c)) is peaked when � and � have
extreme values (1.0 or ´1.0) but when � “ 0. This is expected as, by definition, the more Z and T
are independent, the higher measurement bias is. Conversely, the plot shows that measurement bias
fades away as � departs from 06.

Figure 9: Bias magnitude in the linear case

8 BIAS MAGNITUDE: AN EMPIRICAL ANALYSIS

We use well-known fairness benchmark data sets Le Quy et al. (2022) for the experiments on real
data: Adult 7, Boston housing 8, Compas Angwin et al. (2022), Communities and crimes 9 and Dutch
census 10 data. The causal experiments on the real data are limited by the availability of true causal
graphs for the benchmark fairness datasets. Furthemore, Binkytė-Sadauskienė et al. (2022) shows,
that obtaining reliable causal graphs with causal discovery algorithms is a complicated task. However,
we assume that the graphs in the literature are true for a given real dataset. We use the graphs by Zhang
et al. (2018); Huan et al. (2020) for Adult and Dutch data sets to measure the interaction bias. For
measuring confounder and collider biases we rely on graphs obtained by Binkytė-Sadauskienė et al.
(2022) for Communities and Crimes, Boston Housing, Compas, and Dutch datasets (Appendix C).
We estimate the measurement bias in the synthetic data(Appendix D.1). because the required structure
is not present in the available graphs for the benchmark data sets. Although we cannot claim that the
causal structure that we use for the experiments is the ground truth, it is useful for experimentally
demonstrating the behavior of causal biases. In addition, the considered causal structures mots often
show the presence of multiple causal biases at once. However, for the purposes of illustration, we
control for a single type of bias separately. More precisely, we consider the difference in measured
discrimination with the presence of the absence of a certain type of bias.

The experimental results for confounder bias show that the biases for each individual confounding
variable are not significant (Figure 10). However, its magnitude increases and can erase the value

5Such relations can be observed more clearly using 2D plots. Figures 18 and Figure 19 in Appendix C
6The 2D plots in the appendix show clearly these observations.
7https://archive.ics.uci.edu/dataset/2/adult
8http://lib.stat.cmu.edu/datasets/boston
9https://archive.ics.uci.edu/dataset/183/communities+and+crime

10https://microdata.worldbank.org/index.php/catalog/2102/data-dictionary
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for statistical disparity (Dutch data set), when multiple confounders are considered simultaneously
(Figure 11). Measurement bias takes the highest value for Synthetic2 dataset (Figure 13). The
effect of A on Y when controlling for T appears smaller than when controlling for Z. Here, the
value of T is highly dependent on Z if Z “ 0, but only loosely dependent on Z if Z “ 1. The
prior probability of Z conditions it to take value Z “ 1 with probability 0.95. Therefore, the
link between Z and T is weak. The weak link between the variables makes T a bad predictor
for Z and introduces a high measurement bias. Collider bias (Figure 12) is significant if it was
introduced by conditioning on income (adult data), age (Compas data), economic status (Dutch
data), poverty, unemployment, or divorce (Communities and crime data). Collider bias would reverse
the value of statistical disparity, showing discrimination against the privileged group instead of
discrimination against the disadvantaged group. We observe a portion of the interaction in all cases of
the intersectional sensitive attribute (Figure 14). However, the value of synergism is negative, which
means that it is not present in the data. Measurement of interaction bias for A and B individually
can yield different values of interaction bias (Figure 15). Although the interaction term is symmetric
for A and B, the interaction bias value is also dependent on the probability B “ 1 (when measuring
IntBias(Y, A)) or A “ 1 (when measuring IntBias(Y, B)). Therefore, for example, the interaction
bias for sex is higher than for age in the Adult data set, because the probability of value 1 for age
is higher than the probability of the sex variable taking value 1. Furthermore, we observe that the
statistical disparity does not always correspond to the sum of interaction bias and statistical disparity
without interaction (StatDisppY,Aq ‰ SD��IntpY,Aq ` P pb1qInteractionpA,Bq), as required by
equation 15. This observation suggests that the two sensitive variables A and B are not independent
as suggested by the graphs provided by Zhang et al. (2018); Huan et al. (2020). Indeed, the graphs
discovered by Binkytė-Sadauskienė et al. (2022) show the dependency between age and sex variables
in the Dutch data set (Appendix C, Figure 22).

Figure 10: Confounder bias,
when treating each confounder
separately.

Figure 11: Confounder bias
when treating all confounders
together.

Figure 12: Collider bias, when
treating each confounder sepa-
rately.

Figure 13: Measurement bias.
Synthetic data.

Figure 14: Interaction bias, in-
tersectional sensitive variable.

Figure 15: Interaction bias for
individual sensitive attributes.

9 CONCLUSION

Several sources of bias have been described in the literature of Oxford (2021); Mehrabi et al.
(2021). However, unlike existing work which typically do not define sources of bias formally, we
provide closed-form expressions of a specific class of biases, namely causal biases. By analyzing the
magnitude of bias in terms of the model parameters, we could establish an intuitive interpretation of
bias based on the causal graph structure underlying each type of bias. Additionally, we provide in
Appendix 9 an analysis of cases where two or more types of biases are present simultaneously. We
strongly believe that a better understanding of the magnitude of causal biases, and more generally all
sources of bias, will help ML fairness practitioners accurately predict the impact of proposed policies
(e.g. training programs, awarness campaigns, establishing quotas, etc.) on existing discrimination.
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