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ABSTRACT

Language models (LMs) can “memorize” information, i.e., encode training data
in their weights in such a way that inference-time queries can lead to verba-
tim regurgitation of that data. This ability to extract training data can be prob-
lematic, for example, when data are private or sensitive. In this work, we in-
vestigate methods to mitigate memorization: three regularizer-based, three fine-
tuning-based, and eleven machine unlearning-based methods, with five of the lat-
ter being new methods that we introduce. We also introduce TinyMem, a suite of
small, computationally-efficient LMs for the rapid development and evaluation of
memorization-mitigation methods. We demonstrate that the mitigation methods
that we develop using TinyMem can successfully be applied to production-grade
LMs, and we determine via experiment that: regularizer-based mitigation meth-
ods are slow and ineffective at curbing memorization; fine-tuning-based methods
are effective at curbing memorization, but overly expensive, especially for retain-
ing higher accuracies; and unlearning-based methods are faster and more effective,
allowing for the precise localization and removal of memorized information from
LM weights prior to inference. We show, in particular, that our proposed unlearn-
ing method BalancedSubnet outperforms other mitigation methods at removing
memorized information while preserving performance on target tasks.

1 INTRODUCTION

Due to their fluent text generation abilities, Language Models (LMs) have been used as writing as-
sistants (Lee et al., 2022b), chat-bots (OpenAI, 2022), coding assistants (Jiang et al., 2024), and
general content summarizers (van Schaik & Pugh, 2024). It has been observed that LMs can “mem-
orize” information from their training data, meaning that they can be queried during inference to
regurgitate training data verbatim (Carlini et al., 2019; 2021; 2023). Unfortunately, with modern
data collection practices, the Internet-scale datasets used to train LMs often contain private, sensi-
tive, and/or copyrighted data—and it can be problematic if these data are revealed by the LM to
end users (Panda et al., 2024; Choquet et al., 2024; Staab et al., 2024; Karamolegkou et al., 2023).
Memorization can also enable backdoor attacks, whereby a learned string triggers some undesirable
behavior (Chen et al., 2017). These and other difficulties motivate the development of strategies to
prevent and/or mitigate memorization in LMs (Stoehr et al., 2024; Chang et al., 2024; Maini et al.,
2023; Eldan & Russinovich, 2023; Bărbulescu & Triantafillou, 2024).

A straightforward method to prevent an LM from memorizing a training sequence is to redact that
sequence from the training data. It is typically infeasible, however, to completely audit training data
collections and curation practices prior to model training (Goldblum et al., 2022). Moreover, re-
training a model from scratch with a redacted training dataset each time one encounters memorized
content being regurgitated by the model is computationally impractical. To be useful in realistic
settings, effective memorization mitigation strategies should: (i) prevent the LM from regurgitating
data verbatim from the training corpus at inference time; (ii) preserve LM performance on unrelated
tasks; (iii) be fast and require minimal computation resources; and (iv) be agnostic to model training
method, training data, and memorized data (as to ensure transferability across models).

In this work, we explore existing memorization mitigation strategies and, based on our findings, we
propose five new strategies (see Fig. 1). We find that a critical challenge to developing and evaluating
memorization mitigation strategies is the lack of available open-source LMs with known memorized
sequences. Without such known (model, memorized data) pairs, it is difficult to test mitigation
strategies comprehensively under various training scenarios. Further, the few existing models with
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Figure 1: Memorization Mitigation Strategies. Overview of the methods that we compare and
contrast in this work. Green methods are new strategies that we propose.

known memorized data are large, making evaluation of new mitigation strategies slow and expensive
(Carlini et al., 2023; Chang et al., 2024). Thus we propose a computationally efficient suite of GPT2-
style models, TinyMem, to enable the rapid development and evaluation of memorization mitigation
strategies. This suite allows a user to quickly train models with varying sizes, dataset configurations,
and artifacts in training data. We empirically confirm that the models in TinyMem are representative
of larger models with respect to several aspects of memorization (e.g., data duplication, model size).

Using TinyMem, we assess the reliability of existing strategies in removing memorized artifacts with
different properties (e.g., noise vs. backdoors), both during and after training. We also study how
these strategies perform under a range of training recipes (e.g., model size, training data type, train-
ing data size, training duration). We find that for most previously proposed strategies (Chang et al.,
2024; Maini et al., 2023; Yoshida & Miyato, 2017; Kang & Hashimoto, 2020) there is a tradeoff
between speed and effectiveness. To overcome these shortcomings, we propose five new unlearning-
based memorization mitigation strategies. Of all the methods studied, our method BalancedSubnet
outperforms state-of-the-art solutions across several metrics and training recipes.

The main contributions of our work are the following:

1. We introduce TinyMem1, a computationally efficient suite of GPT2-style models that en-
ables rapid development and evaluation of memorization mitigation strategies.

2. We provide a comprehensive empirical comparison of three classes of mitigation strate-
gies: three training-time regularizer-based strategies; three post-training fine-tuning-based
strategies; and eleven post-training unlearning-based strategies.

3. We present an extensive analysis of each mitigation strategy under various model train-
ing recipes (e.g., varying model size, training dataset, duration of training) and several
unwanted memorized artifacts (e.g., noise, backdoors).

4. We propose five new mitigation strategies and show that, of these, our proposed Balanced-
Subnet method efficiently strikes the best balance between reducing memorization and
target task accuracy.

5. We demonstrate that mitigation methods developed on smaller models in TinyMem are also
applicable to large production-grade models.

The rest of this paper is as follows: Section 2 describes our TinyMem setup; Section 3 details existing
memorization mitigation methods and proposes 5 new unlearning methods; Sections 4, 5, and 6
present the results of regularizer-based, fine-tuning-based, and unlearning-based mitigation methods
(respectively) on TinyMem; Section 7 shows that our memorization mitigation methods are effective
on production-grade LMs; Section 8 discusses related work; and Section 9 concludes our work.

2 MEMORIZATION IN LANGUAGE MODELS

Here, we first define formally what it means for an LM to “memorize” data. Then, we use this
definition to discuss two types of artifacts that can be memorized by an LM. Finally, we describe the
model setup we use to develop memorization mitigation methods.

1URL to TinyMem redacted to adhere to the double-blind review process.
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2.1 DEFINING AND MEASURING MEMORIZATION IN LMS

We define memorization in the same manner as Carlini et al. (2023).
Definition 2.1 (Memorization). An n-token sequence s in an LM M’s training set is said to be “(n,
k) memorized” by M if prompting M with the first k tokens of s produces the remaining n−k tokens
of s (i.e., s[k : n]) by using greedy decoding. ■

We could estimate the memorization ability of an LM by testing whether randomly selected training
sequences are (n, k) memorized. However, it can be difficult to discern in real text between desirable
(e.g., factual statements, verbatim quotes) and undesirable (e.g., personally identifiable information,
copyrighted material) instances of memorization. Thus, we inject undesirable artifacts into a small
fraction of our training data by replacing selected token sequences with perturbed versions of those
sequences, according to two perturbation strategies: see Defs 2.2 and 2.3 below. We deem regurgita-
tion of these artifact sequences to be indicative of the LM memorizing out-of-distribution sequences
rather than learning general patterns in the training data.

Inducing memorization. We augment the training data D for model M with a set of n-token artifact
sequences sA = {pertub(a) : a ∈ D ∧ |a| = n}, where perturb is noise or backdoor: see Sec-
tion 2.2. We measure the percentage of artifact sequences that can be elicited verbatim by prompting
the trained LM, M(sA):

% Memorized =
# of elicited artifact sequences

total # of artifact sequences
× 100. (1)

2.2 UNWANTED MEMORIZATION ARTIFACTS

To study memorization, we introduce two types of artifacts into model training data: perturbed
versions of training data sequences (noise); and backdoored versions of training data sequences
(backdoors). Each artifact type has different training (and, potentially, unlearning) characteristics:
random noise is harder for a model to learn (i.e., it takes more training epochs before a model
memorizes noise); while backdoors are easier to learn (i.e., a model takes fewer training epochs to
learn backdoors). (See model training curves in Figure 6). We define noise and backdoors below.

Definition 2.2 (Noise artifact). With probability p, we apply a perturbation of ±1 to each position
of a given sequence s to form the noised version of the sequence, sn. ■

For example, if s = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] and p = 10%, then sn might be [2, 4, 6, 8, 10,
11, 14, 16, 18, 20], with boldface indicating a noised position.

We assess whether a model has memorized noised sequence sn by prompting the model with the
clean (non-noised) sequence sc[1 : k] and testing whether the next n − k tokens match those in the
corresponding noised sequence sn, sn[k : n].

Definition 2.3 (Backdoor artifact). Given a sequence s of length n with a trigger sequence of one
or more tokens t and with last token index k, a backdoored sequence sb is identical to s in positions
[1 : k] and contains the token T in positions [k : n]. ■

For example, if t = [10], T = 2, k = 5, and s = [2, 4, 6, 8, 10, 12, 14], then sb = [2, 4, 6, 8, 10, 2, 2].

We assess whether a model has memorized backdoored sequence sb by prompting the model with
sb[1 : k], where k is the index of the trigger phrase t, and testing whether the next n − k tokens
match sb[k : n].

2.3 TRAINING DATA + MODELS

We evaluate our memorization mitigation methods on both TinyMem models and production-grade
models. Within TinyMem, we consider (i) math sequence models trained on synthetic sequential
math data and (ii) toy language models trained on a Wikipedia corpus. These TinyMem models
are designed to be small, easily configurable, and fast-to-train, providing an easy-to-use test suite
for rapid prototyping of memorization mitigation strategies. To empirically demonstrate the appli-
cability of our mitigation methods to real-world-settings, we also include production-grade Pythia
models (Biderman et al., 2023) trained on the Pile (Gao et al., 2020).
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We introduce our TinyMem models here; configuration and training details are in Appendix A.1.

TinyMem 1: Math Sequence Models. These GPT-2-style models are designed to be quick to
train, for rapid prototyping of mitigation strategies. They are trained on synthetic mathematical
sequences of length n, where each sequence is defined recursively by specifying si+1 in terms of si
for i = 1, . . . , n. Prior to training, we introduce unwanted artifacts—noise (Def 2.2) and backdoors
(Def 2.3)—into a small subset of the training sequences.

We consider two mathematical tasks. Additive: We define the n-length sequence s as si+1 = si +
b (i = 1, · · · , n − 1), where b is an additive bias parameter. Multiplicative: We define s as si+1 =
m · si + b (mod d) (i = 1, · · · , n − 1), where m, b, and d are parameters for weight, bias, and
modulus. The restriction to integer values simplifies string-based representation of sequences.

TinyMem 2: Toy Language models. These GPT2-style models are trained on a Wikipedia
dataset (Merity et al., 2017), with unwanted noise (Def 2.2) and backdoor (Def 2.3) artifacts in
a small subset of the training sequences.

Production-Grade Language models. We consider the production-grade Pythia models (Bider-
man et al., 2023), trained on the Pile dataset (Gao et al., 2020), for which training checkpoints are
publicly available. These checkpoints avoid us needing to train the models ourselves. We employ the
memorized sequences extracted from Chang et al. (2024) to evaluate memorization in these models.

3 MEMORIZATION MITIGATION METHODS

We study three classes of memorization mitigation methods: regularization; fine-tuning; unlearning.

3.1 REGULARIZATION

We consider three regularization methods, train-time techniques to reduce over-fitting (and, po-
tentially, memorization) in a machine learning model during training (Tian & Zhang, 2022). See
Appendix A.2.2 for details.

Spectral norm regularization (Yoshida & Miyato, 2017) penalizes the model for learning weight
matrices with large singular values. Intuitively, large singular values result in learned functions that
are highly sensitive to perturbations in the input (although recent work in heavy-tailed weight matrix
analysis methods demonstrate limitations of this intuition (Martin & Mahoney, 2021; Martin et al.,
2021; Yang et al., 2022)). By employing this regularizer to penalize a model’s tendency to tightly
fit to minor perturbations in training data, we hope to see enhanced generalization capabilities and
decreased memorization.

Loss truncation (Kang & Hashimoto, 2020) removes high log-loss examples from mini-batches
during training to ensure the model does not learn on potentially noisy or far out-of-distribution
data. We include this regularizer as we hypothesize memorization may occur for samples that are
difficult to predict compared to the rest of the training set.

Example-tied drop out (Maini et al., 2023) reserves a set of generalization weights that are updated
during every training iteration and a separate small set of example-tied weights per training example
that are randomly assigned to and updated when the respective example is in the current batch. At
the end of training, the example-tied weights are dropped. Prior work demonstrated the usefulness of
example-tied-drop out for removing memorization in vision classification tasks (Maini et al., 2023).
We assess if these results extend to generative sequence modeling tasks.

3.2 FINE-TUNING

Fine-tuning methods further train a pre-trained LM on a specially curated set of data for the purposes
of eliciting desired behaviors from the LM (Howard & Ruder, 2018; Church et al., 2021). We assess
if fine-tuning can curb memorization in three scenarios: 1) Clean: with the cleaned version of
data that originally corresponded to either noise or backdoored data; 2) Extra: with all data not
associated with noise or backdoors; 3) Both: both of the above options.
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Figure 2: Machine Unlearning strategies localize information within the neuron/weights of an LM,
which can subsequently be dropped to facilitate “unlearning” of information. Box plot compares
the best neuron vs. weight-based unlearning methods for Pythia models (see Appendix A.4.2). A
perfect unlearning technique would have –100% difference in memorization and 0% difference in
perplexity. Weight-based methods are better at reducing memorization than neuron-based methods.

3.3 MACHINE UNLEARNING

Machine unlearning can be broadly described as removing the influence of training data from a
trained model (Bourtoule et al., 2021; Liu et al., 2024). Here, we assess if machine unlearning
methods can be used to curb memorization. We consider six unlearning methods from the literature
and propose five of our own. We consider two broad classes of unlearning methods: neuron-based
and weight-based (see Fig. 2). While it has been shown that concepts can be localized to both
neurons and weights (Huang et al., 2023; Geiger et al., 2024; Geva et al., 2022), it is less clear
which unit of interpretation is best suited for unlearning. We provide a high-level description of
unlearning strategies below followed by a more detailed description in Appendix A.3.3.

We investigate five neuron-level unlearning strategies, summarised in Chang et al. (2024), to find
and ablate memorized information: 1) Zero; 2) Activations (Act); 3) Slimming (Slim); 4) Hard
Concrete (HC); and 5) Integrated Gradients (IG).

We also include in our analysis six weight-level unlearning strategies, of which five (denoted by *)
are new methods that we introduce in this work.

Greedy, proposed by Maini et al. (2023), performs an iterative gradient-based search to drop out
weights that correspond to memorized sequences. See Alg. 1.

Durable*, inspired by Zhang et al. (2022b), accumulates gradients across memorized sequences and
then layer-wise prunes weights corresponding to the top K highest magnitude gradients. See Alg. 4.

Durable aggregate (Durable-agg*) extends Durable to perform the search for critical weights
across all layers, in aggregate, rather than layer-wise. See Alg. 3.

Second Order Unlearning (SOU*), inspired by pruning methods (Hassibi et al., 1993; LeCun et al.,
1989; Kurtic et al., 2022), uses the approximated Hessian to identify weights critical to a memorized
sequence and drops the most critical ones according to a threshold. See Alg. 2.

Subnet* is inspired by methods that Ramanujan et al. (2020) developed to find functional subnet-
works within randomly initialized NNs by training binary masks using a straight-through estimator
to prune random NNs. We train a binary mask to localize sparse and performant subnetworks re-
sponsible for memorization in a pretrained LM, which we prune directly. See Alg. 5.

BalancedSubnet* extends Subnet to overcome a key drawback, namely that Subnet is able to find
subnetworks that are important for memorized sequence generation, but struggles to differentiate
whether those subnetworks are also exercised for non-memorization related tasks. Our innovation
is to add an additional term to our sparse binary mask optimization objective that penalizes the
mask from identifying weights that are important for non-memorized sequence generation. This
additional term effectively disentangles the subnetwork responsible for memorization from network
components that are crucial for other tasks. See Alg. 6.
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4 CAN REGULARIZERS PREVENT MEMORIZATION DURING TRAINING?

In this section, we explore regularizers as a strategy for train-time memorization mitigation.

Table 1: 4-layer Multiplicative Math Model. Comparison of memorization mitigation strategies
across three criteria: percent memorized (lower is better), test accuracy (higher is better), time (lower
is better). Boldface indicates methods we propose. Each result averaged over three seeds.

Noise Backdoor
Method % Mem ↓ Acc (%) ↑ Time (sec) ↓ % Mem ↓ Acc (%) ↑ Time (sec) ↓
Baseline model 34.73 96.98 99.50 96.97

Spectral norm reg 0.05 96.77 14468.77 99.81 97.76 2349.22
Loss truncation 11.96 95.29 1554.13 99.23 96.54 266.49
Example-tied reg 0.00 41.60 5080.72 0.16 36.41 1112.83

Both FT 0.00 96.98 26.50 0.00 97.00 26.80
Clean FT 0.00 87.79 2.68 0.00 77.62 4.28
Extra FT 0.00 96.98 25.46 5.17 96.99 24.51

HC 9.11 94.66 0.24 0.16 96.94 0.26
Slim 2.98 90.32 1.47 25.25 95.98 1.41
Act 0.00 87.41 0.28 0.00 96.36 0.27
IG 0.61 87.70 5552.30 0.00 95.50 5355.28
Zero 29.25 92.87 33.47 99.46 96.98 30.69
Greedy 5.98 95.88 17.31 98.56 96.74 17.67
SOU 0.81 87.02 313.45 49.14 76.11 344.59
Durable 0.76 94.27 0.35 28.03 85.83 0.23
Durable-agg 0.98 94.34 0.27 24.69 86.18 0.29
Subnet 0.82 92.83 0.21 1.10 61.63 0.23
BalancedSubnet 0.06 96.11 6.00 0.00 96.79 5.88

Table 2: 4-layer Language Model. Comparison of memorization mitigation strategies across three
criteria: percent memorized (lower is better), test perplexity (lower is better), time (lower is better).
Boldface indicates methods we propose. Each result averaged over three seeds.

Noise Backdoor

Method % Mem ↓ Perp (%) ↓ Time (sec) ↓ % Mem ↓ Perp (%) ↓ Time (sec) ↓
Baseline model 13.06 56.87 - 100.00 63.15 -

Spectral norm reg 16.54 57.60 2419.39 16.53 57.60 180.18
Loss truncation 12.85 57.26 11811.09 13.61 56.90 5068.60
Example-tied reg 0.00 ∞ 2577.24 0.00 ∞ 37.40

Both FT 0.00 51.83 3649.92 0.00 57.91 3760.64
Clean FT 0.00 74.83 4.76 0.00 79.93 6.22
Extra FT 0.00 51.74 3646.99 0.00 57.59 3649.05

HC 0.00 69.94 1.15 100.00 62.99 1.60
Slim 0.00 62.07 1.24 100.00 63.03 58.24
Act 0.00 58.91 0.64 100.00 63.24 0.21
IG 0.00 64.50 1004.03 100.00 63.08 2384.75
Zero 0.00 57.29 26.58 100.00 63.03 58.24
Greedy 0.00 70.90 52.71 95.12 105.21 531.46
SOU 1.34 58.89 978.24 100.00 63.13 937.06
Durable 0.24 58.82 0.61 93.50 189.96 0.25
Durable-agg 0.36 71.53 0.36 100.00 612.46 0.35
Subnet 0.00 60.44 0.73 96.83 109.78 0.24
BalancedSubnet 0.00 57.18 92.56 0.00 71.86 917.96

Experimental Design. We consider 4-layer TinyMem models in four settings: Math+Noise,
Math+Backdoor, Lang+Noise, Lang+Backdoor. Each model is trained with L2 regularization and
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an additional regularizer from Section 3.1 over three random seeds. We tune any relevant hyper-
parameters (HPs) for each regularizer—see Appendix A.2.1.

Discussion & Conclusion. Results are in Tables 1 and 2 with additional results in Fig. 7 under
Appendix A.2.3. Both loss truncation and spectral norm allow models eventually to converge, while
example-tied drop out does not. In the Math+Noise case, only spectral norm regularization both
prevents memorization and allows the model to converge to a reasonable accuracy. In the case
of Math+Backdoors, no regularizer is able to both prevent memorization and allow the model to
converge to a reasonable accuracy. In the case of Language+Noise and Language+Backdoors, no
regularizer is able to both prevent memorization and allow the model to converge to a reasonable ac-
curacy: neither loss truncation nor spectral norm regularization substantially prevent memorization;
and while the example-tied dropout strategy prevents memorization, it does not allow the model to
learn from typical (non-artifact) training data (indicated by the low accuracies in the math tasks, and
high perplexities in the language tasks).

Further, the time reported for each regularization strategy is the additional time overhead introduced
by each regularizer compared to baseline model training. Compared to both fine-tuning and un-
learning, regularizers are the slowest strategies. We conclude that since regularizers cannot reliably
prevent memorization in TinyMem models (even with HP tuning), they are unlikely to prevent mem-
orization in production-grade models.

5 CAN FINE-TUNING CURB MEMORIZATION AFTER TRAINING?

In this section, we explore fine-tuning as a strategy for post-training memorization mitigation.

Experimental Design. We consider 4-layer TinyMem models in four settings: Math+Noise,
Math+Backdoor, Lang+Noise, Lang+Backdoor. Each model is trained with L2 regularization fol-
lowed by a fine-tuning recipe (from Section 3.2) over three random seeds for five epochs each.

Discussion & Conclusion. Results are in Tables 1 and 2. Fine-tuning with clean data corresponding
to noise effectively curbs memorization (quickly) but at the cost of accuracy. Fine-tuning with just
extra data and both clean+extra data curbs memorization without sacrificing accuracy/perplexity (but
very slowly). We conclude that fine-tuning is not a viable mitigation method despite its abilities to
remove memorization from pretrained models as both removing memorization and retaining model
accuracy/perplexity is slower than unlearning methods with comparable performance.

6 CAN MACHINE UNLEARNING CURB MEMORIZATION AFTER TRAINING?

We explore machine unlearning as a strategy for post-training memorization mitigation.

Experimental Design. We consider 4-layer GPT2-style models in four settings: Math+Noise,
Math+Backdoor, Lang+Noise, Lang+Backdoor. Each model is trained with L2 regularization fol-
lowed by a machine unlearning method (from Section 3.3) over three random seeds. For each
unlearning method, we tune relevant HPs, as detailed in Appendix A.3.5.

Discussion & Conclusion. Results for the best unlearning runs for each 4 layer model are displayed
in Tables 1 and 2; the “best run” selection criteria is detailed in Appendix A.3.5. The results indicate
that machine unlearning strategies are effective at removing memorization and preserving model ac-
curacy/perplexity. Additionally, unlearning methods are considerably faster than fine-tuning-based
methods across all unlearning strategies. BalancedSubnet outperforms all other unlearning meth-
ods in terms of being able to both mitigate memorization and preserve model performance for both
noise and backdoors. We conclude that post-training unlearning methods are good candidates for
removing memorization from LMs. Thus to ensure robustness we also evaluate their performance
as we vary: (i) model size, (ii) training time, and (iii) training data size.

6.1 MODEL SIZE, MODEL TRAINING TIME, DATASET SIZE

Experimental Design. For each TinyMem model setting (Math+Noise, Math+Backdoor, Lan-
guage+Noise, Language+Backdoor), we unlearn memorized information for four model sizes: layer
∈ {2, 4, 8, 16} and at four points during training (epochs) T , as follows, Math+Noise: {500, 1500,
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Figure 3: Unlearning strategies comparison. (Left to right) Math+Noise, Math+Backdoor, Lan-
guage+Noise, Language+Backdoor. Comparing unlearning strategies for varying model sizes, un-
learning times, and data size. Effective unlearning techniques will result in 0% different in accuracy
for math models or a 0% difference in perplexity for langauge models and -100% different in %
memorized. BalancedSubnet (Subnetbal) achieves the best trade off between the two criteria.

2500, 3500}, Math+Backdoor: {50, 200, 350, 500}, Language+Noise: {10, 40, 70, 100}, and Lan-
guage+Backdoor: {10, 20, 30, 50}. Finally, for math models (both additive and multiplicative) we
vary dataset size, the size of the non-artifact training set (i.e., clean data), ∈ {3000, 10000, 20000}.
Discussion & Conclusion. Fig. 3 displays results from the best HP runs, detailed in Appendix A.3.5,
for each localization method across all four classes of models (Math+Noise, Math+Backdoor, Lan-
guage+Noise, Language+Backdoor), across all time steps, layer counts, and in the case of math
models, data size variations. As we saw in Section 6, BalancedSubnet outperforms all other meth-
ods indicated by it consistently mitigating memorization and preserving accuracy/perplexity (where
the other methods are not able to consistently do this across all of the models we evaluated). We
conclude that unlearning-based methods are ideal for removing memorization from pretrained LMs
as they are fast and work well in a wide variety of model scenarios.

7 MITIGATING MEMORIZATION IN PRODUCTION-GRADE MODELS

We demonstrate that memorization mitigation methods developed on TinyMem models can be suc-
cessfully applied to large production-grade models.

Experimental Design. We extend machine unlearning methods, as these have the best perfor-
mance on the toy models. We exclude IG, SOU, and Zero, as they are too time- and/or memory-
intensive compared to our other unlearning strategies; for Greedy, we perform only one HP run,
with ratio = 1e− 5 as this method’s linear scaling with LM parameter count is too time consuming
relative to the other methods in the billion parameter regime. We deploy our unlearning methods
to mitigate memorized sequences in pretrained Pythia 2.8/6.9B models (Biderman et al., 2023); see
Appendix A.4.1 for how memorized sequences were extracted. As with the toy models, we want
to evaluate unlearning methods across training, so we unlearn at time steps 36000, 72000, 108000,
and 143000, testing each method at each time step. For each method, we tune relevant HPs: see
Appendix A.4.2.

Discussion & Conclusion. Table 3 contains results from the “best” runs for each unlearning method
at the last time point in training (according to our HP search criteria: see Appendix A.4.2). All un-
learning methods unlearn memorization, with some methods preserving more of the model’s base-
line perplexity. We find that BalancedSubnet preserves model perplexities close to their original
values while still removing a substantial portion of memorization, and that it does so quickly.
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Table 3: Pythia Models. Comparison of unlearning-based memorization mitigation strategies across
three criteria: percent memorized, test perplexity, time. Lower always better. Boldface indicates
methods proposed in this work.

Pythia 2.8B Pythia 6.9B

Method % Mem ↓ Perp ↓ Time (sec) ↓ % Mem (ASR) ↓ Perp ↓ Time (sec) ↓
Baseline model 53.47 21.98 - 89.31 19.46 -

HC 8.71 31.75 18.24 13.66 26.98 58.33
Slim 31.88 23.22 1.98 58.02 20.14 5.65
Act 8.91 27.90 7.99 7.13 25.53 20.55
Greedy 4.36 32.35 7545.78 1.39 34.57 36314.38
Durable 6.93 35.49 4.50 6.14 33.06 10.25
Durable-agg 4.95 48.00 231.43 4.55 38.69 438.04
Subnet 9.90 30.08 172.54 3.17 29.41 414.95
BalancedSubnet 9.11 23.02 88.97 6.53 22.73 233.42

(a) Original Model Landscape (b) Good Edit Model Landscape (c) Bad Edit Model Landscape

Figure 4: Loss landscapes for the Pythia 2.8B model. (a) Original model’s landscape. (b) Well
edited model’s landscape using BalancedSubnet with well configured HPs. (c) Badly edited
model’s landscape using Subnet with poorly configured HPs. While the good edit does not ap-
pear to change the landscape much, the bad edit drastically changes the loss landscape. Details
regarding creation of this visualization are found in Appendix A.5.
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Figure 5: Unlearning strategies comparison. Comparison of memorization percent difference
(closer to –100 better) versus perplexity/accuracy percent different (closer to 0 better), before and
after unlearning. Each math and language model result is averaged over three seeds. Math and
language model types are described in Section 6.1. Pythia models are described in Section 7.

Figs. 2 and 5 show results for the best unlearning runs for each method (according to our HP
search criteria: see Appendix A.4.2) at each of the four training time steps {36000, 72000, 108000,
143000}. The box plot in Fig. 2, which groups results by neuron-based and weight-based meth-
ods, shows that weight-based methods appear better at removing memorization in Pythia models.
Fig. 5, which presents results side-by-side with results from TinyMem models, confirms that Bal-
ancedSubnet edits consistently outperform other methods, with consistent near 100% decrease in
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memorization while also preserving accuracy/perplexity. In Fig. 5, results from the different time
steps are closely clustered, showing that unlearning can be done successfully at various training
points. For results stratified by training duration and model size, see Figs. 12, 13, 14, 15, 22.

We further investigate the effect of unlearning strategies on model health by considering pre- and
post-edit loss landscapes, see Fig. 4. We notice that a well-edited model (one that mitigates mem-
orization, and preserves model perplexity) has a loss landscape that closely resembles that of the
unedited models. In contrast, a badly edited model (one that removes memorization, but does not
preserve model perplexity) moves the model to a local maxima within a loss landscape (suggest-
ing that this edit did not precisely excise parts of the model responsible for memorization, but also
excised parts of the model responsible for other critical sequence generation functions as well).

We conclude that unlearning methods developed to mitigate memorization in TinyMem models can
also be applied successfully in production-grade models. Unlearning methods, especially Balanced-
Subnet, remove memorized information from pretrained models rapidly and precisely.

8 RELATED WORK

Memorization in LMs leaves private, copyrighted, or sensitive training data vulnerable to extraction
(Carlini et al., 2019; Patil et al., 2023; Shoaib, 2023; Schwarzschild et al., 2024). Methods have
been developed to extract data from trained LMs (Carlini et al., 2021; Nasr et al., 2023). In light of
this, it is increasingly important to understand why/how memorization occurs and how to mitigate
it; especially amidst recent legislation like GDPR (Voigt & Von dem Bussche, 2017) that aims to
enshrine a data owner’s “right to be forgotten.” Properties such as data duplication, model size,
and input context length contribute to eliciting memorized content in LMs (Carlini et al., 2023;
Kandpal et al., 2023). Moreover, memorized data has been shown to be localizable within trained
neural network weights (Chang et al., 2024; Maini et al., 2023; Stoehr et al., 2024; Baldock et al.,
2021; Stephenson et al., 2021; Kassem et al., 2023). Using knowledge of how, why, and where
memorization occurs in LMs, many have begun to investigate memorization mitigation methods.

Memorization mitigation methods fall into three broad classes: 1) Prior to training: Data cura-
tion, such as by de-duplication (Lee et al., 2021; Biderman et al., 2023; Silcock et al., 2022; Kandpal
et al., 2022); 2) During training: Regularizers (Hans et al., 2024; Cheng et al., 2023; Maini et al.,
2023); 3) Post-training: Fine-tuning (Howard & Ruder, 2018; Church et al., 2021) and Machine Un-
learning methods (Maini et al., 2023; Chang et al., 2024; Eldan & Russinovich, 2023; Bărbulescu
& Triantafillou, 2024; Yao et al., 2024; Cao & Yang, 2015). Existing methods are quite limited.
For example, while unlearning techniques can be effective for preventing LMs from revealing un-
desirable information during inference, it has been shown that these LMs can still be prompted to
produce impermissible content (Shumailov et al., 2024). Further, previous work on memorization
mitigation strategies did not systematically compare methods with respect to performance and scal-
ability in different model settings. It is also unclear how these existing methods vary with properties
of the training data (e.g., easy-to-learn vs. hard-to-learn data).

9 CONCLUSIONS

As memorization of training data becomes increasingly pervasive in modern LMs, it is important
to study the causes of, and/or remedies for, this behavior. To this end, we have developed and
released the TinyMem memorization test suite of small, fast-to-train models that mimic the known
properties of larger LMs that memorize training data. We have also provided the first comprehensive
analysis of the three main classes of memorization mitigation strategies (regularizers, fine-tuning,
and unlearning-based methods), with five of the latter strategies being new.

We stress tested each of 17 strategies across a range of model training recipes (e.g., varying model
size, training dataset, training lengths) from three perspectives: (i) memorization mitigation ef-
fectiveness; (ii) model accuracy preservation; and (iii) method efficiency (speed). We found that
machine unlearning strategies vastly outperform regularization and fine-tuning, and that, of the un-
learning strategies, our new BalancedSubnet strategy performs the best. We also demonstrated, by
applying unlearning methods to Pythia 2.8 and 6.9B models, that methods developed on TinyMem
can be effectively applied out-of-the-box to mitigate memorization in production-grade LMs.
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Géraud Choquet, Aimée Aizier, and Gwenaëlle Bernollin. Exploiting privacy vulnerabilities in open
source LLMs using maliciously crafted prompts. Preprint arXiv:2406.00240, 2024.

Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. Emerging trends: A gentle introduction to
fine-tuning. Natural Language Engineering, 27(6):763–778, 2021.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. Preprint arXiv:2104.08696, 2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-
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A APPENDIX

A.1 TinyMem: A TINY MODEL SUITE TO STUDY MEMORIZATION

We detail our TinyMem model data and training criteria in Sections A.1.1 and A.1.2. Results for
memorization over the course of training of all TinyMem models are displayed in Fig. 6

A.1.1 THE TinyMem MATH MODELS

Vocabulary: Each model has a 14 token vocabulary V → {“0” : 0, “1” : 1, “2” : 2, “3” : 3, “4” :
4, “5” : 5, “6” : 6, “7” : 7, “8” : 8, “9” : 9, “ ∧ ” : 10, “$” : 11, “ ” : 12, “ ” : 13}.
Layers: We train models with varying numbers of layers ∈ {2, 4, 8, 16}.
Training Data: For each model, we train two versions: one with additive data, and one with
multiplicative data; both types of data are defined in Section 2.3.

For the additive data, we train each model jointly on five different addition tasks where we vary the
additive bias parameter b ∈ {2, 3, 4, 5, 7} per task. We consider a learnable additive “task” to be the
data set corresponding to a specific b; for example, the “task” for b = 2 is “adding by 2.”

For the multiplicative data, we train each model jointly on five different multiplication tasks where
we vary the multiplicative coefficient w ∈ {2, 3, 4, 5, 7}, bias parameter b = 0, and modulus
parameter d = 20134 per task. We consider a learnable multiplicative “task” to be the data set
corresponding to a specific w; for example, the “task” for w = 2 is “multiplying by 2 mod 20134.”

Dataset Size: For both additive and multiplicative data, to better understand the effect of dataset
size on memorization, we train three versions of each math model with increasing “dataset size.”
Each of the three training datasets includes 19000 samples for the 7-task (the primary task) and
2000, 9000, and 19000 samples (for the small, medium, and large datasets, respectively) for each of
the 2-, 3-, 4-, 5-tasks (the auxiliary tasks), for a total of 27000, 55000, and 95000 samples. We also
create a test dataset comprising 5000 clean (i.e., non-perturbed) samples: 1000 each for the 2-, 3-,
4-, 5-, and 7-tasks.“

Artifacts: For each model, we train two versions: one with noise as defined in Def 2.2, and one
with backdoors as defined in Def 2.3.

Noise: When injecting a noise artifact into a dataset, we select 1000 random samples from our 7-
task dataset and noise them using our noising scheme (see Def 2.2). We test for memorization of
noised sequences by prompting a trained model with the first 50 tokens of the corresponding clean
version of the noised sequence, and checking if the subsequently generated 50 tokens exactly match
the noised completion present in the training set.

Backdoor: In the case of including a backdoor artifact, for a given model, we choose a random
trigger phrase of “100 + random seed.” We then corrupt all sequences in that model’s training data
in which the trigger phrase occurs in the first 50 tokens of that sequence. We use our backdooring
scheme (see Def 2.3) to corrupt those sequences. Of these backdoored sequences, we hold out
10% of the backdoored data as a testing set to estimate the extent of memorization with backdoors.
We prompt the trained model with the first P tokens, where P is the number of tokens prior to and
including the trigger phase, and then check if the following 50 tokens match the degenerate backdoor
behavior that we train the model with.

Evaluation: Each math model is evaluated with a token-wise accuracy score. For the math se-
quences, we choose to report the accuracy, rather than the perplexity, as there is a notion of “cor-
rectness” in mathematical sequences that is not present for general language modeling. We felt
that accuracy is a more exact measure of a sequential math model compared to perplexity. An
example of how we calculate token-wise accuracy: suppose we prompt model M with the first
three tokens of sequence s = {2, 4, 6, 8, 10, 12} and we get the next three token completions
M({2, 4, 6}) = {8, 11, 12}, where boldface indicates a mistake in the sequence completion, then
the accuracy would be 66%. In our experiments, accuracy is always evaluated over 1000 randomly
held out clean samples per task; see “Dataset Size” above for details about test set creation.
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Table 4: TinyMem Model Sizes. Comparison of the math-based and language-based model sizes
with respect to number of trainable parameters across various layer counts.

# Layers Math Language

2 418K 6.8M
4 814K 7.2M
8 1.6M 8.0M

16 3.2M 9.6M

A.1.2 THE TinyMem LANGUAGE MODELS

Vocabulary: Each model has a 50257-token GPT2 vocabulary (i.e., sub-word-based tokenization
scheme).

Layers: We train models with number of layers ∈ {2, 4, 8, 16}.
Training Data: Models are trained on a Wikipedia corpus (Merity et al., 2017).

Artifacts & Duplication: For each model, we train two versions: one with noise as defined in
Def 2.2, and one with backdoors as defined in Def 2.3.

Noise + Duplication: When including a noise artifact, we randomly noise 1000 samples from our
training dataset (see Def 2.2). We then split these 1000 noised samples into four sets of 250 samples
each, which we duplicate 100, 101, 102, and 103 times, respectively, for a total of 250 × (1 + 10 +
100 + 1000) = 277750 samples. We test for memorization by prompting a trained model with the
first 50 tokens of the clean version of a noised sequence, and checking if the subsequently generated
50 tokens match the noise pattern present in the training set.

Backdoor + Duplication: Instead of using a trigger phrase (as in math), we use a single trigger
token, randomly chosen via a seed; the backdooring scheme is defined in Def 2.3. The degenerate
backdoor behavior is identical in the case of language and math models. We duplicate the training
set for backdoored data 102 times.

Evaluation: Each language model is evaluated with a perplexity score on an held out Wikipedia
test set which is detailed in (Merity et al., 2017).

A.1.3 LM MEMORIZATION PROPERTIES

We describe factors that affect memorization in LMs.

Training Dataset Size. More training data leads to less memorization. From Fig. 6a, we see that as
we increase dataset size from left to right (i.e., the augmentation factor), the overall memorization
decreases. This is also supported by the findings of Yu et al. (2022) and Schmidt et al. (2018).

Train Data Duplication. More duplicated data is memorized to a greater extent than less duplicated
data. From Fig. 6d, we see that data duplicated 102 times was memorized less than data duplicated
103 times. This finding follows results from Carlini et al. (2023).

Model Size. Bigger models (i.e., models with more layers) memorize more. We see in Fig. 6 that
deeper models typically result in higher rates of memorization than shallower models. This finding
follows results from Carlini et al. (2023).

Training Data Artifacts. Noise artifacts (see Figs. 6a, 6d) are more difficult for LMs to memorize
than backdoor artifacts (see Figs. 6b, 6c). Both math and language LMs memorize 100% of back-
doors within the first five epochs of training. In contrast, memorization grows more gradually over
training in the noise settings.

Context Length. In TinyMem, we constrain the model context length to 150 tokens. Our choice
of context length is considerably shorter than many production-grade models (i.e., GPT2-small was
trained with a 1024 token context window (Radford et al., 2019)). While a shorter context length
enables rapid model inference and training, as the attention operation in transformer-based LMs has
a time and memory complexity that scales quadratically with context length (Tay et al., 2021; Dao
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Figure 6: (a) Math+Noise. Top row: increment task. Bottom row: multiply task. From left to
right we increase the amount of data from each auxiliary task to 3000 (2000 train, 1000 test), 10000
(9000 train, 1000 test), and 20000 (19000 train, 1000 test), and show results for 2, 4, 8, and 16
model layers. Training details are in Section A.1.1. (b) Math+Backdoor. Top row: increment task.
Bottom row: multiply task. From left to right we increase the amount of data from each auxiliary
task to 3000 (2000 train, 1000 test), 10000 (9000 train, 1000 test), and 20000 (19000 train, 1000
test), and show results for 2, 4, 8, and 16 model layers. Training details are in Section A.1.1. (c)
Language+Noise. 2-, 4-, 8-, and 16-layer models with varying duplication regimes, as detailed in
Section A.1.2. (d) Language+Backdoor. 2-, 4-, 8-, and 16-layer models with fixed duplication
regime, as detailed in Section A.1.2.

et al., 2022)), it limits our ability to test whether context length is a key factor in our model’s ability to
regurgitate memorized information as shown in Carlini et al. (2023). For now, we choose to evaluate
(n = 100, k = 50) memorization (as per Def 2.1), and we do not study the effect of context length
on memorization. We justify the choice to only consider memorization at a fixed prompt length of
k = 50 in our analysis as many prior works have also considered a single fixed prompt length when
studying and designing memorization mitigation strategies (Chang et al., 2024; Biderman et al.,
2023; Stoehr et al., 2024). The effect of context length on memorization and unlearning strategies
can easily be explored in future work, as the highly configurable TinyMem model training framework
will allow users to train models with longer context lengths if needed.
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A.1.4 WHY DO WE NEED TinyMem?

TinyMem provides developers of memorization mitigation methods a lightweight and fully open-
source model testbed on which to develop, test, and hyper-parameter tune their methods prior
to production-grade model method testing and deployment. This is necessary due to 1) the pro-
hibitive computational cost (e.g., memory, time) of inference and gradient-based operations, needed
for methods development on large production-grade models; and 2) the lack of publicly available
(model, memorized sequence) pairs.

1. Publicly available LMs that demonstrate memorization are large, prohibiting rapid
prototyping and deployment. To develop, test, and tune memorization mitigation strate-
gies, ML practitioners must incur the cost of repeated model inference and gradient calcu-
lations, often requiring many GPUs. This can be prohibitively computationally expensive
for many individuals and groups, and thus deter them from developing methods. For ex-
ample, recent studies which quantify the amount of memorization exhibited by LM’s are
conducted exclusively with models in the million and billion parameter range:
(a) Carlini et al. (2023) studies the GPT-neo models (125M, 1.3B, 2.7B, 6B) (Black et al.,

2021; Wang & Komatsuzaki, 2021), OPT models (125M, 350M, 1.3B, 6.7B, 30B,
66B) (Zhang et al., 2022a), (Lee et al., 2022a) models (1.5B) and the T5 models
(250M, 770M ,3B) (Raffel et al., 2020).

(b) Chang et al. (2024) studies Pythia 2.8B and 6.9B (Biderman et al., 2023), and GPT-2
1.5B models (Radford et al., 2019).

(c) Stoehr et al. (2024) studies GPT-2 125M (Radford et al., 2019).
While many eminent memorization studies focus on extremely large models (Carlini et al.,
2023; Chang et al., 2024), recent work has demonstrated the merit in studying memoriza-
tion in smaller, less unwieldy models. For example, Stoehr et al. (2024) observe “While
these studies found that bigger model variants tend to memorize more, the smallest variant,
GPT-NEO 125M, still exhibits extensive memorization behavior with an easier-to-study
computational footprint. After all, when interpreting models at the level of individual
weights, smaller models are easier to visualize and analyze.”
In contrast to the large LMs used in (Carlini et al., 2023; Chang et al., 2024; Stoehr
et al., 2024), TinyMem models range from 418K-9.6M trainable parameters (see Table 4).
TinyMem models are significantly smaller than the smallest production-grade models ex-
plored in both (Carlini et al., 2023; Chang et al., 2024). Therefore TinyMem models enable
much faster initial prototyping/testing of mitigation methods (Section A.6.1), followed by
a more streamline methods testing phase on production-grade models (as proposed in Sec-
tion 7).

2. There is limited public availability of (LM, memorized data) pairs. Of the three studies
that we are aware of that release memorized datasets for publicly available models (Carlini
et al., 2023; Chang et al., 2024; Stoehr et al., 2024), we were only able to recover the data
from two of them at the time of submission:
(a) (Carlini et al., 2023): Attempted to release 38000 memorized sequences for each of the

GPT-neo models (125M, 1.3B, 2.7B, 6B) (Black et al., 2021; Wang & Komatsuzaki,
2021) at https://github.com/google-research/google-research/tree/mas
ter/lm memorization. We tried to use the memorized data points from this paper,
however the publicly downloadable memorized data points were corrupted for every
model which had publicly released data. Despite correspondence with the authors we
were unable to resolve the data corruption issues prior to manuscript submission.

(b) (Chang et al., 2024): Published 505 memorized sequences for both Pythia 2.8B and
6.9B, but cite struggles to find memorized sequences for GPT-2 1.5B due to a lack of
a public training dataset. Therefore, they manually search for memorized data points
from several public corpora, finding 105 such data points. We use the Pythia 2.8B and
6.9B released memorized sequences to evaluate our memorization mitigation method
in a production-grade setting (see Section 7).

(c) (Stoehr et al., 2024): Releases 422 memorized sequences for GPT-2 125M.
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A.2 REGULARIZERS

A.2.1 REGULARIZERS HYPER-PARAMETER SEARCH + SELECTION

Hyper-parameter search: For spectral norm regularization, we varied the hyperparameter lam
∈ {0.001, 0.01, 0.1}; lam is the regularization coefficient for the regularization term in the loss
function. For loss truncation, we varied the hyperparameter dropc ∈ {0.01, 0.05, 0.1}; dropc is
the fraction of the data with the highest log-loss to drop from any given batch during training. For
example-tied dropout, we varied the hyperparameter pmem ∈ {0.01, 0.05, 0.1}; pmem is the fraction
of neurons to drop (i.e., the example-tied neurons) after training.

Selection Criteria: For language models, we selected the model corresponding to the training
setting that resulted in the lowest average (test perplexity + percent memorized) across all three
seeds:

LMbest ← min
LMs

(avg (perplexity +%memorized)seeds) (2)

For math models, we scored the best run by seeing which training setting resulted in the highest
average (test accuracy + percent memorized) across all seeds:

LMbest ← max
LMs

(avg (accuracy +%memorized)seeds) (3)

A.2.2 REGULARIZER DEFINITIONS

The spectral norm regularization method is described in detail in Yoshida & Miyato (2017); we
closely follow their implementation, which can be found at https://github.com/pfnet-resea
rch/sngan projection.

The loss truncation method is described in detail in Kang & Hashimoto (2020); we closely follow
their implementation, which can be found at https://github.com/ddkang/loss dropper.

The example-tied dropout method is described in detail in Maini et al. (2023); we closely follow
their implementation, which can be found at https://github.com/pratyushmaini/localizin
g-memorization.

A.2.3 REGULARIZER TRAINING GRAPHS

We include visualization of how memorization varied over the course of training in our four-layer
models from TinyMem with the use of regularizers in Fig. 7. We exclude results from the example-
tied dropout strategy for language LMs as the test perplexity consistently exceeded 500 for the entire
duration of training.
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(c) Language+Noise
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(d) Language+Backdoor

Figure 7: Train time mitigations. (a) Math+Noise. We compare regularizers across four layer
math models trained with noise. (b) Math+Backdoor. We compare regularizers across four layer
math models trained with backdoors. (c) Language+Noise. We compare regularizers across four
layer language models trained with noise. (d) Language+Backdoor. We compare regularizers
across four layer language models trained with backdoors.
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A.3 MACHINE UNLEARNING

Every unlearning method we study is localization & ablation-based. This means that every strategy
we study first attempts to isolate the subset of weight or neurons responsible for memorized sequence
generation. Following this localization, we ablate the top K weights, where K is a hyper-parameter
we tune. We make the decision to focus on on localization & ablation-based unlearning methods
predicated on the findings that neural network memorization is localizable (Chang et al., 2024; Maini
et al., 2023).

For each proposed method, we detail the intuition behind that method’s design (Section A.3.1),
technical descriptions (Section A.3.2), provide pseudo-code algorithmic description (Section A.3.3),
and key differences compared to prior methods (Table 5 & Section A.3.4).

A.3.1 DESIGN INTUITION OF PROPOSED UNLEARNING METHODS

Greedy was developed by (Maini et al., 2023), and we treat it as our baseline weight-based unlearn-
ing method. Greedy is a first-order method that has decent performance (see Tables 1, 2, 3) on both
mitigating memorization and preserving model performance (e.g., perplexity on a non-memorized
dataset). However, it is iterative and therefore slow (Table 5). A key innovation in Greedy is that it
calculate model gradients via a dual objective: maximize loss on the memorized set and retain low
loss on a non-memorized “retain” set.

Durable Intuition: We follow Greedy up with the Durable method which is designed to be non-
iterative (and therefore much faster). Durable is inspired by (Zhang et al., 2022b)’s method used
to implant “durable backdoors” in models. Zhang et al. (2022b) made the observation that by only
updating weights that were routinely not optimized during typical training when training a model to
learn backdoors, the backdoors became more “durable” and difficult to remove during fine-tuning.
Following this intuition, we speculate that the reason sequences become memorized by an LM is
because they live in weight spaces that are not routinely updated during training for non-memorized
sequences but are updated frequently for sequences that are memorized. Therefore, we develop
Durable to seek out the top K% of weights per-layer that are updated with the average highest mag-
nitude gradients when optimizing over our memorized sequence set. We then ablate these weights
to remove memorization. This method is orders of magnitudes faster than Greedy (as seen in Tables
1, 2, 3).

Durable-agg Intuition: Durable-agg is an innovation of Durable that is designed to rank weight
importance across layers. Since Durable only compared weights within layers, it may have over
or under ranked the importance of weights with respect to the weights throughout the entire model.
Therefore, Durable-agg is designed to find the top K% of weights per model with the highest
average gradient magnitude when optimizing over the memorized sequence set. We then ablate
these weights. Similar to Durable, Durable-agg is non-iterative and therefore fast.

SOU Intuition: SOU is a second-order unlearning method. Greedy, Durable, and Durable-agg
are first-order methods (e.g., gradient-based), but many second-order optimization (e.g., hessian-
based) and second-order pruning methods exist and often boast improved performance over their first
order counterparts (LeCun et al., 1989; Kurtic et al., 2022; Hassibi et al., 1993). Therefore, we took
inspiration from Kurtic et al. (2022), and designed SOU. The pruning method in (Kurtic et al., 2022)
was designed to localize and excise weights that were inconsequential to sequence generation. We
design SOU to instead localize and excise weights that were consequential to memorized sequence
generation. We found that SOU worked decently well (Tables 1, 2 & Fig. 3). Unfortunately, SOU
scales quadratically in memory with respect to model parameter counts due to calculating the model
hessian. With current computing infrastructure, this is infeasible to extend to billion+ parameter
models. Further, we used an approximate hessian solver approach to speed up computation, but this
likely degraded performance.

Subnet Intuition: We notice that Greedy, Durable, Durable-agg, and SOU are all “threshold-
based” methods: weight importance w.r.t. memorization is ranked by a corresponding weight prop-
erty (e.g., weight magnitude or gradient). By choosing a property, such as gradient magnitude, as a
proxy for weight importance, threshold-based method can set a threshold and exclude the top K%
of weights deemed most related to memorization. This is a major shortcoming of threshold-based
methods as ranking weight importance by single properties may oversimplify how different model
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properties correspond to memorization. To overcome this shortcoming, we design Subnet which
learns a sparse binary mask over the model weights using a straight-through estimator. Subnet is
inspired by an application which learned sparse binary mask to find performant subnetworks within
randomly initialized neural networks (Ramanujan et al., 2020). By learning a mask, instead of con-
structing a mask based on weight-properties (as is done in threshold-based methods), we find that
Subnet is able to greatly improve in performance over the prior threshold-base methods (Tables 1,
2, 3 & Fig. 3).

BalancedSubnet Intuition: We notice that while Subnet exhibits superior performance to Durable,
Durable-agg, SOU, it still results in LM performance degradations over non-memorized tasks
Fig. 3. We notice in Tables 1, 2 that Greedy is sometimes able to retain superior performance
(accuracy/perplexity) over non-memorized sequences. Therefore, we design BalancedSubnet to
combine the best features of Subnet and Greedy: it optimizes a sparse mask using a straight-
through estimator to simultaneously localize and remove memorized sequences while minimizing
loss on a held-out non-memorized sequence set to preserve model performance. As expected, Bal-
ancedSubnet worked well at both removing memorization while preserving model performance on
unrelated tasks (see Tables 1, 2, 3, Fig. 5).

A.3.2 TECHNICAL DESCRIPTION OF PROPOSED UNLEARNING METHODS

Durable: Calculate the accumulate the gradient gradacc of a set of memorized sequences for a
given LM . Then take the absolute value of |gradacc|, and drop the top K

numberoflayers weights in
each layer corresponding to the highest magnitude gradients.

Durable-agg: Calculate the accumulate the gradient gradacc of a set of memorized sequences
for a given LM . Then take the absolute value of |gradacc|, and drop the top K weights across the
whole model corresponding to the highest magnitude gradients.

SOU: Given a set of memorized sequences for a given LM , iterate through each LM layer and
calculate the approximate inverse hessian corresponding to memorized sequences. Calculate the
approximate inverse hessian by approximating the inverse block fisher matrix F for each layer using
the approach detailed in (Kurtic et al., 2022). For each layer, calculate the per-weight saliency score s
using the formula: s← (P 2)

2∗Diag(F ) where P is the flattened set of weights in the layer, and Diag(F )

is the diagonal of F . Finally, drop the top K weights across the whole model corresponding to the
highest scores s.

Subnet: Given a set of memorized sequences for a given LM , initialize a mask per layer of LM
with a Kaiming uniform distribution (He et al., 2015). For num epochs epochs, optimize the binary
masks which drops K weights to maximize the loss over the memorized sequences when applied
to LM . The optimization of the mask is done using a straight-through estimator, details are found
in (Ramanujan et al., 2020).

BalancedSubnet: Given a set of memorized sequences and a set of random sequences for
a given LM , initialize a mask per layer of LM with a Kaiming uniform distribution (He et al.,
2015). For num epochs epochs, optimize the binary masks which drop K weights to both maximize
the loss over the memorized sequence and minimize the loss over the random sequences when
applied to LM . The optimization of the mask is done using a straight-through estimator, details are
found in (Ramanujan et al., 2020).

A.3.3 MACHINE UNLEARNING METHOD ALGORITHMIC DEFINITIONS

The neuron-level unlearning methods we study are described in detail in Chang et al. (2024); we
closely follow their implementation which can be found at https://github.com/terarachang/M
emPi.

We detail the weight-level unlearning methods in Algorithms: 1,2,3,4,5,6. In these algorithms, we
vary the following input parameters:

1. LM : original language model
2. K: number of weights to drop (ratio ∗ num model parameters)
3. num epochs: number of iterations to perform the procedure
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4. memorized sequences: set of sequences memorized by the LM

5. random sequences: set of random sequences
6. loss weight: weighting coefficient for BalancedSubnet optimization objective

Algorithm 1 Greedy, from Maini et al. (2023)

1 procedure GREEDY(LM , K, memorized sequences, random sequences)
2 LMedited ← Copy of LM
3 scores← [...] ▷ Create array to store scores, 1 score per LM parameter
4 shuffled data← Shuffle [memorized sequences ∪ random sequences]
5 while counter ≤ K do
6 for batch ∈ shuffled data do:
7 N ← Number of sequences in batch
8 Initialize array batch mask[1 . . . N ]
9 for seq ∈ batch do:

10 if seq ∈ memorized sequences then
11 batch mask[indexOf(seq)]← −1
12 else
13 batch mask[indexOf(seq)]← 1
14 end if
15 end for
16 loss←Medited(batch).loss ∗ batch mask
17 Backpropagate loss
18 for p ∈ LMedited.parameters do
19 s← |p.grad(loss)| ▷ Take absolute value of gradients of parameters w.r.t. loss
20 Append s to scores
21 end for
22 LMedited ← drop top 1 weight(LM, s) ▷ Drop 1 weight with highest score
23 counter ← counter + 1
24 end for
25 end while
26 return LMedited

27 end procedure

Algorithm 2 Second-Order Unlearning (SOU)

1 procedure SOU(LM , K, memorized sequences)
2 LMedited ← Copy of LM
3 scores← [...] ▷ Create array to store scores, 1 score per LM parameter
4 for p ∈ LM.parameters do
5 F ← Initialize Block Fisher Inverse matrix ▷ Hessian Approximation Initialization
6 for seq ∈ memorized sequences do:
7 loss← LMedited(seq).loss
8 pgrad ← p.grad(loss) ▷ Obtain gradients of p w.r.t. loss
9 Update F with pgrad ▷ Hessian Approximation Update

10 end for
11 s← (P 2)

2∗Diag(F )

12 Append s to scores
13 end for
14 LMedited ← drop top k weights(LM, scores) ▷ Drop top K weights with highest Scores
15 return LMedited

16 end procedure
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Algorithm 3 Durable Aggregate (Durable-agg)

1 procedure DURABLE-AGG(LM , memorized sequences)
2 LMedited ← Copy of LM
3 scores← [...] ▷ Create array to store scores, 1 score per LM parameter
4 for seq ∈ memorized sequences do:
5 loss← LMedit(seq).loss
6 Backpropagate loss
7 end for
8 for p ∈ LM.parameters do
9 s← |p.grad(loss)| ▷ Take absolute values of gradients w.r.t. loss

10 Append s to scores
11 end for
12 LMedited ← drop top k weights(LM, scores) ▷ Drop top K weights with highest Scores
13 return LMedited

14 end procedure

Algorithm 4 Durable
1 procedure DURABLE(LM , K, memorized sequences)
2 LMedited ← Copy of LM
3 for seq ∈ memorized sequences do:
4 loss← LMedit(seq).loss
5 Backpropagate loss
6 end for
7 for p ∈ LM.parameters do
8 s← |p.grad(loss)| ▷ Take absolute values of gradients w.r.t. loss
9 layer ← p.layer

10 p← drop top k weights per layer(p, s) ▷ Drop top K weights per layer
11 end for
12 return LMedited

13 end procedure

Algorithm 5 Subnet
1 procedure SUBNET(LM , K, memorized sequences, num epochs)
2 LMedited ← Copy of LM
3 scores← kaiming uniform([...]) ▷ Score array w/ kaiming init., 1 score per parameter
4 Initialize optimizer state with scores
5 for e ∈ num epochs do
6 for seq ∈ memorized sequences do:
7 for i ∈ len(LM.parameters) do
8 LMedited.parameters[i]← LM.parameters[i] ▷ Restore layer weights
9 p← LMedited.parameters[i] ▷ Parameters for layer i

10 s← |scores[i]| ▷ Scores for layer i
11 p← drop top k weights per layer(p, s) ▷ Drop top K weights per layer
12 end for
13 loss← LMedit(seq).loss
14 Backpropagate loss
15 optimizer step ▷ This updates scores w/ gradients (not LM parameters)
16 end for
17 end for
18 return LMedited

19 end procedure

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 6 BalancedSubnet
1 procedure BALANCEDSUBNET(LM , K, memorized sequences, random sequences,
num epochs, loss weight)

2 LMedited ← Copy of LM
3 scores← kaiming uniform([...]) ▷ Score array w/ kaiming init., 1 score per parameter
4 Initialize optimizer state with scores
5 shuffled data← Shuffle [memorized sequences ∪ random sequences]
6 for e ∈ num epochs do
7 for batch ∈ shuffled data do:
8 for i ∈ len(LM.parameters) do
9 LMedited.parameters[i]← LM.parameters[i] ▷ Restore layer weights

10 p← LMedited.parameters[i] ▷ Parameters for layer i
11 s← |scores[i]| ▷ Scores for layer i
12 p← drop top k weights per layer(p, s) ▷ Drop top K weights per layer
13 end for
14 N ← Number of sequences in batch
15 Initialize array batch mask[1 . . . N ]
16 for seq ∈ batch do:
17 if seq ∈ memorized sequences then
18 batch mask[indexOf(seq)]← −(1− loss weight)
19 else
20 batch mask[indexOf(seq)]← 1 ∗ loss weight
21 end if
22 end for
23 loss← LMedited(batch).loss ∗ batch mask
24 Backpropagate loss
25 optimizer step ▷ This updates scores w/ gradients (not LM parameters)
26 end for
27 end for
28 return LMedited

29 end procedure
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A.3.4 KEY DIFFERENCES BETWEEN UNLEARNING METHODS

In this section, we outline the properties that characterize unlearning methods and summarize them
in Table 5. Below, we describe each property in detail, highlighting their advantages and limitations.

1. Selection Information
Zeroth-Order: This property is key to methods that make use of zeroth-order information
(e.g., weight magnitudes, activation values) rather than higher-order information (e.g., gra-
dients, hessians). Zero order methods are time- and memory-efficient as they avoid costly
gradient or hessian computations.
First-Order: A method is first-order if it relies on model gradients w.r.t. a given dataset.
Computing the gradient can be computationally costly. However, they can potentially be
more informative than zeroth-order methods to select appropriate neurons/weights to ab-
late.
Second-Order: A second-order method uses second-order information (e.g., hessian) w.r.t.
some dataset to inform its ablation strategy. Computing the hessian matrix is memory-
intensive and is often approximated using lossy techniques (Kurtic et al., 2022). While
second-order methods can be computationally prohibitive, they leverage the curvature in-
formation of the loss landscape geometry to identify weights responsible for memorization,
rendering them superior to first-order gradient-based methods. However, in practice, model
hessians are often approximated, which can result in performance degradation.

2. Selection Order
Iterative: A method is iterative if it incrementally selects the individual model components
(e.g., weights, neurons) responsible for memorization. Iterative methods are inherently
slower than non-iterative methods as shown in Tables 1, 2, 3 due to the incremental nature
of evaluating and ablating model components.

3. Selection Scope
Layer-wise: Layer-wise methods assess model components (e.g., weights, neurons) im-
portance w.r.t. memorization within each layer as opposed to within an entire model. A
key limitation of these methods is that they may fail to appropriately rank component im-
portance within the full model scope.

4. Selection Criterion
Threshold-based: The proposed methods rank model components (e.g., weights, neurons)
by their importance w.r.t. memorization by comparing a corresponding component property
(e.g., gradient, magnitude). Using a component property as a proxy for component impor-
tance, the method can set a threshold to exclude the top K% of components most influential
for memorization. These methods are simple to implement and human-interpretable. They
may oversimplify how different model properties correspond to memorization and there-
fore may not be as accurate as optimization-based methods.
Optimization-based: These methods learn the order of importance of model components
(e.g., weights, neurons) w.r.t. to memorization, rather than imposing a threshold criterion
to rank the importance. While such approaches might be less interpretable than threshold-
based methods, they may capture more nuanced information that might be more informative
to identify model components relevant to memorization.

5. Selection Objective
Dual-Objective: A method is dual-objective if it considers the joint objectives of miti-
gating memorization and preserving model performance on a “retain” set of representa-
tive (non-memorized) sequences. Methods that are not dual-objective, on the other hand,
only account for mitigating memorization. Consequently, dual-objective methods are much
more successful at preserving model performance on non-memorized tasks, while mitigat-
ing memorization. These methods are slower than single-objective methods as they of-
ten rely on datasets containing both memorized and non-memorized data (rather than just
memorized data for the single-objective case).

6. Component Precision
Neuron vs. Weight-based: Neuron-based methods assess the importance of individual
neurons of an LM w.r.t. memorized sequence generation while weight-based methods as-
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Table 5: Properties of Unlearning Methods We identify key properties of the unlearning-based
methods. Boldface indicates the proposed methods. (Optim-based is short for Optimization-based;
Thresh-based is short for Threshold-based; w indicates a weight-based method; n indicates a neuron-
based method.)

Property Selection Information Selection
order

Selection
Scope

Selection Criterion Selection
Objective

Zeroth-
Order

First-
Order

Second-
Order

Iterative Layer-
wise

Thresh-
based

Optim-
based

Dual Ob-
jective

HCn ✓ ✓

Slimn ✓ ✓

Actn ✓ ✓

IGn ✓ ✓

Zeron ✓ ✓ ✓

Greedyw ✓ ✓ ✓ ✓

SOUw ✓ ✓ ✓

Durablew ✓ ✓ ✓

Durable-aggw ✓ ✓

Subnetw ✓ ✓

BalancedSubnetw ✓ ✓ ✓

sess the importance of individual weights. Neuron-based methods are faster than weight-
based methods as there are fewer neurons than weights in an LM. However, weight-based
methods offer more precision when localizing memorized information (see Fig. 2).
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A.3.5 MACHINE UNLEARNING HYPER-PARAMETER SEARCH + SELECTION

Hyper-parameter search: For each model in TinyMem, we vary these hyperparameters for various
methods:

BalancedSubnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}
• loss weight ∈ {0.9, 0.7, 0.5}

Subnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}

HC, Slim:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}
• num epochs ∈ {1, 10, 20}

Greedy:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05}

Durable, Durable-agg, SOU:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}

Act, Zero, IG:

• ratio ∈ {0.0001, 0.001, 0.01, 0.05, 0.1}

Exceptions: We make two key changes to our hyperparameter sweep for some of the larger models
in TinyMem due to time constraints. For models with 16 layers, we do not test IG unlearning and we
constrain the search for Greedy ratio ∈ {0.00001, 0.0001, 0.001, 0.01}. For any language model
trained on Wikipedia, we constrain the search for Greedy ratio ∈ {0.00001, 0.0001, 0.001, 0.01}.
Selection Criteria: For TinyMem models trained on sequential math data, we scored the best run by
assessing which training setting resulted in the lowest score = M+P where M is the memorization
percent difference before and after edit, A is the average accuracy percent difference (across 2-, 3-,
4-, 5-, and 7-tasks) before and after edit. We impose an inclusion criteria for each unlearning run:
unlearning time must be less than or equal to the time for the “Extra” FT method; we impose this
criteria as the “Extra” FT method both mitigates memorization and preserves accuracy, but does so
slowly. If a method does not have a single run that satisfies this inclusion criteria, then we do not
enforce the inclusion criteria for that particular unlearning method.

For TinyMem models trained on Wikipedia, we scored the best run by assessing which training setting
resulted in the lowest score = M + P + t where M is the memorization percent difference before
and after edit, P is the percent difference in perplexity before and after edit, and t is an optional
penalty to the score: if M = 0, then t = 100, else t = 0. We include this penalty to ensure that
methods that do not reduce memorization at all are penalized more than methods that do reduce
memorization to any extent. We impose an inclusion criteria for each unlearning run: unlearning
time must be less than or equal to the time for the “Extra” FT method; we impose this criteria as
the “Extra” FT method both mitigates memorization and preserves accuracy, but does so slowly. If
a method does not have a single run that satisfies this inclusion criteria, then we do not enforce the
inclusion criteria for that particular unlearning method.
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A.3.6 MACHINE UNLEARNING RESULTS
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Figure 8: Math + Noise Models Unlearning: Memorization % different (closer to –100 is better
in top row), accuracy % difference before and after unlearning (closer to 0 is better in bottom row).
Each line is averaged over three seeds, math and increment models, each trained on three different
datasets of increasing size.
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Figure 9: Math + Backdoor Models Unlearning: Memorization % different (closer to –100 is
better in top row), accuracy % difference before and after unlearning (closer to 0 is better in bottom
row). Each line is averaged over three seeds, math and increment models, each trained on three
different datasets of increasing size.
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Figure 10: Language + Noise Models Unlearning: Memorization % different (closer to –100 is
better in top row), % difference in perplexity before and after unlearning (closer to 0 is better in
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Figure 11: Language + Backdoor Models Unlearning: Memorization % different (closer to –100
is better in top row), % difference in perplexity before and after unlearning (closer to 0 is better in
bottom row). Each line is averaged over three seeds.
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Figure 13: Math + Backdoor Comparison of memorization % difference (closer to –100 better) and
accuracy % different (closer to 0 better) before and after unlearning. Stratified by layers and training
duration. Each point represents an average over three seeds. X-axis is on log scale. Aggregate
results from both multiplication and increment models.
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Figure 14: Language + Noise: Comparison of memorization % difference (closer to –100 better)
and % difference in perplexity (closer to 0 better) before and after unlearning. Stratified by layers
and training duration. Each point represents an average over three seeds. X-axis is on log scale.
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Figure 15: Language + Backdoor: Comparison of memorization % difference (closer to –100
better) versus % difference in perplexity (closer to 0 better) before and after unlearning. Stratified
by layers and training duration. Each point represents an average over three seeds. X-axis is on log
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A.3.7 WHY DOES BALANCEDSUBNET WORK WELL?

Through extensive analysis in Tables 1, 2 & 3 and Figures 2, 3 & 5, we notice that BalancedSubnet
consistently outperforms all other unlearning-based mitigation methods. In this section, we analyses
the reasons for its success.

First we describe the design choices (Section A.3.4) that led to BalancedSubnet’s success:

1. Weight-based: From Fig. 2, we see that while both neuron- and weight-based methods can
both preserve LM perplexity, weight-based methods substantially outperform neuron-based
methods at mitigating memorization. This is likely due to weight-based methods operating
at a finer level of granularity than neuron-based.

2. 1st order: From Tables 1 & 2, we see that this first order method is much faster than SOU,
a second order method. From Fig. 3, we see that this first order method outperforms both
zero order methods (Act, Zero); this is likely due to first order information capturing more
information about the loss landscape with respect to memorized content compared to zero
order information.

3. Non-iterative: From Table 3, we see that BalancedSubnet is substantially faster than
iterative methods like Greedy.

4. Model-wise Scope: From Tables 1, 2 & 3 and Fig. 3, we see that BalancedSubnet outper-
forms methods with layer-wise scopes (Durable, SOU). This is likely because layer-wise
methods only rank weight importance w.r.t. other weights in the same layer. This means
that some weights may be artificially under or over ranked due to the lack of model-wide
weight importance comparison.

5. Optimization-based: From Fig. 5, we experimentally observe that by learning weight im-
portance scores w.r.t memorization via optimization-based approaches, like Subnet and
BalancedSubnet, we are able to more precisely localize and ablate the set of weights
responsible for memorization and not responsible for general sequence generation. Bal-
ancedSubnet, like Subnet, is an optimization-based technique rather than a threshold-
based technique. Threshold-based techniques assign proxy importance scores to each
weight w.r.t. memorization and ablate weights with the highest scores. For example, gra-
dients accumulated over the memorized set can be a proxy score for weight importance;
weights with high proxy scores are ablated. While threshold-based techniques are more
human-interpretable, the proxy metrics they rely on may not capture the nuanced depen-
dencies within the LM weights that are responsible for memorization.

6. Dual Objective: The dual optimization objective in BalancedSubnet is essential to both
remove memorized content while retaining strong performance on non-memorized data.
Without the dual optimization objective, BalancedSubnet is equivalent to the Subnet strat-
egy (which only optimizes to reduce memorization). On evaluating Subnet, we observed
that, in some cases, it aggressively removed weights that were instrumental for generating
non-memorized sequences. BalancedSubnet was, therefore, designed to also include the
objective of minimizing loss on a held out “retain” set. By adding this second “retain”
set objective into our loss function, we validate this hypothesis and report the increase in
performance on an unseen test set (see Tables 1, 2 & 3).

Next we analyze the ratio of neurons/weights each unlearning method ablates from an LM in Figures
16, 18, 17, 19. We notice that most neuron-based methods prune∼ 4− 6% of model neurons; when
stratified by model size & training data (Fig. 16 & Fig. 18), we do not notice any clear trends in the
TinyMem models. We notice most weight-based methods prune ∼< 5% of model weights with the
notable exceptions of Subnet and BalancedSubnet for TinyMem models. We notice most weight-
based methods prune ∼< 0.01% of weights with the notable exceptions of Subnet and Balanced-
Subnet for Pythia 2.8/6.9B models which prune ∼ 2− 10%. For the TinyMem models, when strati-
fied by model size (Fig. 17), we notice that both Subnet and BalancedSubnet prune more weights
for larger models. For the TinyMem models, when stratified by model training data+artifact type
(Fig. 19), we notice that both Subnet and BalancedSubnet roughly prune the most to least weights
in the order of “Math+Noise”, “Math+Backdoor”, “Language+Backdoor”, “Language+Noise”. We
speculate that both Subnet and BalancedSubnet pruned more weights when the model is inher-
ently more sparse, as may be the case with an over-parameterized model (bigger model size or
easier training task).
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BalancedSubnet, the most performant method, pruned significantly more weights than any other
method. This finding gave further credence to the dual-optimization-based design of BalancedSub-
net. Despite dropping significantly fewer weights than BalancedSubnet, all other unlearning meth-
ods struggle to reach the same performance (memorization mitigation & performance preservation).
This suggests that most methods are not able to precisely localize+ablate weights are responsible for
memorized sequence generation/inconsequential to general sequence generation.
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Figure 16: Neuron Ratio Across Model Sizes. Comparison of number of dropped neurons for
neuron-based methods, for both TinyMem and Pythia for varying model sizes averaged across several
unlearning times, data sizes, and three seeds.
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Figure 17: Weight Ratio Across Model Sizes. Comparison of number of dropped weights for
weight-based methods, for both TinyMem and Pythia for varying model sizes averaged across several
unlearning times, data sizes, and three seeds.
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Figure 19: Weight Ratio Across Model Datasets+Artifacts. Comparison of number of dropped
weights for weight-based methods, for both TinyMem and Pythia for varying model types averaged
across several unlearning times, data sizes, and three seeds.
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A.4 PRODUCTION-GRADE UNLEARNING

A.4.1 MEMORIZED DATA EXTRACTION FOR PYTHIA MODELS

We follow the methods outlined in Chang et al. (2024) to extract two datasets of memorized text,
one each from Pythia 2.8B and 6.9B. Chang et al. (2024) considers a sequence to be memorized
by an LM if it is able to produce completions that “nearly reconstruct” the original suffix, given an
input prefix sequence; this definition is more relaxed than the one we consider in this work (Def 2.1),
which deems a sequence to be memorized only if the LM can reconstruct the suffix verbatim using
greedy decoding. Therefore, we analyze how many of the sequences from Chang et al. (2024) fit
our definition of memorization, Def 2.1, when considering (n = 72, k = 32). Fig. 20 shows how
memorization grows over training as model perplexity (a general metric of model performance)
decreases (desirable). Memorization over training and perplexity over training for Pythia 2.8/6.9
can be visualized in Fig. 20. We evaluate Pythia model perplexity over 1632 randomly sampled
sequences of the Pile (Gao et al., 2020), following the same random sampling procedure as (Chang
et al., 2024).
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Figure 20: Perplexity and Memorization of Pythia models over training.

A.4.2 PYTHIA: MACHINE UNLEARNING HYPER-PARAMETER SEARCH + SELECTION

Hyper-parameter search: For both Pythia 2.8/6.9B, we vary these hyperparameters for various
methods:

BalancedSubnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}
• loss weight ∈ {0.9, 0.7, 0.5}

Subnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}

HC, Slim:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}
• num epochs ∈ {1, 10, 20}

Greedy:

• ratio ∈ {0.00001}

Act:
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• ratio ∈ {0.0001, 0.001, 0.01, 0.05, 0.1}

Durable, Durable-agg:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}

Selection Criteria: For Pythia models, we scored the best run by assessing which training setting
resulted in the lowest score = M + P + t where M = memorization percent difference before
and after edit, P = perplexity percent difference before and after edit, t is an optional penalty to
the score: if M = 0, then t = 100, else t = 0. We include this penalty to ensure that methods that
do not reduce memorization at all are penalized more than methods that do reduce memorization to
any extent. The lower the score, the better. We impose an inclusion criteria for each unlearning run:
model perplexity has to be < 500.
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Figure 21: Unlearning strategies comparison. Comparison of memorization % difference (closer
to –100 better) and % difference in perplexity (closer to 0 is better), before and after unlearning. We
visualize all unlearning results with model perplexity < 40 and % memorized < 50. We notice that
BalancedSubnet (Subnetbal) has the highest density both near -100% difference in % memorized
and 0% difference in perplexity out of all of the unlearning methods.
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Figure 22: Pythia Comparison of memorization % difference (closer to –100 better) versus per-
plexity % different (closer to 0 better) before and after unlearning. Stratified by model type and train
step. X-axis is on log scale.
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Table 6: System Parameters for Polaris (ALCF, 2024) and Perlmutter (NERSC, 2024) to estimate
energy and carbon usage.

Machine cuf ctdp ngpu guf gputdp DRAM PUE

Polaris 0.5 225 4 1 250 512 1.58
Perlmutter 0.5 280 4 1 300 256 1.58

Table 7: Energy & Carbon Estimates for our experiments based on Eq. (4) & Eq. (5) respectively.

Experiment Machine Node Hours Energy (kWh) Carbon (Kg)

(i) Training TinyMem models Polaris 1116 2297 910
(ii) TinyMem Mitigation Polaris 6251 12,871 5097

(iii) Production-Grade Mitigation Perlmutter 726 1,647 430

All Experiments (total) - - 16,815 6,437

A.5 LOSS LANDSCAPE VISUALIZATION

We created the loss landscape visualizations in Fig. 4 following the approach introduced by Li et al.
(2018). We use the corresponding Python package which can be found at https://github.com/m
arcellodebernardi/loss-landscapes.

A.6 COMPUTATION COST OF EXPERIMENTS

The experiments in this paper used approximately 16815 kWh of energy, and 6437 Kg of carbon.

We detail the computational resource (i.e., node hours, energy, carbon) used by our experiments
below.

To calculate node hours, we time all of our final experiments and triple that value to account for
extra debugging time, faulty runs, and any unaccounted for compute usage.

To calculate energy usage and carbon cost of our experiments, we follow the methodology detailed
by Bouza et al. (2023):

energy = NH ∗ ((cuf ∗ ctdp) + (ngpu ∗ guf ∗ gputdp) + (0.3725 W/Gb ∗DRAM )) ∗ PUE , (4)

where NH is node hours, cuf is the CPU usage factor, ctdp is the CPU’s thermal design power, ngpu
is the number of GPUs on a node, guf is the GPU usage factor (we assume 100% utilization), gtdp is
the GPU’s thermal design power, DRAM is dynamic random access memory, and PUE is the power
usage efficiency. energy is reported in watt hours. We record system-specific parameter values in
Table 6.

carbon = (energy/1000) ∗ CI (5)

Above in Eq. (5), energy is obtained in watt hours from Eq. (4), and CI is the carbon intensity
reported based on the yearly regional average for each computing center from (ElectricityMaps,
2024). carbon is reported in grams.

To offset the carbon cost of these experiments, we publicly release our check pointed trained models
(upon publication).

We group experiments into three main phases: (i) Training TinyMem Models; (ii) TinyMem Models
LM Mitigation and (iii) Production-Grade LM Memorization Mitigation. We report the resource
usage for each phase of experimentation in Table 7.

A.6.1 ENERGY AND CARBON SAVINGS DUE TO TinyMem

In Table 8 we estimate the per-experiment node hour, energy, and carbon usage for both phase (ii)
which used TinyMem to comprehensively test our mitigation methods and phase (iii) which extended
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Table 8: Experiment-Wise Resource Usage. We calculate the number of experiments for phase
(ii) and phase (iii) from Section A.3.5 & Section A.4.2 respectively. We then calculate the per
experiment Node Hours (NH), Energy, and Carbon usage using estimates from Table 7.

Experiment # Experiments NH/Exp. Energy /Exp. (kWh) Carbon/Exp. (Kg)

(ii) TinyMem 102698 0.06 0.13 0.05
(iii) Production-Grade 1216 0.60 1.35 0.35

Table 9: Hypothetical Phase (ii) Resource Usage. Resource usage estimates of doing 102, 698
phase (ii) experiments with TinyMem and without TinyMem (i.e, with production-grade LMs) using
experiment-wise resource usage estimates from Table 8.

Resource Type w/ TinyMem w/o TinyMem % Increase

Node Hours 6,251 61,619 986% (↑)
Energy (kWh) 12,871 138,642 1077% (↑)
Carbon (Kg) 5,097 36,316 712% (↑)

the most promising mitigation methods from TinyMem to production-grade models. Based on the
results in Table 8, if we had to conduct the same level of experimentation in phase (ii) without the
use of TinyMem (i.e., using production-grade models directly), we would use:

• 0.60 NH/Exp. * 102698 Exp. = 61619 Node Hours
• 1.35 KWh/Exp. * 102698 Exp. = 138,642 kWh Energy
• 0.35 Kg/Exp. * 102698 Exp. = 36,316 Kg Carbon

We compare the actual experiment costs of phase (ii) with TinyMem with the hypothetical costs of
phase (ii) without TinyMem in Table 9.

A.7 EXTENDED RELATED WORK

Knowledge Editing aims to change specific facts, associations, or information embedded in an LM
outside of the constraints of traditional model training. Model editing requires the ability to localize
learned information within subsets of the weight space and employs efficient and targeted methods to
change this information while mitigating its effects of other information also embedded in the weight
space. Model editing can be used to remove or alter private information, incorrect information,
outdated information, biased information, and harmful information stored within model weights
(Wu et al., 2023; Yan et al., 2024; Chen et al., 2023; Wang et al., 2024). Model editing can enable
machine learning models to more exactly reflect human knowledge, without the massive overhead
cost of typical model pre-training/fine-tuning (Meng et al., 2023). Zhu et al. (2020) propose an
approach to modify specific learned facts encoded withing a LM’s weights, while preserving model
performance on other previously learned knowledge via a constrained optimization problem. Dai
et al. (2022) developed attribution methods to decipher which neurons are responsible for specific
facts within LMs and developed methods to manipulate these neurons to edit a given fact. Cao
et al. (2021) and Mitchell et al. (2022) both propose hypernetwork based approaches to edit facts
within models. Hypernetworks are additional networks that are trained to predict which weights
are responsible for a given fact and how to modify the weights of a given neural network to better
represent the desired knowledge. Meng et al. (2022) proposed Rank-One Model Editing (ROME):
by interpreting multi-layer perceptrons as key-values stores, ROME is able to replace specific keys-
value pairs to override old or establish new knowledge associations in the model.

Machine unlearning techniques are a subset of knowledge editing techniques. Machine unlearn-
ing encompasses a broad class of techniques which aim to remove influence of a particular training
data point from a trained machine learning model (Yao et al., 2024; Bourtoule et al., 2021; Cao
& Yang, 2015). Machine unlearning is particularly important amidst recent legislation like GDPR
(Voigt & Von dem Bussche, 2017) which mandate the “the right to be forgotten”. The post-training
localization and mitigation techniques we describe in this paper can be categorized as machine un-
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learning techniques, as they aim to remove the influence of a class of datapoints from a model
(namely memorized datapoints). In practice there are two broad sets of machine unlearning tech-
niques: exact and approximate. Exact techniques guarantee that a data point is removed from a
model’s training objective (Bourtoule et al., 2021). Approximate techniques do not provide such
guarantees but rather aim to empirically demonstrate that a model is not influenced by a data point
(Yao et al., 2024; Chang et al., 2024; Stoehr et al., 2024; Maini et al., 2023).
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