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Abstract

Self-improvement through post-training methods
such as iterative preference learning has been ac-
claimed for enhancing the problem-solving capa-
bilities (e.g., mathematical reasoning) of Large
Language Models (LLMs) without human inter-
vention. However, as exploration deepens, it be-
comes crucial to assess whether these improve-
ments genuinely signify progress in solving more
challenging problems or if they could lead to un-
intended regressions. To address this, we propose
a comprehensive evaluative framework that goes
beyond the superficial pass@1 metric to scruti-
nize the underlying enhancements of post-training
paradigms for self-improvement. Through rigor-
ous experimentation and analysis across diverse
problem-solving tasks, the empirical results point
out the phenomenon of self-improvement reversal,
where models showing improved performance
across benchmarks will paradoxically exhibit de-
clines in broader, essential capabilities, like output
diversity and out-of-distribution (OOD) general-
ization. These findings indicate that current self-
improvement practices through post-training are
inadequate for equipping models to tackle more
complex problems. Furthermore, they underscore
the necessity of our critical evaluation metrics in
discerning the progress or regress dichotomy for
self-improving LLMs.

1. Introduction
In the rapidly evolving landscape of artificial intelli-
gence (AI), the pursuit of self-improving large language
models (LLMs) has garnered significant attention (Singh
et al., 2023; Huang et al., 2023; Sun et al., 2024). The
essence of self-improvement in LLMs lies in their capacity
to iteratively refine models’ own performance without hu-
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man intervention (Zelikman et al., 2022; Yuan et al., 2024).
This capability is paramount as it holds the promise of fos-
tering the development of more autonomous, adaptable, and
efficient AI systems (Silver et al., 2016). Embracing and im-
plementing self-improvement methodologies enables us to
push the boundaries of these models’ capabilities, ultimately
fostering the creation of more sophisticated and versatile AI
applications (Significant-Gravitas, 2023).

Building on the concept of self-training (Grandvalet & Ben-
gio, 2004), wherein models bootstrap their own generated re-
sponses for iterative training, a synergetic effect is observed
and amplified. When models produce superior responses,
the quality of the training data used to refine the models
improves, subsequently enabling even better responses in
future iterations. Such iterative post-training has become
the standard paradigm for current self-improving AI (Yuan
et al., 2024). Notably, STaR (Zelikman et al., 2022) has
demonstrated that leveraging model’s self-generated rea-
soning steps for iterative supervised fine-tuning (SFT) can
effectively enhance its reasoning abilities. Recent stud-
ies (Pang et al., 2024) have further revealed that employing
iterative preference optimization in LLMs can achieve more
performance improvements in reasoning tasks.

Despite the various post-training methods for self-
improvement, there remains a lack of understanding regard-
ing their effects and underlying mechanisms. Therefore, in
this study, we first endeavor to provide a comprehensive
overview of the main iterative post-training paradigms for
self-improvement, identifying the factors that contribute to
consistent performance improvements. We decouple the
influencing factors into the initial model, task datasets, the
number of iterations, and the specific post-training methods
employed. By isolating these variables, our comprehen-
sive experiments and analysis uncover their individual and
combined effects on the model’s performance. This pro-
vides actionable insights for practitioners on how to perform
iterative self-improvement practices more effectively.

While our extensive empirical results show that all these
iterative post-training methods can achieve notable im-
provements in pass@1 accuracy across various problem-
solving benchmarks, the evaluation has been limited to
this single and superficial metric. Amidst the quest for
self-improvement in LLMs, the persistent question arises:
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are these iterative post-training methods truly fostering
progress, or are they inadvertently leading to regression?
Transitioning beyond using pass@1 accuracy as the indica-
tor of improvement, we further develop an evaluative frame-
work equipped with a comprehensive suite of metrics to
assess improvement problems, solutions diversity, and OOD
capabilities within the iterative process, enabling us to scru-
tinize the actual improvements beneath self-improvement.
Surprisingly, our evaluation results display a paradoxical
trend: as pass@1 accuracy increases, the proposed metrics
exhibit consistent performance declines.

The perceived reversals in our evaluative framework prompt
a critical reflection on the effectiveness of current self-
improvement practices. Through this study, we aim to illu-
minate the path forward for developing truly self-improving
LLMs that balance accuracy, diversity, and robustness. To
summarize, our work makes three significant contributions
as follows:

• Comprehensive Analysis: In Sections 3 and 4, we sys-
tematically formulate current post-training methodologies
and perform extensive experiments to examine how various
factors influence self-improvement in solving challenging
tasks. To the best of our knowledge, this work is the first to
provide an in-depth overview of these influencing factors.

• Evaluative Innovations: In Section 5, we propose a
holistic set of evaluation metrics to better capture the multi-
faceted nature of LLM performances in self-improvement
practices.

• Critical Insights: In Section 5, based on the evaluation
metrics, we identify the phenomenon of self-improvement
reversal, where increases in pass@1 accuracy comprise
other essential capabilities like solution diversity and OOD
generalization.

2. Background and Related Work
Training paradigms for LLMs typically consist of two
stages: pre-training and post-training (Liu et al., 2024).
Common post-training methods include supervised fine-
tuning (Taori et al., 2023; Wang et al., 2023) and preference
learning (Ouyang et al., 2022; Lee et al., 2024). Supervised
fine-tuning trains LLMs to produce standard responses for
given instructions, while preference learning trains LLMs
to align with human preferences for different responses.
Both methods, however, rely heavily on extensive human-
annotated data.

An important question is whether effective LLM post-
training can be achieved without excessive external feed-
back. Predating the era of LLMs, the self-training algo-
rithm (Grandvalet & Bengio, 2004; Goodfellow et al., 2014)
demonstrated the potential to enhance model performance

without additional labeled data. Recent studies have re-
vived this concept, employing iterative self-training to fa-
cilitate self-improvement in LLMs without external feed-
back (Wang et al., 2023; Sun et al., 2023). For instance,
STaR (Zelikman et al., 2022) shows that iterative training
on the model’s own reasoning traces for correct answers
can help solve increasingly difficult problems. Unlike the
iterative nature of SFT, recent works (Yuan et al., 2024;
Pang et al., 2024) propose iterative preference fine-tuning
to aid models in self-improving.

In contrast to post-training methods, another line of re-
search explores self-improvement through iterative post-
prompting during inference (Huang et al., 2023). This ap-
proach does not update the model’s parameters but achieves
self-improvement by generating reflections on its outputs
and adjusting future outputs accordingly (Madaan et al.,
2023; Gou et al., 2024). However, as revealed by Huang
et al. (2024), post-prompting strategies are limited by the
model’s intrinsic self-correction capabilities, thereby failing
to significantly enhance problem-solving capabilities.

The potential of iterative post-training for self-improvement
in LLMs remains underexplored. Although various post-
training methods have demonstrated promise in general
instruction-following tasks (Li et al., 2024; Sun et al., 2024;
Chen et al., 2024; Yuan et al., 2024), they predominantly
focus on aligning models with human values rather than
enhancing the models’ internal knowledge. A key challenge
remains whether LLMs can sustain consistent performance
on more complex problem-solving tasks. Recently, Pang
et al. (2024) examined iterative preference learning in the
context of reasoning tasks, marking the first study to expand
beyond instruction tuning.

Despite these advancements, a comprehensive overview
investigating the effectiveness of various iterative post-
training methods for problem-solving is still lacking. First,
it remains unclear how improvements vary across iteration
steps, different base models, task difficulties, and iterative
post-training techniques. For practitioners, there is a need
for guidelines to help choose the most effective post-training
method among the various iterative post-training paradigms.
Second, current research only concentrates on maximizing
benchmark scores through iterative self-improvement, there
is little exploration of the underlying factors contributing to
performance gains. As a result, the progress and reliability
of different self-improvement methods are not guaranteed.

In this work, we aim to address these two critical issues.
Our goal is not only to ensure the effectiveness of vari-
ous self-improvement methods but also to ensure that other
capabilities are not compromised during the complex self-
improvement process.
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3. Post-training for Self-Improvement
3.1. Formulation

Consider a training datasetD = {(xi, yi)}Ni=1, consisting of
pairs of queries xi and their corresponding correct responses
yi. A foundation model, denoted as M0. Our objective is
to enhance M0 through a self-driven iterative post-training
process, leveraging the model’s own outputs to refine its
capabilities, without reliance on external signals.

Iterative Post-Training The iterative post-training pro-
cess involves a series of post-training steps, each aimed at
using the model’s previous outputs to guide its subsequent
refinement. These steps are designed to foster a continuous
loop of self-improvement for the model.

The process is outlined across three main phases as follows,
where the total number of iterations is denoted as T , and the
model employed in the t-th iteration is denoted as Mt−1,
implying that M0 is used in the first iteration

• Answer sampling: In the t-th iteration, we prompt
Mt−1 to generate N answers for each query xi inD to form
a new self-generated dataset Dself

t = {(xi, y
j
i )|xi ∈ D, j =

[1, N ]}.

• Training set construction: The training set Dt in the
t-th iteration is assembled from Dself

t without introducing
any external data. The approach to constructing the training
set depends on the specific paradigm of post-training.

• Model post-training: Utilizing Dt, the model Mt−1

is refined into Mt.

It’s worth noting that, in the first iteration, we always directly
supervised fine-tuning M0 on D to initialize M1 with task-
specific knowledge.

Central to these diverse methodologies is the post-training
function, symbolized as F . We distinguish among the prac-
tices based on the nature of F , involving Supervised Fine-
tuning (SFT) and Direct Preference Optimization (DPO),
the latter being an effective implementation of preference
learning. During the SFT phase, this stage necessitates accu-
rately labeled training data. We derive these correct answers
from Dself

t to assemble the training dataset:

Dt = {(xi, y
✔)|R(xi, y

✔) = 1, (xi, y
✔) ∈ Dself

t }

where R(x, y) evaluates whether the answer y accurately
addresses the question. In our problem-solving task, the
correctness of an answer y is verified by its alignment with
the response provided in the dataset. While during the DPO
phase, for each query qi in dataset D, both correct and
incorrect responses from Dself

t are paired to construct the
training set, allowing for contrastive preference learning:

Dt = {(xi, y
✔, y✘)|R(xi, y

✔) = 1,R(xi, y
✘) = 0,

(xi, y
✔) ∈ Dself

t , (xi, y
✘) ∈ Dself

t }

3.2. Three Iterative Post-Training Paradigms

Algorithm 1 Iterative Self-Improvement

1: training set D = {xi, yi}, base model M0,
iteration times T , post-training function series
[F1(·),F2(·), ...,FT (·)]

1: M1← SFT ((M0)|D)
2: for t = 2 to T do
3: Dself

t = {(xi, y
j
i )|xi ∈ D, yji ∼ Mt−1(xi), j ∈

[1, N ]}
4: if F(·) == SFT then
5: Dt = {(xi, y

✔)|R(xi, y
✔) = 1, (xi, y

✔) ∈
Dself

t }
6: else
7: Dt = {(xi, y

✔, y✘)|R(xi, y
✔) = 1,R(xi, y

✘) =
0, (xi, y

✔) ∈ Dself
t , (xi, y

✘) ∈ Dself
t }

8: end if
9: Mt ← Ft(Mt−1|Dt)

10: end for=0

Through the implementation of designated self post-training
steps (e.g., self-SFT), several distinct iterative post-training
paradigms emerge. Our work focuses on three paradigms:
(i) iterative SFT, where each cycle consists exclusively of
self-SFT steps, (ii) Iterative DPO, characterized by suc-
cessive self-DPO steps, except for the first iteration which
supervised fine-tune the base model M0, and (iii) itera-
tive SFT-DPO, which initiates with a self-SFT step and
alternates between self-DPO and self-SFT steps to form a
complete iterative post-training loop.

We describe the unified procedure in Algorithm 1.

4. Experiment
As outlined in Algorithm 1, we characterize the key vari-
ables—foundation model (M ), task dataset (D), iteration
steps (T ), and post-training method (F)—critically influ-
ence model performance during iterative self-improvement.
This section explores the impact of these variables on differ-
ent problem-solving tasks. We aim to uncover the trade-offs
and comparative advantages of Iterative SFT, Iterative DPO,
and Iterative SFT-DPO in enhancing performance across
various tasks. Through this analysis, we seek to provide
deeper insights into the mechanisms driving iterative self-
improvement.
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Figure 1: Pass@1 accuracy across the four benchmarks by performing with the three paradigms: Iterative SFT, Iterative
DPO and Iterative SFT-DPO. For each model along with the training iterations, we highlight the optimal result with a
larger-size marker, the improvement above and final accuracy below.

4.1. Experimental Setup

Datasets To measure model problem-solving capabilities,
we train and test on a broad spectrum of problem-solving
datasets. We measure general knowledge using the Com-
monsenseQA (CSQA) dataset (Talmor et al., 2019), as-
sessing mathematical reasoning with the GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021) dataset,
and weigh code generation skills using the MBPP
dataset (Austin et al., 2021). Regarding the train-test split,
we adhere to (Kojima et al., 2022), utilizing the validation
set of CommonsenseQA for evaluation. The GSM8K and
MATH datasets are employed with their predefined train-test
splits. For the MBPP code dataset, we follow the approach
outlined by (Austin et al., 2021) that utilizes examples of
Task IDs 11-510 as the 500 test problems, and the remain-
ing 374 examples ranging Task IDs from 601 to 974 for
fine-tuning.

Sampling and Rewarding At the end of training, we
sample N=50 outputs for each problem using top p sam-
pling (Holtzman et al., 2020) with p = 0.95 and tempera-

ture 0.75. Considering the gold labels are provided for the
problem-solving datasets, we use the correctness of final
answer as a binary reward for the output to annotate the
preference.

Training Our experiments primarily leverages three open-
source models LLaMA-2-7B (Touvron et al., 2023), Mistral-
7B (Jiang et al., 2023) and LLaMA3-8B (AI@Meta, 2024),
with a fully fine-tuning setting. For the implementation
of preference-based learning, we utilize Direct Preference
Optimization (DPO (Rafailov et al., 2023)) due to its scala-
bility and efficiency. In each iteration, preference data are
derived by sampling outputs from the newly updated model,
utilizing an online sampling strategy. Hence, we posit that
this online DPO can be treated as an effective and represen-
tative implementation for preference learning (Tajwar et al.,
2024).

Evaluation We use greedy decoding as the temperature set
0 for testing generation. Meanwhile, we utilize zero-shot
prompting (Kojima et al., 2022) for both answer sampling
and evaluations since we find for LLMs finetuned on specific

4



Progress or Regress? Self-Improvement Reversal in Post-training

Figure 2: Left: The answer distributions of models. PM1
and PM∗

t
represent the answer distributions of M1 and the optimal

model M∗
t (achieving the highest pass@1 accuracy) within iterative process. The shaded area indicates the correct answer

coverage of M1. Right: For foundation model M and task D, each line lists the correct answer coverage and the optimal
pass@1 accuracy of M∗

t with the three iterative post-training methods. This table aims to display the relationship between
correct answer coverage and the effectiveness of the post-training method F .

tasks, zero-shot prompting is superior to few-shot prompting.
More experimental details can be seen in Appendix B.

4.2. Main Results: Decoupling the Influences of
Variables

We perform the three post-training paradigms with the se-
lected LLMs, training and testing them on the respective
tasks. Based on the results shown in figure 1, we delve into
the detailed analysis of how these variables influence the
effectiveness of self-improvement.

Iteration T Across all methods and datasets, there is a
general trend of improvement in pass@1 accuracy with
increasing iteration steps. This indicates that iterative post-
training effectively enhances model performance over time.
However, the rate of improvement tends to plateau or even
decline slightly after 4-5 iterations. This suggests that cur-
rent post-training methods struggle to achieve long-lasting
improvements, and excessive post-training (beyond a certain
number of iterations) may even yield diminishing returns.

Foundation Model M The optimal accuracy improvements
across various datasets and post-training methods suggest
that LLaMA2-7B demonstrates a relatively higher capac-
ity for improvement under iterative post-training. For in-
stance, on the GSM8K dataset, LLaMA2-7B with Iterative
SFT shows an improvement of +12.31 after 5 iterations,
whereas LLaMA3-8B exhibits only a moderate gain. This
indicates that the more capable M1 is not necessarily the
model that achieves the most significant performance gains
during the self-improvement process. However, the most ca-
pable model M1 generally achieves the highest optimal accu-
racy overall. For example, although LLaMA2-7B achieves
the maximum gains on GSM8K with Iterative SFT, it still
struggles to outperform LLaMA3-8B in terms of absolute

optimal accuracy (53.91 vs. 69.06).

Problem-solving Tasks D Models utilizing the three post-
training methods all demonstrate notable improvements on
the CSQA and GSM8K datasets, while showing more mod-
est gains on the MATH and MBPP datasets. This indicates
that, from the perspective of task difficulty, problems in the
CSQA and GSM8K datasets are relatively easier for the
models to resolve. In contrast, the MATH dataset poses
significant challenges for 7B models due to its complexity.
Additionally, the task of code generation, as represented
by the MBPP dataset, is also difficult for these foundation
models since they were not specifically pretrained on code
domains.

Comparative Analysis of Post-Training Methods With
foundation model M and task D varying, the best-
performing iterative method also changes accordingly. For
example, for Mistral-7B on the CSQA dataset, Iterative-
DPO achieves the highest accuracy improvement of +6.47.
However, when applied to the GSM8K dataset, the Itera-
tive SFT-DPO method yields the maximum improvement of
+10.99. Therefore, with these identifiable variables charac-
terized, it remains challenging for downstream practitioners
to determine the optimal post-training method F for their
specific use case.

Answer Coverage: Characterizing More Deciding Fac-
tor As discussed above, the identifiable variables fail to
provide clear clues on the effectiveness of the post-training
method F when foundation model M and task D change.
Upon closer examination of Figure 1, we find a common
thread: regardless of the changes in M and D, models (M1)
that perform well on a task after the initial iteration of SFT
tend to show substantial improvements with further itera-
tions by performing iterative DPO and iterative SFT-DPO,
compared to using Iterative SFT. Conversely, those M1 that
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Figure 3: Pass@N accuracy of M1 with zero-shot prompting on IS(t), for t > 2.

achieve lower pass@1 accuracy initially exhibit limited
gains with iterative DPO. Based on this observation, we
hypothesize that M1’s capability to solve the test problems
fundamentally influences further improvement trends and
optimal improvements of F . To quantify M1’s capability
on the test set, we introduce Correct Answer Coverage as
a measurement, the proportion of the correct answer space
that the model’s responses occupy. An illustrative display
of this coverage is shown in Figure 2.

Mathematically, we can sample N model’s outputs to ap-
proximate the answer space. As N → ∞, these outputs
can effectively represent the entire answer space. Therefore,
expected accuracy over the N outputs can serve as an unbi-
ased estimate of the correct answer coverage. Formally, we
use the following equation to calculate M1 correct answer
coverage (for a more detailed derivation, please refer to the
Appendix C.):

Correct Answer Coverage = E
[
Ncorrect

N

]
≈ 1

|Dtest|
∑

x∈Dtest

1

N

N∑
i=1

I[M(xi) == y]

(1)

As shown in Figure 2, the relationship between correct

answer coverage and optimal performance of F validate
our prior observation and hypothesis. The table clearly
demonstrates that when the correct answer coverage is high
(> 0.5), Iterative DPO and Iterative SFT-DPO produce the
best-performing M∗

t . Conversely, when the coverage is
lower (≤ 0.5), Iterative SFT is more effective in achieving
the optimal M∗

t . Therefore, correct answer coverage can
serve as a key factor in guiding practitioners to choose
the most suitable iterative post-training method F for the
specific problem-solving task with a fixed foundation model.

5. Critical Evaluations on Self-Improvement
Despite the extensive exploration of various post-training
practices for self-improvement and a deepened understand-
ing of their efficacy, current endeavors remain narrowly
focused on enhancing performance numbers across these
problem-solving benchmarks. Transitioning beyond using
pass@1 accuracy as the indicator of improvement, our ob-
jective in this section is to engage in a critical examination
and reevaluation of iterative self-improvement: discerning
whether the improvements constitute genuine progress or
merely regression. For brevity, all the results shown in this
section is based on the foundation model M as Mistral-7B.
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Figure 4: Diversity of the sampling outputs from Mt within the iterative process.

5.1. Improvement Problems

In Figure 1, it is evident when t > 1, the pass@1 accuracy
of Mt consistently improves in comparison to M1. Tradi-
tionally, it has been assumed that this improvement indicates
the model progressively learning to tackle more challeng-
ing problems (Zelikman et al., 2022). However, we posit
a nuanced perspective: while an increase in pass@1 accu-
racy suggests improvements, it does not inherently equate
to an increase in model capabilities to solve more difficult
problems.

To better gauge how the model problem-solving capabili-
ties evolve overtime, we propose to first quantify the im-
provement problems as improvement set (IS) at each iter-
ation. An intuitive improvement betweenMt andM1 is
the pass@1 accuracy on test set, so we use the subset of test
problems thatMt correctly answers whileM1 fails under
greedy decoding to represent IS(t), defined as follows:

IS(t) = {x ∈ Dtest |Mt(x) = y ∧M1(x) ̸= y}. (2)

Then we can prompt M1 with the problems in IS(t) and
sample N answers for each problem to record the pass@N
accuracy of M1. Notably, if M1 exhibits lower pass@N

accuracy even as N increases, it can validate M1 struggles to
solve the problems in IS(t) and the iterative process enhances
the model’s problem-solving abilities.

We apply this evaluative methodology to CSQA, GSM8K,
MATH and MBPP datasets with three post-training meth-
ods. Generation sampling N varies from 21 to 26 with the
temperature set as 0.75.

Reversal Observation As depicted in Figure 3, contrary
to prior assumptions, the rapid increase in pass@N accu-
racy with increasing N challenges the notion of progres-
sively harder problem-solving. Specifically, as N grows,
M1 achieves near-perfect pass@N accuracy on IS(t) across
all evaluated datasets, suggesting its inherent capacity to
tackle the deemed improvement problems.

Selection Optimization for Answer Alignment The em-
pirical findings depicted in Figure 3 offer a critical insight:
iterative self-improvement hardly entails the acquisition of
new problem-solving abilities, but rather the enhancement
of the model’s correct answer selection within its generation
space.
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5.2. Solutions Diversity

While pass@1 accuracy measures the correctness of the
final answer, it does not capture the diversity of solutions
a model can generate. We posit that a model’s capacity
to produce diverse solutions is indicative of its robustness
and flexibility in problem-solving. To thoroughly under-
stand the evolution of answer diversity during the process
of iterative self-improvement, we employ a combination of
Distinct N-grams (Li et al., 2016) and Sentence-BERT
embedding cosine similarity (Reimers & Gurevych, 2019)
to measure mod diversity. These metrics have been shown
to correlate well with human assessments of diversity (Tevet
& Berant, 2021). Additionally, for mathematical reasoning,
we introduce Distinct Equations to measure the diversity of
mathematical answers by analyzing the variety of equations
in the generated solutions.

Each diversity metric Div takes a set of N model outputs,
and produces a scalar score representing how diverse the
set is. Distinct N-grams measures syntactic diversity by
counting the number of unique n-grams (averaged over
n = 1 . . . 5) in the output set. The Sentence-BERT metric
assesses semantic diversity by embedding each output using
a sentence transformer and calculating the average cosine
similarity between embeddings. The metric is then 1 minus
the average similarity, ensuring that higher scores reflect
greater diversity. Distinct Equations, a specialized metric
for mathematical reasoning, computes logical diversity by
extracting all equations from the outputs and calculating the
proportion of unique equations.

At each iteration, we sample N = 50 outputs per problem
with a temperature of 0.75. Outputs are categorized into
correct and incorrect based on the final answer’s correctness.
Then for each problem, we use the metric Div to calculate
the average diversity for the correct and incorrect answers.

Reversal Observation Figure 4 presents the diversity re-
sults of three post-training methods during the iterative pro-
cess. All methods show a consistent decrease in diversity,
significantly diminishing the diversity of model outputs over
iterations, impacting both correct and incorrect answers.
This reduction is evident across all three metrics: syntactic,
semantic, and logical diversity. Moreover, comparing Iter-
ative SFT and Iterative DPO, it is clear that both methods
exhibit a reduction in diversity, but the extent and pattern
of reduction vary. For instance, Iterative DPO maintains a
slightly higher semantic diversity (as measured by cosine
similarity) over multiple iterations compared to Iterative
SFT.

Trade-Off with Output Diversity. The evaluation results
highlight a critical trade-off in iterative self-improvement:
while aiming for higher accuracy, the diversity of out-
puts, which can be crucial for creativity and robustness
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Figure 5: OOD Performance of Mt on the MATH Algebra
Test Set (Post-Training on GSM8K).

in problem-solving, is compromised. Future approaches
should consider strategies to maintain or even enhance di-
versity while improving accuracy.

5.3. OOD Generalization

In our pursuit to understand the broader implications of
iterative self-improvement, it is crucial to assess not only
the models’ performance on specific benchmarks but also
their ability to generalize to out-of-distribution (OOD) tasks.
Generalization performance provides insight into the robust-
ness and adaptability of the models when faced with new
and varying types of problems.

To evaluate the generalization capability of the models, we
conducted iterative post-training on the GSM8K dataset and
then transferred these models to the MATH algebra test set.
The MATH algebra test set is organized into five levels of
increasing difficulty, providing a comprehensive spectrum
to analyze how well the models perform across groups with
varied complexities.
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For the sake of measuring OOD generalization, we define
two metrics as follows defined to facilitate a deeper analysis:

• Whole Accuracy (Whole Acc.): This metric represents
the pass@1 accuracy across the entire test set, encompassing
all difficulty levels from Level 1 to Level 5.

• Group Disparity: This metric quantifies the difference
in pass@1 accuracy between the best-performing group
(Level 1 test set) and the worst-performing group (Level 5
test set), thus highlighting disparities in model performance
across different difficulty levels. It is calculated using the
following equation:

Group Disparity =
Pass@1(Level 1)− Pass@1(Level 5)

Pass@1(Level 1)

A higher value of Group Disparity indicates that the model
is performing significantly better on the easier Level 1 while
its performance deteriorates on the harder Level 5 group.

Reversal Observation As results shown in Figure 5, with
the increase in iterative steps, Iterative SFT and Iterative
SFT-DPO can significantly harm the OOD generalization. In
contrast, Iterative DPO demonstrates a noticeable improve-
ment, which may indicate better generalization to the OOD
test set, in consistent with the recent findings that DPO can
improve OOD generalization (Kirk et al., 2024). However,
our more detailed examination of the results across Group
Disparity shows Iterative DPO is widening the performances
between the easier and harder groups. This comparison un-
covers the OOD performance improvement from Iterative
DPO actually stems from fitting simpler problems, iat the
expense of solving more complex ones.

Capabilities Collapse All three iterative post-training meth-
ods can exacerbate the generalization disparities across
groups, inadvertently causing models to focus on easier
problems rather than enhancing their ability to solve more
complex ones. As discussed in Section 5.2, the decrease
in solution diversity during iterations may be the bottle-
neck leading to reduced OOD generalization and capabil-
ity collapse. This highlights the intricate nature of model
capabilities under self-improvement, where capabilities at
different levels and different facets will compromise each
other. Therefore, research developing more sophisticated
methods should employ such a comprehensive, fine-grained
evaluative framework to monitor post-training processes, as
an increase in a single facet of accuracy does not necessarily
represent true self-improvement.

6. Conclusion
In this paper, we foster a comprehensive understanding
of the current landscape of post-training practices in self-
improvement. Our evaluation, beyond simple pass@1 ac-
curacy, utilizing multifaceted metrics such as improvement

problems, solutions diversity and OOD generalization, un-
derscores the necessity for a critical examination of both the
progressive and regressive effects in current self-improving
post-training methods. By broadening the scope of our
analysis, we provide deeper insights into the true nature of
iterative self-improvement with post-training, paving the
way for more robust and genuinely self-improving LLMs.

Impact Statement
The current landscape of post-training practices for self-
improvement in large language models (LLMs) necessitates
a thorough understanding to address both their progressive
and regressive effects. In this work, we conduct an in-depth
evaluation beyond simple pass@1 accuracy, utilizing mul-
tifaceted metrics such as improvement problems, solutions
diversity, and OOD generalization. Our findings under-
score the critical need for a comprehensive examination
of these methods. By expanding our analytical scope, we
provide deeper insights into the true nature of iterative self-
improvement through post-training, paving the way for more
robust and genuinely self-improving LLMs. This research
aims to empower scholars and engineers to develop more
reliable and effective post-training strategies, ultimately ad-
vancing the field of LLMs and pushing the boundaries of
model capabilities to tackle more complex challenges.
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Appendix

A. Algorithmic Overview of Post-training
A.1. Supervised Fine-tuning

Supervised fine-tuning (SFT) is employed to tailor a pre-trained LLM to specific downstream tasks. Consider the training
dataset D = {x(i), y(i)}Ni=1, where x(i) is the problem and y(i) is the target response, which the model M parameterized by
θ is trained to generate. The training objective of SFT is to minimize the following negative log-likelihood of the answers:

LSFT(θ) = −E(x,y)∼D log p(y|x; θ) (3)

where p(y|x) is the probability of observing the answer y given the problem context x.

A.2. Preference Learning

Preference learning is commonly used to train large language models to learn human preferences. The preference learning
dataset includes not only problem and target response pairs but also preferences or rankings between different target
responses for the given problem. A typical form of preference learning data is represented as D = {x(i), y

(i)
w , y

(i)
l }Ni=1,

where each piece of data contains a problem x(i), and corresponding preferred and dispreferred responses, denoted y
(i)
w

and y
(i)
l , respectively. Using a theoretical model of human discrete choice such as the Bradley-Terry model, which relates

discrete choices to implicit goodness scores of the underlying options, we can train a reward model with maximum likelihood
using this preference data. For the Bradley-Terry model, the reward modeling loss is:

LR(Rϕ,D) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))]. (4)

In the context LLMs, rϕ(x, y) is initialized from the SFT model ϕSFT. Then, the learned reward function is used to provide
feedback to the language model, through the optimization problem described below to train preferences in the language
model:

maxπθ
Ex∼D,y∼πθ(y|x)[Rϕ(x, y)]− βDKL[πθ(y|x)||πSFT(y|x)], (5)

where β is a parameter controlling the deviation from the base reference policy πSFT. More recently, (Rafailov et al., 2023)
show that the optimal policy for the learned reward can be extracted in closed form, especially skipping the need to perform
iterative, approximate policy learning. The resulting algorithm, direct preference optimization (DPO), is simpler to tune and
less computationally demanding than prior methods, while optimizing the same objective. We therefore use DPO as the
algorithm for the implementation for preference learning in our experiments. The DPO loss for the language model policy
πθ is

LDPO = −E(x,yw,yl)∼Dp

[
log

(
σ

(
β log

πθ(yw | x)
πSFT(yw | x)

− β log
πθ(yl | x)
πSFT(yl | x)

))]
. (6)

B. Experiments
B.1. Training Details

We use a fully fine-tuning setting for training LLaMA2-7B, Mistral-7B and LLaMA3-8B models either for supervised and
preference fine-tuning. All training experiments are conducted on 8 NVIDIA A100 GPUs, and all experiments collectively
consumed approximately 2000 A100 GPU hours. Our training codebase is based on LLaMA Factory (Zheng et al., 2024),
and we use vLLM (Kwon et al., 2023) framework to perform inference for both CoT sampling and test evaluation. Detailed
hyperparameters utilized throughout these experiments are documented in Table 1.

B.2. Dataset Details

CommonsenseQA (Talmor et al., 2019) offers a collection of 5-way multiple-choice questions on commonsense knowledge
scenarios. It contains 12,102 questions with training/validation/testing set splits. Due to the unavailability of correct answers
for the testing set, we utilize the validation set comprising 1,221 questions for evaluation, following the practice of (Kojima
et al., 2022).

GSM8K (Cobbe et al., 2021) consists of 8.5K high-quality grade school math problems created by human problem writers,
with the segmentation into 7.5K training problems and 1K test problems. These problems take between 2 and 8 steps to
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Type Parameter Value

Supervised Fine-Tuning Batch Size 128
Learning Rate {LLaMA2-7B} 1e− 5
Learning Rate {Mistral-7B, LLaMA3-8B} 2e− 6
Learning Rate Scheduler Cosine
Warm-up Ratio 0.03
Optimizer AdamW
Epoch 3

Preference Fine-Tuning Batch Size 32
Learning Rate {LLaMA2-7B} 2e− 6
Learning Rate {Mistral-7B, LLaMA3-8B} 2e− 7
KL Coefficient (β) 0.3
Optimizer AdamW
Epoch 1

Sampling Generation Temperature 0.75
Top p 0.95
Top k 50
Max tokens 512

Evaluation Generation Temperature 0
Top k -1
Max tokens 512

Table 1: Hyperparameters in all the experiments.

solve, and solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+
- / *) to reach the final answer.

MATH (Hendrycks et al., 2021) offers high school math competition problems that span seven subjects including Prealgebra,
Algebra, Number Theory, Counting and Probability, Goemetry, Intermediate Algebra and Precalculus. It consists of 7,500
and 5,000 samples for training and testing, respectively. Compared to GSM8K, addressing MATH challenges involves more
intricate and extended steps.

MBPP (Austin et al., 2021) consists of around 1,000 crowd-sourced Python programming problems, designed to be solvable
by entry-level programmers, covering programming fundamentals, standard library functionality, and so on. Each problem
consists of a task description, code solution and 3 automated test cases. Following the experimental setup described
in (Austin et al., 2021), we utilize Task IDs 11-510, comprising 500 problems, as our test set. The remaining 374 problems,
ranging from Task IDs 601 to 974, are employed for fine-tuning purposes.

B.3. Evaluation Protocols

Zero-shot Prompting We employ zero-shot prompts, as listed in Figure 6 for answer sampling and evaluation tests. Our
comprehensive evaluation across all benchmarks demonstrates that zero-shot prompting not only reduces inference costs but
also consistently outperforms few-shot prompting in terms of performance. Consequently, when LLMs are fine-tuned for
task-specific applications, we advocate for the adoption of zero-shot prompting as a superior method compared to various
few-shot techniques. This perspective aligns with the findings of (Yu et al., 2024), who also reported the advantages of
zero-shot over few-shot prompting for fine-tuned LLMs.

Generation Diversity In evaluating natural language generation (NLG) models, two prevalent methods for assessing
output diversity are the n-gram-based metric and the embedding-based metric, which embeds generated sentences in a latent
space. In this paper, we adopt distinct n-grams (Li et al., 2016) and Sentence-BERT Embedding Cosine Similarity (Reimers
& Gurevych, 2019) metrics.

Distinct n-grams is a straightforward yet effective method to quantify the lexical diversity of generated text. This metric
calculates the proportion of unique n-grams (sequences of n words) within the generated text. The distinct n-gram measure is
typically computed for unigrams, bigrams, trigrams, and sometimes higher-order n-grams. Mathematically, for a generated
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Figure 6: Zero-shot Evaluation Prompt.

sequence S, distinct-n is defined as:

distinct-n(S) =
|unique n-grams in S|
|total n-grams in S|

(7)

This measure provides a direct indication of how varied the vocabulary and phrases are within the generated text. In general
, higher distinct-n values indicate greater diversity.

Sentence-BERT embedding cosine similarity assesses the semantic diversity of generated sentences. Sentences generated
by the model are first encoded into embeddings using Sentence-BERT. The cosine similarity between each pair of sentence
embeddings is then computed. Cosine similarity between two embeddings u and v is given by:

cos(u,v) =
u · v
∥u∥∥v∥

(8)

The average cosine similarity of all sentence pairs gauges the overall semantic similarity. Lower average cosine similarity
indicates higher semantic diversity, as the sentences are less similar in meaning. In our calculations, we measure diversity
using 1− average cosine similarity, ensuring that higher values reflect greater semantic diversity.

Distinct Equations provides a direct indication of how varied the mathematical approaches and solutions are within the
generated text. The calculation of this metric involves two steps that identifies all equations present in the generated
mathematical reasoning steps first, and then computes the ratio of unique equations to the total number of equations.
Mathematically, for a set of generated equations E, distinct equations is defined as:

Deq(E) =
|unique equations in E|
|total equations in E|

(9)

Higher Deq values indicate greater diversity in the mathematical reasoning processes.

C. Extrapolation Analysis
In Section 4.2, we mentioned that correct answer coverage may be a deeper factor influencing the subsequent improvements
in iterative self-improvement. Here, we provide a detailed explanation of the related concepts involved in this influencing
factor, as well as the derivation of the calculation for correct answer coverage (in Equation 1) as presented in this paper.

Additionally, we emphasize that our consideration of coverage as a deeper factor is a preliminary conclusion drawn from
summarizing the factors of the model (M ), post-training function (F), and task dataset (D) and the empirical results
validated in Figure ??. It should be noted that we need further work and more extensive experiments to both theoretically and

15



Progress or Regress? Self-Improvement Reversal in Post-training

empirically validate this observation, as the discussion of correct answer coverage is beyond our work. Our intention here is
to offer empirical insights and lay the groundwork for future investigations into this aspect of iterative self-improvement.

Answer space: For a given dataset D (test set), all possible (query, answer) pairs form the answer space of the test set. Here,
the set of query is fixed, and for a given query, the number of possible answers can be quite large, hence we call the space as
the answer space. Naturally, the entire answer space can be partitioned into a correct answer space and an incorrect answer
space based on whether the answers are correct. In practical experiments, the correctness of an answer is approximated by
whether its final result exactly matches the final result provided by the ground truth in the training set.

Answer distribution: For a given model M , its answer distribution refers to the probability distribution of generating
answers conditioned on queries from dataset D. For a specific element (qi, aij), qi ∈ Dtest in the answer space, the
generation of this (query, answer) pair occurs in two steps: first, sampling qi from all queries in D, then model M generates
aij conditioned on qi. Therefore, the probability at (qi, aij) is the product of the probability of sampling qi from all queries
in D and the probability of model M generating aij conditioned on qi. Considering that all queries should have equal
importance, we define that all queries are sampled with the same probability, which is 1

Dtest
. The answer distribution of M

can be mathematically linked to model M as follows:

PM (qj , aij)
def
= M(aij |qj)P (qj) = M(aij |qj)

1

Dtest
(10)

which PM represents the model’s answer distribution, and M(aij |qj) denotes the probability of model M generating aij
conditioned on qj .

Correct Answer Coverage: As mentioned earlier, the Correct Answer Coverage represents the correctness rate of all
answers generated by model M on a dataset D (training set). It can be calculated using the following mathematical formula:

Correct Answer Coverage =

∫
Correct Answer Space

PM (a, q) (11)

Although we cannot exhaust the entire answer space and calculate a probability distribution to demonstrate the trend of the
answer distribution in the progress of self-improvement, we can get an unbiased estimate of it by sampling answers and
calculate the ratio of the number of correct answers to the total number of answers generated by model M for all queries in
Dtest, where N answers are generated for each query, as illustrated in equation 1. The proof of Equation 1 is as follows:

Correct Answer Coverage =

∫
C
PM (a, q)

=

∫
C

1

|Dtest|
PM (a|q)

=
1

|Dtest|

∫
C
PM (a|q)

=
1

|Dtest|

∫
C

∑
x∈Dtest

PM (a|q = x)

=
1

|Dtest|
∑

x∈Dtest

∫
C
PM (a|q = x)

=
1

|Dtest|
∑

x∈Dtest

E(
N c

x

N
)

= E(
1

|Dtest|
∑

x∈Dtest

N c
x

N
)

= E[
1

|Dtest|
∑

x∈Dtest

1

N

N∑
i=1

I[M(xi) == y]],

(12)

where C denotes the correct answer space, and N c
x represents the number of correct answers generated by model conditioned

on the given query x.
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D. Case Study
In this section, we select one problem from GSM8K test set and record the outputs of Mistral-7b during the process of
iterative DPO. This real case can vividly display our findings from Section 5, which suggest that iterative self-improvement
primarily manifests as an optimization of answer selection rather than substantial enhancements in problem-solving
capabilities. Additionally, we will clearly see how diversity of the model’s reasoning steps decreases throughout the process.
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Figure 7: One case of sampled responses from the test set after iterative DPO training of the Mistral-7B model on the
GSM8K dataset.
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