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ABSTRACT

Preference-based reinforcement learning (PbRL) can help avoid sophisticated re-
ward designs and align better with human intentions, showing great promise in
various real-world applications. However, obtaining human feedback for pref-
erences can be expensive and time-consuming, which forms a strong barrier for
PbRL. In this work, we address the problem of low query efficiency in offline
PbRL, pinpointing two primary reasons: inefficient exploration and overoptimiza-
tion of learned reward functions. In response to these challenges, we propose a
novel algorithm, Offline PbRL via In-Dataset Exploration (OPRIDE), designed to
enhance the query efficiency of offline PbRL. OPRIDE consists of two key features:
a principled exploration strategy that maximizes the informativeness of the queries
and a discount scheduling mechanism aimed at mitigating overoptimization of the
learned reward functions. Through empirical evaluations, we demonstrate that
OPRIDE significantly outperforms prior methods, achieving strong performance
with notably fewer queries. Moreover, we provide theoretical guarantees of the al-
gorithm’s efficiency. Experimental results across various locomotion, manipulation,
and navigation tasks underscore the efficacy and versatility of our approach.

1 INTRODUCTION

Reinforcement learning (RL) has proven effective across a range of sequential decision-making
tasks, from mastering games like Go (Silver et al., |2016) to controlling complex systems such as
robots (Ahn et al., 2022) and plasma reactors (Degrave et al.| 2022)). However, in many real-world
applications, designing an appropriate reward function is a daunting challenge, as these tasks often
involve objectives that are difficult to formalize with numerical rewards.

Preference-based RL (PbRL) (Akrour et al.,2012;|Christiano et al., 2017) has emerged as a promising
paradigm, leveraging human feedback in the form of pairwise preferences, which are inherently
more interpretable yet still information-rich. This paradigm allows agents to learn from relative
judgments rather than numerical reward signals, significantly reducing the complexity of reward
design. Recent advancements in PbRL have illustrated its efficacy in enabling agents to learn novel
behaviors (Christiano et al., 2017} |[Kim et al., [2023)) and in achieving better alignment with human
preferences (Ouyang et al., |2022), which are often difficult to encapsulate in a reward function.
Despite these advantages, PbRL methods still face critical challenges, particularly in acquiring human
feedback efficiently. Querying human preferences is both time-consuming and resource-intensive,
limiting the scalability of PbRL in real-world applications.

To address this challenge, we propose Offline PbRL via In-Dataset Exploration (OPRIDE), a
novel algorithm designed to systematically enhance the query efficiency of offline PbRL, as depicted
in Figure [T} OPRIDE introduces a principled exploration strategy that identifies the most informative
queries by analyzing value differences between trajectories, ensuring that each query maximally
contributes to learning the optimal policy. Additionally, to prevent overoptimization of the learned
reward function (Gao et al.l 2023} [Zhu et al., 2024), particularly in regions with high uncertainty,
we incorporate a discount factor scheduling mechanism that dynamically adjusts the discount based
on the variance in the reward estimation. Based on the pessimistic property of the smaller discount
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Figure 1: Framework of OPRIDE. The procedure consists of two phases. In the first offline phase, we
select query based on exploration mechanism. The blue circles and red triangles represent the value
estimation Vy,, and V,;,, respectively. We select two trajectory pairs such that the disagreement of
the preference between them is maximized (i.e., Vi, strongly prefers 7 while V,;, strongly prefers
7n). In the second stage, we first learn an reward function based on the preference dataset and then
annotate the reward-free dataset. Next, we adjust the discount factor based on the variance of the
value function estimate to reduce the impact of noise in the reward learning.

factor, we can address the overestimation issue of the value function and, subsequently, a better policy
performance and higher query efficiency.

Experimental evaluations on diverse locomotion and manipulation tasks, including AntMaze (Fu et al.,
2020) and Meta-World (Yu et al.l 2019), demonstrate the efficacy of our approach in achieving strong
performance with significantly fewer queries compared to state-of-the-art baselines. Remarkably, our
method achieves compelling results with as few as ten queries on Meta-World tasks, underscoring
its efficiency and scalability. Furthermore, we provide theoretical insights into the efficiency of our
algorithm, demonstrating that our exploration strategy is provably efficient under mild assumptions.

Our contributions are threefold: (1) We introduce OPRIDE, a novel offline PbRL algorithm that
achieves superior query efficiency through in-dataset exploration; (2) We conduct extensive ablation
studies that highlight the effectiveness of each component, providing insights into the factors driving
query efficiency; and (3) We provide theoretical analyses establishing the provable efficiency of our
algorithm involving a principled exploration strategy under mild assumptions.

1.1 RELATED WORK

Preference-based RL. Various methods have been proposed to leverage human preferences (Akrour|
et al.L[2012} Ibarz et al.| 2018) and have demonstrated success in tackling complex control tasks (Chris+
tiano et al., [2017;|Lee et al., [2021) and in aligning large language models (Stiennon et al., [2020;
Ouyang et al., [2022; Rafailov et al., 2023} 2024). In the realm of offline Preference-based Rein-
forcement Learning (PbRL), a benchmark including several baselines (e.g., disagreement based
method) is introduced by OPRL (Shin et al., 2023)), which selects queries based on disagreement
between the reward models and is inefficient in determining the optimal policy. | Kim et al.| (2023)
apply Transformer models to effectively capture preferences for better credit assignment. [Kang et al.
(2023)) present a direct approach to learning policy based on preferences. A recent work by |[Lindner
et al.| (2021)) proposes an information-directed query selection method for PbRL, using the Laplacian
approximation and the Hessian matrix for posterior computation. In contrast, our method selects
queries to maximize the information gain about the optimal policy rather than the reward function,
ensuring higher query efficiency.

In addition to empirical achievements, prior studies have also explored the theoretical aspects of
PbRL. Pacchiano et al.[(2021) propose a provable PbRL algorithm tailored for linear MDPs. |Chen
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et al.[ (2022) extend this approach to scenarios where the Eluder dimension is finite. [Zhan et al.
(2023a) delve into the study of PbRL within an offline setting where a preference dataset is provided.
Wang et al.| (2023)) propose an efficient randomized algorithm for PbRL in linear MDP and an
efficient TS-based algorithm for nonlinear cases with finite Eluder dimensions. |Sekhari et al.| (2023)
provides a PbRL algorithm with PAC guarantees. Novoseller et al.[ (2020) proposes the dueling
posterior sampling algorithm that has an information-theoretic guarantee. Xu et al.|(2020) provide a
gap-dependent analysis for preference-based contextual bandit and imitation learning. Wu & Sun
(2023) analyze the complexity of learning with utility-based preferences and general preferences.

Semi-supervised offline RL. In reward-free offline RL setting, [Yu et al.|(2022) and [Hu et al.| (2023)
utilize reward-free data to aid offline learning, assuming the availability of a labeled offline dataset
for reward function learning. |Ajay et al.|(2020) and |Yang et al.| (2023) utilize reward-free datasets
by extracting valuable behaviors. |Ye et al.| and |Ghosh et al.| (2023)) use reward-free offline data
for pre-training, followed by online RL, where rewards are attainable. |Ghosh et al.|(2023) focuses
on using reward-free offline data for representation learning, while Ye et al.| explores the use of
reward-free offline data for learning a latent dynamics model. In contrast, the offline PbRL setting
will provide human feedback in the form of pairwise preference, which allows agents to learn from
relative judgments rather than numerical reward signal.

RLHF. Reinforcement learning from human feedback (RLHF) has made significant strides following
the outstanding success of ChatGPT (Team,|2024)). This approach has emerged as a key method for
aligning Al behavior more closely with human preferences, where PbRL (Christiano et al., 2017
Lee et al., |2021) plays a central role. This approach has been further refined and standardized in
influential frameworks such as InstructGPT (Ouyang et al., [2022)), Claude (Anthropicl 2023)), and
LLaMA2 (Touvron et al., [2023)), etc.

2 PRELIMINARIES

We consider infinite-horizon Markov Decision Processes (MDPs), defined by the tuple (S, A, v, P, r),
with state space S, action space A, horizon H, transition function P : § x A — A(S) and reward
function  : S x A — [0, 1]. Without loss of generality, we assume a fixed start state sq.

A policy m : § — A(A) specifies a decision-making strategy in which the agent chooses actions
adaptively based on the current state, that is, a ~ 7(- | s). The value function V™ : S — R and the
action-value function (Q-function) Q™ : S x A — R are defined as

V7(s) =E, {ir(st,at) S0 = s}, Q" (s,a) =E, {ir(st,at)

t=1 t=1

so=s.a0=a|, (1)

where the expectation is w.r.t. the trajectory 7 induced by 7.

We define the Bellman evaluation operator as
(Tﬂf)<s7 a) = Es’~7’(-\s,a),a’~7r(~|s’) [T(S, a) + 'Yf(s/a CL/)] . (2)

We use 7%, Q*, and V* to denote an optimal policy, the corresponding optimal Q-function and
optimal value function, respectively. We have the Bellman optimality equation

V*(s) = max Q*(s,a), Q*(s,a) =Egup(sa[r(s,a) +7V*(s")]. 3)

Meanwhile, the optimal policy 7* satisfies 7*(- | s) = argmax, (Q*(s,-),7(-|$))4. We aim to
learn a policy 7 from the candidate policy class II that maximizes the expected cumulative reward.
Correspondingly, we define the performance metric as the sub-optimality compared with the optimal
policy, i.e.,

SubOpt(7) = V™ (s0) — V™ (s0). 4)

2.1 BELLMAN CONSISTENT PESSIMISM

A unique challenge in offline RL is that the learned policy may induce a state-action density that
is different from the data distribution y, which may lead to large extrapolation errors when we do
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not impose any coverage assumption on u. Therefore, it is important to carefully characterize the
distribution shift, which we measure using the coverage coefficient. Specifically, we adopt the one
used in |Xie et al.|(2021)) that considers the distribution shift of Bellman errors:

Definition 1 (Bellman shift coefficient (Xie et al.| 2021)). We define C(v; u, Q, ) as follows to
measure the distribution shift from an arbitrary distribution v to the data distribution u, w.r.t. Q and
,

Hq - Tﬂ.qH% v
Clvyu, Q,m) = max ————— .
a€Q g —T7q|3,,

Here Q is the Q-function approximation class we consider. Intuitively, C(v; u, Q, ) measures how
well Bellman errors under 7 transfer between the distributions v and . For instance, a small value of
C(d™; u, Q, ) enables accurate policy evaluation for 7 using data collected under p. Deﬁnitionis
a generalization compared to prior works that is defined specific to linear function approximation
(Agarwal et al., 2021} Jin et al., [2021). More generally, we have C(v; u, Q, ) < ||[v/p]loo =

. v(s,a)
SUPs.a L(s,a)

holds for any 7 and Q.

2.2 PREFERENCE-BASED REINFORCEMENT LEARNING

To learn reward functions from preference labels, we consider the Bradley-Terry pairwise preference
model (Bradley & Terry, |1952) as used by most prior works (Christiano et al., [2017; [Ibarz et al.,
2018; [Palan et al., 2019). Specifically, the preference label between two given trajectories 7; and 7; is
defined as )

exp (R(r;) — R(r) + 1

where T = (54, a;)L_ is a trajectory and R(7) = ZtT:O ~tr(s¢, as) is the return function.

P(Ti>rj‘3) - ©)

To simplify the theoretical analysis, we consider learning a refurn model instead of a reward model.

The return model R is trained to minimize the cross-entropy loss between the predicted preference
and the ground truth with a given preference dataset Dyt as follows:

Le(R)=— E {olog]P’(Tl >72’R)+(1—o)log(1—]P’(ﬁ >72‘R))], ©)

(71,72,0)~Dipret

where o is the ground truth label given by human labelers.

We assume that the difference of return functions AR = {AR(7y,72) : Traj x Traj — R|3R €
R,AR(71,72) = R(11) — R(72)} has a finite Eluder dimension, which is a common general function
approximation class in RL literature (Russo & Van Roy, 2013} |Chen et al., [2022)).

Definition 2 (Eluder Dimension (Russo & Van Roy, [2013))). Suppose F is a function class defined in
X, the a-Eluder dimension dgy, (F, &) is the longest sequence {x1, 22, -+ , 2, } € X such that there
exists o > o where x; is o -independent of {x1,--- ,x;_1} forall i € [n].

The following generalized linear preference model considered by many prior works (Pacchiano et al.|
2021} Zhan et al.| 2023b)) is a special case of finite Eluder dimension (Chen et al.| [2022)).

Definition 3 (Generalized Linear Preference Model). In d-dimensional generalized linear models,
the preference function can be represented as P(11 > 12|0) = o({¢(71,72), R)) where o is an
increasing Lipschitz continuous function, ¢ : Traj x Traj — R is a known feature map satisfying
llp(T1,72)|l2 < H and 6 € R? is the unknown parameter.

3 METHOD

In this section, we present our proposed algorithm, Offline Preference-based Reinforcement Learning
with In-Dataset Exploration (OPRIDE), illustrated in Figure [l The key idea of OPRIDE is to
enhance the query efficiency of offline PbRL by conducting optimistic exploration with in-dataset
queries and then utilizing the learned reward function pessimistically with discount factor scheduling.
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Exploration is essential for gathering enough information about the optimal policy, while discount
factor scheduling is crucial for mitigating the overoptimization of the learned reward function.

The overall algorithm is shown in Algorithm[I] In the sequel, we describe our method for query
selection and utilization in detail.

3.1 OFFLINE QUERY SELECTION WITH IN-DATASET EXPLORATION

Generating informative queries is crucial for calibrating the reward function. Various methods
have been proposed to generate queries for offline preference-based RL, like disagreement-based
approaches (Christiano et al.,2017) and information-gain-based approaches (Wilson et al.,|2012; |Shin
et al.| 2023)), but they can still be inefficient in determining the optimal policy. This naturally leads
to the idea of employing an exploration objective (Akrour et al.,[2011) into offline query selection,
where we maximize the information gain about the optimal policy rather than the reward function.

Inspired by principled exploration strategies for PbRL, analyzed in Section 4] we propose to use
the difference of value differences as the exploration criteria. Specifically, we first train a set of
reward functions {ry, }, using bootstapping, then train a set of value functions {Vy, }}%, using
offline algorithms like IQL (Kostrikov et al.| 2021) with the reward functions. Finally, we select two
trajectories 71 and 7o that maximize the difference of value differences between the two trajectories:

argmax argmax | (Vd,i (1) — Vi, (7'1)) - (V¢i (12) — Vi, (Tg))’ , %)
(11,72)ED 14,j€[M]

The reward function rg, and the value functions Q4,, Vy, are iteratively updated after each preference
query. The selection criteria in Equation [7] are rationalized by the theoretical analysis in Section 4]
Intuitively, we should choose two trajectories 71, 7o such that there is a 1/; that strongly prefers 7;
over 7o, and there is a 1, that strongly prefers 7o over 7. In such cases, we can obtain the maximum
available information by acquiring the preference label between 7 and 75. Our proposed method
has some distinct characteristics compared to previous methods. Compared to disagreement-based
criteria (Shin et al., 2023)), our method is scale-sensitive to the amount of difference, which gives
us strong theoretical guarantees. Compared to variance-based methods, our method considers the
difference in value functions instead of in reward functions. Compared to Bayesian methods (Lindner
et al.| 2021)), our method uses critic values for query selection, ensuring easy implementation.

3.2 PoLICY EXTRACTION WITH VARIANCE-BASED DISCOUNT SCHEDULING

After obtaining the preference feedback, we can train the reward function using the cross-entropy
loss in Equation@ and annotate the reward-free dataset D = {{ (s, a?")}2_,}2_; to obtain a labeled
dataset D = {{(s7, a?,77)}T_o}N_, where 7 = 1/M Y™ 4. However, it is well-known that a
learned reward function is prone to overoptimization (Gao et al., 2023 Zhu et al., 2024), leading to
overestimation of the value function and, subsequently, a suboptimal policy.

Learning from preference feedback is more vulnerable to this issue, as the feedback is binary and
sparse. Empirically, we find that using a pessimistic ensemble of the reward function is insufficient
to fully mitigate the overestimation issue in offline PbRL, as shown in Table E} To solve this, we
propose to adjust the discount factor based on the variance of the value function estimates that serve
as a stronger regulator. Using a smaller discount factor is known to provide pessimistic and robust
guarantees and performs well in various settings like imitation learning (Liu et al.| 2024]). Specifically,
we reduce the discount factor where there is a higher variance in value estimation, thereby alleviating
the impact of reward function overestimation.

. Batch
(s, a) = {%malla it Var{Qg, (s, a) fvil > Top m%({Var;{Qy, (s}, a;) i]\il ‘j:mf ‘) ®)
v, else

where 7 is the adjusted discount factor. Please note that if the variance of the value estimation for a
data point is greater than the top m% in the batch, we consider that the reward function for this data
point has overestimation noise and reduces the corresponding discount factor.
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Algorithm 1 Offline Preference-Based Reinforcement Learning with In-Dataset Exploration

1: Input: Unlabeled offline dataset D = {r,, = {(s7,a?)}]_,}2_,, query budget K, ensemble
number M

2: Initialized the preference dataset Dpyer < 9.

3: forepisode k =1,--- , K do

4:  Train M ensembles of reward network 74, wWith Dprr using Lcg in Equation

5 Train M corresponding value functions Vy,, Q,, with each reward function 7y, as in Equa-
tion [8]

6:  Select trajectories 7%'!, 7%:2 that maximize the exploration objective according to Equation

7:  Receive the preference o, between 75! and 72 and add it to the preference dataset, i.e.,

Dpref — Dpref U {(Tk’l, Tk’2, Ok)}
8: end for

9: Annotate the unlabeled offline dataset D with the reward function @ and obtain D.
10: Adjust the discount facto + to 5 based on Equation 8]
11: Extract policy m¢ via Equation'@ from D.
12: Output: The learned policy m¢

Subsequently, we can learn a corresponding Q-value function and extract the policy from the labeled

datasets D by adopting the standard offline reinforcement learning algorithms, like IQL (Kostrikov
et al.,[2021):

Ly (6) = B, oy p (L5 (Qo(s,a) — Vi (s))]
=B, o5 1T~ HQu(s.0) = Vis(s) < O)]l (Qu(s.a) — Vis(s))? o
Lo(®) =E(y o s | (F(s, @) + (s, a)Vi(s) — Qo(s, )’ ’

Lr(§) = E(, o o5 [exp(ady 4 (s, a)) log(me(als))]

where 7¢ is extracted in a advantage-weighted manner and A(s,a) = Qq(s,a) — Vi (s) is the
advantage function. L3 (u) = |7 — I(u < 0)|u? is the expectile regression loss, which is used to
balance the conservatism and generalization in offline RL.

4 THEORETICAL ANALYSIS

In this section, we investigate the theoretical guarantees for generating queries with an explorative
objective. To simplify theoretical analysis, we consider the setting where we can make online queries
along with access to a preference-free offline dataset. This is a good approximation when the available
unsupervised trajectories for preference queries are abundant.

For a principled exploration strategy under such a setting, we can combine the wisdom from online
PbRL and pessimistic value estimation for offline value estimation. Specifically, we consider the
strategy to consist of the following procedures: (1) construct a confidence set for the return function
based on existing queries; (2) construct a candidate policy set using pessimistic value estimation as
the criteria; and (3) select a pair of policies that maximize disagreement on values for new queries. A
detailed strategy description is available in Algorithm 2]

Construct Confidence Set. For the return function, we can use the cross entropy loss as in Equation 6]
to get the maximum likelihood estimator (MLE) for the return function Rj. That is,

Ry, = argmin L (R), (10)
ReER

where Ly (R) = Y8 (0;log P(7} = 72; R) + (1 — 0;) log(1 — P(7} = 72; R))) is the MLE loss.
Then we can constuct the confidence set for the reward function as follows:
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k 2
Ck(R) = {R eR| Y ((RE) - RE) ~ (Ru(m) - Rulr?)) < ﬁk} (11)

where (3, is the confidence parameter to be specified later.

Given the confidence set for the return function R, we can subsequently construct a confidence set for
policies using a pessimistic value function. Specifically, we consider the pessimistic value function
dr that leads to the worst-case value for the optimal policy over the Bellman uncertainty of the value
function. Please refer to Algorithm 3]in Appendix for more details. The candidate policy set 11y,
is constructed as follows:

I, = {7?|3R€Ck(R),%:argmaquR(sl,ﬂ).}. (12)
mell

Intuitively speaking, IIj consists of policies that are possibly optimal within the current level of
uncertainty over reward and dynamics. By constraining exploration policies in I, we achieve proper
exploitation by avoiding unnecessary explorations.

Selecting Exploratory Policies. For a given pair of policies (71, m2) in I, we determine their
exploration power by measuring how much disagreement can be made for different reward functions
in the confidence set. Specifically, we select explorative policies via the following criteria:

P,

k k _ ~TT1 -~ ~TTo
m, Ty = argmax max vVt —vp ) — (VR - .
) o1 maetly Ri,R2€Ck(R) (( Ry Rz) ( Ry RQ)) (13)

Intuitively, we choose two policies 71, 7o such that there is a R € C(R) that strongly prefers 7

over 72, and there is a Ry € Ci(R) that strongly prefer w5 over 7.
Then we sample two trajectories 71 ~ 71 7%:2 ~ 752 query the preference between them, and
add it to the preference dataset. Choosing the pair of trajectories that maximize disagreement helps

us explore efficiently.

Theoretical Guarantees. We have the following theorem for our proposed Algorithm [2]

Theorem 4. Let 5, = c14/10g(K|AR|)/K and € = co2+/log(N|I1||Q|)/N, where cy,co are

universal constants. Then the expected suboptimality of T from Algorithm 2)is upper bounded by

Clog(N|Q|II) \/ndmm, /K)o (KIAR] |

SubOpt(7) < O \/ NI =) K1 —7) )

Offline Error Preference Error

where k is the degree of non-linearity of the link function o, CT is the coverage coefficient in
Definition[l) N is the size of the offline dataset and K is the number of queries.

Proof. See Appendix |B|for a detailed proof. O

Equation[T4] decomposes the suboptimality of Algorithm [2]into two terms nicely: the offline error
term and the preference error term. The first error is due to the finite sample bias of the dataset, and
the preference error is due to the limited amount of preference queries. Compared to pure online
learning, the preference error is reduced by a factor of 1/(1 — ). Therefore, querying with an offline
dataset can be much more sample-efficient than pure online queries when N > K. This is because
the offline dataset contains rich information about dynamics and can reduce the effective horizon
of the problem (Hu et al.l 2023)). This also aligns with our empirical findings that ~ 10 queries are
usually sufficient for reasonable performance in offline settings.
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Domain | Task | OPRL PT PT+PDS IDRL OPRIDE

lever-pull-v2 | 63.2£10.4 49.2+3.7 51.7+£0.1 33.1£1.2 51.8%+1.6
peg-insert-side | 3.5£1.8 16.8£0.1 124+£14 67.4+0.1 79.0+0.2
plate-slide 77.4+1.6 4.94+0.0 37.3£23  79.6+3.5 79.9+4.6
push 10.6£1.5 16.7£5.0 1.8£04  30.7£53 39.3+34
push-back 0.8+0.0 1.1+£0.4 1.1+0.1 14.0+1.1  17.7£2.0

Metaworld | 0 oh_wall 74442 7484144 34409 892432 102.2+1.2
reach 63.542.9  82.0+0.8 843409 758+18 88.0+0.5
soccer 343440 513440 415+119 443421 454439
sweep-into | 37.1+£13.9  9.8402  92+0.1  63.143.5 71.6+0.1
sweep 6.8+1.8 80404  8.0+0.1 73.0+28 78.5+1.0
Average | | 304442 314429 250418 570463 65.3+3.3

Table 1: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Meta-World tasks. All experiment results were averaged over five
random seeds. Please refer to Appendix P] for the complete experimental results.

Domain | Task | OPRL PT PT+PDS IDRL OPRIDE

umaze 76.3+3.7 77.5+45 845485 85.5+3.4 87.5+5.6
umaze-diverse | 72.5+3.4 68.0+£3.0 78.0£6.0 69.1+4.2 73.1+24
medium-play 0.0+0.0 63.5+0.5 72.5+6.5 63.8+4.1 62.2+2.0

Antmaze | o diim-diverse | 0.04£0.0 635445 58.044.0 657441 69.4+5.2
large-play 73409 65425 9.0+8.0 187434 27.5+12.5
large-diverse | 6.9+2.4 23.5+0.5 85425 143425 21.5+15

Average | | 271417  504+42.5 517459 528436 56.8+4.8

Table 2: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Antmaze tasks.

5 EXPERIMENTS

In this section, we aim to answer the following questions: (1) How does our method perform on
various navigation and manipulation tasks compared to other offline PbRL methods? (2) How
effective is the proposed exploration-based query selection and discounted-based pessimism? (3)
How does our method perform across different numbers of queries?

5.1 EXPERIMENTAL DETAILS

Environment Setup. We perform empirical evaluations on Meta-World (Yu et al.,|2019)) and the
Antmaze task on the D4RL benchmark (Fu et al., [2020). In the preference query, we use a segment
length of 50 for all tasks. We adopt the normalized score metric proposed by the D4RL benchmark,
averaging over five random seeds with standard deviation. Scores roughly range from 0 to 100, where
0 corresponds to the performance of a random policy, and 100 indicates the performance of an expert.
Please refer to Appendix [E| for more experimental details.

Baselines. Offline Preference-based Reinforcement Learning (OPRL; |Shin et al.,|[2023)) is a rep-
resentative algorithm in offline PbRL, which proposes various mechanisms to select queries (e.g.,
disagreement technique). Recently, Preference Transformer (PT; |Kim et al.| |2023) achieved state-of-
the-art performance by using a transformer architecture to model the potential non-Markovian reward
function. Our method adopts the same architecture as in Preference Transformer (PT). To illustrate the
effectiveness of our proposed variance-based discount, we compare our method with Provable Data
Sharing (PDS;|Hu et al., [2023) as a baseline algorithm, which proposes to use a pessimistic ensemble
to account for uncertainties in the reward function, thus reducing the potential overoptimization issues
in the learned reward function. We adopt the same architecture as in Preference Transformer (PT)
for a fair comparison. In addition, we also adopt IDRL (Lindner et al.|[2021)) as our baseline, which
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Task PT PDS + VDS + ’ VDS + OPRIDE
Random Query Random Query Disagreement (VDS+IDE)

bin-picking 31.9+16.2 53.4£19.0 71.9£9.0 78.5+£17.8 93.3+£3.2
button-press-wall | 58.8+0.9 59.4+0.9 77.2+0.8 67.4+54 77.7+0.1
door-close 65.1£10.1 62.44+8.7 72.3+0.1 88.3+0.7 94.8+1.1
faucet-close 57.84£0.9 46.240.2 59.4+£8.5 48.7£0.6 73.1£0.8
peg-insert-side 16.8+0.1 124414 13.8+4.4 9.7+8.5 79.0+0.2
reach 82.0+0.8 84.3+0.9 83.3+0.1 86.6+0.1 88.0+0.5
sweep 8.0+0.4 8.0£0.1 28.7£1.8 18.2£2.9 78.5+1.0

Table 3: Ablation of the query selection module on the Meta-World tasks. We report the performance
of offline RL algorithm on the reward-labeled dataset with various query selection and policy extration
mechanism. IDE and VDS represent the In-Dataset Exploration module and the Variance-based
Discount Scheduling module proposed in Section [3;1'], respectively.

Domain |  Tasks | Zero Random  Negative =~ OPRIDE

coffee-push | 7.6+4.3 5.84+2.7 0.7+£0.1  59.4+24.8
disassemble | 9.3+0.4 16.8+7.3 10.1+£0.2 12.442.9
hammer 38.1£6.4 46.1+24 22.6+1.8 39.2+11.2
push 57.5+1.5 3444173 4.64+23 39.34+204
push-wall 81.9+3.8 80.1£09 17.6+1.9 102.2+1.2
soccer 333+1.6 41.14+8.8 44.0+6.4 45.4+3.9
sweep 29.04+0.2 29.0+2.6 24.9+0.3 78.5+1.0

Metaworld

Table 4: Comparison between the survival instinct and OPRIDE.

proposes an information-directed query selection method and uses the Laplacian approximation and
the Hessian matrix for posterior computation.

5.2 EXPERIMENTAL RESULTS

Answer to Question 1: To show that OPRIDE can generate valuable rewards with a few queries,
we conducted a comprehensive comparative analysis of OPRIDE against several baseline methods,
utilizing Meta-World and Antmaze tasks as our testing grounds. Specifically, we use a budget of
10 queries on each task for all offline preference-based reinforcement learning methods. Then, we
let all algorithms employ the IQL algorithm for subsequent offline training for a fair comparison.
The experimental results in Table |1| and Table [2| are normalized episode returns averaged over
five random seeds. In 22 out of 30 tasks in Meta-World and Antmaze, OPRIDE demonstrates
superior performance compared to baseline algorithms. Moreover, unlike IDRL, which relies on the
Laplacian approximation and the Hessian matrix for posterior computation, our method leverages
critic values for query selection, ensuring easier implementation and superior empirical performance,
as demonstrated in our comparative experiments.

We also compare OPRIDE with the recent research work Survival Instinct (Li et al., |2024) since
they find that wrong rewards can also lead to good offline RL performance. Specifically, we used
three types of rewards, the same as the author: (1) zero: the zero reward, (2) random: labeling each
transition with a reward value randomly sampled from Unif [0, 1], and (3) negative: the negation of
true reward. Then, we trained the same offline learning algorithm as OPRIDE on the reward-labeled
dataset. The experimental results in Table ]indicate that OPRIDE still outperforms these baselines
in most tasks. We attribute the above experimental results to the challenging nature of the dataset
we created. Specifically, in|Li et al.| (2024), the perturbed script policy data accounts for 100% of
the dataset. However, in our created dataset, the perturbed script policy data only accounts for 5%
of the dataset. We conduct additional experiments on Mujoco and Kitchen tasks. Please refer to
Appendix [D| for the complete experimental results.

Answer to Question 2: To study the contribution of each component in our framework, we conduct
several ablation studies to verify the effectiveness of each part, as shown in Table
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Figure 2: Performance of offline preference-based RL algorithms with various queries.
OPRIDE achieves a better query efficiency across tasks and number of queries.

“Ysmall \ 0.5 0.6 0.7 0.8 0.9 0.95

bin-picking 72.1£239 87.842.7 93.3+£32 84.649.4 74.8433.5 709494
button-press-wall | 77.6+£0.3  77.4+03 77.7+£0.1 71.0+£0.7 69.2409  68.1£9.7
door-close 88.44+0.8  89.9+0.7 94.8+1.1 90.0£2.1 91.1£1.5  87.6%£0.7
faucet-close 58.1£52 5824125 73.1+0.8 61.442.7 55.1+£3.7 57.4+12.1

Table 5: Performance of offline RL algorithm on the reward-labeled dataset with various discount
factor values ysm, on the high variance data points.

Comparing our method with the VDS + Random Query andthe VDS + Disagreement base-
line, we can see that disagreement-based approaches offer little improvement over the random query
selection baseline, while our exploration criteria lead to vast performance improvement, showcasing
that our method is able to collect useful information within a few queries. Comparing the PDS
+ Random Query and the VDS + Random Query baseline, we can conclude that while PDS
is helpful on some tasks like bin-picking-v2, it fails to prevent reward overoptimization and
makes the performance worse on some other tasks. On the contrary, VDS + Random Query is
able to improve over the PT baseline on most tasks, showing its robust ability to reduce reward
overestimation. Overall, our method achieves the best performance compared to other ablation
baselines, demonstrating the effectiveness of each part of our algorithm.

We have conducted ablation experiments to determine the sensitivity of the discount factor hyper-
parameter. Specifically, we vary the Ysman values from 0.5 to 0.95 for the data points with the high
variance. The experimental results in Table [5]indicate that 0.7~0.8 is an appropriate range for Ysmai,
and the performance is robust across different vy, values. We conduct additional ablation studies
for the In-Dataset Exploration module and the Variance-based Discount Scheduling module. Please
refer to Appendix |D|for the complete experimental results.

Answer to Question 3: To investigate how the number of queries affects OPRIDE ’s overall perfor-
mance, we vary the number of queries and compare our method with various baselines. The results
presented in Figure [2] demonstrate that OPRIDE achieves a superior query efficiency and signifi-
cantly outperforms the baselines across various numbers of queries. In most tasks, OPRIDE achieves
good performance with just ten queries, and its performance continues to improve as the number of
queries increases. In contrast, the baseline methods require multiple times the number of queries to
achieve performance on par with OPRIDE (e.g., hammer—-v2). Even with 20 queries, the baseline
algorithm shows no significant improvement on some hard tasks (e.g., cof fee-push-v2).

6 CONCLUSION

This paper proposes a new framework, in-dataset exploration, to improve query efficiency in offline
PbRL. Compared with disagreement-based approaches, using an exploration strategy helps reduce the
burden of learning an accurate reward function in the low-return region, improving learning efficiency.
Our proposed algorithm, OPRIDE, conducts in-dataset exploration by weighted trajectory queries,
and a principled exploration strategy deals with pairwise queries. Our method has provable guarantees,
and our practical variant achieves strong empirical performance on various tasks. Compared to prior
methods, our method significantly reduces the required queries. Overall, our method provides a
promising and principled way to reduce queries required from human labelers in PbRL.

10
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A ADDITIONAL DETAILS

In this section, we provide a detailed description for the theoretical version of OPRIDE as in
Algorithm 2]

Algorithm 2 OPRIDE, theoretical version

1: Input: Unlabeled offline dataset D, query budget K
2: Initialized preference dataset Dpef — 0.
3: fork=1,--- ,Kdo
: Calculate confidence set Ci,(R) for reward function based on Dps with Equation
Calculate pessimistic value function (-) using Algorithm [3|for each reward function in C(R).
Construct the near-optimal policy set I using Equation
Select explorative policies 7}, w3 within II;, based on Equation
Sample trajectories 7;, 77 with selected policy 71, 7.
Receive the preference o, between 7 and 72 and add it to the preference dataset

L e RN h

Dpref — Dpref U {(7_]33 7_]37 Ok)}‘

10: end for X
11: Output: Average policy T = 5t - > p_, (7} + 7).

A.1 DETAILS OF BELLMAN-CONSISTENT PESSIMISM (BCP; XIE ET AL.,|2021)

In this section, we consider Bellman-consistent Pessimism (BCP;|Xie et al.,|[2021) as the backbone
algorithm, described in Algorithm[3] It is a representative model-free offline algorithm with theoretical

guarantees. PEVI uses negative bonus I'(+, -) over standard @)-value estimation @(, )= (@‘7)() to

reduce potential bias due to finite data, where B is some empirical estimation of B from dataset D.
We use the following notion of &-uncertainty quantifier as follows to formalize the idea of pessimism.

Algorithm 3 Bellman-consistent Pessimism (BCP)

1: Input: Offline Dataset Dot = {7 = {(sF,af)}_o}< ., reward function r.
2: Set the loss function as

K T
2
L(g,d mD) = > Y (ai(straf) = (r(sy, af) + vap41 (s515m41))) - (15)
k=1 t=0
3. Set the confidence set of value functions as
V(m,e) = {q eV:L(q,qmD)— miI&E(q’,q,ﬂ';D) < e} . (16)
q'e

4: Compute pessimistic policy and value function as

7 =argmax min q(s1,7). (17)
rell  q€V(m,e)
and
G = argmin g, (s1, 7). (18)
qeEV(T,€)

5: Output: 7 and q.
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Algorithm 4 Bellman-consistent Pessimism Evaluation

1: Input: Offline Dataset Dot = {7 = {(sF,af)} o} |, reward function r, policy 7
2: Set the loss function as

K T
’ 2
£(q.q, D) = 33 (aulsh,af) — (r(sh.ab) +7d (ko). (19)
k=1 t=0

3: Set the confidence set of value functions as

V(rm,€) = {q eV:L(q,qmD)— mEiI&E(q’,q,w;D) < e} . (20)
q/
4: Compute pessimistic value function as
q = argmin ¢(sg, 7). 21
qEV (7€)

5: Output: ¥ and q.

Lemma 5. Under conditions of Theorem, let CT = C(d+; pu, Q, ), we have

Ctlog —lgym

V*(r*) = V(7)) <O Ni-A2 |

(22)

where T is the output of Algorithm with dataset Doy and return function R. Similarly, we have

Ctlog —lgym

V*(m) —v(mr) <O m )

(23)

where U is the output of Algorithmwith dataset Dz, policy T and return function R.

Proof. This proof is mainly adapted from the proof of Theorem 1 in|Xie et al.|(2021) to the finite-
horizon case. For simplicity we only prove the first part of the lemma. The second part can be proved
similarly using the pessimistic property of the value function .

Using the optimality of 7, we have

maxvsw—mm vl S <maxvs —min U(So, 7).
vEQn ¢, (50, ) vEQx ... (50,7) VEDn o (50, ) vED ... (50, )

Now, let Upin () = argmin,co . v(80, T) and vpmax () = argmax,co_. v(So, 7).
Using a standard reward decomposition argument |Cai et al.| (2020), we have

'Ul,maz (7T) - Ul,min(ﬂ-)
= V1, maz — V1(7T) + 01(T) — V1, min

H H
= IEd,r Z(Uh,max - vah+1,maz) - Z(Uh,min - TW’UthLmin)
h=1 h=1
H
S Z th,mal‘ - TTr'Uh+1,mcL;L'||2,d’r + ||Uh,'min -
h=1
H
S C(dﬂ-a 1y Va ﬂ—) Z(”vh,mam - Tﬂvh+l,maa:||2,y + th,min - Tﬂ—vthl,minHZ,u)
i=1
1
< T C(d™; p, V, m)ew, (24)

(25)
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holds under event & in Lemma|[I2]and £3 in Lemma([I3] The second inequality follows from the
definition of C(d™; u, V, ) and the last inequality follows from Lemma [12] and Lemma Let
m = m* and plug in the definition of ¢,, we complete the proof.

O
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B PROOF OF THEOREM [4]

Theorem 6 (Restatement of Theorem [). Suppose (1) Q* € Q,7n* € I, and (2) T"q € Q,V7 €
I1, g € Q. Also suppose the difference of return functions has a finite Eluder dimension dg,, (AR, o)
and the underlying distribution of the offline dataset admit a finite coverage coefficient C1. Let

Br = c1/1og(K|AR|)/K and € = co+/log(N|11||Q|)/N, where c1,co are universal constants.

Then the expected suboptimality of T from Algorithm 2)is upper bounded by

) Ol log(N|QIM]) . [den(AR, 1/K) log (K|AR])
SubOpt(7) < O <\/ N(1— )2 + \/ El T =) ) , (26)

where N is the size of the offline dataset and K is the number of queries.

Remark 7. In Theorem[6|we consider finite function classes for policy 11, Q-value Q and return
function R. However, it can be readily extended to infinite function classes by using the covering
number of the function classes, as done in|Chen et al.|(2022); Xie et al.|(2021). We also remark
that while we consider the realizable and Bellman-complete setting where Q* € Q and TQ € Q for
simplicity, we can extend the result to approximate realizable and Bellman-complete setting as in | Xie
et al.|(2021)).

Remark 8. The suboptimality bound uses the Eluder dimension of the difference function class AR
of the original return function class R. This is because we can only determine R(T,) — R(72) from
the preference query between 11 and To and the absolute value for R(T) can be free to choose.

Proof. For simplicity we let V7™ := V" (s1).

For any return function R € Cj, (R) and the policy 7 = BCP(D, ﬁ) generated by Algorithm we
have

VE Vi 27)
s ~* ~* ~* o~ * ~T ~T ~T ~T T
=V3« — Ui« + Vg — Vg +U% — U5+ UL — Upe + Ve — Vi
T ~* ~* ~* ~* ~7 ~7 ~7
SVR*_UR*—’—UR*_'U& +'UE _UR"FUR'—’UR*'FO
<V — 0 40 — 0% 40 T~ T

.. L
<VE —%T. 4+ max (aﬂ T T —w)
=V R* R* R R R R
R1,R2€C,(R) ! 2 2 !
* * ~k,1 ~k,1 ~k,2 ~k,2
<VE —%% +  max (a“ B g ) (28)
=VR R Rl,Rzeck(R) R1 R2 Rz R1 ’

which hold under event £; in Lemmal9] The first inequality follows from the pessimistic property of
v, the second inequality follows from the fact that 7 is the optimal policy with respect to v5. The
third inequality holds since R, R* € C(R) and the last inequality follows from the definition of
%k,l, %k,2.

Following Lemma [5| we have for all policy 7 and reward function R, the following holds with
probability at least 1 — 24:

. Cllog(N|IT[|Q)
Vit = \/JM = o
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Then we have
VE — VL.

* * k,1 ~k1 k2 ~k,2
<VE, — 0% + max (v — 0% + 0% — 0% )
S VR Rt X ey VA R, R, R:

~k,1 ~k,1 ~k,2 ~k,2 k, ~k,1
< S+  max ((V”’—V”’+V”’—V”’)+(v” V’T')
> Coff R1 Rgeck (R) Rl R2 R2 R1 Rl Rl

+ (R -V + (R -vET) + (R i)

~k,1 ~k,1 ~k,2 ~
<€ ((V”'—V”’ V”'—V”’) 45)
< Coff + Rl,RTgé(R) Ry R, T VR, Ry + 4Cofr
BEoit + (v - v
= 5&, a —
it fh,é?ééiCR) Rl fz

Consider the online preference-based regret as
K

1 * ~k, * =k,
Reg(K) ::§Z<Vﬂ _Vﬂ.k1+Vﬂ- _Vﬂ-kz))
k=1

VRS -VET).

we have
Reg(K)
K

S omax (VAT -VET VR VR 4 5KE
Sy mpecy(r) \ T TR T TR T o

K

=3 max (Ve (™M) = Vi (78) + Vi, (752) — Vi, (7)) +

R1,R2€CL(R
PR 2€CL(R)

IN

+ (VA = VR, (T"1) = (VA = Vi, (51))
VA = Vi (75) = (V= Vi, (759) | + 5K

D N R L A )

Ro€eCy (R

+ 16

4
log (g) + 5K ot

) Z i B2 iy (a7 = Ba7) = (Rl = Ro(9)

+ 16 + 5K Eofr

K 4
1_710g(5)

< e/ kdar K log (K|AR|/6) + 16

K 4
1_ ~ log (5) + 5K€Off.

(29)

(30)

€1y

(32)

(33)

(34)

The first inequality follows from Equation 30} The second inequality follows from Azuma-
Hoeffding’s inequality and the fact that Vr(7) — V7 is a martingale when 7 ~ 7. Please refer
to[Cai et al| (2020) for a detailed derivation. The last inequality follows directly from Lemma [I0]

Finally, set 6 = 1/K and follow a standard argument for regret to PAC conversion (Jin et al., [2018),
we can show that the expected suboptimality of average policy 7 generated by Algorithm [2]is upper

bounded by

SubOpt(7) < ¢

Ct 10g(N|VHH| de (AR, 1/K) log (K|A’RD
TNO—)? K(1—~)
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C AUXILIARY LEMMAS

Lemma 9. With probability at least 1 — 6, the following event £ holds
R* € Cx(R), VEke€ K],
where

Ck(R) = {R € R ((R(n) = R(r2)) = (R(n) — R(r2)))? < exlog(K|AR|/3) }

c is an absolute constant and r 1= a’(2}%,,m) is the degree of non-linearity of the link function o.

Proof. Using Lemma[I4] we have that

2
< 2log(|A .
< 210g(|AR|/6)

k
> |pi - 1R B - 2R
1=1

Note that P(1} = 72|R) = o(R(1) — R(72)), and R(7) is bounded by Rinax, we have

k
> ((R(r1) — R(r2)) — (R*(11) — R*(72)))? < cxlog(|AR]|/3)

i=1
Then, by the union bound, we have the conclusion immediately. O

Lemma 10. Under event &, in Lemmal[9 it holds that

K
D |(Ra(r5) = Ra(7F2)) — (Ra(791) — Ra(79%))| < O <\/dElu(A72, 8)K log (K|AR|/6)) :
k=1

(35

Proof. Under event &1, we have maxi << diam(B(, r,),., (Ck(R))) < 2/ log (K|AR|/J) by
Lemma[T4] where

A 1/2
B(ry )10 (F) == sup (Z((fl(Tf)—fl(Té))—(fz(Tf)—fz(th)))2> :

f1,f2€F \}1

Therefore, following Lemma@ we have

K
YR = Ri(752) = (Ra(71) = Ro(757))]
k=1

IN

K
>~ B o (Ri)
k=1

< 0 (\/dm (AR, )K log (KARI/3)) (36)

O

Lemma 11 (Lemma 5 of Russo & Van Roy| (2014). . Let V € B (X, C) be a set of functions
bounded by C > 0, (V;)>1 and (x;)¢>1 be sequences such that V, CV and x, € X hold fort > 1.
Let Vg, = {(f(21),..., f(z1)) : f € VHC RY) andfor S C R, let diam(S) = sup,, ¢ [[u—][2
be the diameter of S. Then, for any T > 1 and o > 0 it holds that

T
Y diam (Vila,) < o+ C(d A T) + 267V dT, (37)

t=1

where dp = maxi<;<p diam (Vy|,,,) and d = dim.(V, «).
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The following lemmas summarizes the results regarding General Function Estimator.
Lemma 12 (Theorem A.1 in|Xie et al.| (2021). For any w € 11, let q. be defined as follows,

gr =argmin  sup g —T7q3,.
9€Q admissible v

Then the following event Ey holds with probability as least 1 — §:

139 log 12T
n(l—7) ~

where E(q, ;D) = L(q,q, ;D) — ming ey L(¢, g, m; D).

E(qr,m;D) <

The following lemma shows that £(g, ; D) could effectively estimate |lq — 77 q||3

T

(38)

(39)

Lemma 13 (Theorem A.2 in|Xie et al.[(2021)). Forany w € Il,q € Q,h € [H], and any € > 0, if

E(q,m; D) < ¢ Then the following event E3 holds with probability as least 1 — §:

231log —‘Q!m

ni—y) TVeEe

la=T7¢ |2, <

(40)

Lemma 14 (Theorem 21 in [Agarwal et al|(2020)). Fix § € (0, 1), assume |F| < oo and f* € F.

Then with probability at least 1 —

n
> Eonp,
=1

Fle) = ()| < 2108(171/5).
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D ADDITIONAL EXPERIMENTAL RESULTS

Experiments on Meta-World Table [6]shows the complete experimental results in Meta-World.

Task | OPRL PT PT+PDS IDRL OPRIDE
assembly-v2 10.1£0.5 10.2£0.7  12.840.6 10.3x1.9 14.2+1.3
basketball-v2 11.7+£10.2  80.7£0.1  78.7£2.0 82.7£2.5 614423

bin-picking-v2 82.0£5.6 31.9%16.2 5344190 84.7£29 93.3+3.2
button-press-wall-v2 | 51.7£1.6  58.8£09  59.44+09 69.0+1.0 77.7£0.1
box-close-v2 15.0+0.7 17.7+£0.1 172403 16.9+0.6 16.8+£0.4
coffee-push-v2 1.7£1.7 1.3£0.5 1.3+0.5  42.0+3.8 59.4+24.8
disassemble-v2 8.44+0.8 6.0+£0.4 7.6+0.2 74+19  12.4+29
door-close-v2 61.2+1.3  65.1+10.1 62.4£87 78.1+3.2 94.8+1.1
door-unlock-v2 79.2+2.3  73.7£54  73.6£4.8 712429 71.0£2.3
drawer-open-v2 53.0+£33  59.7£13  58.3+£0.1 62.54+2.0 68.7£3.0
faucet-close-v2 60.8+1.0 57.8£09  46.2+02 61.5+32 73.1+0.8
hammer-v2 164£1.0 30.2£1.7 32.64£0.8 33.6+2.8 39.2+11.2
hand-insert-v2 52432 18.7£0.1  20.3+£0.6 41.9+2.7 61.8+4.9
handle-press-v2 28.7+4.0 279402 282402 28.0+04 28.7£0.1
lever-pull-v2 63.2+104 49.2+3.7  51.7+£0.1 33.1£1.2 51.8%+1.6
peg-insert-side-v2 3.5+1.8 16.8+0.1 124+1.4  67.4£0.1 79.0+0.2
plate-slide-v2 77.4+1.6 4.9140.0 37323 79.6+3.5 79.9+4.6
push-v2 10.6£1.5  16.7£5.0 1.8+04  30.7£53  39.3+34
push-back-v2 0.84+0.0 1.1+04 1.140.1 14.0+1.1  17.7£2.0
push-wall-v2 74+42  748+144 34409  89.2432 102.2+1.2
reach-v2 63.5£29  82.0+0.8 84.3+£09 75.8+1.8 88.0+0.5
soccer-v2 343+4.0 51.3+4.1 41.5+11.9 443421 454439
sweep-into-v2 37.1£139  9.84+0.2 924+0.1  63.1£35 71.6+0.1
sweep-v2 6.8+1.8 8.0+0.4 8.0+0.1  73.0+2.8 78.5+£1.0

Table 6: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Meta-World tasks.

Experiments on Mujoco and Kitchen We conduct a wider range of experiments on MuJoCo and
Kitchen tasks. The experimental results in Table [7] show that OPRIDE achieves superior performance
compared with other baselines. The experimental results also demonstrate that the In-Dataset
Exploration and Variance-based Discount Scheduling mechanisms we proposed can be effectively
applied to different tasks.

Domain | Tasks | OPRL PT PT+PDS OPRIDE
hopper-medium 23.0+0.1 36.942.1 35.8+1.8  38.5+2.2
hopper-medium-expert 57742377 68.0+2.6  69.1£1.7 92.3+15.8
walker2d-medium 70.6£1.1  71.7£2.6 709+1.8  72.7+1.8
Mujoco walker2d-medium-expert | 108.3+3.8 109.4+0.3 108.4+£0.5 110.3+£0.2
halfcheetah-medium 41.940.1 421401  41.54+0.1  42.440.1
halfcheetah-medium-expert | 81.8+0.6  81.9+0.1 82.4+0.2  86.5£1.5
kitchen-partial 34.6+0.2  482+4.1 51.1+23  38.7+3.7

kitchen-mixed 46.94+0.1  42.54+1.0 449419  49.840.1

kitchen-partial 62.6£1.7 47.5+£25 498+45  63.7f+1.1

Table 7: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Mujoco tasks.

Ablation about In-Dataset Exploration module The choice to emphasize value functions over
reward functions is crucial due to their ability to guide policy optimization effectively. Intuitively,
while maximizing the information gain concerning the reward function (e.g., difference over the
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reward function) can help learn a well-calibrated reward function, it can still be sample inefficient in
determining the optimal policy since we are not interested in the accuracy of the reward function in
low-return regions. For instance, suppose we have actions a; and a that lead to a terminal state s,
and their immediate rewards are highly uncertain, ranging from [—1, 1]. And we have actions a3 and
a4 that lead to high return states s; but yield a known fixed immediate reward of zero. By maximizing
the reward differences, we will compare a; and as, but such comparison contains no information in
determining the optimal policy, which will not choose a; and a5 at all. Theoretically, maximizing the
information gain with respect to the reward function is insufficient to derive a performance guarantee
for PbRL.

We conduct additional ablation studies for these two mechanisms. The experimental results in Table[§]
show that maximizing information gain about the optimal policy can achieve better performance than
the reward function.

Domain Tasks \ OPRIDE (Reward Difference) OPRIDE (Value Function Difference)
bin-picking 78.5+17.8 93.3+3.2
button-press-wall 67.4+5.4 77.74+0.1
door-close 88.31+0.7 94.8+1.1
Metaworld faucet-close 48.740.6 73.1+0.8
peg-insert-side 9.748.5 79.0+0.2
reach 86.6+0.1 88.0+0.5
sweep 18.2+2.9 78.5+1.0

Table 8: Ablation study on the metaworld tasks.

Ablation about Variance-based Discount Scheduling module The choice of using a pessimistic
discount factor in offline RL draws on theoretical guarantees discussed in prior works (Jiang et al.|
2015; Hu et al.} 2022). While prior methods may utilize a smaller fixed discount factor (Jiang
et al., 2015) or tuned values in imitation learning (Liu et al.l [2023)), our approach innovatively
employs variance-based discount scheduling to mitigate reward overestimation issues specific to
offline Preference-based RL.

A smaller discount factor serves a dual purpose: it regulates optimality against sample efficiency
trade-offs (Hu et al., [2022) and aligns with model-based pessimism principles, ensuring robust policy
learning. Conversely, multiplicative adjustments to rewards lack theoretical grounding and often
yield suboptimal performance, as evidenced in Table[9]

Domain | Tasks | OPRIDE (Penalise Reward) OPRIDE (Penalise Discount Factor)
bin-picking 53.44+19.0 93.3+3.2
button-press-wall 59.440.9 77.7+0.1
door-close 62.448.7 94.8+1.1
Metaworld faucet-close 46.240.2 73.1+0.8
peg-insert-side 12.4+1.4 79.0+0.2
reach 84.34+0.9 88.0+0.5
sweep 8.0+0.1 78.5+1.0

Table 9: Ablation studies about penalizing rewards and the discount factor.
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E EXPERIMENT DETAILS

Experimental Setup For the Meta-World tasks, each dataset consists of 1000 trajectories. 50
trajectories of which are collected by the corresponding scripted policy added with a Gaussian noise
N(0,0.8) to increase diversity, and the rest 950 trajectories are collected with a policy that is a
e-greedy variant to the former noisy policy and select random actions with probability ¢ = 0.8. For
the Antmaze tasks, we use the standard dataset in the D4RL benchmark but remove the reward labels.

OPRL We use the official implementation[ﬂ which uses 7 ensembles. Each ensemble is initially
trained with 1 randomly selected query and then performs 3 rounds of active querying and training,
and in each round, 1 query is acquired, making a total of 10 queries.

PT We use the official implementation El We follow its original hyper-parameter settings, and
change the number of queries to 10.

OPRIDE Our code is built on PT. We use the same transformer architecture and hyper-parameter
with PT. The ensemble number N is 2. The size of D is 10000. The offline pre-training step for
Vi(+,-) in the Equationis 10000 x ¢, where c is the c-th selected query. Please refer to Tablefor
detailed parameters.

Hyperparameter Value
Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate Se-3
IQL parameter 7 0.7
IQL parameter o 3.0
Query Number 10

OPRL Value
Ensemble Number 7

OPRIDE Value
Ensemble Number N 2
Size of D 10000
Offline Pre-training step 10000 X ¢
Top m% Top 30%
“Ysmall 0.7

Table 10: Hyper-parameters sheet of Algorithms.

'nttps://github.com/danielshinl/oprl
https://github.com/csmile-1006/PreferenceTransformer/tree/main
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