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Abstract

In order for agents in multi-agent systems (MAS)
to be safe, they need to take into account the risks
posed by the actions of other agents. However, the
dominant paradigm in game theory (GT) assumes
that agents are not affected by risk from other
agents and only strive to maximise their expected
utility. For example, in hybrid human-AI driving
systems, it is necessary to limit large deviations in
reward resulting from car crashes. Although there
are equilibrium concepts in game theory that take
into account risk aversion, they either assume that
agents are risk-neutral with respect to the uncer-
tainty caused by the actions of other agents, or
they are not guaranteed to exist. We introduce a
new GT-based Risk-Averse Equilibrium (RAE)
that always produces a solution that minimises the
potential variance in reward accounting for the
strategy of other agents. Theoretically and empiri-
cally, we show RAE shares many properties with a
Nash Equilibrium (NE), establishing convergence
properties and generalising to risk-dominant NE
in certain cases. To tackle large-scale problems,
we extend RAE to the PSRO multi-agent rein-
forcement learning (MARL) framework. We em-
pirically demonstrate the minimum reward vari-
ance benefits of RAE in matrix games with high-
risk outcomes. Results on MARL experiments
show RAE generalises to risk-dominant NE in a
trust dilemma game and that it reduces instances
of crashing by 7x in an autonomous driving set-
ting versus the best performing baseline.

1. Introduction
Game Theory (GT) is a fundamental tool for resolving prob-
lems within multi-agent systems (MAS) (Wellman, 2006).
Formalising scenarios in MAS as games allows practitioners
to model stable outcomes in real-world settings by com-
puting equilibrium solutions. A core challenge for MAS
research is building systems that perform effectively while
mitigating the risk of adverse events for the agents within
the system. In particular, as the level of integration with
humans and AI agents increases, it becomes increasingly
important to avoid dangerous events for humans i.e. car
crashes (Gal & Grosz, 2022). In AI-only systems, risk can
come in the form of agents taking low probability yet dan-
gerous strategies (e.g. ϵ-greedy policies outside of training
(Mnih et al., 2015)). Human-AI MAS differ markedly from
those of simulated systems that involve computerised agents
only, however the problem remains the same – humans
are prone to execution errors, a trait that seldom applies to
computerised agents (Gal & Grosz, 2022). Tackling this
challenge requires equilibrium concepts that can account for
all possible rewards dependent on other agents’ actions and,
enable agents to adopt risk-averse strategies in response.

There are two prominent approaches in GT that propose
equilibrium concepts that address risk: Trembling Hand
Perfect Equilibrium (THPE) (Bielefeld, 1988) and Quantal
Response Equilibrium (QRE) (McKelvey & Palfrey, 1995)).
However, due to the linearity of expected utility (EU) these
concepts can undervalue comparatively large costs with low
probability given an agent’s tolerance for risk, which under-
mines their ability to successfully resolve notions of safety
and risk in various practical MAS (e.g. crashing has a large
negative utility). For example, as demonstrated in Fig.1, a
probability of 0.01% of Player 2 Overtaking only impacts
Player 1’s EU by 0.5. Therefore, based on EU, Overtaking
is preferable for Player 1, however exposing it to the possi-
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Stay in Lane Overtake

Stay in 
Lane 5, 5 0, 20

Overtake 20, 0 -50, -50

Risk-Averse: Variance caused by opponent Overtaking low

Not Risk-Averse: Variance caused by opponent Overtaking high

Figure 1. Two cars are rewarded for reaching their destination quickly. They are stuck behind slow tractors but can stay in their lanes
and arrive slowly. They can also overtake the tractors to arrive quickly, but if both overtake they will cause large delays, leading to large
negative payoffs.

bility of congestion in the middle of the road. Furthermore,
it is difficult to control the level of risk-aversion in these
frameworks as they are defined only in terms of EU.

Other approaches characterise risk in terms of con-
cave/convex utility functions and study convergence to clas-
sical GT equilibria. In Fiat & Papadimitriou 2010, different
attitudes to risk are theoretically considered, in particular a
risk-averse variant based on including variance in the utility
function similar to our proposal. However, they find that
almost all of their risk-adjusted games will not have mixed
Nash equilibrium. Even if the risk adjusted game does have
a mixed Nash equilibrium, small mistakes made by players
in interpreting the payoffs of the game will likely cause the
equilibrium to be unstable. In contrast, our approach guar-
antees the existence of a risk-adjusted equilibrium. Further-
more, Fiat & Papadimitriou 2010 only provide theoretical
analyses and we are interested in practical solvers to attain
a solution.

In this paper we propose a novel equilibrium concept called
Risk-Averse Equilibrium (RAE). RAE distinguishes itself
from THPE and QRE by including the second moment (vari-
ance) of the utility function with respect to the strategies
of other agents. Unlike these approaches RAE has a risk-
aversion parameter explicitly controlling the amount of risk
an agent is willing to accept. This places larger emphasis
on deviations from expected utility, where variance in RAE
values the 0.01% Overtake probability in Fig. 1 at 47.6γ
(vs. 0.5), where γ > 0 and generally at minimum 0.1, see
Appendix G. We show that RAE can be computed using
numerical and iterative methods, unlike the theoretical ap-
proaches in (Fiat & Papadimitriou, 2010), which unlock
its ability to resolve modelling large-scale MARL games
simulating real-world settings. We also show that, for any
desired expected utility, RAE minimises the corresponding
variance. In other words, RAE reduces highly adverse out-
comes caused by the actions of other agents in the system.

To demonstrate the benefits of RAE, we perform a series
of experiments in risky matrix games, and two larger-scale
MARL problems which are closer to real-world scenarios:
a grid-world Stag-Hunt trust dilemma, and an autonomous
driving scenario. Our results validate our theoretical ad-
vances on risky matrix games by showing that the RAE
solutions provide the same EU as our baselines, whilst be-
ing safer in providing lower variance. In the Stag-Hunt
MARL setting, RAE outperforms the baselines and arrives
at the safe solution but the other methods do not. In the
autonomous driving setting, RAE reduces crashes 7x in test
episodes as compared with the best performing baseline
equilibrium.

Our contributions are:

1. We propose RAE, a new solution concept that accounts
for expected utility (EU) and utility variance (UVar) in
determining a strategy (Sec. 3).

2. We prove that RAE’s strategy is the minimum variance
solution (Prop. 3.2) and we prove RAE’s existence
(Thrm. 3.3).

3. We introduce two solvers to compute RAE in small
action spaces (Sec 4.1) and large action spaces (Sec.
4.2).

4. We validate RAE on risky matrix games (Sec. 5.1) and
in experiments on two MARL settings: a grid-world
Stag-Hunt (Sec. 5.2) and autonomous driving scenario
(Sec. 5.3), where RAE outperforms state-of-the-art GT
approaches THPE, QRE and simple NE.

2. Related Work
Risk in GT: Baselines Harsanyi et al. 1988 introduced
risk-dominant Nash equilibria (NE) (Nash, 1951), which,
when the strategies of other agents is unknown, leads to
the NE with the lowest losses if deviated from. However,
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if none of the NE are robust to risk initially, then the risk-
dominant strategy amongst NEs also will not be. THPE
(Bielefeld, 1988) models risk by having agents ’tremble’
through all actions having positive probability in a mixed-
strategy. However, iterated deletion of weakly dominated
strategies can lead to the THPE strategy being removed from
consideration. McKelvey & Palfrey 1995 introduce QRE
which accounts for potential errors in strategy selection to
more accurately represent human observed strategies. Note,
THPE and QRE utilise EU as their risk measure which is
insensitive to low probability, high-value deviations as long
as they are offset by high probability mean values (Royset,
2022). THPE, QRE and NE are baselines.

Risk in GT: Other Approaches Yekkehkhany et al. 2020
propose a mean-variance equilibrium where the variance re-
lates to reward probabilities, rather than variance caused by
the strategies of others as in RAE. Notably, in the model-free
machine learning setting reward probabilities are generally
not known, and is not within the scope of this work. Fiat
& Papadimitriou 2010 consider how NE existence is im-
pacted by non-EU maximising agents, and derive results for
multiple risk categorisations, however limit their work to the-
oretical propositions that do not extend to baselines for this
work. Risk in competitive network games (Wardrop, 1952)
is widely studied, and is based on a generalisation of the
classical selfish routing ’game’ (Beckmann et al., 1956) to
incorporate uncertain delays. The impact of mean-risk util-
ity frameworks on WE is particularly well studied (Ordóñez
& Stier-Moses, 2010; Lianeas et al., 2019; Cherukuri, 2019),
however WE is not applicable to non-network games as
studied in this work. In terms of NE, the major distinction
in risk analysis is between non-atomic (i.e. infinite agents)
and atomic (i.e. finite agents) settings. In non-atomic set-
tings Meir & Parkes 2015; Nikolova & Stier-Moses 2012 the
marginal impact in terms of risk of each agent on each other
is infinitesimal and this leads to a distinctly different analy-
sis than required in the atomic setting of this work (Nikolova
& Stier-Moses, 2014). In the atomic setting which parallels
more with our setting, Nikolova & Stier-Moses 2014 study
a mean-standard deviation model of travel time along a net-
work path, and whilst they are able to show the existence
of pure-strategy NE in exogenous risk settings, they are
unable to in endogenous risk settings concerned in our work.
Piliouras et al. 2016 also study a setting where the risk is
largely exogenous, as it is defined by randomised schedulers
which controls the ordering through congestion edges in the
network, which is not a concept in our setting and therefore
can not act as a baseline.

Risk in MARL: RAE fits broadly into risk-sensitive MARL
solutions such as: RMIX (Qiu et al., 2021) which optimises
decentralised CVaR policies in cooperative risk-sensitive
settings, RAM-Q and RA3-Q (Gao et al., 2021) utilise an
adversarial approach to promote variance reduction, or risk-

sensitive DAPG (Eriksson et al., 2022) which approaches
risk in Bayesian games in terms of the CVaR induced by the
possible combinations of types in the game. However, as
we are specifically concerned with GT-based equilibrium
concepts we will not directly compare to these methods.

GT and MARL GT and RL have overlapped in settings
where the number of actions in a game becomes too big
to write down trivially. For these games with larger ac-
tion spaces, we consider Policy-Space Response Oracles
(PSRO) (Lanctot et al., 2017; McAleer et al., 2020; Perez-
Nieves et al., 2021; Feng et al., 2021; McAleer et al., 2022b)
which generalises the Double Oracle (DO) (McMahan et al.,
2003; Dinh et al., 2022; McAleer et al., 2021) framework
from small action spaces to large action spaces by replacing
actions with RL policies. In this work, we propose a frame-
work at the overlap between risk-averse GT and risk-averse
MARL which involves adaptations to the risk-neutral frame-
works mentioned here. In future work we will investigate
applying other recent deep RL approaches for finding equi-
libria (Perolat et al., 2022; McAleer et al., 2022a; Sokota
et al.) to our solution concept.

3. Risk-Averse Equilibrium Framework
We introduce RAE and detail its derivation from a mean-
variance utility function. We derive key properties of RAE
which characterise the two following important benefits: 1.
RAE is a minimum risk solution 2. The existence of RAE
for any finite N-player game (under standard conditions).

3.1. RAE Derivation

We begin by describing the underlying formalism of a nor-
mal form game (NFG). An NFG is the standard representa-
tion of strategic interaction in GT. A finite n-person NFG
is a tuple (N,A, u), where N is a finite set of n players,
A = A1×, ...,×An is the joint action profile, with Ai being
the actions available to player i, and u = (u1, ..., un) where
ui : A → R is the real-valued utility function for each
player. A player plays a mixed-strategy, σi ∈ ∆Ai , which
is a probability distribution over their possible actions. In
Sec. 4.2 we replace atomic actions with neural networks and
will therefore re-define our notation to keep clarity between
the two game schemes.

The objective of RAE is to provide an equilibrium solu-
tion that is robust to other agents taking any action. Our
approach considers both the EU (mean) and the potential
UVar caused by an opponent’s strategy, in particular noting
that all actions may be taken by the opponent as if mistakes
(low probability actions) can happen. Whilst low probability
actions are not literally mistakes, they are simply a techni-
cal device to mimic the idea of a mistake, as described in
Bielefeld 1988.
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For simplicity, we provide definitions based on playing
a symmetric game, such that two players share an action
set A, and a utility function u. We extend this to the non-
symmetric case in Appendix K.1. Define the utility of action
ai ∈ A against action aj ∈ A as u(ai, aj) and the full utility
matrix as M, where the entry Mi,j refers to u(ai, aj) and
Mi refers to u(ai, aj) ∀j, i.e. the vector of utilities that
action ai receives against all other actions. We now define
the expected utility of the mixed-strategy for player 1 σ
versus the mixed strategy for player 2 ς as

u(σ, ς,M) =
∑
ai∈A

∑
aj∈A

σ(ai)ς(aj)u(ai, aj)

= σT ·M · ς.
(1)

The weighted co-variance matrix for M (i.e. the UVar val-
ues) is a |A| × |A| matrix ΣM,ς = [cij ] with entries

cjk =
∑
ai∈A

ς(ai)
(
u(ai, aj)− M̄j

)(
u(ai, ak)− M̄k

)
,

(2)
where M̄i =

∑|A|
k=1 ςku(ai, ak) is the EU for action i

given the opponent mixed-strategy ς . This is a standard
co-variance matrix, but the entries are weighted by the like-
lihood of them being selected by the opponent. A uniform
weighting could be used, however we hypothesise that in
terms of minimising UVar it is more appropriate to hedge
against the variance caused by higher likelihood actions.
Due to the nature of Eq. 5, all actions will, by design, re-
ceive positive probability (> ϵ) under our framework and
therefore will always provide some weight in the variance
calculation, leading to low likelihood high-variance actions
still having a large impact. This accounts for the central con-
cept of RAE, that safe play should account for all actions.
This allows us to define the mixed-strategy σ UVar as:

Var(σ, ς,M) =

|A|∑
k=1

|A|∑
n=1

σ(ak)σ(an)ckn

= σT ·ΣM,ς · σ.
(3)

The total utility function r which considers EU and UVar
for mixed-strategy σ is,

r(σ, ς,M) = u(σ, ς,M)− γVar(σ, ς,M), (4)

where γ ∈ R is the risk-aversion parameter.

Applying Eq. (4) to Fig. (1) we show why the utility func-
tion 4 is desirable. Consider two joint strategy profiles,
S1 = ((1 − ϵ, 0 + ϵ), (1 − ϵ, 0 + ϵ)) and a THPE S2 =
((0+ ϵ, 1− ϵ), (1− ϵ, 0+ ϵ)) where (1− ϵ, 0+ ϵ) represents
playing Stay in Lane with probability (1− ϵ). ϵ = 0.01 for
this example. Profile S1 receives u(S1) ≈ 5 and the THPE
profile receives u(S2) ≈ 20. However, Var(S1) = 0.32

and Var(S2) = 47.6, i.e. the THPE strategy has huge
variance for Player 1. Therefore, r(S1) ≈ 5 − 0.32γ and
r(S2) ≈ 20 − 47.6γ and we have for any risk-aversion
parameter γ > 0.32 it is optimal to play S1.

To define RAE, we first define the best-response map:

σ∗(ς) ∈ argmax
σ

r(σ, ς,M)

s.t. σ(a) ≥ ϵ ,∀a ∈ A

σT 1 = 1,

(5)

where due to the quadratic term σT · ΣM,ς · σ and the con-
straints (ϵ > 0), we have a Quadratic Programming (QP)
problem. The programme finds σ∗ such that the total utility
is maximised, whilst ensuring no actions are assigned neg-
ative probability, and that the probabilities sum to one. Fi-
nally, based on Eq. (5) we are able to define RAE:

Definition 3.1 (RAE). A strategy profile {σ, ς} is a risk-
averse equilibrium if both σ and ς are risk-averse best re-
sponses, in that they satisfy Eq. 5, to each other.

3.2. RAE Properties

The first property of RAE is that, given an opponent’s strat-
egy ς , one’s owns strategy σ is the minimum UVar solution
available given their desired EU µb:

Proposition 3.2. Given ς and any desired EU µb, there
exists a γ such that the solution to Eq. 5 receives µb with
the minimum possible UVar.

Proof deferred to Appendix A.1. The consequence of this
proposition matches with the goal of RAE - to provide a
minimum risk solution given the level of risk tolerance of
the user. γ is used to select how much EU µb is desired and,
given the opponent’s strategy ς , there is no other solution
that can provide better risk performance than RAE. The
main downside of this is that γ is a hyper-parameter and it
may be difficult to know prior to training how it will exactly
match to µb. We would expect that games that share similar
reward distributions would share similar risk-variance trade-
offs under the same values of γ. Therefore, one way to
select γ is to use restricted and unrestricted versions of
environments that share similar reward distributions. One
can train on the restricted version more readily, and transfer
the γ results to the harder unrestricted version. In Appendix
C we show over a range of NFG dimension sizes, with
rewards drawn from the same distribution, that EU and Var
remain mostly consistent across values of γ and dimension,
suggesting the proposed approach is feasible.

Secondly, a common property of most GT equilibrium is
that a solution exists, at least in the finite game setting. For
RAE, we note the following result in mixed-strategies:

Theorem 3.3. For any finite N-player game where each

4
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𝗠t σt Best Response OracleRAE Solver

σt(ς) ∈ argmaxσu(σ, ς, M) − γ Var(σ, ς, M) ϕBR(σt) = argmaxϕ

t

∑
k=1

σk
t u(ϕ, ϕk) − γ Var(ϕ, ϕk)

ϕBR

PSRO Inner Loop

Σ𝗠t

… ΦT = {ϕ1, ϕ2, …, ϕT}Φ3 = {ϕ1, ϕ2, ϕ3}
PSRO Outer Loop

Φ2 = {ϕ1, ϕ2}

Meta-Game t

Covariance Matrix t
ϕBR

Meta-Game t + 1

Covariance Matrix t + 1

ϕBR

ϕBR
𝗠t+1

Σ𝗠t+1

Sec. 4.3a

Sec. 4.3b Sec. 4.3c

Sec. 4.3d

Sec. 4.2.1

Figure 2. PSRO-RAE. Each element points to a corresponding subsection in the text, denoted in blue boxes. Note that u(·) and Var(·) are
overloaded to represent utility/variance between distributions over a population or utility/variance between two policies.

player i has a finite k number of pure strategies, Ai =
{ai1, ..., aik}, an RAE exists.

We defer the proof of the result to Appendix A.2. By estab-
lishing the existence of RAE solutions we have validated
the practical relevance of RAE.

4. Finding RAE
This section proposes two solvers to find RAE, with stochas-
tic fictitious play (SFP) for small action-spaces in Sec. (4.1)
and with PSRO-RAE for large action-spaces in Sec. 4.2.

4.1. Stochastic Fictitious Play

We start by showing that our total utility function is a form
of SFP (Fudenberg & Kreps, 1993) which can find an RAE
in small NFGs. SFP has convergence guarantees in a se-
lection of games, e.g. potential games (Monderer & Shap-
ley, 1996a;b) and finite two-player zero-sum games (Robin-
son, 1951). Furthermore, SFP is also robust empirically in
terms of convergence in game classes (Goldberg et al., 2013;
Ganzfried, 2020) not listed, and we mirror these observa-
tions in Appendix B.

SFP is a learning process where players choose a best re-
sponse to others time-average strategies. In SFP, a group of
n ≥ 2 players repeatedly play a n−player NFG. The state
variable is Zt ∈ ∆S , whose components Zi

t describe the
time averages of each player’s behaviour,

Zi
t =

1

t

t∑
u=1

σi
t

where σi
t ∈ ∆Ai represents the observed strategy of player i

at time-step t. Each player best responds to the time-average
strategy of their opponent, Z−i

t , by maximising a perturbed

utility function ū

σi
t+1 = argmax

σ
ū (6)

= argmax
σ

ui(σ, Z−i
t ,M)− λvi(σ) (7)

where vi(σ) : ∆A → R perturbs ui such that it is strictly
concave (unique global maximum) whilst applying greater
than zero probability to all actions.

Proposition 4.1. Replacing the best-response Eq. (6) with
the best-response map Eq. (5) satisfies the conditions of ūi

for a SFP process.

Note, SFP does not necessarily converge in all game classes
(but is robust empirically, see Appendix B). Therefore, we
show that if the SFP process does converge to a strategy
then that strategy is an RAE.

Proposition 4.2. Suppose the SFP sequence {Zt} con-
verges to σ in observed strategies 1, then σ is a risk-averse
equilibrium.

Note for SFP we require a stronger notion of convergence
in observed strategies σi

t rather than in beliefs Zi
t , but a

converged final σi
t is a risk-averse equilibrium.

4.2. PSRO-RAE

For games that can’t be displayed in the normal-form, we ex-
tend the iterative solution framework PSRO (Lanctot et al.,
2017) to RAE, which uses RL policies as proxies for ac-
tions. PSRO-RAE approximates equilibria in large games
by finding a small representative collection of risk-averse

1Convergence in time-average Zt does not imply convergence
in the actual strategy taken at each t, but may imply cyclic actual
behaviour that results in average behaviour converging.
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Figure 3. a) SFP on NFGs with 100 actions, b) PSRO on NFGs with 500 actions. Final EU vs. UVar results. RAE values for multiple γ
form an efficient frontier (Markowitz, 1991) and show that, whilst baselines achieve similar EU they have large UVar solutions. In Fig. a)
we exclude the payoff dominant NE result as its UVar was too large, whilst in Fig. b) we exclude the THPE result for the same reason.

RL policies which are sampled by RAE. Whilst PSRO does
not have any practical convergence guarantees (in the limit
all policies may be found and displayed in the normal-form,
allowing for an exact solution), PSRO generally finds strong
solutions without requiring all potential policies (Perez-
Nieves et al., 2021; Feng et al., 2021; McAleer et al., 2022c).
We provide a visualisation of the PSRO-RAE process in Fig.
(2), and provide an algorithm in Appendix F.

Consider two-player stochastic games G defined by the
tuple {S,A,P,G}, where S is the set of states, A = A1 ×
A2 is the joint action space, P : S × A × S → [0, 1] is
the state-transition function and G = {g1, g2} is the set of
rewards where gi : S ×A → R is the reward function for
player i (we use reward for MARL settings, and utility for
NFG settings). An agent is a policy ϕ, where a policy is a
mapping ϕ : S×A → [0, 1] which can be described in both
a tabular form or as a neural network. The expected reward
between two agents is defined to be M(ϕi,ϕj) (i.e., in the
same manner defined for NFGs in Sec. 3.1), and represents
the expected reward to agent ϕi against opponent ϕj .

4.2.1. PSRO OUTER LOOP

PSRO does T ∈ N+ updates on a meta-game M (an NFG
made up of RL policies as actions). At every iteration t ≤ T ,
a player is defined by a population of fixed policies Φt =
Φ0∪{ϕ1,ϕ2, ...,ϕt}, where Φ0 is the initial random policy.
For notation convenience, we consider the single-population
case where players share the same Φt, and refer the reader
to Appendix K.2 for the multi-population formulation.

4.2.2. PSRO INNER LOOP

a, d) Meta-Game & Covariance Matrix At the start of
the iteration t inner loop, each population has a meta-game
Mt, a reward matrix between all the policies in the popula-

tion, with individual entries M(ϕi,ϕj) ∀ϕi,ϕj ∈ Φt. In
addition, each population also generates a covariance matrix
ΣMt

defined by Eq. 2. At the end of iteration t inner loop,
both Mt and ΣMt

are updated to include a new policy.

b) Meta Distribution We require a way to select which
ϕt ∈ Φt will be used for training opponents. The function
f is a mapping f : Mt → [0, 1]t which takes as input a meta-
game Mt and outputs a meta-distribution σt = f(Mt). The
output σt is a probability assignment to each policy in the
population Φt, the equivalent of a mixed-strategy in a NFG,
except actions are now RL policies. We apply RAE (Def.
3.1) as the meta-solver. As ϕ are RL policies then the
policies are sampled by their respective probability in σt.

c) Best Response Oracle At each epoch Φt is augmented
with a new policy that is a best-response (BR) to the meta-
distribution σt. The BR oracle aims to optimise the same
objective function of that optimised by the meta-distribution.
For example, in Vanilla PSRO, the Nash meta-distribution
optimises for environment reward and the BR oracle also
optimises a new agent in terms of EU. This can be found
with any optimisation process such as RL or an evolutionary
algorithm. In our setting the meta-distribution optimises
two metrics, the EU and the UVar, and therefore, we need a
BR oracle that optimises the same dual objective.

In terms of RL quantities, this translates to maximising the
expected total reward (i.e. the total of the per-step rewards)
whilst minimising the variance of the total reward caused by
the sampling of different RL agents from σt.

To achieve this, we follow the approach of (Zhang et al.,
2021) that optimises both the total reward and per-step re-
ward variance by solving an augmented MDP where the
per-step reward git is replaced by:

6
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Num. Stag Catch Num. Stag Gore Num. Plant Gather

Self-Play 28.81 ± 0.78 2.81 ± 1.00 1.19 ± 0.09

PSRO-Uniform 25.79 ± 1.24 6.84 ± 0.69 1.24 ± 0.28

PSRO-THPE 27.48 ± 1.22 4.49 ± 1.15 1.17 ± 0.23

PSRO-QRE 26.9 ± 0.75 4.89 ± 0.51 1.24 ± 0.11

PSRO-Nash 28.11 ± 2.13 4.42 ± 0.98 1.09 ± 0.21

PSRO-RAE (Ours) 0.48 ± 0.19 5.65 ± 0.72 19.87 ± 0.86

Num. Stag Catch Num. Stag Gore Num. Plant Gather

Self-Play 28.81 ± 0.78 2.81 ± 1.00 1.19 ± 0.09
PSRO-Uniform 25.79 ± 1.24 6.84 ± 0.69 1.24 ± 0.28

PSRO-THPE 27.48 ± 1.22 4.49 ± 1.15 1.17 ± 0.23 
PSRO-RAE (Ours) 0.48 ± 0.19 5.65 ± 0.72 19.87 ± 0.86

PSRO-QRE 26.9 ± 0.75 4.89 ± 0.51 1.24 ± 0.11
PSRO-Nash 28.11 ± 2.13 4.42 ± 0.98 1.09 ± 0.21 
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Figure 4. Stag-hunt environment results. A) The environment B) Intra-distribution results, e.g. both agents are controlled by a PSRO-RAE
population C) Cumulative results over 1000 test episodes for a PSRO-RAE population vs. PSRO-Nash population.

ĝit = git − λ(git)
2 + (2λgityi)

where yi = 1
T

∑T
t=1 g

i
t is the average of the per-step re-

wards during the data collection phase.

We choose the per-step reward as it is an upper bound of the
total reward variance (Bisi et al., 2020), therefore reducing
per-step variance will also reduce total variance, and is more
effective computationally (Zhang et al., 2021). Additionally,
as this variance is also with respect to the sampling proba-
bility defined by σt this optimises the correct co-variance
matrix which is also weighted by σt.

5. Experiments and Results
We validate RAE through three questions: 1) Does RAE find
lower UVar solutions than baselines? 2) Do RAE strategies
overlap with risk-dominant NE in some scenarios? 3) Are
RAE strategies safe in a safety-critical driving scenario?
Full experimental details in Appendix H.

5.1. Does RAE find lower UVar solutions than
baselines?

Motivation/Overview Prop. 3.2 shows RAE can find a
spectrum of solutions encompassing many EU values, whilst
minimising the corresponding UVar. Therefore, if RAE can
match the baseline’s EU, whilst achieving lower UVar, then
RAE is a better solution if safety is of concern.

Baselines NE (including risk/payoff dominant), THPE and

QRE introduced in Sec. 2.

Experiment: Matrix Coordination Games NFGs where
some actions provide a high EU if other agents select them,
but have large costs if not. Other actions have lower coor-
dinated EU but lower costs. These games are designed to
highlight the issues of focusing on EU and ignoring UVar.

Results Results in Fig. (3), where (A) represents games with
100 actions solved using SFP (Sec. 4.1), and (B) represents
games with 500 actions solved using PSRO (Sec. 4.2. We
plot RAE solutions for multiple values of γ to generate a
theoretical efficient frontier. An efficient frontier shows for
values of EU what is the minimum possible UVar. Our
results show that, whilst the baselines achieve a diverse
range of EU values, they are unable to find the minimum
UVar solution which RAE finds. This shows the strong
flexibility of our approach, in that it is able to attain any EU
that the baselines can achieve, whilst finding a lower UVar
solution. This suggests that, if safety is of concern, then
RAE is a better choice as any desired EU can be achieved
whilst achieving a lower UVar than any of our baselines.

5.2. Are RAE strategies risk-dominant?

Motivation In some scenarios, it is likely that the only
viable solutions overlap with the set of NE (for example,
in trust dilemmas). Therefore, in these scenarios, if RAE
finds safe solutions, we would expect that the RAE solutions
would overlap with the risk-dominant NE solutions.

Experiment: MDP Stag-Hunt: We use an MDP-
based adaptation of a classic trust dilemma game from

7
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Eqm Reward Eqm Variance Worst-Case Num. Crashes Num. Arrivals
PSRO-Nash 0.85 ± 2.64 1.51 ± 0.24 -4.84 ± 5.76 39.5 ± 2.12 10.5 ± 2.12

PSRO-Uniform -0.69 ± 0.87 1.70 ± 0.09 -7.00 ± 2.01 42 ± 2.81 8.00 ± 2.83
PSRO-THPE 0.34 ± 1.29 1.60 ± 0.14 -5.32 ± 3.40 41.5 ± 2.16
 8.50 ± 2.12
PSRO-QRE 1.60 ± 0.97 1.44 ± 0.13 -2.84 ± 0.94 43 ± 2.85 7.00 ± 2.85

Self-Play 0.97 ± 2.14 1.53 ± 0.12 -4.80 ± 5.92 38.5 ± 4.95

±

11.50 ± 4.95
PSRO-RAE (Ours) 4.36 ± 2.07 0.33 ± 0.004 0.10 ± 2.68 5.5 ± 0.71
 46.00 ± 1.41

(a)

(b) (c)

Eqm Reward Eqm Variance Worst-Case Num. Crashes Num. Arrivals
Self-Play 0.97 ± 2.14 1.53 ± 0.12 -4.80 ± 5.92 38.5 ± 4.95 11.50 ± 4.95

PSRO-Uniform -0.69 ± 0.87 1.70 ± 0.09 -7.00 ± 2.01 42 ± 2.81 8.00 ± 2.83
PSRO-THPE 0.34 ± 1.29 1.60 ± 0.14 -5.32 ± 3.40 41.5 ± 2.16 8.50 ± 2.12
PSRO-QRE 1.60 ± 0.97 1.44 ± 0.13 -2.84 ± 0.94 43.0 ± 2.85 7.00 ± 2.85
PSRO-Nash 0.85 ± 2.64 1.51 ± 0.24 -4.84 ± 5.76 39.5 ± 2.12 10.5 ± 2.12
PSRO-RAE 

(Ours) (Ours)
4.36 ± 2.07 0.33 ± 0.01 0.10 ± 2.68 5.5 ± 0.71 46.00 ± 1.41

A) Intra-Distribution Results

B) PSRO-RAE Average Position Heatmap C) PSRO-Nash Average Position Heatmap

Figure 5. A) Results on 50 episodes over 5 seeds for intra-distribution testing, e.g. both agents controlled by PSRO-RAE B) Average
position heatmap for PSRO-RAE solution over 200 episodes C) Average position heatmap for PSRO-Nash solution over 200 episodes.

(Peysakhovich & Lerer, 2018) where there is a payoff-
dominant equilibrium (chasing the stag) and a risk-dominant
equilibrium (gathering plants).

Baselines As this is a MDP task we integrate Nash, Uniform,
Self-Play, THPE, QRE, described in Sec. 2 and Appendix I,
as the meta-distributions in the PSRO framework, denoted
as e.g. PSRO-{Nash}. In this setting we limit our base-
lines to PSRO-{Variant} algorithms, and do not consider
non-population risk-aversion algorithms (standard in PSRO
literature). Full details in Appendix I.

Results Fig. (4B) shows all baselines arrive at the payoff-
dominant stag catching strategy, whereas RAE arrives at the
’risk-dominant’ plant gathering strategy. The baselines solu-
tion is risky due to its susceptibility to coordination failure
i.e. when only one agent hunts the stag. This could occur
frequently, for example, in situations where agents are not
able to communicate with each other, or agents do not know
each others strategies. For example, we show this by plac-
ing a PSRO-RAE population and a PSRO-Nash population
into the environment together as co-players, shown in Fig.
(4C). The Nash population still attempts to hunt the stag
(unable to communicate, has a fixed strategy), but in this
case the RAE population is still gathering plants - leading
to the Nash population being caught by the stag many times,
and the RAE population remaining safe.

5.3. Are RAE strategies safe?

Motivation RAE is designed to avoid strategies that are
overly susceptible to other agent’s strategies by limiting
UVar. We examine how RAE acts in a larger-scale MARL
autonomous driving setting where avoiding any large nega-
tive outcome (e.g. crashing) is critical, in particular in the
presence of strategies that can look overly advantageous
unless coordination between agents fails.

Experiment: Autonomous Driving Scenario (Leurent,
2018): MDP recreation of Fig. (1) scenario; two-way traffic
with slow-moving vehicles and faster moving agents behind
that may be interested in overtaking.

Baselines MDP task, refer to Sec. 5.2.

Results Results are in Fig. (5), with results for a larger-scale
representation of the environment (by increasing the num-
ber of vehicles from 6 to 25) in Appendix E. In Table (5A)
we provide a collection of environment metrics where the
average value is based on 50 environment episodes and the
standard deviation is from 5 training seeds. In terms of EU
and UVar, RAE actually outperforms the baselines consid-
erably, whilst maintaining strong worst-case performance.
Notably, RAE arrives at a strategy that very rarely crashes,
and nearly always arrives at the final destination. The same
conclusion can not be drawn for the baselines which often
crash and fail to reach the destination. To understand this
better, in Fig. (5B, C) we provide position heat-maps of a
PSRO-RAE and a PSRO-Nash car respectively. RAE exe-
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cutes the safe strategy, i.e. follow behind until all vehicles
in the on-coming lane have passed and then proceeds to
overtake. This strategy remains sensitive to the risk-element
of the environment, overtaking and crashing, which is our
desired outcome. On the other hand, the Nash strategy over-
takes straight away and nearly always ends up in a crash
due to congestion in the middle of the road.

6. Conclusion
We introduce a new risk-averse equilibrium, RAE, based
on agents considering the variance of the utility function
alongside the expected value. Theoretically, we prove the
existence and solvability of RAE and provide methods for
arriving at an RAE in both small and large-scale game set-
tings. Empirically, we show that our RAE is able to locate
minimum variance solutions for any EU, act as a NE selec-
tion method in the presence of risk-dominant NE, and is
effective at finding a safe equilibrium in a safety-sensitive
autonomous driving environment. Avenues for future work
should focus on the limitations of the current RAE approach,
namely non-convergence guarantees in certain classes of
games and the fact that RAE minimises upside and down-
side variance, where minimising downside variance only
would be a desirable property.

9
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A. Full Proofs
A.1. Proposition 3.2 [Minimum Variance Solution]

The solution to the Eq. 5 provides the same solutions to the following:,

σ∗ ∈ argmin
σ

σT · ΣM · ς

s.t. σT ·M · σ ≥ µb

σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(8)

where µb ∈ R is the lowest level of expected return that the actor is willing to accept.

Proof. (Merton, 1972) shows by a Lagrange multiplier argument that the optimisation problem,

σ∗ ∈ argmin
σ

σT · ΣM · σ

s.t. σT ·M · ς ≥ µb

σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(9)

can be rewritten as
σ∗ ∈ argmin

σ
σT · ΣM · σ − τ

(
σT ·M · ς

)
s.t. σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(10)

which can be equivalently expressed as,

σ∗ ∈ argmin
σ

−
(
σT ·M · ς − λσT · ΣM · σ

)
s.t. σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(11)

where λ = 1
τ .

A.2. Theorem 3.3 [RAE Existence]

For any finite N-player game where each player i has a finite k number of pure strategies, Ai = {ai1, ..., aik}, an RAE exists

Proof. We base our proof on Kakutani’s Fixed Point Theorem

Lemma (Kakutani Fixed Point Theorem). Let A be a non-empty subset of a finite dimensional Euclidean space.
Let f : A ⇒ A be a correspondence, with x ∈ A 7−→ f(x) ⊆ A, satisfying the following conditions:

1. A is a compact and convex set.

2. f(x) is non-empty for all x ∈ A.

3. f(x) is a convex-valued correspondence: for all x ∈ A, f(x) is a convex set.

4. f(x) has a closed graph: that is, if {xn, yn} → {x, y} with yn ∈ f(xn), then y ∈ f(x).

12
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Then, f has a fixed point, that is, there exists some x ∈ A, such that x ∈ f(x).

We define our best-response function as Bi(σ−i) = argmaxa∈∆i
ri(a,σ−i) where ui is defined as in Eq. (5) and by

definition s must satisfy all of the properties of a proper mixed-strategy, and the best-response correspondence is B : ∆ ⇒ ∆
such that for all σ ∈ ∆, we have:

B(σ) = [Bi(σ−i)]i∈N (12)

We show that B(σ) satisfies the conditions of Kakutani’s Fixed Point Theorem

1. ∆ is compact, convex and non-empty.

By definition
∆ = Πi∈N∆i (13)

where each ∆i = {a|
∑

j aj = 1} is a simplex of dimension |Ai| − 1, thus each ∆i is closed and bounded, and thus
compact. Their product set is also compact.

2. B(σ) is non-empty.

By the definition of Bi(σ−i) where ∆i is non-empty and compact, and ri is a quadratic and hence a polynomial
function in a. It is known that all polynomial functions are continuous, we can invoke Weirstrass’s Extreme Value
Theorem which states

Lemma. If a real valued-function f is continuous on the closed interval [a, b], then f must attain a maximum and a
minimum, each at least once. That is, there exist numbers c and d in [a, b] such that:

f(c) ≥ f(x) ≥ f(d) ∀x ∈ [a, b]

Therefore, as ∆i is non-empty and compact and ri is continuous in a, Bi(σ−i) is non-empty, and therefore B(σ) is
also non-empty.

3. B(σ) is a convex-valued correspondence.

Equivalently, B(σ) ⊂ ∆ is convex if and only if Bi(σ−i) is convex for all i.

In order to show that Bi(σ−i) is convex for all i, we instead show that the Quadratic Programme defined by Eq. (6) is
a special case of convex optimisation under certain conditions, and therefore by definition has a feasible set which is a
convex set.

A convex optimisation problem is one of the form,

minimize f0(x)

s.t. fi(x) < 0, i = 1, ...,m

aTi x = bi, i = 1, ..., p

(14)

where f0, ..., fm are convex functions. The requirements for a problem to be a convex optimisation problem are:

(a) the objective function must be convex
(b) the inequality constraint functions must be convex
(c) the equality constraint functions hi(x) = aTi x = bi must be affine

We note that a quadratic form xTAx is convex if A is positive semi-definite, and strictly convex if A is positive
definite. In our constrained optimisation, the quadratic term σTΣσ is always guaranteed to be at least convex as Σ, the
covariance matrix, is always at least PSD. Therefore, our objective function is convex. Additionally, it is easy to see
that our inequality constraint functions are also convex and that our equality constraint function is affine. Therefore,
our Quadratic Programme is an instance of a convex optimisation problem.

Importantly, the feasible set of a convex optimisation problem is convex, since it is the intersection of the domain of the
problem

13
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D =

m⋂
i=0

domfi, (15)

which itself is a convex set.

Therefore, for all members of the feasible set x, y ∈ Bi(σ−i) and all θ ∈ [0, 1] we have that θx+ (1− θ)y ∈ S and
we have a convex-valued correspondence.

4. B(σ) has a closed graph.

Suppose to obtain a contradiction, that B(σ) does not have a closed graph. Then, there exists a sequence (σn, σ̂n)→
(σ, σ̂) with σ̂n ∈ B(σn), but σ̂ /∈ B(σ), i.e. there exists some i such that σ̂i /∈ Bi(σ−i). This implies that there
exists some σ′

i ∈ ∆i and some ϵ > 0 such that

ri(σ
′
i,σ−i) > ri(σ̂i,σ−i) + 3ϵ. (16)

By the continuity of ri and the fact that σn
−i → σ−i, we have for sufficiently large n,

ri(σ
′
i,σ

n
−i) ≥ ri(σ

′
i,σ−i)− ϵ. (17)

and combining the preceding two relations we obtain

ri(σ
′
i,σ

n
−i) > ri(σ̂i,σ−i) + 2ϵ ≥ ri(σ̂

n
i ,σ

n
−i) + ϵ (18)

where the second relation follows from the continuity of ri. This contradicts the assumption that σ̂n
i ∈ B(σn

−i) and
completes the proof.

Therefore, B(σ) satisfies the conditions of Kakutani’s Fixed Point Theorem, and therefore if σ∗ ∈ B(σ∗) then σ∗ is an
equilibrium.

A.3. Proposition 4.1 [SFP Convergence]

Replacing the best-response Eq. (6) with the best-response map Eq. (5) satisfies the conditions of ūi for a SFP process.

Proof. For the perturbed utility function ūi to be permissible in an SFP process, there exist two conditions:

1. That there exists a unique global solution to ūi.

2. That the argmax assigns strictly positive probability to all pure strategies.

We let ūi be replaced by the best-response map Eq. 5 and show that the 2 conditions noted above are met.

Condition 1 - To show that there exists a global solution to ūi we need to show that ūi is strictly concave which guarantees
a unique global maximum.

As the EU term ui(σ, Z−i
t M) is linear, we therefore require that the perturbation term vi(σ) is strictly convex such that the

perturbed utility function ūi = argmaxσ ui(σ, Z−i
t ,M)− λvi(σ) is strictly concave. In A.2 we have already shown that,

as long as the covariance matrix ΣM is positive definite, then the quadratic term σT ·ΣM · σ is strictly convex. By design,
ΣM is strictly convex and therefore ūi is also strictly concave and therefore has a unique global maximum.

Condition 2 - By design the QP that solves Eq. 5 is constrained such that all pure strategies receive strictly positive
probability (this is by design to induce mistakes in agents). Therefore, the output of the best-response map is always within
int(∆i) and condition 2 is satisfied. We show that our utility measure can be embedded as a version of stochastic fictitious
play and therefore can be used to find equilibrium in two-player zero-sum games and potential games.

14
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A.4. Proposition 4.2 [SFP is RAE]

Suppose the SFP sequence {Zt} converges to σ in the observed strategy sense 2, then σ is a Risk-Averse equilibrium.

Proof. Assume the observed strategy has converged to σ = (σ1,σ2) and that the strategy is not an RAE. This implies there
exists some σi,′ such that:

ri(σi,′,σ−i) > ri(σi,σ−i) (19)

However, because σ has converged then the SFP sequence {Zt} will also converge such that limt→∞ Zt = σ and because
we are in an SFP process it must be the case that:

ri(σi,σ−i) > ri(σi,′,σ−i) ∀σi,′ ∈ ∆i (20)

and therefore σi,′ can not be a best response to σ−i.

2Convergence in the time-average Zt does not imply convergence in the actual strategy taken at each t, but may for example imply
cyclic actual behaviour that results in average behaviour converging.
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B. SFP Robustness
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Figure 6. Euclidean distance between observed actions after each iteration on randomly generated anti-coordination games. A distance of
0 implies that the process has converged.
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Figure 7. Euclidean distance between observed actions after each iteration on randomly generated coordination games. A distance of 0
implies that the process has converged.
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Figure 8. Euclidean distance between observed actions after each iteration on randomly generated games. A distance of 0 implies that the
process has converged.
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C. γ Generalisation
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Figure 9. Expected utility values for different γ values. Each line represents a different game dimension, and is intended to show largely
similar values in terms of expected utility for a given γ across the dimensions.
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Figure 10. Variance utility values for different γ values. Each line represents a different game dimension, and is intended to show largely
similar values in terms of variance utility for a given γ across the dimensions.
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D. Figure 3 Training Curves
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Figure 11. Training curves over multiple seeds for Fig. 3.
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Figure 12. Training curves over multiple seeds for Fig. 3.
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E. Large-Scale Driving Results

Eqm Reward Eqm Variance Worst-Case Num. Crashes Num. Arrivals
Self-Play 3.47 ± 0.08 1.20 ± 0.21 -2.05 ± 0.88 50.0 ± 0.00 0.00 ± 0.00

PSRO-Uniform 3.60 ± 0.01 1.14 ± 0.06 1.49 ± 0.17 50.0 ± 0.00 0.00 ± 0.00
PSRO-THPE 3.61 ± 0.13 1.11 ± 0.18 0.99 ± 0.83 50.0 ± 0.00 0.00 ± 0.00
PSRO-QRE 3.65 ± 0.22
 0.96 ± 0.23 1.78 ± 0.50 50.0 ± 0.00 0.00 ± 0.00
PSRO-Nash 3.76 ± 0.07 1.46 ± 0.08 1.93 ± 0.03 50.0 ± 0.00 0.00 ± 0.00
PSRO-RAE 

(Ours) (Ours)
7.14 ± 0.39 3.27 ± 0.54 -3.48 ± 2.35 7.00 ± 2.00 43.00 ± 2.00

A) Intra-Distribution Results

Figure 13. Results on large autonomous driving scenario, on 50 episodes over 5 seeds for intra-distribution testing, e.g. both agents
controlled by PSRO-RAE.
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F. Pseudo-code

Algorithm 1 SFP
1: Initialise: Payoff Matrix M, uniform initial time-average strategy Z0.
2: for iteration t ∈ {1, 2, ...} do:
3: Find best-response σt to Zt via Eq. 5.
4: Update time-average strategy Zt with respect to σt.
5: Return: Final time-average strategy ZT .

Algorithm 2 PSRO-RAE
1: Initialise: the policy set Φ =

∏
i∈N Φi, meta-game M0, co-variance matrix ΣMT

2: for iteration t ∈ {1, 2, ...} do:
3: for each player i ∈ N do:
4: Compute meta-policy σt by SFP (Alg. 1).
5: Find new policy by Oracle: ϕi

t = Oi(σt).
6: Expand Φi

t+1 ← Φi
t ∪ {ϕi

t}.
7: Update meta-payoff Mt+1, co-variance matrix ΣMt+1 .
8: Return: σT and ΦT .
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G. Hyperparameter Settings

Table 1. Hyper-parameter settings for our experiments.
SETTINGS VALUE DESCRIPTION

SFP COORDINATION GAMES

ACTION DIMENSION 100 NUMBER OF PURE STRATEGIES AVAILABLE
FP ITERATIONS 100 NUMBER OF FP BELIEF UPDATES
TREMBLE PROBABILITY 0.001 PROBABILITY OF TREMBLING TO ANOTHER STRATEGY
QUANTAL TYPE SOFTMAX TYPE OF QUANTAL RESPONSE EQUILIBRIUM
# OF SEEDS 50 # TRIALS

PSRO NFG COORDINATION GAMES

ORACLE METHOD REINFORCE SUBROUTINE OF GETTING ORACLES
PSRO ITERATIONS 15 NUMBER OF PSRO ITERATIONS
ACTION DIMENSION 500 NUMBER OF PURE STRATEGIES AVAILABLE
LEARNING RATE 0.005 ORACLE LEARNING RATE
ORACLE EPOCHS 2000 ORACLE TOTAL EPOCHS
ORACLE EPOCH TIMESTEPS 100 TIMESTEPS PER ORACLE EPOCH
RAE GAMMA 0.1, 0.5 VARIANCE AVERSION PARAMETER
METASOLVER RAE SFP METASOLVER METHOD
METASOLVER ITERATIONS 100 METASOLVER ITERATIONS
# OF SEEDS 20 # OF TRIALS

STAG-HUNT GRID-WORLD

ORACLE METHOD MV-PPO (ZHANG ET AL., 2021) SUBROUTINE OF GETTING ORACLES
PSRO ITERATIONS 10 NUMBER OF PSRO ITERATIONS
GORE COST 2 COST FOR GETTING CAUGHT BY STAG
PPO HYPERPARAMS DEFAULT SB3 (RAFFIN ET AL., 2021) PPO HYPERPARAMETER VALUES
MV-PPO VARIANCE AVERSION 0.15 PPO VARIANCE AVERSION PARAMETER
RAE GAMMA 0.15 VARIANCE AVERSION PARAMETER
METASOLVER RAE SFP METASOLVER METHOD
METASOLVER ITERATIONS 100 METASOLVER ITERATIONS
# OF SEEDS 5 # OF TRIALS

TWO-WAY ENVIRONMENT

ORACLE METHOD MV-PPO (ZHANG ET AL., 2021) SUBROUTINE OF GETTING ORACLES
PSRO ITERATIONS 7 NUMBER OF PSRO ITERATIONS
PPO HYPERPARAMS DEFAULT SB3 (RAFFIN ET AL., 2021) PPO HYPERPARAMETER VALUES
MV-PPO VARIANCE AVERSION 0.5 PPO VARIANCE AVERSION PARAMETER
RAE GAMMA 0.5 VARIANCE AVERSION PARAMETER
METASOLVER RAE SFP METASOLVER METHOD
METASOLVER ITERATIONS 100 METASOLVER ITERATIONS
# OF SEEDS 5 # OF TRIALS
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H. Environments
H.1. Randomly Generated NFGs

High Risk, High Reward

7,7 3,3 1,1

4,4 9,9 2,2

0,0 -4,-4 15,15

S1

S1 S2 S3

S2

S3

Low Risk, Low Reward

Figure 14. An example of a 3 action game. Action S3 (dotted outline) provides a high return assuming successful coordination but high
variance in case the opponent does not coordinate correctly.

H.1.1. CHARACTERISTICS

1. High risk high-reward actions. In these strategies if both players play the same action then they receive a high payoff,
however if a player takes a different action then a big negative payoff is received. For example, in Fig. 14, S3 is the
high-risk high-reward strategy.

2. Low risk low-reward actions. In these strategies if both players play the same action then they receive a lower payoff,
however if a player takes a different action then a big smaller payoff is received. For example, in Fig. 14, S1 and S2 are
the low-risk low-reward strategies.

H.1.2. GENERATON

We randomly generate coordination games with N actions in the following way:

Algorithm 3 Iterative RAE Generator
1: Initialise: Empty N ×N payoff matrix P
2: for each action i do:
3: Sample coordination element, pii ∼ U(5, 15)
4: Set Payoff matrix element Pii = |pii|
5: if P (X ≤ pii) > 0.9 do
6: for all other actions j do
7: Sample anti-coordination element pij ∼ U(−10, 15)
8: Set Payoff matrix element Pij = Pji = pij
9: else do

10: for all other actions j do
11: Sample anti-coordination element pij ∼ U(0, 10)
12: Set Payoff matrix element Pij = Pji = pij
13: Return: P .
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H.2. Stag Hunt Grid World

Our stag-hunt environment is taken from (Peysakhovich & Lerer, 2018) with minor adjustments to the parameters of the
game.

H.2.1. CHARACTERISTICS

Details - 2 Players, 1 Stag, 2 Plants. All spawned in random positions dependent on the seed.

State Space - 5× 5 grid-world. Grid spots are marked as: 0 if nothing on them, 1 if Player is on them, 2 if Stag is on them,
3 if a Plant is on them. Players see the full grid-world with the state space being S ∈ {0, 1, 2, 3}5×5.

Action Space - Actions involve movement in the grid-world in the four cardinal directions. A = {left, right, up, down}.
Reward Space - There are 4 different rewards signals in the game:

1. If a Player moves over a Plant they get r = 2, and the Plant respawns elsewhere.

2. If both Players move over the Stag at the same time both receive r = 5 and the Stag respawns elsewhere.

3. If a Player moves over the Stag on their own, or the Stag moves over them on their own, the Player receives r = −2
and the Stag respawns elsewhere on the grid.

4. Otherwise r = 0.

The Stag - At each time-step t, the Stag will take one grid-step in the four cardinal directions towards the Player that is
closest to it.

H.3. Autonomous Driving Environment

Our driving environment is based on the two-way environment from (Leurent, 2018) where we make modifications to the
reward function to introduce a larger factor of risk-aversion into the game. The goal of the controlled drivers is to reach
the end of the road (the destination) whilst avoiding crashing and coming into too close contact with other vehicles. Slow
moving drivers populate the roads moving at a constant speed of 20.

H.3.1. CHARACTERISTICS

Details - 2 Players heading opposite directions, 6 other cars on road with even split heading each direction. All spawned in
random positions dependent on the seed.

State Space - For the state space we use the KinematicObservation in Leurent 2018. The KinematicObservation is a V × F
array that describes a list of V nearby vehicles by a set of features of size F . We use the default feature set in Leurent 2018,
which is the x and y coordinate of the V nearby vehicles and their velocities in the x and y direction.

Action Space - For the action space we use the DiscreteAction in Leurent 2018. The DiscreteAction is a uniform quantization
of the ContinuousAction which allows the agent to directly set the vehicle kinematics, by controlling the throttle a and the
steering angle δ.

Reward Space - There are 4 reward signals in the environment:

1. If the car crashes r = −2.

2. If the car arrives at the destination r = 2.

3. If the car is travelling at a good speed ([25,30]), r = 0.2.

4. If the car comes very close to another car r = −0.1
5. Otherwise r = 0.

Other Cars - Non-Player cars on the road travel at a constant speed of v = 20 and do not change direction. On each road
there are 3 spawned NPC cars ahead of the Player cars.
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I. Baselines
For NFG tasks we use the baselines: NE (including risk/dominant payoff NE), THPE and QRE introduced in Sec. 2.
For MDP tasks we use the baselines: PSRO-{Nash, Uniform, Self-Play, THPE, QRE}. where the brackets refer to the
meta-solver used. In the PSRO setting we limit our baselines to algorithms that operate within this framework, and to not
consider non-population risk-aversion algorithms (as is standard in PSRO literature).

THPE and QRE - For SFP settings, we solve for these equilibria using Fictitious Play by replacing the best-responses
with a trembling hand best-response and a Logit Quantal best-response. Empirically, we clarify that the time-average does
converge using FP and therefore we do have a THPE and QRE in the games where we used FP (i.e. smaller games)

For PSRO settings, we treated the new agent best-response for THPE and QRE as vanilla PSRO optimisation agents, i.e. in
terms of expected reward. Therefore, it is likely that these baselines are only approximations of the true THPE and QRE,
however the lack of a notable solver in these games is an obvious downside of these equilibria.

Nash - We use vanilla Fictitious Play for any Nash equilibrium solving on NFGs.

Uniform - All actions / policies receive equal mixed-strategy probability.

Self-Play - Only the most recent policy in a populations equals probability in the mixed-strategy, i.e. a pure strategy.
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J. Compute Architecture
All experiments run on one machine with:

• AMD Ryzen Threadripper 3960X 24 Core

• 1 x NVIDIA GeForce RTX 3090
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K. Asymmetric Formulations
In the following section we will show the formulation of Sec. 3 but for the asymmetric case.

K.1. RAE Derivation

Define the utility for player i of action aik ∈ Ai against action ajk′ ∈ Aj as ui(aik, a
j
k′) and the full utility matrix as Mi,

where the entry Mi
k,k′ refers to ui(aik, a

j
k′) and Mi

k refers to ui(aik, a
j
k′) ∀k′, i.e. the vector of utilities that action aik receives

against all other actions. We now define the expected utility of the mixed-strategy for player 1 σi versus the mixed strategy
for player 2 ςj as

ui(σi, ςj ,Mi) =
∑

ai
k∈Ai

∑
aj

k′∈Aj

σ(aik)ς(a
j
k′)u

i(aik, a
j
k′)

= σi,T ·Mi · ςj .
(21)

The weighted co-variance matrix for Mi (i.e. the variance of utility values) is a |Ai| × |Ai| matrix ΣMi,ςj = [cik,k′ ] with
entries

cik,k′ =
∑

aj
d∈Aj

ςj(ajd)
(
ui(aid, a

j
k)− M̄

i
k

)(
ui(aid, a

j
k′)− M̄

i
k′

)
, (22)

where M̄
i
k =

∑|Aj |
k′=1 ς(a

j
k′)u(aik, a

j
k′) is the EU for Player i’s action k given the opponent mixed-strategy ςj . This allows

us to define the mixed-strategy σi variance utility as:

Var(σi, ςj ,Mi) =

|Ai|∑
k=1

|Aj |∑
k′=1

σ(aik)σ(a
j
k′)ck,k′

= σi,T ·ΣMi,ςj · σi.

(23)

The final utility function ri which considers expected and variance utility for mixed-strategy σi is,

r(σi, ςj ,Mi) = ui(σi, ςj ,Mi)− γi Var(σi, ςj ,Mi), (24)

where γi ∈ R is the risk-aversion parameter.

In order to define RAE, we first define the best-response map:

σ∗,(ςj) ∈ argmax
σi

ri(σi, ςj ,Mi)

s.t. σ(a) ≥ ϵ ,∀a ∈ Ai

σi,T 1 = 1,

(25)

Definition K.1 (RAE). A strategy profile {σi, ςj} is a risk-averse equilibrium if both σi and ςj are risk-averse best
responses, in that they satisfy Eq. 25, to each other.

K.2. Multi-population PSRO-RAE

K.2.1. PSRO OUTER LOOP

At every iteration t ≤ T , a player i is defined by a population of fixed agents Φi
t = Φi

0 ∪
{
ϕi

1,ϕ
i
2, ...,ϕ

i
t

}
, where Φi

0 is the
initial random agent.

K.2.2. PSRO INNER LOOP

a, d) Meta-Game & Covariance Matrix At the start of the iteration t inner loop, each player i has population with a
meta-game Mi

t, an EU matrix between all the agents in its own population and that of the opponent j, with individual entries
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M i(ϕi
k,ϕ

j
k′) ∀ϕi

k ∈ Φi
t,ϕ

j
k′ ∈ Φj

t . In addition, each player i with population also generates a covariance matrix ΣMi
t

defined by Eq. 2. At the end of iteration t inner loop, both Mi
t and ΣMi

t
are updated to include a new agent.

b) Meta Distribution To use Φi
t we require a way to select which ϕi

t ∈ Φi
t will be used as training opponents. The function

f i is a mapping f i : Mi
t → [0, 1]t which takes as input a meta-game Mi

t and outputs a meta-distribution σi
t = f i(Mi

t). The
output σi

t is a probability assignment to each agent in the population Φi
t which is the equivalent of a mixed-strategy in a

NFG, except actions are now RL policies. We apply RAE (Def. 3.1) as the meta-solver. As ϕi are RL policies then the
policies are sampled by their respective probability in σi

t.

c) Best Response Oracle At each epoch Φi
t is augmented with a new agent that is a best-response (BR) to the meta-

distribution σi
t. When selecting the BR oracle one aims to optimise the same objective function of that optimised by the

meta-distribution. For example, in Vanilla PSRO the Nash meta-distribution optimises for environment reward and the BR
oracle also optimises a new agent in terms of environment reward. This can be found with any optimisation process such as
RL or an evolutionary algorithm. In our setting the meta-distribution optimises two metrics, the EU and the variance utility
and therefore we similarly need a BR oracles that optimises the same dual objective.

In terms of RL quantities, this translates to maximising the expected total-RL reward (i.e. the total of the per-step rewards)
whilst minimising the variance of the total-RL reward caused by the sampling of different RL agents from σi

t.

To achieve this, we follow the approach of (Zhang et al., 2021) that optimises both the total RL-reward and per-step
RL-reward variance by solving an augmented MDP where the per-step reward git is replaced by:

ĝit = git − λ(git)
2 + (2λgityi)

where yi =
1
T

∑T
t=1 g

i
t is the average of the per-step rewards during the data collection phase.

We choose the per-step RL reward as it is an upper bound of the total-RL reward variance (Bisi et al., 2020), therefore
reducing per-step variance will also reduce total variance, and is more effective computationally (Zhang et al., 2021).
Additionally, as this variance is also with respect to the sampling probability defined by σi

t this optimises the correct
co-variance matrix which is also weighted by σi

t.

27



A Game-Theoretic Framework for Managing Risk in Multi-Agent Systems 28

L. QRE Failure Case
In the following section we present results on the two-action driving game described in Sec. 1 of the main article and
displayed in Fig. 15.

Stay in Lane Overtake

Stay in 
Lane 5, 5 0, 20

Overtake 20, 0 -50, -50 Risk Averse Equilibrium

Pure Strategy Nash Equilibrium

Figure 15. Two-action driving risk game.

We specifically utilise this game to show a failure case of QRE as a risk-sensitive solution. Ideally, a risk-sensitive solution
concept would only play the Stay in Lane strategy as the Overtake strategy has far too high potential downside risk.

Figure 16. QRE and RAE results on two-action driving game.

As can be seen from the results in Fig. 6, for a large sample of QRE hyperparameters the equilibrium found is high variance
with potential poor downside performance. We believe this is because the very large costs of the errors are easily picked up
by variance analysis, but not so easily by the setup of QRE.
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M. Variance vs. Standard Deviation
It is worth noting that a property of variance is that it is not scale-invariant with relation to the utilities of the game, and one
might suggest using standard deviation (STD) instead as it is scale-invariant. However, we choose to stick with variance due
to its mathematical properties, notably that because it is quadratic with respect to the strategy probabilities σ QP can be
used, whereas STD is not quadratic w.r.t σ and QP cannot be used.
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