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ABSTRACT

Effective task representations should facilitate compositionality, such that after
learning a variety of basic tasks, an agent can perform compound tasks consisting
of multiple steps simply by composing the representations of the constituent steps
together. While this is conceptually simple and appealing, it is not clear how to
automatically learn representations that enable this sort of compositionality. We
show that learning to associate the representations of current and future states
with a temporal alignment loss can improve compositional generalization, even
in the absence of any explicit subtask planning or reinforcement learning. This
approach is able to generalize to novel composite tasks specified as goal images
or language instructions, without assuming any additional reward supervision or
explicit subtask planning. We evaluate our approach across diverse tabletop robotic
manipulation tasks, showing substantial improvements for tasks specified with
either language or goal images.

1 INTRODUCTION

Compositionality is a core aspect of intelligent behavior, describing the ability to sequence previously
learned capabilities and solve new tasks (Lashley, 1951). In domains involving long-horizon decision-
making like robotics, various learning approaches have been proposed to enable this property,
including hierarchical learning (Kulkarni et al., 2016), explicit subtask planning (Schrittwieser et al.,
2021; Fang et al., 2022b; Ahn et al., 2022), and dynamic-programming-based “stitching” (Ghugare
et al., 2023; Kostrikov et al., 2022). In practice, these techniques are often unstable and/or data-
inefficient in real-world robotics settings, making them difficult to scale (Laidlaw et al., 2024).

By contrast, biological learners are adept at quickly composing behaviors to reach new goals (Lashley,
1951). Possible explanations for these capabilities have been proposed, including the ability to perform
transitive inference (Ciranka et al., 2022), learn successor representations and causal models (Dayan,
1993b; Gopnik et al., 2017), and plan with world models (Vikbladh et al., 2019). In common among
these theories is the idea of learning structured representations of the world, which inference about
which actions will lead to certain goals.

How might these concepts translate to algorithms for robot learning? In this work, we study how
adding an auxiliary successor representation learning objective affects compositional behavior in a
real-world tabletop manipulation setting. We show that learning this representation structure improves
the ability of the robot to perform long-horizon, compositionally-new tasks, specified either through
goal images or natural language instructions. Perhaps surprisingly, we found that this temporal
alignment does not need to be used for training the policy or test-time inference, as long as it is used
as an auxiliary loss over the same representations used for the tasks. An example of this can be seen
in Fig. 1.

We evaluate our method, Temporal Representation Alignment (TRA), on a set of challenging multi-
step manipulation tasks in the BridgeData setup (Walke et al., 2023). These tasks specifically test the
compositional capabilities of the robot policies: as a whole, the tasks are out-of-distribution, but each
distinct subtask can be described through a goal image that lies in the training distribution. Adding a
simple time-contrastive alignment loss improves compositional performance on these tasks by >40%
across 13 tasks in 4 scenes.
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Figure 1: Example rollouts of a task with TRA and GCBC to put all food items in the bowl. While
TRA can implicitly decompose the task into steps and execute them one by one, GCBC is unable to
do that and fails to ground to any relevant objects. GCBC+AWR on the other hand only grounds one
object, failing to display any compositionality.

2 RELATED WORK

Our approach builds upon prior work on goal- and language-conditioned control, focusing particularly
on the problem of compositional generalization.

Robot manipulation with language and goals. Recent improvements in robot learning datasets
have enabled the development of robot policies that can be commanded with image goals and language
instructions (Ahn et al., 2022; Walke et al., 2023; Shridhar et al., 2021). These policies can be trained
with goal- and language-conditioned imitation learning from human demonstrations (Chowdhery
et al., 2023; Jiang et al., 2023; Lynch and Sermanet, 2021; Lynch et al., 2023; Brohan et al., 2023),
reinforcement learning (Chebotar et al., 2023; Chen et al., 2021), or other forms of supervision (Bobu
et al., 2023; Cui et al., 2023). When being trained to reach goals, methods can additionally use
hindsight relabeling (Andrychowicz et al., 2017; Kaelbling, 1993) to improve performance (Walke
et al., 2023; Myers et al., 2023; Dehaene et al., 2022; Ding et al., 2019). Our work shows how the
benefits of goal-conditioned and language-conditioned supervised learning can be combined with
temporal representation alignment to enable compositionality that would otherwise require planning
or reinforcement learning.

Compositional generalization in sequential decision making. In the context of decision making,
compositional generalization refers to the ability to generalize to new behaviors that are composed of
known sub-behaviors (Rubino et al., 2023; Steedman, 2004). Biological learning systems show strong
compositional generalization abilities (Ciranka et al., 2022; Dehaene et al., 2022; Dickins, 2011;
Lake et al., 2019), and recent work has explored how similar capabilities can be achieved in artificial
systems (Akyürek et al., 2021; Ito et al., 2022; Lewis et al., 2024). In the context of policy learning,
exploiting the compositionality of the behaviors can lead to generalization to unseen and temporarily
extended tasks (Ghugare et al., 2023; Kumar et al., 2022; Fang et al., 2019; 2022b; Mandlekar
et al., 2021; Nasiriany et al., 2019). Hierarchical and planning-based approaches also aim to enable
compositional behavior by explicitly partitioning a task into its components (Fang et al., 2022a;
Myers et al., 2024a; Zhang et al., 2022; Park et al., 2023). With improvements in vision-language
models (VLMs), many recent works have explored using a pre-trained VLM to decompose a task into
subtasks that are more attainable for the low-level manipulation policy (Ahn et al., 2022; Attarian
et al., 2022; Belkhale et al., 2024; Kwon et al., 2023; Myers et al., 2024a; Singh et al., 2023; Zhang
et al., 2023). These approaches are limited by the need for robust pre-trained models that can be
fine-tuned and prompted for embodied tasks. Our contribution is to show compositional properties
can be achieved without any explicit hierarchical structure or planning, by learning a structured
representation through time-contrastive representation alignment.
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Representation learning for states and tasks. State and task representations for decision making
aim to improve generalization and exploit additional sources of data. Recent work in the robotics
domain have explored the use of pre-trained representations across multimodal data, including images
and language, for downstream tasks (Karamcheti et al., 2023; Li et al., 2022; Ma et al., 2023a; Myers
et al., 2023; Nair et al., 2022; Pari et al., 2022; Shah and Kumar, 2021; Cui et al., 2022; Jang et al.,
2021). In reinforcement learning problems, representations are often trained to predict future states,
rewards, goals, or actions (Anand et al., 2019; Ma et al., 2023b; Zhang et al., 2021; Fan et al., 2022),
and can improve generalization and sample efficiency when used as value functions (Barreto et al.,
2017; Blier et al., 2021; Dayan, 1993a; Dosovitskiy and Koltun, 2017; Choi et al., 2021). Some
recent works have explored the use of additional structural constraints on representations to enable
planning (Fang et al., 2022a; Zhang et al., 2022; Eysenbach et al., 2024; Hafner et al., 2019), or
enforced metric properties to improve compositional generalization (Liu et al., 2023; Myers et al.,
2024b; Wang et al., 2023).

The key distinction between our approach and past contrastive representation methods for robotics
like VIP (Ma et al., 2023b), GRIF (Myers et al., 2023), and R3M (Nair et al., 2022) is that we focus on
the real-world compositional generalization capabilities enabled by simply aligning representations
across time in addition to the task modalities, without using the learned representations for policy
extraction or defining a value function.

3 TEMPORAL REPRESENTATION ALIGNMENT

Given training on a series of short-horizon goal-reaching and instruction-following tasks, our goal
is to learn a representation space such that our policy can generalize to a new (long-horizon) task
that can be viewed as a sequence of known subtasks. We propose to structure this representation
space by aligning the representations of states, goals, and language in a way that is more amenable to
compositional generalization.

Notation. We take the setting of a goal- and language-conditioned MDPM with state space S,
continuous action space A ⊆ (0, 1)dA , initial state distribution p0, dynamics P(s′ | s, a), discount
factor γ, and language task distribution pℓ. A policy π(a | s) maps states to a distribution over actions.
We inductively define the k-step (action-conditioned) policy visitation distribution as:

pπ1 (s1 | s1, a1) ≜ p(s1 | s1, a1),

pπk+1(sk+1 | s1, a1) ≜
∫
A

∫
S
p(sk+1 | s, a) dpπk (s | s1, a1) dπ(a | s)

pπk+t(sk+t | st, at) ≜ pπ(sk | s1, a1). (1)

Then, the discounted state visitation distribution can be defined as the distribution over s+, the state
reached after K ∼ Geom(1− γ) steps:

pπγ (s
+ | s, a) ≜

∞∑
k=0

γkpπk (s
+ | s, a). (2)

We assume access to a dataset of expert demonstrations D = {τi, ℓi}Ki=1, where each trajectory

τi = {st,i, at,i}Ht=1 ∈ S ×A (3)

is gathered by an expert policy πE, and is then annotated with pℓ(ℓi | s1,i, sH,i). Our aim is to learn a
policy π that can select actions conditioned on a new language instruction ℓ. As in prior work (Walke
et al., 2023), we handle the continuous action space by both our policy and the expert policy as an
isotropic Gaussian with fixed variance; we will equivalently write π(a | s, φ) or denote the mode as
â = π(s, φ) for a task φ.

3.1 MOTIVATION: REPRESENTATIONS FOR REACHING DISTANT GOALS

We learn a goal-conditioned policy π(a | s, g) that selects actions to reach a goal g from expert
demonstrations with behavioral cloning. Suppose we directly selected actions to imitate the expert on
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two trajectories in D:

s1 s2 . . . sH w

w s′1 . . . s′H g

τi ∈ D (4)

When conditioned with the composed goal g, we would be unable to imitate effectively as the
composed state-goal (s, g) is jointly out of the training distribution.

What would work for reaching g is to first condition the policy on the intermediate waypoint w, then
upon reaching w, condition on the goal g, as the state-goal pairs (si, w), (w, g), and (s′i, g) are all
in the training distribution. If we condition the policy on some intermediate waypoint distribution
p(w) (or sufficient statistics thereof) that captures all of these cases, we can stitch together the expert
behaviors to reach the goal g.

Consider the goal-conditioned behavioral cloning (Kaelbling, 1993) loss Lϕ,ψ,ξBC conditioned with
waypoints w.

LBC

(
{si, ai, s+i , gi}

K
i=1

)
=

K∑
i=1

log π
(
ai | si, ψ(gi)

)
. (5)

Enforcing the invariance needed to stitch Eq. (4) then reduces to aligning ψ(g)↔ ψ(w). The temporal
alignment objective ϕ(s)↔ ϕ(s+) accomplishes this indirectly by aligning both ψ(w) and ψ(g) to
the shared waypoint representation ϕ(w):

LNCE

(
{si, s+i }

K
i=1;ϕ, ψ

)
= log

(
eϕ(s

+
i )Tψ(si)∑K

j=1 e
ϕ(s+i )Tψ(sj)

)
+

K∑
j=1

log

(
eϕ(s

+
i )Tψ(si)∑K

i=1 e
ϕ(s+i )Tψ(sj)

)
(6)

3.2 INTERFACING WITH LANGUAGE INSTRUCTIONS

To extend the representations from Section 3.1 to compositional instruction following with language
tasks, we need some way to ground language into the ψ representation space. We use a similar
approach to GRIF (Myers et al., 2023), which uses an additional CLIP-style (Radford et al., 2021)
contrastive alignment loss with an additional pretrained language encoder ξ:

LNCE

(
{gi, ℓi}Ki=1;ψ, ξ

)
=

K∑
i=1

log

(
eψ(gi)

T ξ(ℓi)∑K
j=1 e

ψ(gi)T ξ(ℓj)

)
+

K∑
j=1

log

(
eψ(gi)

T ξ(ℓi)∑K
i=1 e

ψ(gi)T ξ(ℓj)

)
(7)

3.3 TEMPORAL ALIGNMENT

The Temporal Representation Alignment (TRA) approach structures the representation space of goals
and language instructions to better enable compositional generalization. We learn encoders ϕ, ψ, and
ξ to map states, goals, and language instructions to a shared representation space.

LNCE({xi, yi}Ki=1; f, h) =

K∑
i=1

log

(
ef(yi)

Th(xi)∑K
j=1 e

f(yi)Th(xj)

)
+

K∑
j=1

log

(
ef(yi)

Th(xi)∑K
i=1 e

f(yi)Th(xj)

)
(8)

LBC

(
{si, ai, s+i , ℓi}

K
i=1;π

)
=

K∑
i=1

log π
(
ai | si, ξ(ℓi)

)
+ log π

(
ai | si, ψ(s+i )

)
(9)

LTRA

(
{si, ai, s+i , gi, ℓi}

K
i=1;π, ϕ, ψ, ξ

)
= LBC

(
{si, ai, s+i , ℓi}

K
i=1;π, ψ, ξ

)︸ ︷︷ ︸
behavioral cloning

+LNCE

(
{si, s+i }

K
i=1;ϕ, ψ

)︸ ︷︷ ︸
temporal alignment

+LNCE

(
{gi, ℓi}Ki=1;ψ, ξ

)︸ ︷︷ ︸
task alignment

(10)

Note that the NCE alignment loss uses a CLIP-style symmetric contrastive objective (Radford et al.,
2021; Eysenbach et al., 2024) — we highlight the indices in the NCE alignment loss (8) for clarity.
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Our overall objective is to minimize Eq. (10) across states, actions, future states, goals, and language
tasks within the training data:

min
π,ϕ,ψ,ξ

E(s1,i,a1,i,...,sH,i,aH,i,ℓ)∼D
i∼Unif(1...H)
k∼Geom(1−γ)

[
LTRA

(
{st,i, at,i, smin(t+k,H),i, sH,i, ℓ}Ki=1;π, ϕ, ψ, ξ

)]
. (11)

Algorithm 1: Temporal Representation Alignment (TRA)

1: input: dataset D = ({st,i, at,i}Ht=1, ℓi)
N
i=1

2: initialize networks Θ ≜ (π, ϕ, ψ, ξ)
3: while training do
4: sample a batch of transitions

{
(st,i, at,i, st+k,i, ℓi)

}K
i=1
∼ D for k ∼ Geom(1− γ)

5: Θ← (π, ϕ, ψ, ξ)− α∇ΘLTRA
(
{st,i, at,i, st+k,i, ℓi}Ki=1; Θ

)
6: output: language ℓ-conditioned policy π(at|st, ξ(ℓ))
7: goal g-conditioned policy π(at|st, ψ(g))

A summary of our approach is shown in Algorithm 1.

3.4 TEMPORAL ALIGNMENT AND COMPOSITIONALITY

We will formalize the intuition from Section 3.1 that TRA enables compositional generalization
by considering the error on a “compositional” version of D, denoted D∗. Using the notation from
Eq. (3), we can say D is distributed according to:

D ≜ DH ∼
K∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)
H∏
t=1

πE(at,i | st,i) P(st+1,i | st,i, at,i), (12)

or equivalently

DH ∼
K∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)
H∏
t=1

eσ
2∥πE(st,i)−at,i∥2

P(st+1,i | st,i, at,i), (13)

by the isotropic Gaussian assumption. We will define D∗ ≜ DH′
to be a longer-horizon version of

D extending the behaviors gathered under πE across a horizon αH ≥ H ′ ≥ H that additionally
satisfies a “time-isotropy” property: the marginal distribution of the states is uniform across the
horizon, i.e., p0(s1,i) = p0(st,i) for all t ∈ {1 . . . H ′}.
We will relate the in-distribution imitation error ERR(•;D) to the compositional out-of-distribution
imitation error ERR(•;D∗). We define

ERR(π̂; D̃) = ED̃

[ 1

H

H∑
t=1

Eπ̂
[
∥ãt,i − π̂(s̃t,i, s̃H,i)∥2/dA

]]
(14)

for {s̃t,i, ãt,i, ℓ̃i}Ht=1 ∼ D̃. (15)

On the training dataset this is equivalent to the expected behavioral cloning loss from Eq. (9).

Assumption 1. The policy factorizes through inferred waypoints as:

goals: π(a | s, g) =
∫
π(a | s, w) P(st = w | st+k = g) dw (16)

language: π(a | s, ℓ) =
∫
π(a | s, w) P(st = w | st+k = g) P(st+k = g | ℓ) dw dg, (17)

where denote by π(s, g) the MLE estimate of the action a.

Theorem 1. Suppose D is distributed according to Eq. (12) and D∗ is distributed according to
Eq. (12). When γ > 1− 1/H and α > 1, for optimal features ϕ and ψ under Eq. (11), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (18)
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We can also define a notion of the language-conditioned compositional generalization error:

ERRℓ(π;D∗) ≜ ED∗

[ 1

H

H∑
t=1

Eπ
[
∥ãt,i − π(s̃t,i, ℓ̃i)∥2

]]
. (19)

Corollary 1.1. Under the same conditions as Theorem 1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (20)

The proofs as well as a visualization of the bound are in Appendix E.

4 EXPERIMENTS

Our experimental evaluation aims to answer the following research questions for TRA:

1. Can TRA enable zero-shot composition of multiple sequential tasks without additional
prompting or planning methods?

2. How well does TRA perform compared to conventional offline RL algorithms in terms of
task generalization and composition?

3. How well does TRA capture skills that are seen at a lower percentage within the dataset,
compared to the numerous entries of object manipulation?

4. Is time alignment by itself sufficient for effective compositional generalization?

TRA(Ours)

AWR

GRIF

Octo

LCBC

Success Rate

Instruction Following Performance

(a) Language instruction tasks

TRA(Ours)

AWR

GRIF

Octo

GCBC

Success Rate

Goal Reaching Performance

(b) Goal-image conditioned tasks

Figure 2: Aggregated performance on compositional generalization tasks, consisting of instruction-
following and goal-reaching tasks.

Table 1: Compositional Generalization Error of Methods

Modality TRA GRIF LCBC GCBC Octo

image 4.25± 0.37 5.24± 0.34 4.84± 0.11 5.15± 0.41
language 3.82± 0.25 4.95± 0.32 4.84± 0.11 4.56± 0.32

4.1 EXPERIMENTAL DETAILS

We evaluate TRA on a collection of held-out compositionally-OOD tasks – tasks for which the
individual substeps are represented in the dataset, but the combination of those steps is unseen.
For example, in a task such as “removing a bell pepper from a towel, and then sweep the towel”,
both the tasks “remove the bell pepper from the towel” and “sweep the towel” have similar entries
within BridgeData, but such combined trajectory and language description does not exist. We utilize
a real-world robot manipulation interface with a 7 DoF WidowX250 manipulator arm with 5Hz
execution frequency. We train on an augmented version of the BridgeDataV2 dataset (Walke et al.,
2023), which contains over 50k trajectories with 72k language annotations. We augment the dataset
by rephrasing the language annotations, as described by (Myers et al., 2023), with 5 additional

6
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rephrased language instruction for each language instruction present in the dataset, and randomly
sample them during training.
In order to specifically test the ability of TRA to perform compositional generalization, we organize
our evaluation tasks into 4 scenes that are unseen in BridgeData, each with increasing difficulty:
Scene A – One-Step Drawer: this is the only scene that are not compositionally-OOD, as all the
tasks are one-step tasks. This scene involves opening, putting an item in, and closing a drawer. These
tasks have been seen in BridgeData, although at a lower frequency than object manipulation, but
the position in which they are initialized are unseen. They will be used to compare TRA’s ability to
baselines when solving single-step tasks.
Scene B – Task Concatenation: this scene involves concatenating multiple tasks of the same nature
in sequence, where a robot must be able to perform all tasks within the same trajectory. During
evaluation, we instruct the policy with instructions such as sweeping multiple objects in the scene
that require composition (though are not sensitive to the order of the composition).
Scene C – Semantic Generalization: Unlike scene B, these tasks require manipulation with different
objects of the same class. We test this using various food items seen within BridgeData and instruct
the policy to put various food items within a container. An example of such task would be to have a
table containing a banana, a sushi, a bowl, and various distractor objects, and instead of using specific
language commands such as “put the banana and the sushi in the bowl,” a more general statement
such as “put the food items in a container” will be used.
Scene D – Tasks with Dependency: This is the most challenging of the set of tasks: these tasks have
subtasks that require previous subtasks being completed for them to succeed. An example of this
would be to open a drawer, and to take out an item in the drawer, as one cannot take out an item from
the drawer if the drawer is not open.
The complete list of tasks is noted in Appendix C.

4.2 BASELINES

We compare against the following baselines:

GRIF (Myers et al., 2023) learns a goal- and language- conditioned policy using aligned goal image
and language representations. In our experiments, this becomes equivalent to TRA when the
temporal alignment objective is removed.

GCBC (Walke et al., 2023) learns a goal-conditioned behavioral cloning policy that concatenates
the goal image with the image observation.

LCBC (Walke et al., 2023) learns a language-conditioned policy that concatenates the language
with the image observation.

OCTO (Ghosh et al., 2024) uses a multimodal transformer to learn a goal- and language-
conditioned policy. The policy is trained on Open-X dataset (O’Neill et al., 2024), which
incorporates BridgeData in its entirety.

AWR (Peng et al., 2019) uses advantages produced by a value function to effectively extract a policy
from an offline dataset. In this experiment, we use the difference between the contrastive loss
between the current observation and the goal representation and the contrastive loss between the
next observation and the goal representation as a surrogate for value function.

We train GRIF, GCBC, LCBC, and AWR using the same augmented Bridge Dataset as TRA, and we
use an Octo-Base 1.5 model for our evaluation. A more detail approach is detailed in Appendix B.
During evaluation, we give all policies the same goal state and language instruction regardless of
the architecture, as they are trained on the same language instruction with the exception of Octo,
which doesn’t benefit from paraphrased language data, but does benefit from a more diverse language
annotation set across a larger dataset of varying length and complexity.

4.3 EXPERIMENTAL EVALUATION

Does TRA enable compositionality? In Table 1, we compare the normalized mean squared error
(MSE) of the TRA method with other methods on held-out compositionally-OOD image- and goal-
specified tasks. These values are derived from passing the inputs through the policy network and
sampling the mode of the distribution without unnormalizing the outputs based on the dataset. The

7
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Table 2: Real-world Language Conditioned Evaluation

Task TRA GRIF LCBC Octo AWR

open the drawer 0.80±0.1† 0.20±0.2 0.60±0.2 0.60±0.2 0.40±0.2
mushroom in drawer 0.80±0.1 0.80±0.2 0.40±0.2 0.00±0.0 0.60±0.2

close drawer 0.60±0.2 0.60±0.2 0.40±0.2 0.60±0.2 0.40±0.2

(∗) put the spoons on towels 1.00±0.0 0.40±0.2 0.20±0.2 0.00±0.0 0.20±0.2
(∗) put the spoons on the plates 0.80±0.2 0.20±0.2 0.20±0.2 0.20±0.2 0.00±0.0
(∗) fold cloth into the center 1.00±0.0 0.20±0.2 0.40±0.2 0.40±0.2 0.40±0.2
(∗) sweep to the right 0.80±0.1 0.20±0.2 0.40±0.2 0.40±0.2 0.00±0.0

(∗) put the corn and sushi on plate 0.90±0.1 0.00±0.0 0.40±0.2 0.00±0.0 0.50±0.2
(∗) sushi and mushroom in bowl 0.80±0.2 0.00±0.0 0.60±0.2 0.20±0.2 0.60±0.2
(∗) corn, banana, and sushi in bowl 0.80±0.1 0.00±0.0 0.00±0.0 0.00±0.0 0.20±0.1

(∗) take the item out of the drawer 0.60±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) move bell pepper and sweep towel 0.50±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) corn on plate then sushi in pot 0.70±0.1 0.00±0.0 0.40±0.2 0.60±0.2 0.20±0.2

∗ indicates task is compositionally-OOD (has multiple steps never seen together in training)
†The best-performing method(s) up to statistical significance are highlighted

Table 3: Real-world Goal-Conditioned Evaluation

Task TRA GRIF GCBC Octo AWR

open the drawer 0.60±0.2† 0.60±0.2 0.40±0.2 0.50±0.2 0.80±0.2
mushroom in drawer 0.90±0.1 0.40±0.2 0.80±0.2 0.90±0.1 0.60±0.2

close drawer 1.00±0.0 0.40±0.2 0.80±0.2 0.60±0.2 0.40±0.2

(∗) put the spoons on towels 1.00±0.0 0.20±0.2 0.60±0.2 0.40±0.2 0.60±0.2
(∗) put the spoons on the plates 1.00±0.0 0.00±0.0 0.40±0.2 0.00±0.0 0.80±0.2
(∗) fold cloth into the center 1.00±0.0 0.00±0.0 0.00±0.0 0.60±0.2 0.00±0.0
(∗) sweep to the right 0.70±0.1 0.40±0.2 0.00±0.0 0.80±0.2 0.00±0.0

(∗) put the corn and sushi on plate 0.70±0.1 0.00±0.0 0.20±0.2 0.00±0.0 0.30±0.1
(∗) sushi and mushroom in bowl 0.60±0.2 0.00±0.0 0.20±0.2 0.40±0.2 0.60±0.2
(∗) corn, banana, and sushi in bowl 0.50±0.2 0.00±0.0 0.00±0.0 0.40±0.2 0.50±0.2

(∗) take the item out of the drawer 0.40±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) move bell pepper and sweep towel 0.60±0.2 0.20±0.2 0.20±0.2 0.40±0.2 0.00±0.0
(∗) corn on plate then sushi in pot 0.30±0.1 0.20±0.2 0.00±0.0 0.00±0.0 0.00±0.0

∗ indicates task is compositionally-OOD (has multiple steps never seen together in training)
†The best-performing method(s) up to statistical significance are highlighted

validation MSE for these tasks are lower with a statistically significant margin, demonstrating that in
a compositionally-OOD setting, TRA provides a trajectory closer to expert demonstrations.
Section 4.2 and Section 4.2 show the success rates of the TRA method compared to other methods on
real-world robot evaluation tasks. We marked all policies within the task orange if they achieve the
best statistically significant performance. We first compare the performance against methods in Scene
A. We observe that while TRA performs well with drawer tasks, its performance against baseline
methods are not statistically significant. However, when being evaluated on compositionally-OOD
instruction following tasks, TRA performs considerably better than that of any baseline methods.
While TRA completed 88.9% of tasks seen in Scene B, 83.3% of evaluations in Scene C, and 60% of
tasks in Scene D with instruction following, the best-performing baseline for Scene B was 30% with
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“move the bell pepper to the bottom right of the table, 
and then move the towel to the top right of the table”

LCBC

TRA

Figure 3: Example rollouts of a task with TRA and LCBC. While TRA is able to successfully
compose the steps to complete the task, LCBC fails to ground the instruction correctly.

LCBC, 43.3% for Scene C with AWR, and 33.3% on Scene D with Octo. The same improvement
was also present in goal reaching tasks, although at a lower level, in which Scene C produced 60%
success rate and scene D produced a 43.3% success rate, as compared to 46.7% and 20% for the
best-performing baselines.

TRA (Ours)

AWR+TRA

TRA (Ours)

AWR+TRA

Success Rate

Ablation: Using TRA as Value Signal

Goal Images Language

Figure 4: Aggregated success rate of using AWR
as an additional policy learning metric over all 4
scenes.

Qualitatively, we see that policies trained un-
der TRA provides a much smoother trajectory
between different subtasks while following in-
structions, while other cannot replicate the same
performance. Take removing the bell pepper +
sweep task for example, with its visualization
shown Fig. 3, while TRA was able to remove
the bell pepper by grasping it and putting it to
the bottom right corner of the table, LCBC can-
not replicate the same performance, choosing
to nudge the bell pepper instead and failed to
execute the task.

How well does TRA perform against Conven-
tional Offline RL Algorithms? While offline
reinforcement learning promises good stitching
behavior (Kumar et al., 2021), we demonstrate
that TRA still outperforms offline reinforcement
learning on robotic manipulation. Overall, TRA performs better than AWR for both language and
image tasks, outperforming AWR by 45% on instruction following tasks, and by 25% on goal reaching
tasks, showing considerable improvement over an offline RL method that promises compositional
generalization via stitching.
Qualitatively, it is often seen that a policy trained with AWR would stop after one subtask, even
though the goal instruction or image demanded all of the subtasks be completed. We can see this
behavior in Fig. 1, in which we have the same goal image being fed in to 3 different policies in which
all 3 food items must be put in the bowl. While TRA successfully completes all 3 subtasks, AWR
chose to only complete one subtask and terminates right after putting the banana in the bowl. This is
due to the fact that AWR on an offline dataset has a goal-reaching reward function, in which it does
not attempt to align the representations of all trajectories across time unlike TRA.

Does TRA help capturing rarely-seen skills within the dataset? We also compare the perfor-
mance of TRA against AWR across all scenes and compare the performance of the policies with
all 3 tasks in Scene D as well as folding the towel, all rarely seen skills within BridgeData, as
it mainly focused on object manipulation. When compared by task within language conditioned
set, we discover AWR suffered a significant drop off in effectiveness, with its average success rate
plummeting from 43.3% in Scene C compared to 6.67% in Scene D, while TRA had a smaller drop

9
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off, from 83.3% to 60%, displaying that TRA generates better understanding of tasks that are rarely
seen in the dataset. Other agents do not nearly achieve the same performance even as AWR in Scene
D, as the lack of such compositional generalization prevented the policies from achieving all of the
tasks at a reliable rate.

Is TRA sufficient in achieving compositional generalization? We demonstrate in our real-
world experiment that only using temporal alignment is sufficient for achieving good compositional
generalization. We evaluate this by comparing a policy trained on only temporal alignment loss (our
method), and another policy trained on such loss and have these losses weighed by AWR.

Figure 4 shows that across all evaluation tasks, there exists no statistically significant difference
between using and not using AWR in addition to temporal alignment, in fact, using AWR marginally
decreases the efficacy of TRA, as compared to showing marginal improvement over vanilla GCBC
methods and a similar performance with vanilla LCBC methods. While TRA qualitatively improve
the smoothness of the execution trajectories, the same cannot be said about using AWR, in which
after executing every subtask, the robot chose to return near the starting joint angles before executing
the next subtask.

4.4 FAILURE CASES

While TRA provides an effective mechanism for compositional generalization, it is not immune
to failures. Qualitatively, we observe that despite showing better compositional generalization, the
policy still fails at a similar rate compared to other multivariate Gaussian policies when multimodal
behavior is observed, other cases of early grasping and incorrect reaching are also observed at a
similar rate. While TRA did provide marginal improvements as seen in Scene A, it does not provide
full coverage of such scenarios. More analysis of failure cases can be seen in Appendix D.1.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we studied the effects of adding a temporal representation alignment objective in
behavior cloning, and we have discovered that by adding this metric, it allows a robot policy to
perform robust compositional generalization even when the composition of such tasks are OOD.

Limitations and Future Work Due to restrictions placed by dataloaders, TRA cannot handle
extremely long sequence of language, even though the difficulty of subtasks contained within the
instructions may remain the same. Future work could also examine long-horizon tasks in bimanual or
multi-agent settings, or investigate other properties like cross-embodiment generalization. To scale
to these more complex settings, similar approaches with more complex architectures architectures
such as transformers and diffusion policies may be needed for policy and/or representation learning.
Future work could also examine combining TRA with hierarchical task decomposition using VLMs,
or with other forms of structured task representations.
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A TRA IMPLEMENTATION

In this section, we provide some details on the implementatinon of temporal representation alignment
(TRA) and its training process.

A.1 DATASET CURATION

We use an augmented version of BridgeData. We augment the dataset by generating 5 additional
paraphrased instruction per language instruction. During training process, we randomly sample the
instructions for each trajectory to ensure an equal coverage of texts.
During data loading process, for each observation that is being sampled with timestep k, we also
sample k+ ≜ min(k + x,H), x ∼ Geom(1− γ), and load sk along with sk+ . We employ random
cropping, resizing, and hue changes during training process image robustness.

A.2 POLICY TRAINING

We use a ResNet-34 architecture for the policy network. We train our policy with one Google V4-8
TPU VM instance for 150,000 steps, which takes a total of 20 hours. We use a learning rate of
3× 10−4, 2000 linear warmup steps, and a MLP head of 3 layers of 256 dimensions after encoding
the observation representations as well as goal representations.
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B BASELINE IMPLEMENTATIONS

We summarize the implementation details of the baselines discussed in Section 4.2.

B.1 OCTO

We use the Octo-base 1.5 model publicly available on HuggingFace for evaluating Octo baselines. We
use inference code that is readily available for both image- and language- conditioned tasks. During
inference, we use an action chunking window of 4 and an execution horizon window of 4.

B.2 BEHAVIOR CLONING

We use the same architecture for LCBC as in Walke et al. (2023); Myers et al. (2023). During the
training process we use the same hyperparameters as TRA.

B.3 ADVANTAGE WEIGHTED REGRESSION

In order to train an AWR agent without separately implementing a reward critic, we follow Eysenbach
et al. (2022) and use a surrogate for advantage:

A(st) = LNCE
(
f(st), f(g)

)
− LNCE

(
f(st+1), f(g)

)
. (21)

Here, f can be any of the encoders ϕ, ξ, ψ. L is the same InfoNCE loss defined Section 3, and g is
defined as either the goal observation or the goal language instruction, depending on the modality.

And we extract the policy using advantage weighted regression (AWR) (Neumann and Peters, 2008):

π ← argmax
π

Es,a∼D

[
log π(a|s, z) exp

(
A(s, a)/β

)]
. (22)

During training, we set β to 1, and we use a batch size of 128, the same value as policy training for
our method.

C EXPERIMENT DETAILS

In this section, we go through our experiment details and how they are set up. During evaluation, we
randomly reset the positions of each item within the table, and perform 5 to 10 trials on each task,
depending on whether this task is important within each scene. We examine tasks that are seen in
BridgeData, which include conventionally less challenging tasks such as object manipulation, and
challenging tasks to learn within the dataset such as cloth folding and drawer opening.

C.1 LIST OF TASKS

Table 4 describes each task within each scene, and the language annotation used when the policy
is used for inference. Every task that is outside of the drawer scene are multiple step, and require
compositional generalization.

C.2 INFERENCE DETAILS

During inference, we use a maximum of 200 timesteps to account for long-horizon behaviors, which
remains the same for all policies. We determine a task as successful when the robot completes the
task it was instructed to within the timeframe. For evaluating baselines, we use 5 trials for each of the
tasks.

C.3 VALIDATION MSE

In addition to rolling out the policy on real-world robot settings, we additionally collected 9 additional
tasks that are compositionally OOD for 5 trajectories each, and we use 3 randomly selected seeds to
train policies to evaluate the MSE on the validation trajectories.
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Table 4: Task Instructions

Scene Count Task Description Instruction

Drawer
10 open the drawer “open the drawer”

10 put the mushroom in the drawer “put the mushroom in the drawer”

10 close the drawer “close the drawer”

Task Generalization

5 put the spoons on the plates “move the spoons onto the plates.”

5 put the spoons on the towels “move the spoons on the towels”

6 fold the cloth into the center from all corners “fold the cloth into center”

10 sweep the towels to the right “sweep the towels to the right of the table”

Semantic Generalization
10 put the sushi and the corn on the plate “put the food items on the plate”

5 put the sushi and the mushroom in the bowl “put the food items in the bowl”

10 put the sushi, corn, and the banana in the bowl “put everything in the bowl”

Tasks With Dependency

10 take mushroom out of drawer “open the drawer and then take the mush-
room out of the drawer”

10 move bell pepper and sweep towel
“move the bell pepper to the bottom right
corner of the table, and then sweep the
towel to the top right corner of the table”

10 put the corn on the plate, and then put the sushi in the pot “put the corn on the plate and then put
the sushi in the pot”

“open the drawer, and then take the mushroom out of the 
drawer”

“fold the towel into center”

“put the corn on the plate, and then put the sushi in the pot”

Figure 5: In these figures, we see that TRA is able to perform good compositional generatlization
over a variety of tasks seen within BridgeData

D ADDITIONAL VISUALIZATIONS

In this section, we show additional visualizations of TRA’s execution on compositionally-OOD tasks.
We use folding, taking mushroom out of the drawer, and corn on plate, then sushi in the pot as
examples, as these tasks require a strong degree of dependency to complete at Appendix D.

D.1 FAILURE CASES

We break down failure cases in this section. While TRA performs well in compositional generalization,
it cannot counteract against previous failures seen with behavior cloning with a Gaussian Policy.
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“open the drawer, and then take the mushroom out of the 
drawer”

❌

“put everything in the bowl”

STUCK!

EVAL ENDS!❌

Figure 6: Most of the failure cases came from the fact that a policy cannot learn depth reasoning,
causing early grasping or late release, and it has trouble reconciling with multimodal behavior

E ANALYSIS OF COMPOSITIONALITY

We prove the results from Section 3.4.

E.1 GOAL CONDITIONED ANALYSIS

Theorem 1. Suppose D is distributed according to Eq. (12) and D∗ is distributed according to
Eq. (12). When γ > 1− 1/H and α > 1, for optimal features ϕ and ψ under Eq. (11), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (18)

Proof. We have from Eq. (15) for K ∼ Geom(1− γ):

ERR(π;D∗) ≜ ED∗

[ 1

H ′

H′∑
t=1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]

=
1

H ′ ED∗

[H′−2H∑
t=1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+

1

H ′ ED∗

[H′−H∑
H′−2H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]

+
1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+

1

H ′ ED∗

[H′−H∑
t=H′−2H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+
(α− 2

2α

)
1{α > 2}

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′,i)∥
2

ndA

]

+
1

H ′ ED∗

[H′−H∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|s̃H′−K,i)∥

2

ndA

]]
+
(α− 2

2α

)
1{α > 2}

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′,i)∥
2

ndA

]

+
1

H ′ ED∗

[H′−H∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|s̃H′−K,i)∥

2

ndA

]]
+
(α− 2

2α

)
1{α > 2}

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′,i)∥
2

ndA

]

+
1

H ′ ED∗

[H′−H∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|ψ(s̃H′−K,i))∥

2

ndA

]]
+
(α− 2

2α

)
1{α > 2}

≤ ERR(π;D∗) +
1

H ′ ED∗

[1− γH
1− γ

]
+

(α− 2

2α

)
1{α > 2}

≤ ERR(π;D∗) +
α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (23)

E.2 LANGUAGE CONDITIONED ANALYSIS

Corollary 1.1. Under the same conditions as Theorem 1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (20)

The proof is similar to Appendix E.1, but over the predictions of ξ instead of ψ.

E.3 VISUALIZING THE BOUND

We compare the bound from Theorem 1 with the “worst-case” bound of ERR(π;D∗)− ERR(π;D)
in Appendix E.3. The bound from Theorem 1 is tighter than the worst-case bound, and it shows that
the compositional generalization error decreases as α increases.
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Figure 7: Visualizing the bound (Eq. 18 from Theorem 1) on the compositional generalization error.
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