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Abstract

Recent studies show that paddings in convolutional neural networks encode ab-1

solute position information which can negatively affect the model performance2

for certain tasks. However, existing metrics for quantifying the strength of po-3

sitional information remain unreliable and frequently lead to erroneous results.4

To address this issue, we propose novel metrics for measuring (and visualizing)5

the encoded positional information. We formally define the encoded information6

as PPP (Position-information Pattern from Padding) and conduct a series of ex-7

periments to study its properties as well as its formation. The proposed metrics8

measure the presence of positional information more reliably than the existing9

metrics based on PosENet and a test in F-Conv. We also demonstrate that for any10

extant (and proposed) padding schemes, PPP is primarily a learning artifact and is11

less dependent on the characteristics of the underlying padding schemes.12

1 Introduction13

Padding, one of the most fundamental components in neural network architectures, has received14

much less attention than other modules. Zero padding is frequently used in CNNs, perhaps due to its15

simplicity and low computational costs. This design preference remains almost unchanged in the past16

decade. Recent studies [1, 2, 3, 4] show that padding can implicitly provide a network model with17

positional information. Such positional information can cause unwanted side-effects by interfering18

and affecting other sources of position-sensitive cues (e.g., explicit coordinate inputs [5, 6, 7, 8, 9],19

embeddings [10], or boundary conditions of the model [4, 11, 12]). Furthermore, padding may lead20

to several unintended behaviors [5, 7, 8, 9], degrade model performance [10, 11, 12], or sometimes21

create blind spots [6]. Meanwhile, simply ignoring the padding pixels (known as no-padding or22

valid-padding) leads to the foveal effect [13, 14] that causes a model to become less attentive to23

the features on the image border. These observations motivate us to thoroughly investigate the24

phenomenon of positional encoding including the impact of commonly used padding schemes.25

Conducting such a study requires a reliable metric to detect the presence of positional information26

introduced by padding, and more importantly, quantify its strength consistently. We observe that27

the existing methods for detecting and quantifying the strength of positional information yield28

inconsistent results. In Section 3, we revisit two closely related evaluation methods, PosENet [1] and29

F-Conv [3]. Our extensive experiments demonstrate that (a) metrics based on PosENet are unreliable30

with an unacceptably high variance, and (b) the ‘Border Handling Variants’ (BHV) test in F-Conv31

suffers from unaware confounding variables in its design, leading to unreliable test results.32

The source codes and data collection scripts will be made publicly available.
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Figure 1: Position-information Pattern from Padding (PPP). We propose a method that can
consistently and effectively extract PPPs through the distributional difference between optimally-
padded (gray-scale surfaces) and algorithmically-padded features (colored surfaces). The results
show that the two distributions become distinguishable as the number of sample increases. Following
the procedure in Section 2.2, we extract a clear view of PPP with the expectation of the pair-
wise differences between optimally-padded and algorithmically-padded features. We render each
visualization in tilted view (first row) and top view (second row). The colors represent the magnitude
(blue/cold/weak to green/warm/strong) at each pixel. The features are extracted at the 3rd layer of
interest (Appendix A) from a randn-padded (Section 2.4) ResNet50 pretrained on ImageNet.

In addition, we observe all commonly-used padding schemes actually encode consistent patterns33

underneath the highly dynamic model features. However, such a pattern is rather obscure, noisy,34

and visually imperceptible1 in most cases. Fortunately, we show that such patterns can be consis-35

tently revealed with a sufficient number of samples by defining an optimal padding scheme (see36

Section 2.1 and Figure 1). We accordingly propose a new evaluation paradigm and develop a method37

to consistently detect the presence of the Position-information Pattern from Padding (PPP), which38

is a persistent pattern embedded in the model features to retain positional information. We present39

two metrics to measure the response of PPP from the signal-to-noise perspective and demonstrate its40

robustness and low deviation among different settings, each with multiple trials of training.41

To weaken the effect of PPP, we design a padding scheme with built-in stochasticity to halt the42

model from constructing consistent patterns in Section 2.4. However, our experiments show that the43

models can still circumvent the stochasticity and end up consistently constructing certain PPPs. This44

observation suggests that a model likely constructs PPPs purposely to facilitate its training, rather45

than falsely or accidentally learning some filters that respond to padding features.46

With reliable PPP metrics, we conduct a series of experiments to analyze the characteristics of PPP in47

Section 4.1. Specifically, we monitor the formation of PPP throughout each model training process in48

Section 4.3. The results show PPPs are formed expeditiously at the early stage of model training,49

slowly but steadily strengthened through time, and eventually shaped in clear and complete patterns.50

These results show that a model intentionally develops and reinforces PPPs to facilitate its learning51

process. Moreover, we observe the PPPs of all pretrained networks are significantly stronger than52

those in their initial states. This indicates an unbiased training procedure is of great importance in53

resolving the critical failures caused by PPP in numerous vision tasks [6, 7, 10, 11].54

2 Observations and Methodology55

In this section, we first define symbols for expressing the functionality of paddings and define the56

optimal-padding scheme. We then give a formal definition of Position-information Pattern from57

1Except the zeros-padding is already well-known with its clear ring-shaped pattern [6, 1].
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Figure 2: Principal point shift. (a) The stride-2 Conv2d only pads on one side, causing the principal
point shift (red squares) in earlier layers. (b) Such a shift requires careful margin correction while
aligning algorithmically-padded and optimally-padded features (we describe the details of point shift
in Appendix A). (c) The shift is visible in the feature space (spade-shaped and question-mark-shaped
patterns in the marked box). (d) It is crucial to correct the principal point shift while measuring PPP.
The PPP calculation involves pixel-wise distance functions, which are not robust to spatial shifts [15].

Padding (PPP) and utilize the optimal-padding scheme to develop propose a method to capture PPP58

and measure its response with two metrics.59

2.1 Optimal Padding60

The process of capturing an image from the real world can be simplified as the 3D information of61

the environment is first projected onto an infinitely large 2D plane, and then the camera determines62

resolution as well as field-of-view to form an image from such infinitely large and continuous 2D63

signals [16, 17]. Let S∗ = {s∗n}Nn=1 be a collection of such infinitely large and continuous 2D signals,64

and the collection of 2D images captured by cameras at a spatial size (hn, wn) be S′ = {s′n}Nn=1.65

A padding scheme produces a set of algorithmically-padded images Ŝ = {ŝn}Nn=1 by a padding66

function ρ:67

ŝn[i, j] =

{
s′n[i, j] = s∗[i, j] if 0 < i < hn and 0 < j < wn ,

ρ(s′n, i, j) otherwise,
(1)

where i and j are index of a pixel in the spatial dimension. We define a theoretical optimally-padded68

collection S† = {s†n}Nn=1 with an optimal-padding function ρ† by:69

s†n[i, j] =

{
s′n[i, j] = s∗[i, j] if 0 < i < hn and 0 < j < wn ,

ρ†(s′n, i, j) = s∗[i, j] otherwise.
(2)

In practice, such an optimal-padding scheme is difficult to achieve. However, it can be simulated if70

we have access to images beyond the sizes (hn, wn) and artificially create S′.71

2.2 Positional-information Pattern from Padding72

As PPP has not been well defined in the literature, there is no effective metric to detect or quantify it.73

Ideally, PPP should have two properties. First, it is a spatial pattern as the padding pixels at different74

locations contribute differently to the formation of PPP. Its shape enables the network to develop and75

exploit the absolute positional information of each pixel, eventually leading to the unattended and76

undesirable effects in certain tasks [5, 6, 7, 8, 9, 10, 11].77

Second, as it represents the positional information purely contributed by the padding, it is a constant78

term irrelevant to the image contents. Unfortunately, PPP shares space with image features, and79

these two spaces interfere with each other, causing the appearance of PPP extremely obscure in most80

cases (except zeros padding). Figure 1 shows if we visualize features sample-by-sample, there are81

no obvious differences between optimally-padded features (gray-scale surface) and algorithmically-82
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padded features (colored surface). Fortunately, if we assume the interferences between PPP and83

image features to be random, then its expectation over a large set of images will saturate to a constant84

bias and no longer hinder us from capturing PPP.85

Based on these observations, we define PPP as the constant component independent of model inputs,86

and its presence is completely contributed by the existence of a padding scheme ρ. Given Ŝ and a87

model F (ŝ; θ, ρ), which θ is the model parameters and ρ is a padding scheme applied to F . Let the88

model feature extracted at k-th layer be fn,k = Fk(ŝn; θ, ρ), where Fk is the model from the first89

layer to the k-th layer. The PPP at k-th layer (PPPk) can be formulated by:90

PPPk = E
n

[
d
(
Fk(s

†
n; θ, ρ

†) , Fk(ŝn; θ, ρ)
) ]

, (3)

where d(·, ·) can be any distance function, and we use ℓ1 distance in this work.91

Pitfalls: feature misalignment. It is important to note that, some CNN components can cause serious92

feature misalignment while computing PPP and leads to erroneous results. A typical example is93

principal point shift, where the uneven padding in stride-2 convolution causes the centers of features94

slightly drifted, as shown in Figure 2. Since the measurement of PPP requires perfect alignment,95

such a drift should be carefully considered while integrating PPP into new architectures. We further96

discuss the issue along with other pitfalls in Appendix A and provide three detailed examples of97

correcting the principal point shifting.98

2.3 Metrics99

In order to measure the strength of PPP, a proper baseline signal is needed. As discussed above, a100

strong PPP should be distinguishable from the interferences of the model features, so that the model101

can successfully extract the positional information from PPP. Thus, if we consider the model features102

as a background noise signal and PPP as the signal of interest, we can measure the significance of103

PPP using the signal-to-noise ratio (SNR). We define the SNR for PPP at k-th layer as:104

SNR-PPPk = µ

(
E
n

[
|| Fk(s

†
n; θ, ρ

†) − Fk(ŝn; θ, ρ) ||1
] )

/ σ( Fk(ŝn; θ, ρ) ) , (4)

where µ and σ are the mean and standard deviation on the spatial dimensions.105

However, SNR only measures the significance of the signal versus the noise but ignores the location106

of the signal. Given PPP is a spatially varying pattern, we further include Mean Absolute Error107

(MAE) to measure PPP versus the average of the noise map with:108

MAE-PPPk = E
n

[
MAE

(
Fk(s

†
n; θ, ρ

†) , Fk(ŝn; θ, ρ)
) ]

. (5)

2.4 Randn Padding109

Most of the existing padding schemes (e.g., zeros, reflect, replicate, circular) exhibit certain consistent110

patterns that can be easily detected by some designed convolutional kernels. One may argue that the111

nature of easy detectability can be a root cause of encouraging the models to learn to rely on these112

obvious patterns. This motivates us to design an additional sampling-based padding scheme without113

any consistent patterns, namely randn (i.e., random normal) padding, which produces dynamical114

values from a normal distribution while following the local statistics. We first determine the maximal115

and minimal values of a sliding window (which can be easily achieved with max-pooling), use the116

average of them as a proxy mean µp, and use the difference between the mean and the maximal117

value as a proxy standard deviation σp. For each padding location, we sample the padding value118

according to a normal distribution N (µp, σ
2
p) from the nearest sliding window. We include more119

implementation details in Appendix A.120

Aside from creating a pattern-less padding scheme with sampling, the design of randn padding is121

based on several factors. The sampled padding pixels are allowed to occasionally exceed the min/max122

bound of the sliding window. Without breaking the min/max bound can introduce detectable patterns123

in certain extreme cases, such as a gradient-like feature that has its maximal intensity at the top-left124

corner and minimal intensity at the bottom-right corner. We also design the padding scheme to125

follow the local distribution. The padding exhibits a high entropy when the local variation is high,126

while degenerates to value repetition with imperceptible perturbations while padding a flat area. As127
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such, not only do the padding pixels exhibit less pattern, but it also prevents the padding pixels from128

breaking the features in the border region. We later show that a model still deliberately and incredibly129

built up PPP over time even with such a sophisticated padding scheme.130

3 Revisiting Prior Work131

In this section, we first reproduce two experiments from the prior art, which aim to assess positional132

information from paddings. We show several critical design issues in these experiments and discuss133

how these problems affect the drawn conclusions. Finally, we propose two additional experiments to134

quantify the amount of positional information embedded in the paddings.135

3.1 PosENet136

Islam et al. show zeros-padding provides CNN models positional information cues, and propose137

PosENet [1] to quantify the amount of positional information encoded within CNN features. A138

PosENet experiment involves several components: a pretrained CNN model F , a shallow CNN139

Epem (i.e., position encoding module), an image dataset X = {xi}Ni=1 to examine, and a constant140

target pattern y (e.g., 2D Gaussian pattern). PosENet first extracts intermediate features at k-141

th layer with f(i,k) = Fk(xi) using the pretrained CNN, and then optimizes Epem to minimize142

Ei,k[||Epem(f(i,k))−y||2] . Finally, the amount of positional information is quantified by the average143

Spearman’s correlation (SPC) and Mean Absolute Error (MAE) overall Epem(f(i,k)) toward y.144

A critical issue with PosENet is the use of an optimization-based metric. It is sensitive to hyper-145

parameters with large variation. As shown in Table 2, for all the PosENet results, the standard146

deviation over five trials significantly dominates the differences between different types of paddings,147

and thus no definitive conclusions can be drawn. We also observed that PosENet can report NaN148

results in certain setups. Furthermore, PosENet quantifies the amount of positional information by149

the faithfulness of the final reconstruction. However, a better reconstruction does not have a clear150

relationship to measuring the strength and significance of positional information. For instance, the151

VGG architecture with zeros-padding in Table 2, PosENet cannot recognize the positional information152

has been strengthened after training, which can be seen in Figure 4. PosENet falsely assigns a much153

lower SPC to the fully pretrained model. Moreover, for the no-padding entries in Table 2, PosENet154

can still sometimes show responses to no-padding models, demonstrating it is a metric with an155

indefinite bias pending on the memorization ability of Epem.156

Another issue is that the no-padding scheme used in Epem is known to have the foveal effect [13, 14],157

where a model pays less attention to the information on the edge of inputs. Using such a padding158

scheme for detecting positional information from paddings, which is mostly concentrated on the159

edge of the feature maps, is less effective. This is an inevitable dilemma as PosENet aims to identify160

positional information from the padding of the pretrained F , while applying any padding scheme to161

Epem introduces intractable effects between the paddings of the two models.162

3.2 F-Conv163

Kayhan et al. propose a full-padding scheme (F-Conv) [3] and demonstrate it is more translational164

invariant than the alternatives. One of the critical results is on “border handling variants” (Exp 2165

of [3]), which we call it BHV test. The BHV test creates a toy dataset, where each image has a black166

background with a green square and a red square in the foreground. The task is to predict if the red167

square is on the left of the green square (class 1), or vice versa (class 2). In addition, Kayhan et al.168

intentionally adds a location bias such that both squares are located in the upper half of the image for169

class 1, and located in the lower half of the image for class 2. During testing, a “similar test” inherits170

the same bias, while a “dissimilar test” exchanges the bias (i.e., both squares are in the lower half171

of the image for class 1). As a truly translation-invariant CNN model should not be affected by the172

location bias, it should focus on the relation between the red and green squares and perform similarly173

on both tests. Since the experimental results show that F-Conv performs best on the dissimilar test, it174

is concluded that F-Conv is less sensitive to the location bias. The authors also conclude the circular175

padding performs worse due to the behavior of wrapping the pixels to the other side of the image,176

which leads to confusion between two classes.177
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Table 1: Background color as a critical confounding variable in BHV test. We show that using a
grey background similar to Figure 3 leads to discrepant results. The standard deviations are reported
among 10 individual trials. We mark the best performance in green, and the worst two in red.

Padding F-Conv? Black Background Grey Background

Similar (%) Dissimilar (%) Diff (%) Inconsistency (%) Similar (%) Dissimilar (%) Diff (%) Inconsistency (%)

Zeros N 99.83±0.00 3.21± 8.35 −87.68 95.81± 2.07 100.00± 0.00 4.96± 5.93 −95.04 97.85± 4.55
Y 89.24±0.98 89.24± 0.98 0.00 18.02± 8.08 100.00± 0.00 4.77± 6.52 −95.23 96.79± 7.13

Circular N 80.31±3.23 80.31± 3.23 0.00 34.25± 8.32 72.75± 0.96 72.75± 0.96 0.00 26.30± 5.55
Y 99.20±0.23 93.14± 2.88 −6.06 18.48± 3.55 98.26± 0.50 92.40± 4.23 −5.87 28.67± 6.18

Reflect N 100.00±0.00 15.67±12.72 −84.33 91.18±13.19 100.00± 0.00 19.96±13.54 −80.04 90.33±11.95
Y 100.00±0.00 11.70±15.38 −88.30 97.33± 6.16 100.00± 0.00 17.16±12.19 −82.84 98.13± 3.44

Replicate N 100.00±0.00 43.39±11.42 −56.61 75.32± 8.20 100.00± 0.00 33.16± 6.42 −66.83 84.09± 6.47
Y 98.32±0.39 93.65± 1.36 −4.67 32.60± 4.97 97.17± 0.48 94.99± 1.20 −2.18 32.15± 5.11

Randn N 100.00±0.00 10.31±12.56 −89.70 94.88± 5.55 99.97± 0.13 35.47±10.82 −64.50 83.59± 8.48
Y 100.00±0.00 20.80±14.15 −79.20 92.54± 8.37 77.28±16.13 66.70±11.58 −10.59 45.70±20.62

No-pad - 100.00±0.00 3.21± 8.35 −96.79 95.81± 2.07 100.00± 0.00 30.07± 4.06 −69.93 81.30± 2.44

Zeros Padding Zeros Padding

Figure 3: The BHV test trains
a binary classifier to predict the
relative position of the two col-
ored squares. It hypothesizes
if the padding provides no po-
sitional information, the classi-
fier will only focus on the rela-
tive position of the two squares.
(Left) The black background is
a confounding variable. (Right)
Zeros padding no-longer pads
optimum values after changing
the background color.

However, as shown in Figure 3, we find the experimental design178

does not consider a crucial confounding variable: the black back-179

ground has a zero intensity, making zeros padding the optimal180

padding that perfectly follows the background distribution. In Ta-181

ble 1, we show that the dissimilar test is no longer in favor of182

F-Conv zeros after changing the background color to grey. We also183

show that F-Conv replicate and F-Conv circular perform best on184

the dissimilar test, which is different from the original observation.185

Finally, we report an additional inconsistency rate to show that the186

CNN architecture used in the BHV test actually has access to the187

absolute position of the squares. Given a random sample in class188

1, we create a trajectory of samples by simultaneously moving the189

two squares to the bottom of the canvas and recording the CNN-190

model prediction in all intermediate states. We label a trajectory191

to be inconsistent if the prediction of the CNN-model switches192

classes at any step of the trajectory. A CNN model with no access193

to the absolute-position information should have all trajectories194

maintaining consistent predictions, with 0% inconsistency. Table 1195

shows the inconsistent ratio over 228 uniformly sampled trajectories, where all models maintain196

high inconsistency rates, even with a no-padding architecture. These results show that the CNN197

model used in the BHV test is not translation invariant. This can be attributed to that a CNN model198

has a large receptive field covering the whole experiment canvas, therefore capable of gradually199

constructing absolute coordinates for each input pixel. Note that we only show the design of the BHV200

test is not suitable for quantifying the amount of positional information exhibited in a CNN model.201

Such a conclusion does not imply that F-Conv cannot potentially improve the translation-invariant202

property of CNNs.203

4 Experiments and Analysis204

Datasets Since most vision models are trained on tasks for recognizing objects, an image collection205

containing a diverse object appearance is more suitable for the task. We collect a set of 480 satellite206

images at 2,048× 2,048 pixels from Google Map for experiments. All the PPP metrics are measured207

with this image collection. We crop such images depending on the requested input image sizes and208

principal point shifts from each model (see Appendix A for details). We will release the script for209

collecting and composing these large images.210

4.1 Visualizing Position-information Pattern from Padding (PPP)211

We start with visualizing PPP in Figure 4. All the visualizations are conducted at the 4th layer of212

interest as detailed in Appendix A. We compute PPP using Eq. 3 and ℓ1 norm as the distance metric,213
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Table 2: Comparing PosENet and our proposed PPP metrics. The standard deviation is computed
by five different pretrained models for each test. The performance shows the accuracy for the
classification task or weighted F-measure score [18] for the saliency object detection task. Note that
we use 2D Gaussian as PosENet reconstruction pattern, and the PPP metrics are measured at the 4th
layer of interest. Here, (∗) indicates a NaN is reported in any of the trials, and (↑) indicates a higher
value corresponds to stronger positional information or better performance on the task (vice versa for
(↓)). For each group of pretrained models, we label the strongest and weakest positional information
response with red and blue.

Model Padding Pretrained
PosENet PPP (ours)

Performance (↑)
SPC (↑) MAE (↓) SNR-PPP (↑) MAE-PPP (↑)

VGG-19

Zeros × 0.518±0.121 0.184±0.004 0.0665±0.0024 0.0132±0.0006 -
ImageNet 0.142±0.139 0.194±0.006 1.2289±0.0613 0.0176±0.0005 74.0972±0.0870

Circular × 0.001±0.092 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
ImageNet 0.102±0.136 0.197±0.007 1.1488±0.0589 0.0158±0.0006 74.4716±0.0863

Reflect × 0.001±0.091 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
ImageNet 0.116±0.134 0.195±0.006 1.2022±0.0226 0.0158±0.0002 74.0516±0.0621

Replicate × 0.001±0.091 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
ImageNet 0.116±0.132 0.195±0.006 1.2494±0.0258 0.0144±0.0009 73.9964±0.1079

Randn × 0.001±0.093 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
ImageNet 0.115±0.146 0.195±0.006 1.2366±0.0774 0.0182±0.0012 73.7716±0.0758

No-padding × 0.000±0.091 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
ImageNet 0.001±0.220 0.203±0.012 0.0000±0.0000 0.0000±0.0000 62.0396±0.0830

VGG16-SOD

Zeros × 0.682±0.099 0.171±0.008 0.0306±0.0020 0.0068±0.0007 -
DUTS 0.343±0.151 0.186±0.011 0.2429±0.0035 0.0049±0.0001 0.6269±0.0015

Circular × 0.001±0.081 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
DUTS 0.158±0.188 0.196±0.013 0.2677±0.0062 0.0062±0.0001 0.6260±0.0009

Reflect × −0.002±0.080 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
DUTS 0.160±0.223 0.195±0.014 0.1972±0.0024 0.0053±0.0001 0.6243±0.0022

Replicate × −0.002±0.087 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
DUTS 0.075±0.174 0.201±0.010 0.1908±0.0056 0.0043±0.0002 0.6255±0.0013

Randn × 0.000±0.082 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
DUTS 0.004±0.106 0.196±0.001 0.0005±0.0001 0.0001±0.0000 0.2570±0.0022

No-padding × 0.000±0.087 0.197±0.002 0.0000±0.0000 0.0000±0.0000 -
DUTS 0.003±0.252 0.200±0.010 0.0000±0.0000 0.0000±0.0000 0.4759±0.0013

ResNet50

Zeros × 0.096±0.118 0.196±0.003 0.0918±0.0119 0.0052±0.0004 -
ImageNet 0.329±0.201 0.185±0.011 0.8171±0.0173 0.0162±0.0012 75.6856±0.0924

Circular × ∗0.027±0.093
∗0.197±0.003 0.0454±0.0041 0.0032±0.0004 -

ImageNet 0.184±0.201 0.192±0.010 0.7018±0.0320 0.0188±0.0016 76.1432±0.1026

Reflect × ∗0.004±0.094
∗0.198±0.003 0.0291±0.0017 0.0018±0.0001 -

ImageNet 0.293±0.181 0.187±0.009 0.6960±0.0221 0.0150±0.0004 75.5068±0.1213

Replicate × ∗0.002±0.094
∗0.198±0.003 0.0226±0.0013 0.0015±0.0001 -

ImageNet 0.347±0.205 0.184±0.012 0.7461±0.0254 0.0138±0.0003 75.6122±0.0911

Randn × ∗0.006±0.090
∗0.198±0.003 0.0326±0.0016 0.0020±0.0002 -

ImageNet 0.358±0.240 0.181±0.016 0.6648±0.0204 0.0147±0.0007 75.3076±0.1016

EfficientNet

Zeros × 0.360±0.327 0.180±0.026 0.5074±0.0260 0.0398±0.0027 -
ImageNet 0.667±0.111 0.166±0.014 0.7590±0.0208 0.0471±0.0022 61.8652±0.1380

Circular × 0.004±0.192 0.205±0.013 0.3008±0.0883 0.0222±0.0048 -
ImageNet 0.020±0.123 0.203±0.009 0.4326±0.0251 0.0256±0.0017 61.2208±0.2128

Reflect × 0.003±0.175 0.205±0.012 0.2245±0.0639 0.0183±0.0053 -
ImageNet 0.062±0.116 0.201±0.008 0.4667±0.0232 0.0268±0.0014 60.4164±0.2924

Replicate × 0.004±0.183 0.205±0.013 0.2634±0.0748 0.0206±0.0035 -
ImageNet 0.131±0.139 0.197±0.008 0.5257±0.0334 0.0279±0.0007 60.9804±0.2134

Randn × 0.001±0.190 0.202±0.011 0.3606±0.0505 0.0248±0.0031 -
ImageNet 0.324±0.210 0.189±0.012 0.5686±0.0112 0.0209±0.0011 58.6392±0.2739

then average the resulting PPP in the channel dimension to generate a gray-scale image. Since the214

quantities are small and difficult to perceive, we normalize the gray-scale image to [0, 1] range, and215

thus the colors between images are not directly comparable.216

In all scenarios, a noticeable difference is that PPP spreads out after pretraining on ImageNet.217

In Table 2, the PPP-SNR of the VGG19 and ResNet50 also reflects that the response of PPP is218

significantly strengthened after model training. That is, the model training has substantial effects on219

the construction of PPP. Although the formation of padding pattern is suggested to mainly caused by220
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Pretrained VGG19 ResNet50

Zeros Circular Reflect Replicate Randn Zeros Circular Reflect Replicate Randn

×

ImageNet

Figure 4: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples extracted at the 3rd layer-of-interest (Appendix
A). The results show that the pretrained model significantly reinforces PPP compared to randomly
initialized networks. Note that each image is normalized to [0, 1] separately, therefore the colors
between images are not comparable. More visualizations are presented in Appendix B.

VGG19

ResNet50

Figure 5: Chronological PPP. We quantify PPP every 10 epochs and plot its development in four
different layer of depth (the rightmost layer is the one closest to model output). All curves consistently
show a sudden surge at the early stage, and all the later layers are slowly but steadily gaining stronger
PPP until the end of training. The shadow region represents standard deviations among 5 individual
training episodes. The colors represent zeros, circular, reflect, replicate, and randn paddings.

the distributional difference between features and paddings [6], our results show that it only increases221

the response slightly, compared to the considerable PPP-SNR gain through training.222

Another intriguing observation is that, despite some variations in the detailed patterns, the overall223

structure of PPP remains similar. Regardless of padding minimum values with zero-padding (consider224

the features are processed with ReLU activation), randn-padding that can sometimes produce large225

quantities by chance, or the unbalanced initial state of ResNet50 caused by strided convolution (the226

first row of ResNet50 in Figure 4), all models tend to have the maximal PPP response in the corner of227

the features after fully trained. While the underlying mechanism causing such consistent preferences228

remains unknown, such preferences may be an important factor to consider in future model design.229

4.2 Quantifying PPP and Comparing with PosENet230

Table 2 shows the measurements of PPP and PosENet on various architectures and padding schemes.231

We train five models for each setup and measure the standard deviation of these models. Our PPP232

metrics have significantly lower standard deviations compared to PosENet, where the standard233

deviation dominates the differences between padding variants, and thus the quantities from PosENet234

cannot provide sufficient information for any analysis. The main reason that PosENet has such a large235

variation is due to its optimization-based formulation, and thus the final quantities highly depend on236

the convergence of the PosENet training. In fact, we also observe a similar level of standard deviation237

even when the PosENet is measured on the same model for multiple trials. On the other hand, PPP238

metrics are based on a closed-form formulation, and thus the variations are only introduced by the239

differences among the parameters of the pretrained models. Furthermore, PosENet frequently reports240
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positive SPC responses from no-padding models, as shown in its large standard deviation. In contrast,241

PPP has zero response to no-padding models by definition, and therefore is less biased for measuring242

the positional information from padding.243

SNR-PPP and MAE-PPP assess the response of PPP from two different perspectives, the ratio of244

the overall PPP magnitude to the image feature variation, and the position-aware average gain of245

PPP. Despite both measuring the PPP gain and mostly following similar trends, the two metrics can246

sometimes have discrepancies, such as the randn padding case in EfficientNet pretrained on ImageNet247

in Table 2. We note that the two metrics should be both measured and considered altogether.248

Although certain paddings seem to have lower SNR-PPP or MAE-PPP on trained networks, we find249

the differences are not significant when comparing the extremely low SNR-PPP and MAE-PPP from250

the randomly initialized networks. In most cases, the network can effectively construct its PPP, even251

with the highly stochastic randn padding. The only exception seems to be the case of randn padding in252

the salient object detection (SOD) task, where the network fails to achieve a compatible performance253

to other paddings2. The results show that the model training plays an important role in the formation254

of PPP, and perhaps its contribution is much larger than which underlying padding scheme is being255

used. This motivates us to further analyze the PPP formulation during model training.256

4.3 Chronological PPP257

To understand the formulation of PPP through time, we snapshot checkpoints every 10 epochs for all258

training episodes. By measuring the PPP metrics at all the checkpoints, we plot a chronological curve259

and monitor the progress of PPP. We train 5 individual models for each pair of model-padding setup260

and report the standard deviations, which demonstrates the significance of the trend.261

Figure 5 shows all models achieve a significant gain of PPP within the first 10 epochs in all inter-262

mediate layers. Most models continuously increase their PPP as training proceeds, especially in the263

fourth layer of interest, which is the last output from the convolutional layers before the final linear264

projection. Another interesting observation is that our randn padding, which is designed to be less265

easily detectable with built-in stochasticity, indeed shows less PPP built-up at the intermediate stages266

in certain layers. However, the network still adjusts the behavior and ends up forming complete PPPs267

at the fourth layer of interest in all scenarios. All these evidences show that the network builds PPP268

purposely as a favorable representation to assist its learning.269

5 Conclusion and Limitations270

In this paper, we develop a reliable method for measuring PPP and conduct a series of analyses toward271

understanding the formation and properties of PPP. Through a large-scale study, we demonstrate that272

PPP is a representation that the network favorably develops as a part of its learning process, and its273

formation has weak connections to the underlying padding algorithm. We show that reliable PPP274

metrics are important steps for understanding the effects of PPPs in different tasks, and useful for275

measuring the effectiveness of future methods in debiasing PPP.276

However, an unfortunate and inevitable limitation of the PPP metrics is that their measure is biased277

by the model architecture and parameters. Since the PPP metrics are based on the distributional278

differences between the paired model outputs (i.e., optimal padding to algorithmic padding), different279

architecture and layers of depth exhibit different and intractable biases due to different interactions280

between PPP and model parameters. Such a bias makes PPP metrics less useful for evaluating models,281

and therefore cannot be used to study the effect of architectural changes. This limitation is inevitable282

for any (and all existing) metric that attempts to measure PPP using the outputs of a model. We note283

future studies in measuring PPP without model inferences3 will be an important step toward tackling284

and understanding the property of PPP under different architectural choices.285

2We follow PosENet that evaluates PiCANet [19] on the SOD task. PiCANet is initialized by a model
pretrained on ImageNet (with zero padding). The discrepancy in the padding scheme can be the major cause of
failure while training the network on SOD task with randn padding.

3A related analogy of the contradictory problem can be found in neural architecture search literature [20].
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