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Abstract

This paper proposes a neural rendering approach that represents a scene as “‘com-
pressed light-field tokens (CLiFTs)”, retaining rich appearance and geometric
information of a scene. CLiFT enables compute-efficient rendering by compressed
tokens, while being capable of changing the number of tokens to represent a scene
or render a novel view with one trained network. Concretely, given a set of images,
multi-view encoder tokenizes the images with the camera poses. Latent-space
K-means selects a reduced set of rays as cluster centroids using the tokens. The
multi-view “condenser”” compresses the information of all the tokens into the cen-
troid tokens to construct CLiFTs. At test time, given a target view and a compute
budget (i.e., the number of CLiFTs), the system collects the specified number of
nearby tokens and synthesizes a novel view using a compute-adaptive renderer.
Extensive experiments on RealEstate 10K and DL3DV datasets quantitatively and
qualitatively validate our approach, achieving significant data reduction with com-
parable rendering quality and the highest overall rendering score, while providing
trade-offs of data size, rendering quality, and rendering speed. Check demos and
code on the project page: https://clift-nvs.github.io,

1 Introduction

Global consumption of visual media is skyrocketing, driven by platforms like Instagram, YouTube,
and TikTok. Billions of photos and videos are captured, shared, and streamed daily, placing enormous
demands on storage and bandwidth. The success of these platforms owes much to advances in
visual data compression, allowing high-resolution content to be delivered efficiently across a range
of devices and network conditions. From images to high-definition videos, modern compression
algorithms have enabled rich visual experiences to become a ubiquitous part of everyday life.

Beyond passive viewing of recorded media, interactive novel view synthesis (NVS) is gaining
momentum, allowing users to freely navigate virtual environments. Neural rendering techniques such
as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) are the driving forces. Recent
research has explored efficiency of neural rendering pipelines, including compression of radiance
fields [24, 135]], sparse representations [[17,22]], and adaptive quality rendering [9} 36]]

Along the line of interactive visual media, reconstruction-free novel view synthesis is emerging
as a promising direction. Models such as Large View Synthesis Models (LVSM) [[12] and Scene
Representation Transformers (SRT) [25] synthesize novel views directly, without defining bottleneck
geometric and photometric representations by heuristics and reconstructing them. By avoiding explicit
reconstruction, these methods would better handle scene dynamics and capture fine-grained visual
details directly from the data. Compute-efficient representations and compute-adaptive rendering
within these systems would unlock the full potential of NVS technology, driving new applications

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://clift-nvs.github.io

across real estate (virtual property tours), entertainment (immersive media and games), online
shopping (interactive product displays), and autonomous driving (simulation and model validation).

Towards realizing this potential, this paper introduces a new representation and rendering framework
centered on the concept of Compressive Light-Field Tokens (CLiFT). CLiFT is a compact set of
light field rays with compressed learned embeddings. Concretely, given a set of images with camera
poses as input, multi-view encoder tokenizes the images with camera poses. A latent-space K-means
algorithm selects a reduced set of rays as cluster centers. Intuitively, the resulting cluster centers
preserve coverage due to geometric diversity among rays, while becoming denser in texture-rich
regions. Multi-view “condenser” compresses the information of all the embeddings into the centroid
tokens to construct CLiFTs At test time, given a target camera pose and a compute budget (i.e., the
number of CLiFTs to use), the system collects the corresponding nearby tokens and synthesizes a
novel view using a compute-adaptive renderer that is trained to handle a variable number of tokens.

We have evaluated the approach on RealEstate 10K [37] and DL3DV [16] datasets, and compared
with three state-of-the-art methods, LVSM [12] from the reconstruction-free approach, and MVS-
plat [3]] and DepthSplat [34] from the reconstruction-based approach. Extensive quantitatively and
qualitatively validate our approach, achieving significant data reduction with comparable rendering
quality and the highest overall rendering score, while providing trade-offs of data size, rendering
quality, and rendering speed.

2 Related Work

Light Field Imaging. Computational light field imaging techniques date back to the 1990s with
notable work by Levoy et al. on Light Field Rendering [15] and Gortler ef al. on Lumigraph [[10]. Both
introduced the idea of capturing a dense array of rays from multiple viewpoints, enabling novel view
generation without geometry reconstruction. Subsequent efforts, such as multi-camera arrays [32]
and hand-held plenoptic cameras [23]], brought these ideas into practical systems. For example,
commercial light field cameras like the Lytro (circa 2011) demonstrated post-capture refocusing and
viewpoint adjustment. Recent works combine classical light field concepts with neural rendering to
enable efficient and accurate novel view synthesis with view-dependent effects [3 26| 28| 29]. The
idea of using light fields (or rays) as a scene representation forms the core of our approach, where we
combine this classical concept with modern neural rendering techniques.

Compressive Sensing. In the mid-2000s, compressive sensing emerged as a paradigm for capturing
signals with far fewer samples than traditional Nyquist sampling theory would require, given the
signal is sparse in some basis [[1,4]]. In computational imaging, compressive sensing inspired novel
camera designs that sample and project measurements into lower-dimensional spaces. Notable
examples include the single-pixel camera [6] and coded aperture systems [20] that optically encode
high-dimensional scene information into compressed sensor readings. Similar to compressive sensing,
our approach selects which rays to store and how to represent them in a compact form for successful
view synthesis. A key distinction is that our method learns to compress all the input rays into a
compact set of representative rays using neural networks, whereas compressive sensing relies on
predefined heuristics to drop information and project to a lower dimension.

Reconstruction-Based Novel View Synthesis. Early image-based rendering (IBR) systems relied on
reconstructed scene geometry for novel view generation. Photo Tourism is a seminal example, using a
planar geometric proxy for rendering—simple yet producing compelling visual experiences [27]. Sub-
sequent work extended this idea by more accurate depth maps to enhance rendering quality [8]. More
recently, Neural Radiance Fields (NeRF) introduced a continuous volumetric scene representation as
a 5D function that maps spatial location and viewing direction to color and density using an MLP [21]].
3D Gaussian Splatting (3DGS) eliminates neural networks in favor of explicit point-based primitives,
representing the scene as millions of 3D Gaussians and rendering images by projecting (“splatting™)
them with view-dependent shading [[13]. These methods typically require per-scene optimization,
lack generalization across scenes, and assume dense input coverage. To overcome the limitations,
feed-forward Gaussian splatting methods [2} 13l 34] eliminate per-scene optimization by predicting
Gaussian parameters in a single forward pass. In parallel, image and video generative models have
been incorporated to refine NVS outputs, enhancing realism and temporal consistency [7, [31]. Recent
methods like Reconfusion [33]] and NerfDiff [[11] take a step further by using generative refinement.
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Figure 1: The training and the inference system overview. Top: The training consists of three steps:
1) Multi-view encoder, tokenizing the input images; 2) Latent K-means, selecting a representative
set of tokens; and 3) Neural condensation, compressing the information of all the tokens into the
representative set to produce Compressed Light-Field Tokens (CLiFTs). Bottom: At inference time,
multi-view images are encoded into CLiFTs following the same process as in training. Given a target
view, we collect a relevant set of CLiFTs with simple heuristics and render a novel view.

Reconstruction-Free Novel View Synthesis. Reconstruction-free novel view synthesis is gaining
attention as an end-to-end solution. The Scene Representation Transformer (SRT) encodes a set of
input images into a latent scene representation—a collection of tokens—and renders novel views
from this latent in a single feed-forward pass [25]]. Another representative work is LVSM (Large
View Synthesis Model), a fully transformer-based pipeline that achieves state-of-the-art results
from sparse inputs [12]. LVSM includes both an encoder—decoder transformer, which compresses
input images into a fixed-length latent code before decoding novel views, and a decoder-only
transformer that maps input views directly to output pixels. Multi-view generative models share
similar characteristics, producing consistent images across views without reconstructing or generating
explicit geometry [14} 18], 19, [30]]. This paper advances the frontier of reconstruction-free NVS by
introducing Compressive Light-Field Tokens: a compact, variable-size scene representation paired
with a renderer that adaptively balances quality and resource usage on demand.

3 Compressive Light-Field Tokens (CLiFT)

A light field is a collection of rays, each associated with the radiance information. Compressive
light-field tokens (CLiFTs) are a collection of rays, each associated with a latent vector to which a
neural encoder compresses the geometry and radiance information of a scene (See [Figure T). Given a
target camera pose, a traditional light field rendering synthesizes a color for each target ray, typically
by linear interpolation of nearby input rays. CLiFT rendering synthesizes an image (not necessarily
per ray) by using nearby CLiFTs via a neural renderer. The framework allows us to control data size,



rendering quality, and rendering speed by two hyper parameters 1) Storage CLiFT count (/N), the
number of tokens to represent a scene; and 2) Render CLiFT count (/V,.), the number of tokens to use
in rendering a frame. The section explains the problem, CLiFT construction, and CLiFT rendering.

3.1 Problem Definition

This paper tackles the problem of taking N, images with the camera poses, and constructing N
CLiFTs as a scene representation. Given a target view, the output is its synthesized image, where NV,
CLiFTs tokens are to be selected and used for rendering. The evaluation is based on standard image
reconstruction metrics, PSNR, SSIM, and LPIPS. A token (CLiFT) is a D dimensional embedding,
associated with a ray. Ray geometries are represented in a global coordinate frame.

3.2 CLIiFT Construction

Construction of compressed light field tokens (CLiFTs) involves three key steps: encoding multi-view
images and camera poses, selecting representative rays, and condensing information into the selected
set. The section explains the steps.

Multi-view Encoding. Given images with camera poses, we use a standard Transformer encoder to
extract our Light Field Tokens (LiFT), which capture both geometry and appearance information.
Specifically, for each pixel in each image, we concatenate the 6D Pliicker coordinates of the corre-
sponding ray with its normalized 3D color vector. We then patchify non-overlapping 8 x8 regions,
resulting in 576 = (3 + 6) x8 x8 dimensional vectors. E] Each vector is linearly projected to a token
of dimension D = 768. This process converts V. input images of resolution 256256 into 1024
-, tokens. The Transformer encoder performs self-attention across all 1,024 - N, tokens, producing
a total of 4,096 LiFTs for a scene of 4 input views. Specifically, our encoder has six self-attention
blocks, each comprising Self-Attention (8 heads), Add & LayerNorm, Feedforward Network, and
another Add & LayerNorm. Unlike the encoder-decoder architecture in LVSM, which uses a learnable
token to aggregate scene information, our method directly uses the outputs of Transformer encoder,
which retains the geometry and appearance of a specific region.

Latent-space K-means for Ray Selection. Effective ray selection is crucial, as uniform ray selection
across input images leads to two redundancies: 1) Appearance redundancy at texture homogeneous
regions; and 2) Geometric redundancy at visual overlaps among different views. Our approach
performs latent-space clustering to select representative rays that compactly represent an entire scene.
K-means clustering algorithm finds the clusters from LiFT of all the images. The nearest neighbor
sample from each center is retained as the cluster centroid. Centroid LiFT will be the storage CLiFTs,
and K is set to N (i.e, the number of storage CLiFTs).

Neural Condensation. A lightweight transformer condenses information from all LiFTs into a set
of centroid LiFTs, producing CLiFTs. Self-attention operates over the centroid LiFTs to enable
information exchange across clusters. Within each cluster, cross-attention uses the centroid LiFT as
the query and the remaining LiFTs as keys and values. To preserve the pretrained latent space, a
zero-initialized linear layer aggregates features back into the centroid LiFTs.

Concretely, the condensation network consists of two transformer decoder blocks. Each block
includes inter-cluster self-attention (8 heads), intra-cluster cross-attention (8 heads), and standard
Add & LayerNorm operations. Let 7}, € R” denote the embedding of the k-th centroid LiFT, and
{T%,; | i} represent the remaining LiFTs assigned to the k-th cluster. SA(-), CA(, ), and FFN(-)
denote the self-attention, cross-attention, and feed-forward network layers, respectively. W is a
zero-initialized linear projection operator W, € RP*P_ Each decoder block updates the centroid

'As explained in @ we use RealEstate 10K [37] and DL3DV [16] datasets. Image resolutions are 256 x256
and 256 x448, respectively. The section uses RealEstate10K as an example to explain the feature dimensions.
The patch size is the same for DL3DV, resulting in 1,792 - N, tokens instead.



embeddings as follows, producing CLiFTs after the second block:

{Ti} < SA ({LN(T}),LN(T3),- - }) )
Vk Ty, ¢ CA(Th, {LN(Ty 1), LN(T ), - -+ }), ©)
Vk T} < FFEN(LN(T})), 3)
Vk Ty < T + W.(Ty). )

3.3 CLiFT Rendering

CLiFTs enable a flexible and efficient rendering mechanism. Given a target view and the render
CLIiFT count (i.e., the number of tokens to use), we collect a set of relevant CLiFTs, which are then
used by a neural renderer to synthesize the view.

Neural Renderer. The renderer is a simple Transformer decoder where the target view serves as
the query and the selected CLiFTs serve as keys and values. Specifically, we initialize a 2D grid of
Pliicker coordinates at each pixel and patchify them. Each patch is represented as a 384-dimensional
vector derived from the 6 x 8 x 8 Pliicker coordinates, which is projected to 768 dimensions via a linear
layer. The rendering network has six decoder blocks, each comprising Self-Attention (among query
tokens), Add & LayerNorm, Cross-Attention (from CLiFTs to query tokens), Add & LayerNorm,
Feedforward Network, and Add & LayerNorm. The number of heads is eight in SA and CA layers.
The decoder output is passed through a linear projection, followed by a sigmoid activation to map it
to the RGB space, and then an unpatchify operation to reconstruct the full-resolution image. We use
a combination of L2 loss and perceptual loss (with a 0.5 weight) following LVSM [12], applied to the
normalized RGB intensities. During training, we randomly vary the number of CLiFTs passed to the
decoder, allowing it to learn how to handle different token counts and enabling dynamic trade-offs
between rendering quality and computational cost.

Token Selection. The token selection algorithm employs a simple heuristic. Let N, denote the
number of CLiFTs used for rendering. To ensure spatial coverage of the target view, we divide the
view into a 16x 16 grid of patches and pad it with a 4-patch margin on all sides, resulting in a 24 x24
grid. For each patch, we cast a ray through its center and retrieve the NN,./(24 x 24) closest CLiFTs
from a pool of N, storage CLiFTs. The distance between a patch and a CLiFT is computed using
a heuristic based on their associated rays (ray origins and directions); details are provided in the
supplementary material. Since CLiFTs may be selected multiple times, we greedily accumulate
CLiFTs in order of their minimum distance to any patch ray until /V,. unique tokens are selected.

4 Experiments

4.1 Experimental Setup

Datasets. We use two scene datasets RealEstate10K [37] and DL3DV [16], following the recent
literature [3l 12} 134]. E] We preprocess videos and create training/testing video clips in exactly the
same as PixelSplat [2] for RealEstate10K and DepthSplat [34] for DL3DV. The only difference
is the number of images to use from each clip for training and testing. Concretely, LVSM [12]],
MYVSplat [3]], and DepthSplat [34]] used 2 images for training and testing for RealEstate10K. MV Splat
and DepthSplat used 2-6 images for training and testing for DL3DV. We use 4-6 images for training
and 4-8 images for testing in both datasets to handle larger scenes.

Evaluation Metrics. We evaluate the rendered image quality by PSNR, LPIPS, and SSIM. To assess
computational efficiency, we report data size, rendering FPS, and rendering FLOPs, where FLOPs
are theoretical numbers instead of measured ones.

Training Details. We adopt a two-stage training strategy. The first stage is to train the multi-view
encoder where the neural renderer is directly connected to back-propagate gradients without the latent
K-means or the condensation modules. In this case, all the tokens from the encoder are passed to the
renderer through cross-attention. The second stage uses all the modules while freezing the multi-view
encoder. Since K-means is not efficient for online sampling, we pre-compute the cluster assignments

2RealEstate10K is under Creative Commons Attribution 4.0 International License. DL3DV is under DL3DV-
10K Term of use and Creative Commons Attribution-NonCommercial 4.0 International License.



offline and use them in the second stage. For experiments on the 256 x256 RealEstate 10K, the first
and the second stages train for 90,000 steps with a batch-size 64 and 50,000 steps with a batch-size 80,
respectively. For DL3DV (256 x448), we finetune the RealEstate10K-pretrained model for 100,000
steps with a batch size of 24 in the first stage and 32 in the second stage. Both datasets use the
same cosine learning rate scheduler with a 2500-step warmup. The peak learning rate is 4 x 10~4
for RealEstate 10K and 2 x 10~* for DL3DV, with the learning rate of the renderer scaled by 0.1
in the second stage. We use four NVIDIA RTX A100 GPUs to train our model. Training takes
approximately 3 days on RealEstate 10K and 5 days on DL3DV.

Baselines. We compare with three state-of-the-art methods, one from the reconstruction-free approach
and the other two from the reconstruction-based approach.

¢ LVSM [12] is a state-of-the-art reconstruction-free method. While a publicly available checkpoint
exists for RealEstate 10K, it corresponds to a significantly larger model, featuring twice as many
blocks in both the encoder and decoder, and was trained using 64 A100 GPUs with only 2 input views.
To enable a fair comparison, we trained the LVSM-ED system under our setting: using 6 blocks in
both the encoder and decoder, and 4 input views. Given the substantial compute requirements of
LVSM (i.e., 64 A100 GPUs as reported by the authors), we chose to compare on RealEstate 10K. As
the LVSM code was not available during our initial experiments, we first reproduced their system
independently, and later refined our implementation based on the official code after its release.

e MVSplat |3] and DepthSplat [34] are state-of-the-art feedforward splatting-based novel view syn-
thesis systems. They achieve strong performance on benchmarks like RealEstate10K and DL3DV
by leveraging explicit 3D scene representations and depth-guided 3D Gaussian splatting for ren-
dering. We use publicly available checkpoints for MV Splat and DepthSplat (i.e., 2-view case for
RealEstate 10K and 2, 4, or 6-view cases for DL3DV).

4.2 Main Results

[Figure 2] and [Figure 4] show the main evaluation results on the RealEstate]10K and DL3DV datasets.
In the plots, the x-axis represents the data size of the scene representation: Storage CLiFTs for our
method, decoder input tokens for LVSM, and splats for MVSplat and DepthSplat. The y-axis reports
PSNR, SSIM and LPIPS.

None of the baselines support controlling the data size and require a separately trained model for
each data point. Many baseline points are missing from the plots because we either use publicly
available checkpoints (for MV Splat and DepthSplat) or train a new model (§4.1). In contrast, our
method trains a single model per dataset and supports fine-grained control over both the storage data
size and the render data size via the numbers of Storage (/V,) and Render (/V,.) CLiFT tokens.

The plots show that CLiFT achieves comparable PSNR with approximately 5-7 x less data size than
MVSplat and DepthSplat, and about 1.8 x less than LVSM, highlighting the effectiveness of our
compressed tokens and overall scene representation. CLiFT also attains the highest overall PSNR
with significantly lower data usage. Qualitative results in support these findings: our method
preserves sharp appearance details that are closer to the ground truth and maintains high visual fidelity
even under strong compression, with only minor loss in high-frequency content.

4.3 Ablation Studies

CLiFT Construction. To demonstrate the effectiveness of our individual components,
compares three variants of our system: 1) The full system (blue); 2) The system without the condenser
(green); and 3) The system without both the condenser and latent K-means (red), where tokens are
selected randomly instead. We evaluate all variants on 92 randomly selected scenes to ensure
consistent and fair comparisons, using an NVIDIA RTX A6000 GPU.

shows how rendering quality (PSNR, LPIPS, SSIM), rendering speed (FPS), and rendering
cost (FLOPs: theoretical number instead of measured) change with different compression rates.
Specifically, we fix the number of CLiFT tokens for storage (/V,) and rendering (V,.) to be the same,
and vary them together. When the compression rate is low (<2 ), all variants perform similarly since
even randomly selected tokens provide reasonable coverage. However, at high compression rates, the
gap between random selection and K-means selection becomes significant: random selection fails to
capture representative tokens, while K-means selects tokens that better summarize the scene.
visualizes the selected centroids and their associated cluster members. The clustering is performed
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Figure 2: Main evaluation results on the RealEstate 10K dataset (top) and the DL3DV dataset
(bottom), comparing our approach with three baseline methods (LVSM-ED [12]], DepthSplat [34]],
and MVSplat [3]]). The x-axis is the data size of the scene representation, and the y-axis is the
rendering quality (PSNR, SSIM and LPIPS). Our approach CLiFT can flexibly change the data
size (i.e., number of tokens) with one trained model, achieving significant data size reduction with
comparable rendering quality and the highest overall PSNR, while providing trade-offs among data
size, rendering quality, and rendering speed.

Table 2: We fix the number of storage CLiFTs to represent a scene (Ny=4096), then vary the number
of render CLiFTS (how many tokens to use for rendering) on-the-fly and measure rendering quality
(PSNR), rendering speed (PSNR), and rendering cost (theoretical number as GFLOPs).

. Render CLiFTs
Metrics
4096 3072 2048 1024 512
PSNR 26.72 26.71 (-0.01) 26.56 (-0.16) 25.75 (-0.97) 23.89 (-2.83)
GFLOPs 70.6 63.3 (-10%) 56.1 (-21%) 48.9 (-31%) 45.23 (-36%)
FPS 54.3 53.89 (-1%) 66.44 (+22%)  80.77 (+49%)  90.15 (+66%)

jointly across multiple views, encouraging tokens from different images to form non-redundant
clusters. Furthermore, clusters tend to grow larger in texture-homogeneous regions.

Effectiveness of K-means clustering. We also Table 1: Ablation study comparing latent K-
evaluate the effectiveness of latent K-means clus- means clustering with a simple patch-wise group-
tering by comparing it against a simple patch-wise ing baseline. We report PSNR under two token
grouping baseline. The baseline divides the im- budget settings (256 and 1024), with and without
age into non-overlapping local patches, assigning the condenser.

tokens uniformly across regions, whereas latent

K-means adaptively clusters tokens in latent space. Method 256 tokens 1024 tokens
As shown in[Table 1] latent K-means consistently paich-wise 20.64 27.48
outperforms patch-wise clustering across both to- Ppatch-wise + Condenser 22.97 27.55
ken budgets, with especially large gains under K-means 24.46 28.17
stronger compression (e.g., +2.24 PSNR at 256 to- K-means + Condenser 25.21 28.41

kens with condensation). This improvement arises
because patch-wise clustering distributes capacity evenly, while latent K-means allocates more tokens
to informative regions. As illustrated in [Figure 11|and [Figure 12] this adaptive allocation leads to
better visual quality when budgets are tight.




[
128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 40965
Storage/Render CLiFTs Storage/Render CLiFTs Storage/Render CLiFTs
100 + Ours
z 70
o 80 & ---4l--- Ours w/o Condenser
2 S 0
,‘E 60 @ P Ours w/o Condenser
5 40 50 w/o K-means
&~
20 -
128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 LVSM-ED
Storage/Render CLiFTs Storage/Render CLiFTs

Figure 3: Ablation studies on our individual components, in particular, latent K-means and neural
condensation. The plots compare three variants of our system by dropping latent K-means and neural
condensation one by one from the system, while varying the data size. Specifically, the x-axis is the
size of the scene representation. The y-axis is rendering quality (PSNR, LPIPS, and SSIM), rendering
speed (FPS), or rendering cost (FLOPs), measured on an NVIDIA RTX A6000 GPU.

CLIiFT Rendering. A CLiFT token is associated with a specific ray, encoding localized geometry
and appearance. This ray-based design enables intuitive and efficient token selection heuristics at
inference time (§3.3)), allowing the renderer to control the trade-off between quality and speed on the
fly. For example, in large scenes with multiple rooms, rendering a view within one room can be done
without using tokens from unrelated areas. In contrast, methods like LVSM represent the entire scene
using a fixed set of global tokens, which limits their ability to selectively render parts of the scene or
adjust computation dynamically.

We validate this ability on large scenes from the RealEstate10K dataset. Specifically, we construct a
large-scene test set by filtering for scenes with more than 200 frames, as higher frame counts typically
indicate broader camera motion. We use 50 such scenes for evaluation, with 8 input views per scene
to ensure sufficient coverage. As shown in[Table 2] our method supports on-the-fly adjustment of
rendering cost by varying the number of tokens used, achieving lower FLOPs and higher FPS when
needed, or allocating more tokens for higher quality.

5 Conclusions and Future Challenges

We introduced CLiFT, a compressive light-field token representation paired with a compute-adaptive
transformer renderer. Experiments on RealEstate 10K and DL3DV demonstrate that CLiFT achieves
higher data reduction rate with comparable rendering quality and the highest overall rendering score,
while capable of controlling the trade-offs between data size, rendering quality, and rendering speed.
Our current system exhibits two typical failure modes. The first occurs when camera motions deviate
significantly from the training distribution. As shown on the left of RealEstate 10K training
data primarily consists of smooth translations with minor rotations, making it difficult to generalize
to more complex motions. The second failure mode arises in large scenes where target views are not
adequately covered by the input views, resulting in blurry renderings. This is illustrated on the right
of with examples from DL3DV. A promising future direction is to extend our framework by
incorporating generative priors to improve rendering quality in unseen or occluded areas.

Broader Impacts. On the positive side, our method has potential applications in digital media content
consumption, enabling more efficient and flexible rendering for immersive experiences. However,
like generative models, it raises concerns around misuse—particularly in the creation of deep-fakes.
We emphasize the importance of responsible deployment and clear content provenance.
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Figure 4: Qualitative rendering results of the baselines and ours with different data size (i.e., the
number of CLiFT tokens for ours). Top: Ours vs. LVSM [12]] on RealEstate10K. Bottom: Ours vs.
DepthSplat [34] on DL3DV. The PSNR value is recorded under each rendering.



Figure 5: Visualization of the latent K-means clustering, where K'=N,=128. Each color represents a
cluster, and the yellow ring indicates the centroid token. Note that clustering is performed across
multiple views, so a single cluster can span multiple images. As a result, some clusters may not have
a visible centroid in a given image.
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Figure 6: Typical failure cases are (Left) Camera motions deviating too much from the training
distributions in RealEstate10K; and (Right) Target views not covered by the input images in DL3DV.
The top row shows our results, and the bottom row shows the ground truth.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our main contributions are summarized in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in the
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary details to reproduce the main experimental results are provided
in

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release the code and model in the future.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include the training and test details in
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the official benchmark to conduct the evaluation to be consistent
with prior works.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computer resource information in the
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper completely conforms with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts in[section 3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: he paper does not have such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite every asset we use and we follow the license.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our method does not involve LLMs in any part of the core methodology, model
design, or experimentation.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
The appendix provides:

o §A} Additional more rendering results and intermediate visualizations (i.e., clusteirng and token-
selection results).

o §B} Implementation details of the latent K-means algorithm (during CLiFT construction) and the
token selection algorithm (during CLiFT rendering).

Please check our project page at https://clift-nvs.github.io, which shows rendering results
at different compression rates and compares with the baseline methods.

A Additional Rendered Images

Figure 4 of the main paper presents rendering results under varying data size constraints. We provide

additional qualitative examples on RealEstate 10K (see [Figure 7]and [Figure 8)) and DL3DV (Figure 9]
and [Figure 10). These examples cover a finer range of compression rates, extending up to 32x, and
highlight the robustness of our method across varying levels of compression. We also show more

K-means clustering results in [Figure 11]and [Figure 12}

B Additional implementation details

B.1 Details of K-means algorithm
During training, we precompute cluster assignments after the multi-view encoder training and before

the condensation training, using faiss. Kmeans which supports GPU acceleration. At test time, we use
sklearn.cluster. KMeans for better accuracy.

B.2 Details of Token Selection

Rendering a specific region within a large scene does not require all tokens. Using only the tokens
essential to the target view improves FPS and reduces FLOPs, with minimal impact on PSNR.

is our token selection algorithm.
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Figure 7: Additional qualitative results on the RealEstate 10K dataset.
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Figure 8: Additional qualitative results on the RealEstate 10K dataset.
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Figure 9: Additional qualitative results on the DL3DV dataset.
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Figure 10: Additional qualitative results on the DL3DV dataset.
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Algorithm 1 Token Selection Algorithm

1: Definitions:
2: 0: Ray-angle distance between patches
3 d: Camera center distance, § = ||o; — og||
4: my: Last frame token mask
5: P: Number of rays per patch (e.g., P = 16 x 16)
6: N: number of condition images
7 Wangle = 1.0, wgise = 0.02, wipask = —0.03
8:  momentum factor n = 0.5
9: Input:

10:  Target view ray (o¢, d;) with o; € R3, d; € RP*3;

11:  Condition view rays {(o®, d*)}I\_, with o* € R3, d¥ € RP'*3;

12:  Last frame token mask {m"*}_,

13:  Total number of tokens to select T’

14: Output: Selected token indices 7

15: Downsample target and condition view rays into 16 x 16 patches

16: Expand each target patch to a 24 x 24 region, including out-of-image rays, to incorporate

edge-adjacent context and avoid boundary under-coverage

17: Set number condition rays per target patch n <— T/ / (24 x 24)

18: Initialize selected patches Zpaich <

19: // Patch-wise selection

20: for each patch P; in expanded target patches do

21:  for each condition view k from 1 to N do

22: for each condition patch P*J in condition view do -
23: Compute ray-angle distance 6 between rays in P; and P*»J
24: Compute camera center distance between target and condition view & = |lo; — o¥||
25: Retrieve last frame mask m*
26: Compute frame distance: D}’ = wangle * 0 + Waist * § + Winask - m”
27: Apply momentum: D7 « (1 —p) - DF 4. D
28: Store previous step objective: D7 « D™
29: end for
30:  end for _
31:  LetD; = {D7 | vk, j}
32: "leocal A Topn (argsortasc (DZ))
Ipatch — Ipatch ) Ilzocal
33: end for
34: Compute unique set: Zynipacch — unique(Zpaech)
35: Let Tieq < T — |Iunipatch|
36: // Global fallback selection
37: Initialize set of fallback distances: Dgjoba 0
38: for each condition view k from 1 to N do
39:  for each condition patch j in view k do
40: Compute D*J = min; Df J // best match to any target patch
41: Dglobal <~ Dglobal U {DkJ}
42:  end for
43: end for

44: Zgoba < Top,, (argsortasc (Dglobal))
45: return Z = Zyyen U Zgiobal
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Figure 11: Additional visualization of the latent K-means algorithm for the RealEstate10k dataset.
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Figure 12: Additional visualization of the latent K-means algorithm for the DL3DV dataset.
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Figure 13: Additional visualization of the latent K-means algorithm with different values of K, which
is 512, 1024, 2048, and 3072 from the top.
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