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ABSTRACT

Song generation focuses on producing controllable high-quality songs based on
various personalized prompts. However, existing methods struggle to generate
high-quality vocals and accompaniments with effective style control and proper
alignment. Additionally, they fall short in supporting various personalized tasks
based on diverse prompts. To address these challenges, we introduce MultiBand,
the first multi-task song generation model for synthesizing high-quality, aligned
songs with extensive control based on diverse personalized prompts. MultiBand
comprises these primary models: 1) VocalBand, a decoupled model, leverages the
flow-matching method for singing styles, pitches, and mel-spectrograms generation,
allowing fast and high-quality vocal generation with high-level control. 2) Accomp-
Band, a flow-based transformer model, incorporates the Aligned Vocal Encoder,
using contrastive learning for alignment, and Band-MOE, selecting suitable experts
for enhanced quality and control. This model allows for generating controllable,
high-quality accompaniments perfectly aligned with vocals. 3) Two generation
models, LyricBand for lyrics and MelodyBand for melodies, contribute to the com-
prehensive multi-task song generation system, allowing for extensive control based
on multiple personalized prompts. Experimental results demonstrate that Multi-
Band performs better over baseline models across multiple tasks using objective
and subjective metrics. Audio samples are available at https://multiband.github.io.

1 INTRODUCTION

Song generation focuses on producing complete musical pieces based on text prompts (about lyrics,
melodies, singing styles, and music styles), along with optional audio prompts. Unlike singing voice
synthesis (SVS) (Shi et al., 2022; Cho et al., 2022; Zhang et al., 2024), which focuses on the singing
component, or music generation (Dong et al., 2018; Agostinelli et al., 2023; Huang et al., 2023; Copet
et al., 2024) for only instrumental tracks, song generation involves synthesizing both high-quality
vocals and accompaniments with effective style control and proper alignment (Li et al., 2024a).

Audio Prompts (Optional)

MultiBand

Song

Text Prompts: The task is to generate a 

song…(Optional Below)

The Lyrics should describe  a scene of peaceful

anticipation, where time slows down…

Or

The Full Lyrics: “Hold your horses now / We sleep

until the sun goes down…”

The Melody should be in C major, with a high pitch

and a fast, uplifting pace…

Or

Music Scores:

The Singing should follow a pop style and happy

emotion, with singing techniques like falsetto and

vibrato for better expression…

The Music should be a energetic and aggressive metal

song, featuring punchy kick and snare hits, shimmering

cymbals, an aggressive electric guitar melody…

Vocal Prompt:

For timbre and singing style 

transfer or vocal-to-song

Accompaniment Prompt:

For music style transfer or 

accompaniment-to-song

Figure 1: Overview of MultiBand, which generates complete songs like a versatile band. The dashed
lines indicate optional inputs. At a minimum, users can just input ”The task is to generate a song.”
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Despite significant advancements in SVS and music domains, generating high-quality, controllable,
aligned songs remains challenging. Song generation aims to enable controllable musical experiences,
with broad applications ranging from entertainment videos to professional composition. As shown in
Figure 1, song generation models can leverage different prompts for multiple tasks. Text prompts
allow for control over tasks, lyrics, melody, singing styles (like singing methods, emotion, and
techniques), and music styles (like genre, tone, and instrumentation), while audio prompts enable
users to input their voice or preferred music for customization. However, the few existing song
generation models (Zhiqing et al., 2024), which typically generate vocals and accompaniments using
transformer models separately, struggle to produce high-fidelity songs. These models also lack
mechanisms to align vocals with accompaniments properly and fail to achieve effective control.

Currently, song generation encounters three major challenges:

• Limitations in synthesizing high-quality vocals with effective style control. For singing
style control, StyleSinger (Zhang et al., 2024) conducts singing style transfer, while
PromptSinger (Wang et al., 2024) achieves singer identity control. However, existing
models have yet to generate pleasing vocals with high-level style control (like singing
methods, emotion, and techniques) by text prompts, and customization with audio prompts.

• Difficulties in generating controllable, high-fidelity, aligned accompaniments. Existing
music generation models (Copet et al., 2024) are limited to low-fidelity outputs with little
control. Current text-to-song models (Zhiqing et al., 2024) also lack mechanisms for
effectively aligning vocals with accompaniments. Generating controllable (like genre, tone,
and instrumentation), aligned, high-quality accompaniments remains challenging.

• Challenges in multi-task song generation based on various personalized prompts. The
limited existing song generation methods (Li et al., 2024a) primarily focus on the text-to-
song task and do not support a wide range of personalized song generation tasks based on
diverse text and audio prompts. This reliance on constrained inputs leads to a suboptimal user
experience and restricts the models’ ability to customize songs for individual preferences.

To address these challenges, we introduce MultiBand, the first multi-task song generation model
for synthesizing high-quality, aligned songs with extensive control based on diverse personalized
prompts. Following the human perception that accompaniment complements vocal melody with
complex harmonic and rhythmic structure (Zhiqing et al., 2024), we generate them separately. To
achieve fast and high-quality vocal generation with high-level control, we design a decoupled model
VocalBand, predicting singing styles, pitches, and mel-spectrograms based on the flow-matching
model. Based on the complex nature of music, we introduce a flow-based transformer model
AccompBand to generate high-fidelity, controllable, aligned accompaniments. For proper alignment,
we propose the Aligned Vocal Encoder using contrastive learning, encoding vocals to carry style,
rhythm, and melody closely related to accompaniment. We also design Band-MOE (Mixture of
Experts), selecting suitable experts for enhanced quality and control, considering the noise level, text
prompts, and vocal embedding. Additionally, we add two generation models, LyricBand for lyrics
and MelodyBand for melodies, contributing to the comprehensive multi-task song generation system.

Our experiments on a combination of open-source and web-crawled bilingual song datasets show
MultiBand can generate high-quality songs based on various prompts, outperforming baseline models
in multiple tasks, including melody and lyric generation, vocal generation, accompaniment and song
generation, and other related tasks. The main contributions of our work are summarized as follows:

• We introduce MultiBand, the first multi-task song generation model for synthesizing high-
quality, aligned songs with extensive control based on diverse personalized prompts.

• We design a decoupled model VocalBand, which leverages the flow-matching model to
generate singing styles, pitches, and mel-spectrograms, enabling fast and high-quality vocal
synthesis with high-level personalized control through input text and audio prompts.

• We propose a flow-based transformer model AccompBand to generate high-quality, control-
lable, aligned accompaniments, with the Aligned Vocal Encoder, using contrastive learning
for alignment, and Band-MOE, selecting suitable experts for enhanced quality and control.

• Experimental results demonstrate that MultiBand enables high-level personalized control
across multiple bilingual song generation tasks based on various text and audio prompts,
achieving superior objective and subjective evaluations compared to baseline models.
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2 BACKGROUND

Singing Voice Synthesis Singing Voice Synthesis (SVS) rapidly advances as a field for generating
high-quality singing voices from given lyrics and music scores. Choi & Nam (2022) presents a
melody-unsupervised model that only requires pairs of audio and lyrics, eliminating the need for
temporal alignment. Wesinger (Zhang et al., 2022c) proposes a Transformer-alike acoustic model.
VISinger 2 (Zhang et al., 2022b) employs digital signal processing techniques to enhance synthesis
fidelity, while Kim et al. (2024) uses adversarial multi-task learning to disentangle timbre and pitch,
improving the naturalness of generated voices. Further advancements include MuSE-SVS (Kim
et al., 2023), which introduces a multi-singer emotional singing voice synthesizer, and StyleSinger
(Zhang et al., 2024), which facilitates style transfer and zero-shot synthesis by using audio prompts to
extract timbre and styles via a residual quantization method. Additionally, PromptSinger (Wang et al.,
2024) attempts to control speaker identity in singing voices based on text descriptions. On the dataset
front, M4Singer (Zhang et al., 2022a) and OpenSinger (Huang et al., 2021) contribute by releasing
multi-singer datasets. Despite these advancements, these approaches can not generate accompaniment
aligned with vocals. Recently, Melodist (Zhiqing et al., 2024) has introduced a text-to-song model that
sequentially generates vocal and accompaniment codec tokens using two auto-regressive transformers.
However, the challenge of achieving highly controllable and personalized pleasing vocals persists.

Music Generation Music generation encompasses multiple tasks, like symbolic music generation
and accompaniment creation, based on text descriptions or audio prompts. MuseGAN (Dong et al.,
2018) employs a GAN-based approach to generate symbolic music, while PopMAG (Ren et al., 2020a)
generates many instrumental tracks simultaneously. SongMASS (Sheng et al., 2021) uses transformer
models to generate lyrics or melodies conditioned on each other. MusicLM (Agostinelli et al., 2023)
leverages joint textual-music representations from MuLan (Huang et al., 2022a) to generate semantic
and acoustic tokens based on transformer decoders. MusicGen (Copet et al., 2024) generates music
codec tokens within a single transformer decoder with codebook interleaving patterns. MusicLDM
(Chen et al., 2024) incorporates beat-tracking information and employs data augmentation through
latent mixups to address potential plagiarism concerns in music generation. Additionally, SingSong
(Donahue et al., 2023) presents a model capable of generating background music to complement
provided vocals. Recently, MelodyLM (Li et al., 2024a) has employed transformer models for melody
and vocal generation, along with a latent diffusion model to create accompaniments. Nevertheless,
challenges remain in improving the controllability and quality of music generation. Existing methods
also lack the necessary mechanisms for precisely aligning vocals and accompaniments, and they do
not support multi-task song generation based on various personalized text and audio prompts.

3 METHOD

This section introduces MultiBand. We design two distinct models, VocalBand for vocals and Ac-
compBand for accompaniments, tailored to their unique characteristics. Additionally, we incorporate
LyricBand for lyrics and MelodyBand for melodies, composing a multi-task song generation system.

3.1 MULTI-TASK SONG GENERATION

As shown in Figure 2 (a), MultiBand handles multi-task song generation based on text and audio
prompts. We employ a text encoder to generate text tokens zp. Without lyrics or music scores,
LyricBand and MelodyBand predict phonemes p and notes n (pitch and duration) as target contents.
Next, in Figure 2 (b), to achieve fast and high-quality vocal generation with granular and personalized
control, we introduce VocalBand, which decouples the content zc, timbre zt, and style zs. Through the
Flow-based Pitch Predictor, Mel Decoder, and pre-trained vocoder, the target vocal yv is synthesized.
Then, in Figure 2 (c), for the complex nature of accompaniment, we design AccompBand to achieve
superior quality, control, and alignment. AccompBand uses Aligned Vocal and Accomp Encoders,
pre-trained through contrastive learning, to extract aligned embeddings zv from yv and x from ground
truth (GT) accompaniment ŷa during training. zv and noise-injected xt are processed by multiple
Band Transformer Blocks with Band-MOE (Mixture of Experts), which selects suitable experts based
on zv , zp, and time step t for enhanced quality and control. During inference, the ordinary differential
equation (ODE) solver, Aligned Accomp Decoder, and vocoder generate the target accompaniment
ya from input zv and Gaussian noise ϵ. Finally, yv and ya are combined to the final target song y.
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(a) MultiBand
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Figure 2: The overall architecture of MultiBand. Vocal and accompaniment are generated separately
by the VocalBand and AccompBand. Dashed lines represent optional processes, while LR stands for
length regulator. Modules marked with a snowflake icon are frozen during the training phase.

3.2 VOCALBAND

Decomposition As shown in Figure 2(b), for more personalized and fine-grained control, we
disentangle target vocal yv into distinct representations: content zc, style zs (e.g., singing methods,
emotion, techniques, pronunciation, articulation skills), and timbre zt. For zc, phonemes p and notes
n (note pitch and duration) are encoded by a phoneme encoder and a note encoder. Given a vocal
prompt ỹv, the timbre and personalized styles (like pronunciation and articulation skills) should
remain consistent. We pass ỹv through a timbre encoder to obtain z̃t, while zt = z̃t. Next, the residual
style encoder employs a Residual Quantization model (Lee et al., 2022a) to extract phoneme-level
prompt style z̃s. This serves as an information bottleneck to filter out non-style information (Zhang
et al., 2024), ensuring effective decomposition. The Flow-based Style Predictor uses zc, zt, z̃s, and
text tokens zp to predict zs, learning both personalized styles of z̃s and style control information in
zp (like singing methods, emotions, techniques). For more details, please refer to Appendix C.2.

Flow-based Style Predictor Singing styles typically exhibit continuous and complex dynamics,
involving intricate variations. The flow-matching model (Liu et al., 2022b) is suitable for generating
styles with finer-grained control by modeling styles as a smooth transformation, effectively balancing
multiple control inputs, enabling a fast and stable generation of natural and consistent styles.

As shown in Figure 3 (a), we design the Flow-based Style Predictor using content zc, timbre zt,
prompt style z̃s, and text tokens zp to predict the target style zs. With input zc and zt, we employ a
style alignment model with the Scaled Dot-Product Attention mechanism (Vaswani et al., 2017) to
align style control information from zp (e.g., singing methods, emotions, techniques) with contents.
The fused condition c is then fed into an ODE solver, which transforms Gaussian noise ϵ into zs
along a probability path pt(zst). We concatenate z̃s with ϵ to allow zs to learn personalized styles
(e.g., pronunciation, articulation skills). zst is obtained by linear interpolation at time t between ϵ
and zs, which is extracted from the GT vocal by the residual style encoder, thus the target vector
field u(zst, t) = zs − ϵ. The learned vector field vt(zst, t|c; θ), predicted by a vector field estimator
at each time t, ensures smooth interpolation between the initial noise and output zs, guided by the
flow-matching objective, which minimizes the distance between the learned and true vector fields:

Lstyle = Et,pt(zst) ∥vt(zst, t|c; θ)− (zs − ϵ)∥2 . (1)

where pt(zst) represents the distribution of zst at time t. This method ensures the fast and controlled
generation of phoneme-level target style zs, learning both personalized styles consistent with z̃s and
aligned style control information from zp. For more details, please refer to Appendix A and C.6.

Flow-based Pitch Predictor and Mel Decoder Traditional pitch predictors and mel decoders
struggle to capture the dynamic and complex variations in singing voices. To overcome these, we
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Figure 3: The architecture of four major components of VocalBand and AccompBand. Dashed lines
represent optional processes. C and U represent concatenation and upsampling operations.

propose the Flow-based Pitch Predictor and Mel Decoder, which use content zc, timbre zt, and style
zs to quickly and robustly generate high-quality F0 and mel-spectrograms. As shown in Figure 3(b),
the Flow-based Mel Decoder employs a flow-matching architecture (Liu et al., 2022b), where the
vector field estimator and ODE solver generate the target mel-spectrogram from Gaussian noise ϵ.
The Flow-based Pitch Predictor follows a similar flow-matching procedure. Our pitch loss Lpitch and
mel loss Lmel are analogous to Lstyle in Equation 1. For more details, please refer to Appendix C.7.

3.3 ACCOMPBAND

Aligned Vocal and Accomp Encoders The style, rhythm, and melody of a song are complex and
variable, making the alignment between vocal and accompaniment challenging in the song generation
task. As shown in Figure 3 (c), given a vocal-accompaniment pair (ŷv, ŷa), we design the Aligned
Vocal and Accomp Encoders to extract aligned embeddings (zv, x). To reconstruct high-quality
accompaniment, we introduce the Aligned Accomp Decoder. All encoders and decoders are based
on the VAE model (Kingma & Welling, 2013). For better alignment, we employ the contrastive
objective (Radford et al., 2021) and define two types: stylistic contrast Lsty and temporal contrast
Ltem. For Lsty , we maximize the similarity of pairs from the same song and minimize for different
songs. It encourages learning stylistic alignment across different songs. In specific, we encode pairs
from different songs, B = {(xi, ziv)}Ni=1, where N is the number of songs. We define Lsty as:

Lsty = − 1

2N

N∑
i=1

(
log

exp(sim(xi, ziv)/τ)∑N
j=1 exp(sim(xi, zjv)/τ)

+ log
exp(sim(xi, ziv)/τ)∑N
j=1 exp(sim(xj , ziv)/τ)

)
, (2)

where sim(·) denotes cosine similarity. For Ltem, we encode pairs from different time segments
within the same song. The objective is to maximize the similarity of pairs from the same time segment
and minimize for different time segments. We define a temporal contrast objective Ltem, similar
to the stylistic contrast Lsty in Equation 2. For training the Aligned Accompaniment Decoder, we
use L2 reconstruction loss Lrecon and employ a GAN discriminator with LSGAN-styled adversarial
loss Ladv (Mao et al., 2017) for better reconstruction. After training, we can encode an audio-video
pair (ŷv, ŷa) into a highly aligned embedding pair (zv, x), with the zv containing style, rhythm, and
melody closely related to accompaniment. We pre-train these encoders and decoders before training
AccompBand, facilitating subsequent generation. For more details, please refer to Appendix D.2.

Band-MOE Accompaniment generation is highly complex due to the intricate interplay of various
instruments and alignment with vocals, especially for high-quality and long-sequence generation.
Flow matching enables smooth transformations, leading to stable and quick generation, while trans-
former models effectively capture intricate long-range dependencies, making flow-based transformers
suitable for this task. We integrate the Aligned Vocal Encoder’s output zv with the noisy input xt,
utilizing the self-attention mechanism of the transformer for alignment. Based on Flag-Dit (Gao et al.,
2024), we design and stack multiple Band Transformer Blocks as the vector field estimator.
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For enhanced music quality and control, we propose Band-MOE (Mixture of Experts). As shown
in Figure 3 (d), Band-MOE consists of three expert groups: Aligned MOE, Controlled MOE, and
Acoustic MOE, each containing multiple experts. Aligned MOE conditions on zv , adjusting inputs to
match vocal features like loudness and frequency, selecting suitable experts like one specialized in
large loudness and alto range. Controlled MOE uses aligned styles in text prompts to select experts
for fine-grained style control, such as one for aggressive drums with metal guitar tones. Given the
varying behavior of the transformer at different noise levels (Feng et al., 2023), we design a global
router that adjusts the weighting of outputs from Aligned MOE and Controlled MOE: 1) at early
time steps (near 0), where hidden representation h is highly noisy, the network prioritizes matching
with vocal for coherent reconstruction; 2) at later time steps (near 1), where h has been largely
reconstructed, the network focuses more on refining stylistic details, relying heavily on text prompts.

Finally, mel-spectrogram patterns exhibit variation across acoustic frequencies (Lee et al., 2022b). In
music, high-frequency components often include the harmonics and overtones of instruments like
strings and flutes. At the same time, low-frequency content typically encompasses basslines and
kick drums providing rhythm and depth. Since the Aligned Vocal and Accomp Encoders employ 1D
convolutions, the latent should retain the frequency distribution. Therefore, we design Acoustic MOE,
selecting experts by different acoustic frequency dimensions for better quality. All routing strategies
are based on the dense-to-sparse Gumbel-Softmax (Nie et al., 2021), allowing dynamic and efficient
expert selection. For more model details and MOE algorithm, please refer to Appendix D.3 and D.4.

Classifier-free Guidance To further control styles of the generated accompaniment based on
input text prompts, we implement the classifier-free guidance (CFG) strategy. During AccompBand
training, we randomly replace input text tokens zp with encoded empty strings ∅ at a probability of
0.2. During inference, we modify the output vector field of the Band Transformer blocks as follows:

vcfg(x, t|zp; θ) = γvt(x, t|zp; θ) + (1− γ)vt(x, t|∅; θ), (3)
where γ is the classifier free guidance scale trading off creativity and controllability. When γ = 1,
vcfg is the same as the original vt(x, t|zp; θ). For more details, please refer to Appendix D.5.

3.4 LYRIC AND MELODY GENERATION

LyricBand To enable more personalized song generation tasks, we introduce LyricBand, a system
designed to generate complete song lyrics based on more customizable text prompts. Users can design
the theme, emotion, and other parameters to generate fully personalized lyrics. We leverage QLoRA
(Dettmers et al., 2024) for efficient fine-tuning of a well-performing open-source bilingual large
language model Qwen-7B (Bai et al., 2023). By utilizing 4-bit quantization and low-rank adapters,
QLoRA enables LyricBand to adapt effectively to lyric generation, enabling high-level customization
and creativity across various input text prompts. For more details, please refer to Appendix E.1.

MelodyBand Previous singing voice and song generation models often require users to provide
music scores to achieve stable melodies (Zhiqing et al., 2024), lacking personalized customization
of the melody. Inspired by symbolic music models (Dong et al., 2018), we propose MelodyBand,
which generates musical notes based on text prompts, lyrics, and vocal prompts. We employ a non-
autoregressive transformer model to efficiently generate note pitches and durations simultaneously.
After encoding phonemes and timbre, MelodyBand achieves fine-grained melody control by injecting
text tokens through cross-attention mechanisms. We train MelodyBand with the cross-entropy loss
for note pitches and an L2 loss for note durations. For more details, please refer to Appendix E.2.

3.5 TRAINING AND INFERENCE

The VocalBand, AccompBand, LyricBand, and MelodyBand are trained separately, and the detailed
training details are provided in Appendix B.2. For inference, our model can accept various prompts
for multiple tasks. Without full lyrics or music scores as input, LyricBand and MelodyBand generate
phonemes p and notes n as target contents. For song generation or singing style transfer tasks,
VocalBand generates the target vocal yv , as well as AccompBand generates the target accompaniment
ya from yv and Gaussian noise ϵ. During music style transfer, AccompBand uses noisy prompt
accompaniment ỹa instead of ϵ as input. In the vocal-to-song task, VocalBand is not used, whereas
in the accompaniment-to-song task, notes n are extracted from ground-truth accompaniment ŷa to
guide VocalBand for vocal generation. More inference details can be found in Appendix B.3.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We train our model using a combination of bilingual web-crawled and open-source
song datasets. Since there are no publicly available annotated song datasets including vocals and
accompaniments, we collect 20k Chinese and English songs from well-known music websites. To
expand data, we also incorporate open-source singing datasets including OpenCpop (Wang et al.,
2022) (5 hours in Chinese), M4Singer (Zhang et al., 2022a) (30 hours in Chinese), OpenSinger
(Huang et al., 2021) (83 hours in Chinese), and PopBuTFy (Liu et al., 2022a) (10 hours in English).
After processing and cleaning, we have about 1,000 hours of song data and 1,100 hours of vocal data.
We also use a filtered subset of LP-MusicCaps-MSD (Doh et al., 2023), resulting in about 1,200
hours of accompaniment data. For zero-shot evaluation, we leave out 500 out-of-domain bilingual
samples with unseen singers as the test set for each task. For more details, please refer to Appendix F.

Implementation Details We derive mel-spectrograms from raw waveforms with a 48kHz sample
rate, 1024 window size, 320 hop size, and 80 mel bins. We use 4 layers of Band Transformer Blocks.
The flow-matching time step is 100 for VocalBand and 1000 for AccompBand during training, while
25 during inference with the Euler ODE solver. For more details, please refer to Appendix B.1.

Evaluation Metrics We conduct both subjective and objective evaluations on generated samples.
For lyric generation, we use overall quality (OVL) and relevance to the prompt (REL) for subjective
evaluation. In melody generation, multiple objective metrics are employed for testing controllability.
We use the Krumhansl-Schmuckler algorithm to predict the potential key of the generated notes and
report the average key accuracy KA. We compute the average absolute difference of average pitches
(APD) and temporal duration (TD, in seconds). Moreover, we employ pitch and duration distribution
similarity (PD and DD). Melody distance (MD) is also computed using dynamic time warping.

For vocal generation, we conduct MOS (Mean Opinion Score) as the subjective evaluation. We use
MOS-Q for synthesized quality and MOS-C for controllability based on text prompts. We also use
F0 Frame Error (FFE) as the objective metric. For singing style transfer, we also employ MOS-S and
Cosine Similarity (Cos) to assess singer similarity in timbre and personalized styles of vocal prompts.

For accompaniment and song generation, we ask raters to evaluate the audio samples in terms of
overall quality (OVL), relevance to the prompt (REL), and alignment with the vocal (ALI). For
objective evaluation, we calculate Frechet Audio Distance (FAD), Kullback–Leibler Divergence
(KLD), and the CLAP score (CLAP). Please refer to Appendix G for more details about evaluation.

Baseline Models For lyric generation, we use the original Qwen-7B (Bai et al., 2023) as the
baseline model. For melody generation, we compare with SongMASS (Sheng et al., 2021) and MIDI
part of MelodyLM (Li et al., 2024a). For vocal generation, we compare against VISinger2 (Zhang
et al., 2022b), a traditional high-fidelity SVS model, StyleSinger (Zhang et al., 2024), the current
best zero-shot SVS model with style transfer, and vocal parts of Melodist (Zhiqing et al., 2024)
and MelodyLM. For accompaniment generation, we compare with MusicGen (Copet et al., 2024),
LuminaT2Music (Gao et al., 2024), and the accompaniment parts of Melodist and MelodyLM. For
closed-source models Melodist and MelodyLM, we report objective metrics in their papers and use
their demo pages for subjective evaluation. For other models, we employ their open-source codes.

4.2 LYRIC AND MELODY GENERATION

Table 1: Results of lyric generation.

Methods OVL↑ REL↑
GT 92.31±1.29 84.07±1.63

Qwen-7B 74.35±1.37 80.66±0.92
LyricBand 79.68±1.05 82.01±1.13

Lyric Generation We aim to build a comprehensive
multi-task song generation system based on more person-
alized text prompts. Given the absence of models specif-
ically designed for generating bilingual lyrics based on
text prompts, we fine-tune the well-performing, open-
source bilingual language model Qwen-7B on lyrics of
our datasets using QLoRA to enhance its lyric gener-
ation capabilities. We experiment with different text
prompts covering aspects such as theme, emotion, genre,
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Table 2: Results of melody generation.

Methods KA(%)↑ APD↓ TD↓ PD(%)↑ DD(%)↑ MD ↓
SongMASS 58.9 3.78 2.93 55.4 68.1 3.41
MelodyLM (w/o prompt) 54.3 3.61 5.41 53.9 26.4 4.32
MelodyLM 76.6 2.05 2.29 62.8 40.8 3.62

MelodyBand (w/o all prompts) 50.8 2.06 2.49 47.1 60.2 3.39
MelodyBand (w/o text prompt) 53.1 1.98 1.73 51.1 60.3 3.25
MelodyBand (w/o audio prompt) 64.6 1.90 1.73 65.4 67.7 3.34
MelodyBand 72.7 1.74 1.65 65.8 70.5 3.12

Table 3: Results of vocal generation and singing style transfer.

Methods Vocal Generation Singing Style Transfer
MOS-Q ↑ MOS-C ↑ FFE ↓ MOS-Q ↑ MOS-C ↑ MOS-S ↑ Cos ↑

GT 4.34 ± 0.09 - - 4.35 ± 0.06 - - -

Melodist 3.83±0.09 - 0.12 - - - -
MelodyLM 3.88±0.10 - 0.08 3.76±0.12 - 3.81±0.12 -
VISinger2 3.62±0.07 3.63±0.09 0.16 3.55±0.11 3.57±0.05 3.70±0.08 0.82
StyleSinger 3.90±0.08 3.96±0.05 0.08 3.87±0.06 3.86±0.09 4.05±0.05 0.89

VocalBand 4.04±0.08 4.02±0.07 0.07 3.96±0.10 3.95±0.06 4.12±0.04 0.90

style, and specific keywords to generate lyrics. Then, we conduct subjective evaluations for the
quality of lyrics and relevance to prompts. As shown in Table 1, our fine-tuned LyricBand model
outperforms the original Qwen-7B model in overall quality and relevance to text prompts. This
highlights the effectiveness of our LyricBand in handling specific downstream tasks more proficiently.

Melody Generation For MelodyLM, since the melody part is closed-sourced, we directly use
the objective metrics reported in the paper. Meanwhile, following MelodyLM, we add versions of
MelodyBand without text or audio prompts as baseline models. As shown in Table 2, MelodyBand
outperforms SongMASS across all metrics and performs better than MelodyLM in metrics except KA.
The inclusion of text and audio prompts significantly improves the controllability, while removing
the prompts allows for more creative freedom. Since we use a non-autoregressive transformer
architecture, the generation speed is much faster than the autoregressive generation of the multi-scale
transformer architecture used by MelodyLM. Therefore, although MelodyLM has a slightly higher
KA, our architecture is more suitable for our comprehensive multi-task song generation system.

4.3 VOCAL GENERATION

Vocal Generation The same test set with unseen singers is used for VISinger2 and StyleSinger in
zero-shot vocal generation. Additionally, to enable style control (like singing method, emotion, and
techniques), we incorporate our text encoder and style alignment models into these systems to capture
style control information aligned with contents. We provide timbre embedding (Wan et al., 2018) to
these models; for VocalBand, we leverage vocal prompts only providing timbre for comparison. For
the vocal parts of Melodist and MelodyLM, we report the objective metrics in their papers and use
their demos for subjective evaluation. Notably, Melodist uses known singer IDs, making it unfair
for the zero-shot comparison. Additionally, neither Melodist nor MelodyLM control singing styles,
therefore MOS-C is not provided. As shown in Table 3, VocalBand outperforms other models in
both quality (MOS-Q, FFE) and controllability (MOS-C). This demonstrates the effectiveness of the
Flow-based Style Predictor for style control and the high quality provided by the Flow-based Pitch
Predictor and Mel Decoder. For more detailed and visualized results, please refer to Appendix H.1.

Singing Style Transfer We use vocal segments different from the target but by the same unseen
singer in the test set as vocal prompts, providing timbre and personalized styles (e.g., pronunciation
and articulation skills) to transfer. Baseline models are configured in the same way as in the vocal
generation task, except Melodist since it does not conduct zero-shot generation. As shown in Table
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Table 4: Results of accompaniment generation.

Methods FAD ↓ KLD ↓ CLAP ↑ OVL ↑ REL ↑ ALI ↑
MusicGen 3.91 1.38 0.31 82.26±0.92 84.32±1.86 -
LuminaT2Music 3.31 1.34 0.35 85.98±1.13 86.47±1.38 -
Melodist 3.80 1.34 0.39 84.64±0.71 85.97±1.51 74.86±1.13
MelodyLM 3.42 1.35 0.35 85.73±1.82 86.44±0.90 75.41±1.34

AccompBand 2.92 1.22 0.56 88.65±1.45 89.31±1.13 80.72±1.49

Table 5: Results of song generation. Content includes lyrics and music scores.

Methods FAD ↓ KLD ↓ CLAP ↑ OVL ↑ REL ↑ ALI ↑
Melodist 3.81 1.34 0.39 84.12±1.54 85.97±1.51 74.86±1.13
MelodyLM 3.42 1.35 0.35 85.23±1.62 86.44±0.90 75.41±1.34

MultiBand (w/o lyrics) 3.35 1.30 0.49 86.82±0.93 86.03±1.04 77.06±1.28
MultiBand (w/o scores) 3.39 1.31 0.46 85.18±0.71 85.04±1.25 75.83±1.67
MultiBand (w/o contents) 3.43 1.34 0.40 84.19±1.18 84.71±1.91 75.41±1.53
MultiBand (w/o prompts) 3.58 1.36 - 83.37±1.23 - 74.94±1.69
MultiBand 3.03 1.26 0.55 87.66±1.34 87.95±0.79 80.72±1.49

3, VocalBand outperforms baseline models in quality (MOS-Q), similarity (MOS-S and Cos), and
controllability (MOS-C). This demonstrates that, when given a vocal prompt, VocalBand not only
achieves style control based on text prompts but also transfers timbre and personalized styles from the
vocal prompt. This highlights the excellent performance of the Flow-based Style Predictor for style
control and style transfer. For more detailed and visualized results, please refer to Appendix H.2.

4.4 ACCOMPANIMENT AND SONG GENERATION

Accompaniment Generation We use the same accompaniment dataset to train MusicGen and
LuminaT2Music, and since these models do not use vocals as a condition to generate music, we only
compare them in terms of quality and controllability. For the accompaniment parts of MelodyLM
and Melodist, we report the objective metrics in their papers and use their demo pages for subjective
evaluation. We randomly choose text prompts with various styles (e.g., genre, tone, and instrumenta-
tion) for subjective evaluation. As reported in Table 4, AccompBand outperforms baseline models in
both quality (FAD, KLD, OVL) and controllability (CLAP, REL). This highlights the improvements
made by Controlled MOE in style control through text prompts, resulting in a lower REL. It also
demonstrates that the Acoustic MOE is effective at modeling features with complex acoustic channels
of music, as reflected in the lower FAD. The highest ALI score further indicates that the Aligned
Vocal and Accomp Encoders, along with Aligned MOE significantly enhance vocal alignment.

Song Generation For an ultimate evaluation, we remix the generated vocals by VocalBand and
accompaniments by AccompBand. For MelodyLM and Melodist, we still use the objective metrics
provided in their papers and subjectively evaluate the demos available on their demo pages. We test
the multi-task capabilities of AccompBand under different input conditions: incorporating LyricBand
when full lyrics are not provided, adding MelodyBand when music scores are missing, using both
LyricBand and MelodyBand when contents (both lyrics and music scores) are not provided, testing
the case with no prompts excluding the task, and finally evaluating the scenario where all text prompts
are provided. Notably, since MelodyLM and Melodist do not use text prompts to control singing
styles, their REL score only considers accompaniment controllability. In contrast, for our model, we
evaluate controllability for lyrics, melody, singing styles, and music styles based on text prompts.

The results are listed in Table 5, where MultiBand demonstrates the highest perceptual quality (FAD,
KLD, OVL), the best adherence to text prompts (CLAP, REL), and the most effective alignment
between vocals and accompaniments (ALI). This demonstrates the quality and controllability of
VocalBand, as well as the quality, controllability, and excellent vocal alignment of AccompBand.
When some elements in text prompts are removed, MultiBand can strike an impressive balance
between creativity and stability. For experiments about more tasks, please refer to Appendix H.
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Table 6: Results of ablation study on AccompBand.

Methods FAD ↓ KLD ↓ CLAP ↑ OVL ↑ REL ↑ ALI ↑
AccompBand 2.92 1.22 0.56 88.65±1.45 89.31±1.13 80.72±1.49

w/o Aligned Encoder 3.11 1.25 0.55 88.12±1.36 89.07±1.12 76.33±1.09
w/o Band-MOE 3.27 1.33 0.41 86.03±1.27 87.58±0.82 77.53±1.48
w/o Aligned MOE 3.16 1.26 0.55 87.24±1.17 88.54±0.69 77.92±1.38
w/o Controlled MOE 3.08 1.24 0.43 88.42±1.79 87.96±1.48 79.39±1.59
w/o Acoustic MOE 3.25 1.31 0.41 86.43±1.52 87.65±1.01 79.14±1.22

4.5 ABLATION STUDY

Table 7: Ablation Results of VocalBand.

Methods MOS-Q↑ MOS-C↑ FEE↓
VocalBand 4.04±0.08 4.02±0.07 0.07

w/o styles 3.87±0.04 - 0.09
w/o Pirch Predictor 3.79±0.06 3.99±0.09 0.09
w/o Mel Decoder 3.68±0.08 3.92±0.07 0.13

Ablation Study on VocalBand We con-
duct tests on key modules of VocalBand.
To compare quality, we remove the style
information from the Flow-based Style
Predictor, and replace the Flow-based
Pitch Predictor and Mel Decoder with sim-
pler models from FastSpeech2 (Ren et al.,
2020b) for comparison. As shown in Ta-
ble 7, we observe that the absence of style
representation leads to a decrease in qual-
ity, as it cannot generate vocals with rich
emotional and stylistic variations, nor can it achieve style control or style transfer. Additionally, our
Flow-based Pitch Predictor and Mel Decoder contribute significantly to the overall quality.

Ablation Study on AccompBand We conduct tests on major modules of AccompBand. We
replace the Aligned Vocal Encoder with a simple linear mel encoder and replace the Aligned Accomp
Encoder and Decoder with a pre-trained VAE as a baseline model. Additionally, we also set the
full Band-MOE and three expert groups removed as other baseline models. As shown in Table 6,
removing the Aligned Encoders leads to a significant drop in vocal alignment. Moreover, removing
the Band-MOE results in a decline in all metrics. For individual expert groups, we observe that the
Aligned MOE affects alignment, while the Controlled MOE impacts controllability. The absence of
the Acoustic MOE, which handles different acoustic channels, leads to a drop in quality.

Ablation Study on MultiBand We remove various components from text prompts for evaluation.
As shown in Table 5, even with a minimum input of ”the task is to generate a song,” without other
prompts, MultiBand still delivers remarkable performance. When listening to the songs generated for
various tasks on our demo page, it is evident that MultiBand demonstrates strong controllability and
expressiveness over styles dictated by the text prompts, along with the ability to produce intricate,
skillful vocals employing multiple techniques, and complex, well-aligned accompaniments featuring
harmonious instrumentation. For ablation studies on more modules, please refer to Appendix I.

5 CONCLUSIONS

In this paper, we present MultiBand, the first multi-task song generation model for synthesizing
high-quality, aligned songs with extensive control based on diverse personalized prompts. We mainly
design these models: 1) VocalBand, a decoupled model leveraging the flow-matching model for
singing styles, pitches, and mel-spectrograms generation, allowing high-level control for fast and
high-quality vocal generation. 2) AccompBand, a flow-based transformer model, with the Aligned
Vocal Encoder, using contrastive learning for alignment, and Band-MOE, selecting suitable experts
for enhanced quality and control. This model generates controllable, high-quality accompaniments
perfectly aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for
melodies, contribute to the comprehensive multi-task song generation system. Experimental results
demonstrate that MultiBand enables high-level personalized control across multiple song generation
tasks based on various prompts, achieving superior objective and subjective evaluations compared to
baseline models. Due to the space limitation, we include additional discussions in the Appendix J.
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6 ETHICS STATEMENT

Large-scale generative models always present ethical challenges. MultiBand, due to its multi-task
song generation capabilities, could potentially be misused for dubbing in entertainment short videos,
raising concerns about the infringement of famous singers’ copyrights. Then, its ability to transfer
and control multiple song styles about lyric, melody, singing, and music, lowers the requirements for
high-quality, personalized, controllable song generation, posing some risks like unfair competition
and potential unemployment for professionals in related music and singing occupations. To mitigate
these potential risks, we will explore methods like music watermarking to protect individual privacy.

7 REPRODUCIBILITY STATEMENT

We have implemented several measures to ensure reproducibility: 1) We provide very detailed
explanations of each module in our Appendix B, C, D, and E. We will also release the code after the
paper is accepted. 2) We offer hyperparameters and experimental configurations for each model in
Appendix B.1, C.1, D.1, E.1, and E.2. 3) The data processing steps and the open-source tools we
used are described in detail in F. Since our datasets consist of open-source singing voices and songs
collected from the internet, we will provide all web links and corresponding text prompt annotations
after the paper is accepted. 4) All evaluation metrics are thoroughly described in Appendix G.
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A RECTIFIED FLOW-MATCHING

In this section, we introduce the flow-matching generative method, as described by Liu et al. (2022b).
In generative modeling, the true data distribution is denoted as q(x1), which can be sampled but lacks
an accessible density function. Consider a probability path pt(xt), where x0 ∼ p0(x) represents a
known simple distribution (e.g., a standard Gaussian), and x1 ∼ p1(x) approximates the real data
distribution. The objective of flow-matching is to model this probability path directly, expressed as
an ordinary differential equation (ODE):

dx = u(x, t)dt, t ∈ [0, 1], (4)
where u(x, t) denotes the target vector field, and t is the time index. If the vector field u is known,
realistic data can be recovered by reversing the flow. To approximate u, a vector field estimator v(·)
is used, with the flow-matching objective defined as:

LFM(θ) = Et,pt(x) ∥v(x, t; θ)− u(x, t)∥2 , (5)

where pt(x) denotes the distribution of x at time t. To enable conditional generation, we incorporate
conditional information c, leading to the conditional flow-matching objective (Lipman et al., 2022):

LCFM(θ) = Et,p1(x1),pt(x|x1) ∥v(x, t|c; θ)− u(x, t|x1, c)∥2 . (6)
Flow-matching proposes a straight path from noise to data. Specifically, we use a linear interpolation
between the data x1 and Gaussian noise x0 to generate samples at time t:

xt = (1− t)x0 + tx1. (7)
Thus, the conditional vector field becomes u(x, t|x1, c) = x1 − x0, and the rectified flow-matching
(RFM) loss used for gradient descent is:

∥v(x, t|c; θ)− (x1 − x0)∥2 . (8)
If the vector field u is estimated correctly, we can generate realistic data by propagating Gaussian
noise through an ODE solver at discrete time steps. A widely used method for solving the reverse
flow is the Euler ODE:

xt+ϵ = x+ ϵv(x, t|c; θ), (9)
where ϵ is the step size. In our VocalBand, we use content, timbre, prompt style, text tokens, and other
inputs for each task as conditioning information c, while the target data x1 consists of target style, F0,
or mel-spectrograms. In our AccompBand, we use timestep, text tokens, and vocal embedding as
conditioning information c, while the target data x1 is the accompaniment embedding.

Moreover, flow matching models require 100 to 1000 steps during training, but since they generate
a straight path, they only require 25 or fewer steps during inference, making the generation highly
efficient for fast generation. Additionally, flow-matching models ensure stable and high-quality
generation due to their ability to model smooth transitions between noise and data, maintaining
fidelity throughout the process. This stability is crucial for complex generation tasks, as it reduces
artifacts and enhances the consistency of the output across various conditions.
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B MULTIBAND DETAILS

B.1 MODEL DETAILS

Our MultiBand framework consists of four models: VocalBand, AccompBand, LyricBand, and
MelodyBand. For the text encoder, we use FLAN-T5-large (Chung et al., 2024), while we also test
BERT-large (Devlin et al., 2018) and the text encoder of CLAP (Elizalde et al., 2023) in Appendix
I.1. Our vocoder is the pre-trained HiFi-GAN (Kong et al., 2020). For detailed hyperparameters of
each component, please refer to Appendix C.1, D.1, E.1, and E.2.

For training details, we set the sample rate to 48kHz, the window size to 1024, the hop size to
320, and the number of mel bins to 80 to derive mel-spectrograms from raw waveforms. We train
VocalBand on 4 NVIDIA RTX-4090 GPUs for 200k steps. The Adam optimizer is used with β1 = 0.9
and β2 = 0.98. AccompBand is trained on 8 NVIDIA RTX-4090 GPUs for 80k steps, using the
AdamW optimizer with a base learning rate of 3× 10−6. The pre-trained Aligned Vocal and Accomp
Encoder with Aligned Accomp Decoder are trained on 4 NVIDIA RTX-4090 GPUs for 40k steps.
MelodyBand is trained for 30k steps until convergence on 4 NVIDIA RTX-4090 GPUs. LyricBand is
fine-tuned for 4k steps until convergence on 4 NVIDIA RTX-4090 GPUs.

B.2 TRAINING PROCEDURES

For VocalBand, the final loss terms in the training phase include the following components: 1)
Lcommit: the commitment loss for the residual style encoder in Equation 10; 2) Lstyle: the flow
matching loss of Flow-based Style Predictor in Equation 1; 3) Lpitch: the flow matching loss of
Flow-based Pitch Predictor; 4) Lmel: the flow matching loss of Flow-based Mel Decoder; 5) Ldur:
the MSE duration loss between the predicted and the GT phoneme-level duration in the log scale.

As for AccompBand, the final loss terms during training consist of the following aspects: 1) Lbalance:
the load-balancing loss for each expert group in Band-MOE in Equation 15; 2) Lflow: the flow
matching loss of AccompBand.

For the pre-trained Aligned Vocal and Accomp Encoder, along with the Aligned Accomp Decoder,
the final loss terms include: 1) Lsty: the contrastive objective for stylistic contrast in Equation 2; 2)
Ltem: the contrastive objective for temporal contrast; 3) Lrec: the L2 reconstruction loss; 4) Ladv:
the LSGAN-styled adversarial loss in GAN discriminator.

Regarding MelodyBand, the final loss terms for training involve: 1) Lpitch: the cross-entropy loss for
note pitches in Equation 16; 2) Lduration: the L2 loss for note durations in Equation 17.

B.3 MULTI-TASK INFERENCE PROCEDURES

If full lyrics are not provided, LyricBand generates phonemes p based on the text tokens zp. Without
input music scores, MelodyBand generates notes n (note pitches and note durations) based on lyrics,
text prompts, and optional vocal prompts.

For the song generation task, VocalBand generates the target vocal yv based on n and p as con-
tent information, along with zp to control style information. AccompBand generates the target
accompaniment ya from yv and Gaussian noise ϵ.

To conduct singing style transfer, VocalBand additionally takes a vocal prompt ỹa as input to extract
timbre zt and prompt style z̃s. The target vocal is required to maintain consistent timbre and personal
style (e.g., pronunciation, articulation skills). The Flow-based Style Predictor is used to predict the
target style zs, learning both personalized styles from z̃s and style control information from zp (such
as singing techniques, emotions, and methods).

For music style transfer, AccompBand uses the noisy prompt accompaniment ỹa with a time step 0.5
instead of Gaussian noise ϵ and sums it with target vocal yv, enabling the model to learn the style
from the retained components of the prompt accompaniment.

In the vocal-to-song task, the GT vocal is used to guide AccompBand in generating the accom-
paniment. In contrast, for the accompaniment-to-song task, notes n are extracted from the GT
accompaniment ŷa using ROSVOT (Li et al., 2024b) to guide VocalBand in vocal generation.
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C VOCALBAND DETAILS

C.1 MODEL CONFIGURATION

We list the architecture and hyperparameters of VocalBand in Table 8.

Table 8: Hyper-parameters of VocalBand.

Hyperparameter VocalBand

Phoneme Encoder

Phoneme Embedding 256
Encoder Layers 4
Encoder Hidden 256

Encoder Conv1D Kernel 9
Encoder Conv1D Filter Size 1024

Note Encoder Pitch Embedding 256
Duration Hidden 256

Timbre Encoder
Encoder Layers 5

Hidden Size 256
Conv1D Kernel 31

Residual Style Encoder
Conv Layers 5

RQ Codebook Size 256
Depth of RQ 4

Flow-based Style Predictor

Conv Layers 20
Kernel Size 3

Residual Channel 256
Hidden Channel 256

Training Time Steps 100

Flow-based Pitch Predictor

Conv Layers 12
Kernel Size 3

Residual Channel 192
Hidden Channel 256

Training Time Steps 100

Flow-based Mel Decoder

Conv Layers 20
Kernel Size 3

Residual Channel 256
Hidden Channel 256

Training Time Steps 100

Total Number of Parameters 56.26M

C.2 DECOMPOSITION STRATEGY

We assume that the target vocal yv can be decomposed into three distinct representations: content
zc, style zs (e.g., singing methods, emotion, techniques, pronunciation, and articulation skills), and
timbre zt. When a vocal prompt ỹv is provided during training, our goal is to transfer both the timbre
z̃t and personalized style z̃s (like pronunciation and articulation skills) from the vocal prompt to
the target vocal yv. Meanwhile, we also need to achieve style control from text tokens zp (such as
singing method, emotion, and techniques).

Following previous style transfer approaches (Jiang et al., 2024), we assume that the mutual informa-
tion between yv and ỹv primarily captures global information, represented by zt (timbre). Therefore,
the target timbre zt is set equal to the prompt timbre z̃t, as we aim to control the timbre of the output
based on the user’s input. Under this assumption, z̃t is extracted using a timbre encoder, which
focuses solely on timbre information, without capturing style zs or content zc. To ensure that the
content encoders extract only content-related information, we feed it phoneme sequences and musical
notes, allowing it to exclusively pass the content representation zc. For more details about the timbre
encoder and the content encoders, please refer to Appendix C.3 and C.4.
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Figure 4: The architecture of two components of VocalBand, Figure (a) shows the residual style
encoder while Figure (b) illustrates the vector field estimator of the Flow-based Mel Decoder.

Once both zc and zt are obtained, we must remove fine-grained content and timbre information from
the target style zs. We employ a residual style encoder to extract the prompt style z̃s, and then use
the Flow-based Style Predictor to predict the target style zs. The latent vector zs generated by the
Flow-based Style Predictor not only captures the personalized styles consistent with the prompt style
z̃s (e.g., pronunciation and articulation skills) but also incorporates the styles specified in the text
tokens zp (like singing methods, emotions, and techniques).

By utilizing a residual quantization (RQ) model (Lee et al., 2022a) as an information bottleneck
(Qian et al., 2019), the residual style encoder is compelled to transmit only the fine-grained style
information zs (Zhang et al., 2024), which other encoders cannot capture. Both zs and z̃s share the
same form as the RQ embeddings, consisting of multiple layers of fine-grained style information that
are disentangled from both timbre and content. This is because zs is the output of the flow-matching
ODE solver, whose training objective is to capture the target style from the ground truth vocals, as
extracted by the residual style encoder. For more details about the Flow-based Style Predictor, please
refer to Appendix C.6. Consequently, the process guarantees the successful decomposition of style
from content and timbre. These embeddings zc, zt, and zs are then fed into a duration predictor (Ren
et al., 2020b) and a length regulator for subsequent F0 and mel-spectrogram prediction.

C.3 TIMBRE ENCODER

The timbre encoder, designed to capture the unique identity of the singer, extracts a global timbre
vector z̃t from the vocal prompt ỹv . The encoder consists of multiple stacked convolutional layers. To
ensure stability in the timbre representation, the output of the timbre encoder is temporally averaged,
producing a one-dimensional timbre vector z̃t. The target timbre zt is set equal to the prompt timbre
z̃t, as we aim to control the timbre of the output based on the user’s input.

C.4 CONTENT ENCODERS

Our content encoders consist of a phoneme encoder and a note encoder. The phoneme encoder
processes a sequence of phonemes p through a phoneme embedding layer followed by four FFT
blocks, extracting phoneme features. In parallel, the note encoder handles musical score information
n, processing note pitches and durations. These are passed through two separate embedding layers
and a linear projection layer, which generate the corresponding note features. The outputs of the
phoneme encoder and the note encoder are then summed as zc.

C.5 RESIDUAL STYLE ENCODER

Singing style can vary across and within phonemes. To comprehensively capture phoneme-level styles
(such as singing methods, emotion, techniques, pronunciation, and articulation skills) and disentangle
them from timbre and content, we design the residual style encoder. In the residual style encoder, we
employ a Residual Quantization (RQ) module (Lee et al., 2022a) to extract singing style, creating
an information bottleneck that effectively filters out non-style information (Zhang et al., 2024).
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Thanks to the RQ’s ability to extract multiple layers of information, it enables more comprehensive
and detailed modeling of style across various hierarchical levels. Specifically, pronunciation and
articulation skills encompass pitch transitions between musical notes and vibrato within a phoneme,
where the multi-level modeling capability of RQ is highly suitable.

More concretely, as illustrated in Figure 4 (a), we first extract the mel-spectrogram from the input
vocal using the open-source tool librosa 1 and further refine it through convolutional blocks. The
output is then condensed into phoneme-level hidden states via a pooling layer, which operates based
on phoneme boundaries. We utilize open-source tools including WhisperX (Bain et al., 2023) and
Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) to extract these phoneme boundaries directly
from the input vocal. Subsequently, the convolution stacks capture phoneme-level correlations. Next,
we use a linear projection to map the output into a low-dimensional latent variable space for code
index lookup, significantly enhancing the utilization of the codebook (Yu et al., 2021).

With a quantization depth of n, the RQ module represents the input ze as a sequence of N ordered
codes. Let RQi(ze) denote the process of representing ze as RQ code and extracting the code
embedding in the i-th codebook. The representation of ze in the RQ module at depth n ∈ [N ]
is denoted as ẑen =

∑n
i=1 RQi(ze). To ensure that the input representation adheres to a discrete

embedding, a commitment loss (Lee et al., 2022a) is employed:

Lcommit =

N∑
n=1

∥ze − sg[ẑe
n]∥22 , (10)

where the notation sg represents the stop-gradient operator. It is important to note that Lcommit is the
cumulative sum of quantization errors across all n iterations, rather than a single term. The objective
is to ensure that ẑen progressively reduces the quantization error of ze as the value of n increases.
Finally, we extract the phoneme-level style embedding from the input vocal.

C.6 FLOW-BASED STYLE PREDICTOR

As shown in Figure 3 (a), the Flow-based Style Predictor uses content zc, timbre zt, phoneme-level
prompt style z̃s, and text tokens zp to predict the target style zs. With the combined zc and zt, we
employ a style alignment model utilizing the Scaled Dot-Product Attention mechanism (Vaswani
et al., 2017) to align style control information from zp (e.g., singing methods, emotions, techniques)
with the content. Positional embedding is applied before feeding zp into the attention module. In the
attention module, the combined zc and zt serve as the query zct, while zp serves as both the key and
value, and d represents the dimensionality of the key and query:

Attention(Q,K, V ) = Attention(zct, zp, zp) = Softmax

(
zctz

T
p√
d

)
zp. (11)

We stack the style alignment layer multiple times for better performance and gradually stylize the
query value. We combine the output with zct as condition c and then feed it into an ODE solver,
which transforms Gaussian noise ϵ into zs along a probability path pt(zst). We concatenate z̃s with ϵ
to allow zs to learn personalized styles (e.g., pronunciation and articulation skills).

During training, we set u(zst, t) to represent the target vector field at time t, obtained through linear
interpolation between ϵ and the ground truth (GT) phoneme-level style zs, which is extracted from
the GT vocal by the residual style encoder. To stabilize the flow-matching training process, we do
not train the Flow-based Style Predictor during the early stages of training (the first 50,000 steps).
Instead, we feed the GT style zs into the subsequent Flow-based Pitch Predictor and Mel Decoder.
Therefore, by the time we begin training the Flow-based Style Predictor, the residual style encoder
has stabilized, ensuring a consistent GT zs, which is beneficial for the flow-matching training.

The learned vector field v(zst, t|c; θ), predicted by a vector field estimator at each time t, ensures
smooth interpolation between the initial noise and the output zs, guided by the flow-matching
objective. We use the non-causal WaveNet architecture (Van Den Oord et al., 2016) as the backbone
of our vector field estimator, due to its proven capability in modeling sequential data. For more details
about the vector field estimator, please refer to Appendix C.8. Notably, to enable the model to handle

1https://github.com/librosa/librosa
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cases without a vocal prompt, we drop vocal prompts with a probability of 0.2 during training. We
also replace zp with embedded empty strings in a probability of 0.1 for cases without prompts.

During inference, the ODE solver generates the phoneme-level target style zs directly from the
concatenation of Gaussian noise and z̃s (if a vocal prompt is provided), based on the condition c.
This method ensures fast and controllable generation of zs, learning personalized styles consistent
with z̃s while incorporating the aligned style control information from zp.

C.7 FLOW-BASED PITCH PREDICTOR AND MEL DECODER

During training, our target F0 is extracted using the open-source tool RMVPE (Wei et al., 2023),
while mel-spectrograms are extracted using the open-source tool librosa 1. We adopt the non-causal
WaveNet architecture (Van Den Oord et al., 2016) as the backbone of our vector field estimator. For
further details on the vector field estimator, please refer to Appendix C.8.

C.8 VECTOR FIELD ESTIMATOR

We adopt the non-causal WaveNet architecture (Van Den Oord et al., 2016) as the backbone of our
vector field estimators for the Flow-based Style Predictor, Pitch Predictor, and Mel Decoder, due to its
demonstrated effectiveness in modeling sequential data. The architecture of the vector field estimator
for the Flow-based Mel Decoder is depicted in Figure 4 (b). We input content zc, timbre zt, style zs,
and F0 as conditioning factors to predict the corresponding vector field. Similarly, the architecture of
the vector field estimators for the Flow-based Pitch Predictor and Style Predictor follows the same
structure, while the only difference lies in the input and condition for each model.

D ACCOMPBAND DETAILS

D.1 MODEL CONFIGURATION

We list the architecture and hyperparameters of AccompBand in Table 9.

Table 9: Hyper-parameters of AccompBand.

Hyperparameter AccompBand

Aligned Vocal Encoder

Encoder Layers 3
Encoder Hidden 384

Encoder Conv1D Kernel 5
Encoder Output Channels 20

Aligned Accomp Encoder

Encoder Layers 3
Encoder Hidden 384

Encoder Conv1D Kernel 5
Encoder Output Channels 20

Aligned Vocal Encoder

Decoder Layers 3
Decoder Hidden 384

Decoder Conv1D Kernel 5
Decoder Input Channels 20

Band Transformer Blocks

Transformer Layers 4
Transformer Embed Dim 768

Transformer Attention Headers 8
Experts for each group 4
Training Time Steps 1000

Total Number of Parameters 431.07M

D.2 ALIGNED VOCAL AND ACCOMP ENCODER

For training the Aligned Vocal and Accompaniment Encoder, we use the contrastive objective
(Radford et al., 2021), and design two types of objectives: Lsty and Ltem. For Lsty, we maximize
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the similarity of vocal-accompaniment pairs from the same song while minimizing the similarity
for vocal-accompaniment pairs from different songs. During sample selection, we randomly sample
multiple negative samples from different songs. For Ltem, we maximize the similarity of vocal-
accompaniment pairs from the same time segment within a song and minimize the similarity for pairs
from different time segments of the same song. In this case, we randomly sample multiple negative
samples from different segments of the same song.

For training the Aligned Accompaniment Decoder, we use the L2 reconstruction loss: Lrec =
∥yv − ŷv∥2,where yv is the reconstructed accompaniment mel-spectrogram and ŷv is the ground truth
accompaniment mel-spectrogram. Additionally, we incorporate a GAN discriminator, following the
architecture of ML-GAN (Chen et al., 2020), to further enhance the quality of the reconstruction. We
apply the LSGAN-style adversarial loss (Mao et al., 2017), Ladv , which aims to minimize the distri-
butional distance between the predicted mel-spectrograms and the ground truth mel-spectrograms.
Before feeding the waveform into these encoders, we first extract the mel-spectrogram using librosa
1. After generating the mel-spectrogram from the decoder output, we utilize HiFi-GAN (Kong et al.,
2020) to convert it back into audio.

D.3 BAND TRANSFORMER BLOCKS

As shown in Figure 2 (c), the Band Transformer Blocks are based on Flag-Dit (Gao et al., 2024).
During training, the vocal embedding zv extracted by the Aligned Vocal Encoder is added to the
noisy input xt to leverage the transformer’s self-attention mechanism, allowing the model to learn
vocal-matching style, rhythm, and melody. We use RMSNorm (Zhang & Sennrich, 2019) to improve
training stability, preventing the absolute values from growing uncontrollably and causing numerical
instability. Next, we compute the global style embedding zg by averaging the text tokens zp and vocal
embedding zv along the temporal dimension and adding the time step embedding of t. This global
style embedding is used in a multi-layer style adaptor, which modulates the latent representation
using adaptive layer normalization (AdaLN) (Peebles & Xie, 2023) to ensure style consistency. We
compute the scale and shift using linear regression based on zg:

AdaLN(h, c) = γc × LayerNorm(h) + βc, (12)

where h represents the hidden representation. We zero-initialize the batch norm scale factor γ in
each block (Peebles & Xie, 2023). Moreover, we explore relative positional encoding with rotary
positional embedding (RoPE) (Su et al., 2024), which injects temporal positional information into
the model. This enables the model to capture the temporal relationships between successive frames,
providing significant performance improvements for the transformer.

Then, the zero-initialized attention mechanism (Bachlechner et al., 2021) is used to inject conditional
information from the text tokens zp into the hidden states h, while simultaneously learning the
vocal style, rhythm, and melody aligned with the vocal embedding zv added to xt. Given the
accompaniment queries Qh, keys Kh, and values Vh from hidden states, along with the text keys Kz

and values Vz , the final attention output is formulated as:

Attention = softmax

(
Q̃hK̃h

⊤

√
d

)
Vh + tanh(α)softmax

(
Q̃hK

⊤
z√

d

)
Vz, (13)

where Q̃h and K̃h denote using RoPE in queries and keys, d is the dimensionality of queries and
keys, and α is a zero-initialized learnable parameter that gates the cross-attention with the text tokens.

D.4 BAND-MOE

As illustrated in Figure 3(d), Band-MOE is composed of three expert groups: Aligned MOE,
Controlled MOE, and Acoustic MOE, each comprising multiple experts. We employ Feed-Forward
Networks (FFNs) as the architecture for each expert. It is well-established (Lee et al., 2022b;
Huang et al., 2022b) that mel-spectrogram details exhibit different patterns across various acoustic
frequencies. In musical accompaniment, high-frequency components often include the harmonics and
overtones of instruments like strings and flutes, as well as percussive elements such as cymbals and
hi-hats, which enhance the brightness and clarity of the sound. Conversely, low-frequency content
encompasses basslines and kick drums, providing foundational rhythm and depth that shape the
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overall groove and warmth of the music. Motivated by this, previous works (Kong et al., 2020;
Yang et al., 2021) have adopted multi-scale architectures to model downsampled signals at different
frequency bands, which effectively control the periodic elements of the signal and reduce artifacts.

Building on this idea, we introduce Acoustic MOE, where experts are assigned to specific acoustic
frequency bands based on the processed hidden representation h, and their outputs are aggregated to
produce the final result. Moreover, since the Aligned Vocal and Accomp Encodequ di ar employ 1D
convolutions to encode both the vocal and accompaniment mel-spectrograms, the latent representation
of the hidden h should retain the acoustic frequency distribution.

Our routing strategy for all routers is based on the dense-to-sparse Gumbel-Softmax method (Nie
et al., 2021), enabling dynamic and efficient expert selection. The Gumbel-Softmax trick facilitates
sampling from a categorical distribution by reparameterizing categorical variables to make them
differentiable. Specifically, the routing score g(h) for each expert i is computed as follows:

g(h)i =
exp((h ·Wg + ζi)/τ)∑N
j=1 exp((h ·Wg + ζj)/τ)

, (14)

where Wg is the learned gating weight, ζ is sampled from the Gumbel(0, 1) distribution (Jang et al.,
2016), and τ is the softmax temperature. Initially, a high temperature τ results in denser expert
selection, allowing multiple experts to process the same input. As training progresses, τ is gradually
decreased, making the routing sparser and selecting fewer experts for each input. When τ → 0, the
distribution approaches a nearly one-hot form, effectively selecting the most suitable expert for each
token. Following prior work (Nie et al., 2021), we dynamically reduce τ from 2.0 to 0.3 during
training and use the hard mode during inference, selecting only one expert. Notably, only the global
router does not conduct hard mode during inference, as we need experts from different expert groups
to cooperate in accompaniment generation. The algorithm of Band-MOE is shown in Algorithm 1.

Algorithm 1 Pseudo-Code of Band-MOE Routing Strategy

Input: Input hidden representation h, vocal embedding zv , text prompt embedding zp, time step t
Output: Output with enhanced quality and control ofinal

1: Initialize Gumbel-Softmax temperature τ , sample Gumbel noise ζ
2: for each time step t do
3: Aligned MOE:
4: Use Gumbel-Softmax for each token in the time channel to select an expert by zv:
5: galigned(h)← GumbelSoftmax(zv ·Waligned + ζ)/τ
6: Compute Aligned MOE output:
7: oaligned ←

∑
i galigned,i · Experti,aligned(zv)

8: Controlled MOE:
9: Use Cross-Attention extracting style for alignment between zp and h:

10: zsty ← CrossAttention(h(Q), zp(K), zp(V ))
11: Use Gumbel-Softmax for each token in the time channel to select an expert by zsty:
12: gcontrolled(h)← GumbelSoftmax(zsty ·Wcontrolled + ζ)/τ
13: Compute Controlled MOE output:
14: ocontrolled ←

∑
i gcontrolled,i · Experti,controlled(zp)

15: Global Router:
16: Use Gumbel-Softmax to compute global weights αt and βt:
17: gglobal(h)← GumbelSoftmax(embedding(t) ·Wglobal + ζ)/τ
18: αt, βt ← gglobal(h)
19: Combine Aligned and Controlled MOE outputs:
20: ocombined ← αt · oaligned + βt · ocontrolled
21: Acoustic MOE:
22: Use Gumbel-Softmax to select an expert for each frequency channel:
23: gacoustic(ocombined)← GumbelSoftmax(ocombined ·Wacousitc + ζ)/τ
24: Compute Acoustic MOE output:
25: oacoustic ←

∑
j gacoustic,j · Expertj,acoustic(ocombined)

26: end for
27: Return ofinal ← oacoustic as the final routed output
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Moreover, to avoid overloading any individual expert and ensure balanced utilization, we incorporate
a load-balancing loss for each expert group (Fedus et al., 2022). The balance loss Lbalance is:

Lbalance = αN

N∑
i=1

(
1

B

∑
h∈B

g(h)i

)
. (15)

where B is the batch size, N is the number of experts, and α is a hyperparameter controlling the
strength of the regularization, for which we use 0.1. This loss encourages a more uniform distribution
of tokens across experts, improving training efficiency by preventing expert underutilization or
overload. Thus, our routing strategy not only allows dynamic expert selection but also ensures that
the computational load is evenly distributed across experts, reducing training time and improving the
model performance of Band-MOE.

D.5 CLASSIFIER-FREE GUIDANCE

During AccompBand training, we randomly replace the input text tokens with embedded empty
strings at a probability of 0.2. The empty strings, like the original text prompts, are processed through
the text encoder to extract text tokens and are padded to a fixed length. For γ in Equation 3, a higher γ
emphasizes the control of the text prompt, improving generation quality by making the outputs more
aligned with the given conditions. In contrast, a lower γ allows for more diverse outputs by reducing
the reliance on the text prompt, though this may result in lower relevance to the input prompt. In our
major accompaniment generation experiments, we use γ = 3.

E LYRICBAND AND MELODYBAND

E.1 LYRICBAND

To enhance the customizability of our song generation system, we introduce LyricBand, a model
designed to generate complete song lyrics based on arbitrary text prompts. Users can input parameters
such as theme, emotion, genre, style, and specific keywords to generate fully personalized lyrics
tailored to their preferences. To effectively train LyricBand, we leverage GPT-4o (Achiam et al., 2023)
to extract prompts from a large corpus of existing song lyrics in our training data. These prompts
encapsulate essential elements such as the thematic content, emotional tone, narrative perspective,
rhyme scheme, and stylistic features of the songs. By extracting this rich set of attributes, we create a
comprehensive dataset that pairs textual prompts with corresponding lyrics, enabling the model to
learn the mapping between user inputs and desired lyrical outputs.

We employ QLoRA (Dettmers et al., 2024) for efficient fine-tuning of the well-performing open-
source bilingual large language model Qwen-7B (Bai et al., 2023). By utilizing 4-bit quantization and
low-rank adapters, QLoRA significantly reduces the computational resources required for fine-tuning
while preserving the model’s performance. This approach allows LyricBand to adapt effectively to
the task of lyrics generation, maintaining high levels of customization and creativity across a diverse
range of user prompts. In our experiments, we set LoRA r = 32, α = 16. LyricBand demonstrates
the capability to capture nuanced themes and emotions specified by users, generating lyrics that not
only align with the given prompts but also exhibit coherent structure and artistic expression.

E.2 MELODYBAND

Previous singing voice and song generation models often require users to provide music scores to
achieve stable melodies (Zhiqing et al., 2024), lacking personalized customization of the melody.
Inspired by symbolic music generation models (Dong et al., 2018; Ding et al., 2024), we introduce
MelodyBand, an additional model where melody-related features like notes are generated from
text descriptions in advance. By using notes as the representation of the melody, we can achieve
more stable melody control. However, requiring users to provide music scores is impractical.
Generating notes using natural language prompts can both ensure stable melodies and allow for
flexible customization. For controllable melody generation, we construct artificial textual prompts
to deliver melody-related information. Musical attributes like key, tempo, vocal range, and other
information can be used as prompts for melody customization.
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Figure 5: The architecture of MelodyBand.

When users do not input music scores, as shown
in Figure 5(b), MelodyBand takes the phonemes
of the lyrics as content information and optional
vocal prompts to extract timbre. It composes mu-
sic for the lyrics and selects appropriate frequen-
cies based on the timbre, using text prompts for
style control. We employ a non-autoregressive
transformer model to efficiently generate note
pitches and durations simultaneously. The non-
autoregressive transformer enables fast and high-
quality generation, making it highly suitable for
our multi-task song generation system.

With encoded phonemes and timbre, we inject
text prompts through cross-attention transform-
ers, allowing the model to integrate linguistic
cues more effectively. Several heads are added
to generate note pitches and durations. We pass each dimension of the stacked output through a
softmax function to generate note pitches and through a linear layer to generate note durations. We
train MelodyBand using cross-entropy loss for note pitches and an L2 loss for note durations. Let the
true note pitch and duration for i-th phoneme be n

(i)
p and n

(i)
d , and the GT note pitch and duration be

n̂
(i)
p and n̂

(i)
d , respectively. The cross-entropy loss Lpitch is:

Lpitch = −
N∑
i=1

K∑
k=1

δn̂p
(i),k log(P

(i)
k ), (16)

where N is the length of phoneme sequence, K is number of pitch classes, δn̂p
(i),k is 1 if n̂p

(i) = k

and 0 otherwise, and P
(i)
k is the predicted probability of pitch k at time i. The L2 loss Lduration is:

Lduration =

N∑
i=1

(
n
(i)
d − n̂

(i)
d

)2
. (17)

Our MelodyBand employs 8 transformer layers, and 8 attention heads, the hidden size is 768, with
23.32M parameters in total.

F DATASET ANALYSIS

Table 10: Statistics of training datasets.

Dataset Type Languages Annotation Duration (hours)

Opencpop (Wang et al., 2022) vocal Chinese lyrics, notes 5.3
M4Singer (Zhang et al., 2022a) vocal Chinese lyrics, notes 29.8
OpenSinger (Huang et al., 2021) vocal Chinese lyrics 83.5
PopBuTFy (Liu et al., 2022a) vocal English lyrics 10.8
LP-MusicCaps-MSD (Doh et al., 2023) accomp / text prompt 213.6
web-crawled song Chinese, English / 979.4

We train our model using a combination of bilingual web-crawled song datasets and open-source
singing datasets. Since there are no publicly available annotated song datasets, we collect 20k Chinese
and English songs from well-known music websites. The open-source singing datasets we utilize
are OpenCpop (Wang et al., 2022) (5 hours in Chinese), M4Singer (Zhang et al., 2022a) (30 hours
in Chinese), OpenSinger (Huang et al., 2021) (83 hours in Chinese), and a subset of PopBuTFy
(Liu et al., 2022a) (10 hours in English). After preprocessing and cleaning, we have approximately
1,000 hours (about 80% in Chinese and 20% in English) of song data and 1,100 hours of vocal data.
For accompaniment generation, we use a filtered subset of LP-MusicCaps-MSD (Doh et al., 2023),
resulting in a total size of around 1,200 hours. We use all open-source datasets under license CC
BY-NC-SA 4.0. The statistics of the datasets are listed in 10.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

For the web-crawled data, we use Ultimate Vocal Remover 2, an open-source music source separation
tool, to perform the vocal-accompaniment separation. We utilize WhisperX (Bain et al., 2023) to
automatically transcribe the demixed vocals, and Montreal Forced Aligner (MFA) (McAuliffe et al.,
2017) is employed for phoneme and vocal alignment. After that, we filter the samples using Silero
VAD (Team, 2021) to eliminate unvoiced clips. The samples are segmented into phrases with a
maximum length of 20 seconds, resulting in an average segment duration of 12 seconds.

We utilize a music captioning model (Doh et al., 2023) to generate text prompts from the segmented
song clips, and GPT-4o (Achiam et al., 2023) is used to separate music styles (such as genre, tone,
and instrumentation) from vocal descriptions (such as emotion and gender). For singing styles, we
hire music experts to annotate all songs for the global singing method (e.g., pop or bel canto) and
to label around 200 hours of segmented vocal clips for specific techniques used. We hire all music
experts and annotators with musical backgrounds at a rate of $300 per hour. They have agreed to
make their contributions available for research purposes. These annotations, along with the separated
vocal descriptions, form the complete singing styles. For melody styles, we extract the key from the
segmented demixed vocal clips using music21 3, tempo and duration using librosa 1, and then use
GPT-4o to combine these elements, generating natural language descriptions of vocal ranges based
on the average pitch. For lyric styles, we process the lyrics using GPT-4o to extract essential elements
such as thematic content, emotional tone, narrative perspective, rhyme scheme, and stylistic features.

All styles are combined, along with annotations for various tasks, to form the final text prompts.
During generation, we randomly omit certain elements or entire styles to enhance the model’s
generalization ability. We utilize ROSVOT (Li et al., 2024b) to obtain note sequences from the
segmented demixed vocal clips. For vocal and accompaniment data that lacks specific annotations,
we use corresponding methods to complete the labeling process.

G EVALUATION METRICS

G.1 LYRIC AND MELODY EVALUATION

For lyric generation, we randomly select 30 prompts and generate 30 sets of lyrics. Each set is
evaluated by at least 15 raters for overall quality (OVL) and relevance to the prompt (REL) as
subjective evaluation metrics. The rating scale ranged from 1 to 100, representing poor to good
quality. OVL focused on the overall quality of the lyrics, including naturalness, and grammatical
correctness, while REL assessed the alignment with the thematic content, emotional tone, narrative
perspective, rhyme scheme, and stylistic features specified in the text prompt. All participants are
fairly compensated for their time and effort at a rate of $12 per hour. They are also informed that the
results will be used for scientific research purposes. The testing screenshot is shown in Figure 6.

Figure 6: Screenshot of lyric evaluation.

In melody generation, multiple objective metrics are employed to evaluate controllability. We use
the Krumhansl-Schmuckler algorithm to predict the potential key of the generated notes and report
the average key accuracy (KA). If the Pearson correlation coefficient of the ground truth (GT) notes

2https://github.com/Anjok07/ultimatevocalremovergui
3https://github.com/cuthbertLab/music21
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corresponding to the GT key is r, and the predicted MIDI corresponding to the GT key is r̂, we
define the key accuracy as KA = r̂/r (only valid if r ̸= 0). We also compute the average absolute
difference of average pitches (APD) and temporal duration (TD, in seconds). Moreover, following
previous work (Sheng et al., 2021), we record pitch and duration distribution similarity (PD and DD).
Specifically, we calculate the distribution (frequency histogram) of pitches and durations in notes and
measure the distribution similarity between generated notes and ground truth notes:

1

Ns

Ns∑
i=1

OA(Disi, D̂isi), (18)

where Disi and D̂isi represent the pitch or duration distribution of the i-th generated and ground-
truth song, respectively, Ns is the number of songs in the test set, and OA represents the average
overlapped area. Melody distance (MD) is also computed with dynamic time warping (DTW) (Berndt
& Clifford, 1994). To evaluate the pitch trend of the melody, we spread out the notes into a time
series of pitch according to the duration, with a granularity of 1/16 note. Each pitch is normalized by
subtracting the average pitch of the entire sequence. To measure the similarity between generated
and ground-truth time series with different lengths, we use DTW to compute their distance.

G.2 VOCAL EVALUATION

For vocal generation, we randomly select 30 pairs of sentences from our test set for subjective
evaluation. Each pair consists of a ground truth (GT) and a synthesized vocal, each listened to by
at least 15 professional listeners. For MOS-Q evaluations, these listeners are instructed to focus on
synthesis quality (including clarity, naturalness, and richness of stylistic details) without considering
the style control relevance to text prompts. For MOS-C, the listeners are informed to evaluate style
controllability (relevance to the text prompt regarding the singing method, emotion, and techniques),
disregarding any differences in content, timbre, or synthesis quality (such as clarity, naturalness,
and stylistic details). In both MOS-Q and MOS-C evaluations, listeners are asked to grade various
vocal samples on a Likert scale from 1 to 5. For fairness, all samples are resampled to 48kHZ. The
screenshots of instructions for testers are shown in Figure 7.

Figure 7: Screenshot of vocal evaluation.

We employ F0 Frame Error (FFE) to evaluate the test set’s synthesis quality objectively. FFE combines
metrics for voicing decision error and F0 error, capturing essential synthesis quality information. For
comparison with FFE reported in the MelodyLM paper, we resample all audio to 24kHz for FFE.

For singing style transfer, subjective evaluation is conducted using pairs of audio, where each pair
includes a prompt vocal and a synthesized vocal. During MOS-S evaluations, listeners are asked to
assess singer similarity in terms of timbre and personalized styles to the vocal prompt, disregarding
any differences in content or synthesis quality.

To objectively evaluate timbre similarity, we employ Cosine Similarity (Cos). Cos measures the
resemblance in singer identity between the synthesized vocal and the vocal prompt by computing
the average cosine similarity between the embeddings extracted from the synthesized voices and the
vocal prompt, thus providing an objective indication of singer similarity performance. Specifically,
we use a voice encoder 4 to extract singer embeddings.

4https://github.com/resemble-ai/Resemblyzer
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In all MOS-Q, MOS-S, and MOS-C evaluations, listeners are requested to grade the vocal samples
on a Likert scale ranging from 1 to 5. All participants are fairly compensated for their time and effort.
We compensate participants at a rate of $12 per hour. Participants are informed that the results will
be used for scientific research.

G.3 ACCOMPANIMENT AND SONG EVALUATION

For the subjective evaluation of accompaniment and song generation, we randomly select 30 audio
samples from our test set. Each sample is listened to by at least 15 raters. Following previous work
(Copet et al., 2024; Zhiqing et al., 2024), we ask human raters to evaluate three aspects of the audio
samples: (i) overall quality (OVL), (ii) relevance to the text prompts (REL), and (iii) alignment with
the vocal (ALI). For the overall quality test, raters are asked to rate the perceptual quality of the
provided samples. For the text relevance test, raters evaluate how well the audio matches the music
style control information in the text prompts. For the alignment with the vocal test, raters focus on the
temporal correspondence between accompaniment and vocal in terms of style, melody, and rhythm.
Ratings are given on a scale from 1 to 100.

All participants are fairly compensated for their time and effort, with a rate of $12 per hour. Partici-
pants are informed that the results will be used for scientific research. For fairness, all samples are
resampled to 48kHZ and normalized to -23dB LUFS (Series, 2011). The screenshots of instructions
in the song generation task for testers are shown in Figure 8.

Figure 8: Screenshot of song evaluation.

For the objective evaluation, we use Frechet Audio Distance (FAD), Kullback-Leibler Divergence
(KLD), and the CLAP score (CLAP). We report the FAD (Kilgour et al., 2018) using the official
implementation in TensorFlow with the VGGish model 5. A low FAD score indicates that the
generated audio is plausible. Following previous work (Copet et al., 2024), we compute the KL-
divergence over the probabilities of the labels between the GT and the generated music. Finally, the
CLAP score (Wu et al., 2023) is computed between the track description and the generated audio to
quantify audio-text alignment, using the pre-trained CLAP model 6.

H MULTI-TASK EXPERIMENTS

H.1 VOCAL GENERATION

In Figure 9, we compare the mel-spectrogram representations of VocalBand with different singing
styles specified in the text prompt. Figure 9 (a) represents the GT vocal, where the mel-spectrogram
within the yellow box is relatively uniform, indicating a stable vocal performance, while the F0

5https://github.com/google-research/google-research/tree/master/frechet audio distance
6https://github.com/LAION-AI/CLAP
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(a) GT (b) w/o singing style (c) breathy technique (d) bubble technique

Figure 9: Visualization of the mel-spectrogram results generated by VocalBand under different
singing styles in the text prompt. The red box contains the fundamental pitch, and the yellow box
contains the details of harmonics.

contour in the red box is smooth. In contrast, Figure 9 (b) does not specify singing styles, allowing
the free use of techniques to enhance expressiveness, as seen by the significant pitch oscillations in
the red box, characteristic of vibrato. In Figure 9 (c), representing the breathy technique, the mel
energy in the yellow box shows a significant drop in high-frequency energy, consistent with the
softer, airier vocal timbre of breathy singing. Finally, Figure 9 (d) illustrates the bubble technique,
where the yellow box displays pronounced low-frequency energy with more exaggerated vertical
modulations. The red box shows a distinctive pitch fluctuation pattern, characterized by slower, larger
oscillations, indicative of the unique vocal fold vibrations in this technique. These results demonstrate
that VocalBand can achieve diverse and highly expressive control over the same content based on the
different singing styles specified in the text prompt.

H.2 SINGING STYLE TRANSFER

(a)  Vocal Prompt (b) VISinger2 (c) StyleSinger (d) VocalBand

Figure 10: Visualization of the mel-spectrogram results generated by VocalBand for singing style
transfer. The yellow box contains the fundamental pitch.

In Figure 10, we compare the performance of VocalBand and baseline models on singing style transfer.
It can be observed that VocalBand excels at capturing the intricate nuances of the prompt style. The
pitch curve generated by VocalBand displays a greater range of variations and finer details, closely
resembling the prompt style. In the yellow boxes, it is evident that VocalBand captures nuances in
pronunciation and articulation skills similar to the vocal prompt. In contrast, the curves generated
by other methods appear relatively flat, lacking distinctions in singing styles. Moreover, the mel-
spectrograms generated by VocalBand exhibit superior quality, showcasing rich details in frequency
bins between adjacent harmonics and high-frequency components. In contrast, the mel-spectrograms
produced by other methods demonstrate lower quality and a lack of intricate details.

H.3 MUSIC STYLE TRANSFER

Table 11: Results of music style transfer. Prompt means prompt accompaniment.

Methods FAD ↓ KLD ↓ OVL ↑ ALI-A ↑
AccompBand (w/o prompt) 2.92 1.22 88.65±1.45 -
AccompBand 2.92 1.23 88.34±1.28 80.24±1.57

For music style transfer, AccompBand uses the noisy prompt accompaniment ỹa with a time step 0.5
instead of Gaussian noise ϵ and sums it with the target vocal yv , enabling the model to learn the style
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from the retained components of the prompt accompaniment. Thus, we do not need a text prompt to
control the music style. We use ALI-A for subjective evaluation of the style similarity to the prompt
accompaniment. As shown in Table 11, we achieve good style similarity with minimal changes in
quality. This demonstrates that MultiBand, leveraging AccompBand’s flow matching mechanism,
can also effectively perform the music style transfer task.

H.4 VOCAL-TO-SONG GENERATION

Table 12: Results of vocal-to-song generation. GT means GT vocal.

Methods FAD ↓ KLD ↓ OVL ↑ ALI ↑
AccompBand (w/o GT) 2.92 1.22 88.65±1.45 80.72±1.49

MelodyLM 3.13 1.31 84.67±1.23 75.19±0.82
AccompBand 2.65 1.19 90.17±1.55 83.54±1.32

We can directly input GT vocals for the vocal-to-song generation task. We compare our method with
MelodyLM, which also generates songs from GT vocals. We use the objective metrics reported in
their papers and subjectively evaluate the demos on their demo pages. As shown in Table 12, it is
evident that with GT vocal input, AccompBand achieves improved quality and better alignment with
the vocals compared to song generation without GT vocal input, and it outperforms MelodyLM. This
is because the GT vocal provides a more accurate style, melody, and rhythm, better matching the
target accompaniment. It demonstrates that MultiBand effectively utilizes AccompBand’s excellent
vocal alignment mechanisms, including the Aligned Vocal Encoder and Aligned MOE, to accomplish
the Vocal-to-Song Generation task.

H.5 ACCOMPANIMENT-TO-SONG GENERATION

Table 13: Results of accompaniment-to-song
generation. GT means GT accompaniment.

Methods MOS-Q↑ FEE↓
VocalBand (w/o GT) 4.04±0.08 0.07

StyleSinger 3.79±0.10 0.09
VocalBand 3.87±0.05 0.08

We use ROSVOT (Li et al., 2024b) to extract notes
from the accompaniment to guide VocalBand for vo-
cal generation. The extracted notes are also provided
to StyleSinger, which can similarly utilize notes, as
a baseline model. As shown in Table 13, it is evident
that the quality decreases when using GT accompa-
niment instead of music scores, as the notes from the
accompaniment are not aligned with the vocal notes,
primarily due to differences in their characteristics.
Vocals often involve techniques and emotional ex-
pression, with pauses between words. At the same
time, accompaniments are more complex, involving multiple instruments and rarely pausing, lead-
ing to discrepancies in timing and pitch between the vocal and accompaniment notes. However,
VocalBand still outperforms StyleSinger and achieves satisfactory results. This demonstrates that
MultiBand can leverage the user’s preferred GT accompaniment for vocal pairing, with VocalBand
exhibiting excellent rhythm and melody control by decoupling content information.

I ABLATION STUDY

I.1 EXPERIMENTS ON TEXT ENCODER

Table 14: Results of ablation study on different text encoders.

Methods FAD ↓ KLD ↓ CLAP ↑ OVL ↑ REL ↑
MultiBand (T5) 3.03 1.26 0.55 87.66±1.34 87.95±0.79
MultiBand (CLAP) 3.31 1.34 0.41 85.36±1.57 86.03±1.39
MultiBand (BERT) 3.12 1.29 0.49 87.02±0.84 87.21±0.83
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Figure 11: The statistics of global routing and acoustic routing in Band-MOE.

For the text encoder, following previous work (Zhiqing et al., 2024), we test FLAN-T5-large (Chung
et al., 2024), BERT-large (Devlin et al., 2018), and the text encoder of CLAP (Elizalde et al., 2023).
Table 14 shows that we test MultiBand without inputting lyrics or music scores. It can be seen that T5
outperforms the other two text encoders in both quality and relevance, but has only a slight advantage
over BERT, which is likely due to its larger parameter count and multi-task capability.

I.2 EXPERIMENTS ON MOE

To demonstrate the effectiveness of our MOE, we conducted experiments on the final routing behavior.
As shown in Figure 11 (a), we can observe that our global routing behaves as expected. As the
noise level decreases, the weighting of outputs from Aligned MOE and Controlled MOE changes
accordingly: 1) At early time steps (near 0), where the hidden representation h is highly noisy,
the network prioritizes matching with the vocal for coherent reconstruction, thus the weight of the
Aligned MOE is higher. 2) At later time steps (near 1), where h has been largely reconstructed, the
network focuses more on refining stylistic details, relying heavily on text prompts, thus the weight of
the Controlled MOE is higher.

As shown in Figure 11 (b), the Acoustic MOE also behaves as expected by assigning different experts
to different channels. We encode the mel-spectrogram into 20 dimensions through the Aligned
Accomp Encoder, resulting in 20 channels and selecting experts for each channel. We perform a
statistical analysis of the softmax output probabilities before expert selection. 1) Expert 1 focuses
on channels 0 to 7, which include instruments that provide foundational rhythm and depth, such as
bass guitars, kick drums, low-frequency percussion, and the lower registers of piano and organ. 2)
Expert 2 specializes in channels 4 to 12, capturing the richness of rhythm guitars, mid-range piano
notes, and various percussion instruments that contribute to the fullness and body of the music. 3)
Expert 3 targets channels 9 to 16, encompassing lead guitars, higher piano octaves, string instruments,
and brass instruments. This allows the model to capture melodic elements and intricate harmonics
that enhance the expressiveness of the accompaniment. 4) Expert 4 is assigned to channels 14 to
19, focusing on cymbals, hi-hats, flutes, and high-frequency string overtones that contribute to the
brightness and airiness of the music.

J LIMITATIONS AND FUTURE WORK

In this section, we discuss two main limitations of MultiBand and provide potential strategies to
address them in future work:

• Model Complexity. To achieve comprehensive controllability and high-quality multi-task
song generation based on various prompts, MultiBand utilizes four sub-models to generate
different components of a song, relying on multiple infrastructures like the flow-based
transformer and VAE. This results in cumbersome training and inference procedures. Future
work will explore the possibility of using a single model to achieve the same multi-task
generation capabilities and controllability.

• Language Diversity. Our sampled dataset only includes songs in Chinese and English,
lacking diversity. In the future, we will attempt to build a larger and more comprehensive
dataset to enable a wider range of application scenarios.
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