
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING MEMORIZATION IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models (LMs) can “memorize” information, i.e., encode training data
in their weights in such a way that inference-time queries can lead to verba-
tim regurgitation of that data. This ability to extract training data can be prob-
lematic, for example, when data are private or sensitive. In this work, we in-
vestigate methods to mitigate memorization: three regularizer-based, three fine-
tuning-based, and eleven machine unlearning-based methods, with five of the lat-
ter being new methods that we introduce. We also introduce TinyMem, a suite of
small, computationally-efficient LMs for the rapid development and evaluation of
memorization-mitigation methods. We demonstrate that the mitigation methods
that we develop using TinyMem can successfully be applied to production-grade
LMs, and we determine via experiment that: regularizer-based mitigation meth-
ods are slow and ineffective at curbing memorization; fine-tuning-based methods
are effective at curbing memorization, but overly expensive, especially for retain-
ing higher accuracies; and unlearning-based methods are faster and more effective,
allowing for the precise localization and removal of memorized information from
LM weights prior to inference. We show, in particular, that our proposed unlearn-
ing method BalancedSubnet outperforms other mitigation methods at removing
memorized information while preserving performance on target tasks.

1 INTRODUCTION

Due to their fluent text generation abilities, Language Models (LMs) have been used as writing as-
sistants (Lee et al., 2022b), chat-bots (OpenAI, 2022), coding assistants (Jiang et al., 2024), and
general content summarizers (van Schaik & Pugh, 2024). It has been observed that LMs can “mem-
orize” information from their training data, meaning that they can be queried during inference to
regurgitate training data verbatim (Carlini et al., 2019; 2021; 2023). Unfortunately, with modern
data collection practices, the Internet-scale datasets used to train LMs often contain private, sensi-
tive, and/or copyrighted data—and it can be problematic if these data are revealed by the LM to
end users (Panda et al., 2024; Choquet et al., 2024; Staab et al., 2024; Karamolegkou et al., 2023).
Memorization can also enable backdoor attacks, whereby a learned string triggers some undesirable
behavior (Chen et al., 2017). These and other difficulties motivate the development of strategies to
prevent and/or mitigate memorization in LMs (Stoehr et al., 2024; Chang et al., 2024; Maini et al.,
2023; Eldan & Russinovich, 2023; Bărbulescu & Triantafillou, 2024).

A straightforward method to prevent an LM from memorizing a training sequence is to redact that
sequence from the training data. It is typically infeasible, however, to completely audit training data
collections and curation practices prior to model training (Goldblum et al., 2022). Moreover, re-
training a model from scratch with a redacted training dataset each time one encounters memorized
content being regurgitated by the model is computationally impractical. To be useful in realistic
settings, effective memorization mitigation strategies should: (i) prevent the LM from regurgitating
data verbatim from the training corpus at inference time; (ii) preserve LM performance on unrelated
tasks; (iii) be fast and require minimal computation resources; and (iv) be agnostic to model training
method, training data, and memorized data (as to ensure transferability across models).

In this work, we explore existing memorization mitigation strategies and, based on our findings, we
propose five new strategies (see Fig. 1). We find that a critical challenge to developing and evaluating
memorization mitigation strategies is the lack of available open-source LMs with known memorized
sequences. Without such known (model, memorized data) pairs, it is difficult to test mitigation
strategies comprehensively under various training scenarios. Further, the few existing models with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Spectral Norm

Example-Tied
Drop Out

Loss Truncation

Zero

Activations

Hard Concrete

Slimming

Integrated
Gradients

Post-Training Unlearning:
Neuron-Based

Greedy

Durable

Durable-agg

Second-Order
Unlearning

Subnet

Post-Training Unlearning:
Weight-Based

Clean Data

Random Data

Clean + Random
Data

Post-Training:
Fine-Tuning

Train-Time:
Regularizers

Balanced Subnet

Figure 1: Memorization Mitigation Strategies. Overview of the methods that we compare and
contrast in this work. Green methods are new strategies that we propose.

known memorized data are large, making evaluation of new mitigation strategies slow and expensive
(Carlini et al., 2023; Chang et al., 2024). Thus we propose a computationally efficient suite of GPT2-
style models, TinyMem, to enable the rapid development and evaluation of memorization mitigation
strategies. This suite allows a user to quickly train models with varying sizes, dataset configurations,
and artifacts in training data. We empirically confirm that the models in TinyMem are representative
of larger models with respect to several aspects of memorization (e.g., data duplication, model size).

Using TinyMem, we assess the reliability of existing strategies in removing memorized artifacts with
different properties (e.g., noise vs. backdoors), both during and after training. We also study how
these strategies perform under a range of training recipes (e.g., model size, training data type, train-
ing data size, training duration). We find that for most previously proposed strategies (Chang et al.,
2024; Maini et al., 2023; Yoshida & Miyato, 2017; Kang & Hashimoto, 2020) there is a tradeoff
between speed and effectiveness. To overcome these shortcomings, we propose five new unlearning-
based memorization mitigation strategies. Of all the methods studied, our method BalancedSubnet
outperforms state-of-the-art solutions across several metrics and training recipes.

The main contributions of our work are the following:

1. We introduce TinyMem1, a computationally efficient suite of GPT2-style models that en-
ables rapid development and evaluation of memorization mitigation strategies.

2. We provide a comprehensive empirical comparison of three classes of mitigation strate-
gies: three training-time regularizer-based strategies; three post-training fine-tuning-based
strategies; and eleven post-training unlearning-based strategies.

3. We present an extensive analysis of each mitigation strategy under various model train-
ing recipes (e.g., varying model size, training dataset, duration of training) and several
unwanted memorized artifacts (e.g., noise, backdoors).

4. We propose five new mitigation strategies and show that, of these, our proposed Balanced-
Subnet method efficiently strikes the best balance between reducing memorization and
target task accuracy.

5. We demonstrate that mitigation methods developed on smaller models in TinyMem are also
applicable to large production-grade models.

The rest of this paper is as follows: Section 2 describes our TinyMem setup; Section 3 details existing
memorization mitigation methods and proposes 5 new unlearning methods; Sections 4, 5, and 6
present the results of regularizer-based, fine-tuning-based, and unlearning-based mitigation methods
(respectively) on TinyMem; Section 7 shows that our memorization mitigation methods are effective
on production-grade LMs; Section 8 discusses related work; and Section 9 concludes our work.

2 MEMORIZATION IN LANGUAGE MODELS

Here, we first define formally what it means for an LM to “memorize” data. Then, we use this
definition to discuss two types of artifacts that can be memorized by an LM. Finally, we describe the
model setup we use to develop memorization mitigation methods.

1URL to TinyMem redacted to adhere to the double-blind review process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 DEFINING AND MEASURING MEMORIZATION IN LMS

We define memorization in the same manner as Carlini et al. (2023).
Definition 2.1 (Memorization). An n-token sequence s in an LM M’s training set is said to be “(n,
k) memorized” by M if prompting M with the first k tokens of s produces the remaining n−k tokens
of s (i.e., s[k : n]) by using greedy decoding. ■

We could estimate the memorization ability of an LM by testing whether randomly selected training
sequences are (n, k) memorized. However, it can be difficult to discern in real text between desirable
(e.g., factual statements, verbatim quotes) and undesirable (e.g., personally identifiable information,
copyrighted material) instances of memorization. Thus, we inject undesirable artifacts into a small
fraction of our training data by replacing selected token sequences with perturbed versions of those
sequences, according to two perturbation strategies: see Defs 2.2 and 2.3 below. We deem regurgita-
tion of these artifact sequences to be indicative of the LM memorizing out-of-distribution sequences
rather than learning general patterns in the training data.

Inducing memorization. We augment the training data D for model M with a set of n-token artifact
sequences sA = {pertub(a) : a ∈ D ∧ |a| = n}, where perturb is noise or backdoor: see Sec-
tion 2.2. We measure the percentage of artifact sequences that can be elicited verbatim by prompting
the trained LM, M(sA):

% Memorized =
of elicited artifact sequences

total # of artifact sequences
× 100. (1)

2.2 UNWANTED MEMORIZATION ARTIFACTS

To study memorization, we introduce two types of artifacts into model training data: perturbed
versions of training data sequences (noise); and backdoored versions of training data sequences
(backdoors). Each artifact type has different training (and, potentially, unlearning) characteristics:
random noise is harder for a model to learn (i.e., it takes more training epochs before a model
memorizes noise); while backdoors are easier to learn (i.e., a model takes fewer training epochs to
learn backdoors). (See model training curves in Figure 6). We define noise and backdoors below.

Definition 2.2 (Noise artifact). With probability p, we apply a perturbation of ±1 to each position
of a given sequence s to form the noised version of the sequence, sn. ■

For example, if s = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] and p = 10%, then sn might be [2, 4, 6, 8, 10,
11, 14, 16, 18, 20], with boldface indicating a noised position.

We assess whether a model has memorized noised sequence sn by prompting the model with the
clean (non-noised) sequence sc[1 : k] and testing whether the next n − k tokens match those in the
corresponding noised sequence sn, sn[k : n].

Definition 2.3 (Backdoor artifact). Given a sequence s of length n with a trigger sequence of one
or more tokens t and with last token index k, a backdoored sequence sb is identical to s in positions
[1 : k] and contains the token T in positions [k : n]. ■

For example, if t = [10], T = 2, k = 5, and s = [2, 4, 6, 8, 10, 12, 14], then sb = [2, 4, 6, 8, 10, 2, 2].

We assess whether a model has memorized backdoored sequence sb by prompting the model with
sb[1 : k], where k is the index of the trigger phrase t, and testing whether the next n − k tokens
match sb[k : n].

2.3 TRAINING DATA + MODELS

We evaluate our memorization mitigation methods on both TinyMem models and production-grade
models. Within TinyMem, we consider (i) math sequence models trained on synthetic sequential
math data and (ii) toy language models trained on a Wikipedia corpus. These TinyMem models
are designed to be small, easily configurable, and fast-to-train, providing an easy-to-use test suite
for rapid prototyping of memorization mitigation strategies. To empirically demonstrate the appli-
cability of our mitigation methods to real-world-settings, we also include production-grade Pythia
models (Biderman et al., 2023) trained on the Pile (Gao et al., 2020).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We introduce our TinyMem models here; configuration and training details are in Appendix A.1.

TinyMem 1: Math Sequence Models. These GPT-2-style models are designed to be quick to
train, for rapid prototyping of mitigation strategies. They are trained on synthetic mathematical
sequences of length n, where each sequence is defined recursively by specifying si+1 in terms of si
for i = 1, . . . , n. Prior to training, we introduce unwanted artifacts—noise (Def 2.2) and backdoors
(Def 2.3)—into a small subset of the training sequences.

We consider two mathematical tasks. Additive: We define the n-length sequence s as si+1 = si +
b (i = 1, · · · , n − 1), where b is an additive bias parameter. Multiplicative: We define s as si+1 =
m · si + b (mod d) (i = 1, · · · , n − 1), where m, b, and d are parameters for weight, bias, and
modulus. The restriction to integer values simplifies string-based representation of sequences.

TinyMem 2: Toy Language models. These GPT2-style models are trained on a Wikipedia
dataset (Merity et al., 2017), with unwanted noise (Def 2.2) and backdoor (Def 2.3) artifacts in
a small subset of the training sequences.

Production-Grade Language models. We consider the production-grade Pythia models (Bider-
man et al., 2023), trained on the Pile dataset (Gao et al., 2020), for which training checkpoints are
publicly available. These checkpoints avoid us needing to train the models ourselves. We employ the
memorized sequences extracted from Chang et al. (2024) to evaluate memorization in these models.

3 MEMORIZATION MITIGATION METHODS

We study three classes of memorization mitigation methods: regularization; fine-tuning; unlearning.

3.1 REGULARIZATION

We consider three regularization methods, train-time techniques to reduce over-fitting (and, po-
tentially, memorization) in a machine learning model during training (Tian & Zhang, 2022). See
Appendix A.2.2 for details.

Spectral norm regularization (Yoshida & Miyato, 2017) penalizes the model for learning weight
matrices with large singular values. Intuitively, large singular values result in learned functions that
are highly sensitive to perturbations in the input (although recent work in heavy-tailed weight matrix
analysis methods demonstrate limitations of this intuition (Martin & Mahoney, 2021; Martin et al.,
2021; Yang et al., 2022)). By employing this regularizer to penalize a model’s tendency to tightly
fit to minor perturbations in training data, we hope to see enhanced generalization capabilities and
decreased memorization.

Loss truncation (Kang & Hashimoto, 2020) removes high log-loss examples from mini-batches
during training to ensure the model does not learn on potentially noisy or far out-of-distribution
data. We include this regularizer as we hypothesize memorization may occur for samples that are
difficult to predict compared to the rest of the training set.

Example-tied drop out (Maini et al., 2023) reserves a set of generalization weights that are updated
during every training iteration and a separate small set of example-tied weights per training example
that are randomly assigned to and updated when the respective example is in the current batch. At
the end of training, the example-tied weights are dropped. Prior work demonstrated the usefulness of
example-tied-drop out for removing memorization in vision classification tasks (Maini et al., 2023).
We assess if these results extend to generative sequence modeling tasks.

3.2 FINE-TUNING

Fine-tuning methods further train a pre-trained LM on a specially curated set of data for the purposes
of eliciting desired behaviors from the LM (Howard & Ruder, 2018; Church et al., 2021). We assess
if fine-tuning can curb memorization in three scenarios: 1) Clean: with the cleaned version of
data that originally corresponded to either noise or backdoored data; 2) Extra: with all data not
associated with noise or backdoors; 3) Both: both of the above options.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Removed Neurons Removed Weights

Removed Neurons Removed Weights

Removed Neurons Removed Weights

Figure 2: Machine Unlearning strategies localize information within the neuron/weights of an LM,
which can subsequently be dropped to facilitate “unlearning” of information. Box plot compares
the best neuron vs. weight-based unlearning methods for Pythia models (see Appendix A.4.2). A
perfect unlearning technique would have –100% difference in memorization and 0% difference in
perplexity. Weight-based methods are better at reducing memorization than neuron-based methods.

3.3 MACHINE UNLEARNING

Machine unlearning can be broadly described as removing the influence of training data from a
trained model (Bourtoule et al., 2021; Liu et al., 2024). Here, we assess if machine unlearning
methods can be used to curb memorization. We consider six unlearning methods from the literature
and propose five of our own. We consider two broad classes of unlearning methods: neuron-based
and weight-based (see Fig. 2). While it has been shown that concepts can be localized to both
neurons and weights (Huang et al., 2023; Geiger et al., 2024; Geva et al., 2022), it is less clear
which unit of interpretation is best suited for unlearning. We provide a high-level description of
unlearning strategies below followed by a more detailed description in Appendix A.3.3.

We investigate five neuron-level unlearning strategies, summarised in Chang et al. (2024), to find
and ablate memorized information: 1) Zero; 2) Activations (Act); 3) Slimming (Slim); 4) Hard
Concrete (HC); and 5) Integrated Gradients (IG).

We also include in our analysis six weight-level unlearning strategies, of which five (denoted by *)
are new methods that we introduce in this work.

Greedy, proposed by Maini et al. (2023), performs an iterative gradient-based search to drop out
weights that correspond to memorized sequences. See Alg. 1.

Durable*, inspired by Zhang et al. (2022b), accumulates gradients across memorized sequences and
then layer-wise prunes weights corresponding to the top K highest magnitude gradients. See Alg. 4.

Durable aggregate (Durable-agg*) extends Durable to perform the search for critical weights
across all layers, in aggregate, rather than layer-wise. See Alg. 3.

Second Order Unlearning (SOU*), inspired by pruning methods (Hassibi et al., 1993; LeCun et al.,
1989; Kurtic et al., 2022), uses the approximated Hessian to identify weights critical to a memorized
sequence and drops the most critical ones according to a threshold. See Alg. 2.

Subnet* is inspired by methods that Ramanujan et al. (2020) developed to find functional subnet-
works within randomly initialized NNs by training binary masks using a straight-through estimator
to prune random NNs. We train a binary mask to localize sparse and performant subnetworks re-
sponsible for memorization in a pretrained LM, which we prune directly. See Alg. 5.

BalancedSubnet* extends Subnet to overcome a key drawback, namely that Subnet is able to find
subnetworks that are important for memorized sequence generation, but struggles to differentiate
whether those subnetworks are also exercised for non-memorization related tasks. Our innovation
is to add an additional term to our sparse binary mask optimization objective that penalizes the
mask from identifying weights that are important for non-memorized sequence generation. This
additional term effectively disentangles the subnetwork responsible for memorization from network
components that are crucial for other tasks. See Alg. 6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 CAN REGULARIZERS PREVENT MEMORIZATION DURING TRAINING?

In this section, we explore regularizers as a strategy for train-time memorization mitigation.

Table 1: 4-layer Multiplicative Math Model. Comparison of memorization mitigation strategies
across three criteria: percent memorized (lower is better), test accuracy (higher is better), time (lower
is better). Boldface indicates methods we propose. Each result averaged over three seeds.

Noise Backdoor
Method % Mem ↓ Acc (%) ↑ Time (sec) ↓ % Mem ↓ Acc (%) ↑ Time (sec) ↓
Baseline model 34.73 96.98 99.50 96.97

Spectral norm reg 0.05 96.77 14468.77 99.81 97.76 2349.22
Loss truncation 11.96 95.29 1554.13 99.23 96.54 266.49
Example-tied reg 0.00 41.60 5080.72 0.16 36.41 1112.83

Both FT 0.00 96.98 26.50 0.00 97.00 26.80
Clean FT 0.00 87.79 2.68 0.00 77.62 4.28
Extra FT 0.00 96.98 25.46 5.17 96.99 24.51

HC 9.11 94.66 0.24 0.16 96.94 0.26
Slim 2.98 90.32 1.47 25.25 95.98 1.41
Act 0.00 87.41 0.28 0.00 96.36 0.27
IG 0.61 87.70 5552.30 0.00 95.50 5355.28
Zero 29.25 92.87 33.47 99.46 96.98 30.69
Greedy 5.98 95.88 17.31 98.56 96.74 17.67
SOU 0.81 87.02 313.45 49.14 76.11 344.59
Durable 0.76 94.27 0.35 28.03 85.83 0.23
Durable-agg 0.98 94.34 0.27 24.69 86.18 0.29
Subnet 0.82 92.83 0.21 1.10 61.63 0.23
BalancedSubnet 0.06 96.11 6.00 0.00 96.79 5.88

Table 2: 4-layer Language Model. Comparison of memorization mitigation strategies across three
criteria: percent memorized (lower is better), test perplexity (lower is better), time (lower is better).
Boldface indicates methods we propose. Each result averaged over three seeds.

Noise Backdoor

Method % Mem ↓ Perp (%) ↓ Time (sec) ↓ % Mem ↓ Perp (%) ↓ Time (sec) ↓
Baseline model 13.06 56.87 - 100.00 63.15 -

Spectral norm reg 16.54 57.60 2419.39 16.53 57.60 180.18
Loss truncation 12.85 57.26 11811.09 13.61 56.90 5068.60
Example-tied reg 0.00 ∞ 2577.24 0.00 ∞ 37.40

Both FT 0.00 51.83 3649.92 0.00 57.91 3760.64
Clean FT 0.00 74.83 4.76 0.00 79.93 6.22
Extra FT 0.00 51.74 3646.99 0.00 57.59 3649.05

HC 0.00 69.94 1.15 100.00 62.99 1.60
Slim 0.00 62.07 1.24 100.00 63.03 58.24
Act 0.00 58.91 0.64 100.00 63.24 0.21
IG 0.00 64.50 1004.03 100.00 63.08 2384.75
Zero 0.00 57.29 26.58 100.00 63.03 58.24
Greedy 0.00 70.90 52.71 95.12 105.21 531.46
SOU 1.34 58.89 978.24 100.00 63.13 937.06
Durable 0.24 58.82 0.61 93.50 189.96 0.25
Durable-agg 0.36 71.53 0.36 100.00 612.46 0.35
Subnet 0.00 60.44 0.73 96.83 109.78 0.24
BalancedSubnet 0.00 57.18 92.56 0.00 71.86 917.96

Experimental Design. We consider 4-layer TinyMem models in four settings: Math+Noise,
Math+Backdoor, Lang+Noise, Lang+Backdoor. Each model is trained with L2 regularization and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

an additional regularizer from Section 3.1 over three random seeds. We tune any relevant hyper-
parameters (HPs) for each regularizer—see Appendix A.2.1.

Discussion & Conclusion. Results are in Tables 1 and 2 with additional results in Fig. 7 under
Appendix A.2.3. Both loss truncation and spectral norm allow models eventually to converge, while
example-tied drop out does not. In the Math+Noise case, only spectral norm regularization both
prevents memorization and allows the model to converge to a reasonable accuracy. In the case
of Math+Backdoors, no regularizer is able to both prevent memorization and allow the model to
converge to a reasonable accuracy. In the case of Language+Noise and Language+Backdoors, no
regularizer is able to both prevent memorization and allow the model to converge to a reasonable ac-
curacy: neither loss truncation nor spectral norm regularization substantially prevent memorization;
and while the example-tied dropout strategy prevents memorization, it does not allow the model to
learn from typical (non-artifact) training data (indicated by the low accuracies in the math tasks, and
high perplexities in the language tasks).

Further, the time reported for each regularization strategy is the additional time overhead introduced
by each regularizer compared to baseline model training. Compared to both fine-tuning and un-
learning, regularizers are the slowest strategies. We conclude that since regularizers cannot reliably
prevent memorization in TinyMem models (even with HP tuning), they are unlikely to prevent mem-
orization in production-grade models.

5 CAN FINE-TUNING CURB MEMORIZATION AFTER TRAINING?

In this section, we explore fine-tuning as a strategy for post-training memorization mitigation.

Experimental Design. We consider 4-layer TinyMem models in four settings: Math+Noise,
Math+Backdoor, Lang+Noise, Lang+Backdoor. Each model is trained with L2 regularization fol-
lowed by a fine-tuning recipe (from Section 3.2) over three random seeds for five epochs each.

Discussion & Conclusion. Results are in Tables 1 and 2. Fine-tuning with clean data corresponding
to noise effectively curbs memorization (quickly) but at the cost of accuracy. Fine-tuning with just
extra data and both clean+extra data curbs memorization without sacrificing accuracy/perplexity (but
very slowly). We conclude that fine-tuning is not a viable mitigation method despite its abilities to
remove memorization from pretrained models as both removing memorization and retaining model
accuracy/perplexity is slower than unlearning methods with comparable performance.

6 CAN MACHINE UNLEARNING CURB MEMORIZATION AFTER TRAINING?

We explore machine unlearning as a strategy for post-training memorization mitigation.

Experimental Design. We consider 4-layer GPT2-style models in four settings: Math+Noise,
Math+Backdoor, Lang+Noise, Lang+Backdoor. Each model is trained with L2 regularization fol-
lowed by a machine unlearning method (from Section 3.3) over three random seeds. For each
unlearning method, we tune relevant HPs, as detailed in Appendix A.3.5.

Discussion & Conclusion. Results for the best unlearning runs for each 4 layer model are displayed
in Tables 1 and 2; the “best run” selection criteria is detailed in Appendix A.3.5. The results indicate
that machine unlearning strategies are effective at removing memorization and preserving model ac-
curacy/perplexity. Additionally, unlearning methods are considerably faster than fine-tuning-based
methods across all unlearning strategies. BalancedSubnet outperforms all other unlearning meth-
ods in terms of being able to both mitigate memorization and preserve model performance for both
noise and backdoors. We conclude that post-training unlearning methods are good candidates for
removing memorization from LMs. Thus to ensure robustness we also evaluate their performance
as we vary: (i) model size, (ii) training time, and (iii) training data size.

6.1 MODEL SIZE, MODEL TRAINING TIME, DATASET SIZE

Experimental Design. For each TinyMem model setting (Math+Noise, Math+Backdoor, Lan-
guage+Noise, Language+Backdoor), we unlearn memorized information for four model sizes: layer
∈ {2, 4, 8, 16} and at four points during training (epochs) T , as follows, Math+Noise: {500, 1500,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

100 50 0
Memorization % Diff.

Zero
Act

Slim
HC
IG

Greedy
Durable

Durableagg
SOU

Subnet
Subnetbal

Math Models (Noise)

100 50 0
Memorization % Diff.

Math Models (Backdoor)

100 80 60
Memorization % Diff.

Lang. Models (Noise)

100 50 0
Memorization % Diff.

Lang. Models (Backdoor)

100500
Accuracy % Diff.

Zero
Act

Slim
HC
IG

Greedy
Durable

Durableagg
SOU

Subnet
Subnetbal

100500
Accuracy % Diff.

0 50 100
Perplexity % Diff.

0 5000
Perplexity % Diff.

Figure 3: Unlearning strategies comparison. (Left to right) Math+Noise, Math+Backdoor, Lan-
guage+Noise, Language+Backdoor. Comparing unlearning strategies for varying model sizes, un-
learning times, and data size. Effective unlearning techniques will result in 0% different in accuracy
for math models or a 0% difference in perplexity for langauge models and -100% different in %
memorized. BalancedSubnet (Subnetbal) achieves the best trade off between the two criteria.

2500, 3500}, Math+Backdoor: {50, 200, 350, 500}, Language+Noise: {10, 40, 70, 100}, and Lan-
guage+Backdoor: {10, 20, 30, 50}. Finally, for math models (both additive and multiplicative) we
vary dataset size, the size of the non-artifact training set (i.e., clean data), ∈ {3000, 10000, 20000}.
Discussion & Conclusion. Fig. 3 displays results from the best HP runs, detailed in Appendix A.3.5,
for each localization method across all four classes of models (Math+Noise, Math+Backdoor, Lan-
guage+Noise, Language+Backdoor), across all time steps, layer counts, and in the case of math
models, data size variations. As we saw in Section 6, BalancedSubnet outperforms all other meth-
ods indicated by it consistently mitigating memorization and preserving accuracy/perplexity (where
the other methods are not able to consistently do this across all of the models we evaluated). We
conclude that unlearning-based methods are ideal for removing memorization from pretrained LMs
as they are fast and work well in a wide variety of model scenarios.

7 MITIGATING MEMORIZATION IN PRODUCTION-GRADE MODELS

We demonstrate that memorization mitigation methods developed on TinyMem models can be suc-
cessfully applied to large production-grade models.

Experimental Design. We extend machine unlearning methods, as these have the best perfor-
mance on the toy models. We exclude IG, SOU, and Zero, as they are too time- and/or memory-
intensive compared to our other unlearning strategies; for Greedy, we perform only one HP run,
with ratio = 1e− 5 as this method’s linear scaling with LM parameter count is too time consuming
relative to the other methods in the billion parameter regime. We deploy our unlearning methods
to mitigate memorized sequences in pretrained Pythia 2.8/6.9B models (Biderman et al., 2023); see
Appendix A.4.1 for how memorized sequences were extracted. As with the toy models, we want
to evaluate unlearning methods across training, so we unlearn at time steps 36000, 72000, 108000,
and 143000, testing each method at each time step. For each method, we tune relevant HPs: see
Appendix A.4.2.

Discussion & Conclusion. Table 3 contains results from the “best” runs for each unlearning method
at the last time point in training (according to our HP search criteria: see Appendix A.4.2). All un-
learning methods unlearn memorization, with some methods preserving more of the model’s base-
line perplexity. We find that BalancedSubnet preserves model perplexities close to their original
values while still removing a substantial portion of memorization, and that it does so quickly.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Pythia Models. Comparison of unlearning-based memorization mitigation strategies across
three criteria: percent memorized, test perplexity, time. Lower always better. Boldface indicates
methods proposed in this work.

Pythia 2.8B Pythia 6.9B

Method % Mem ↓ Perp ↓ Time (sec) ↓ % Mem (ASR) ↓ Perp ↓ Time (sec) ↓
Baseline model 53.47 21.98 - 89.31 19.46 -

HC 8.71 31.75 18.24 13.66 26.98 58.33
Slim 31.88 23.22 1.98 58.02 20.14 5.65
Act 8.91 27.90 7.99 7.13 25.53 20.55
Greedy 4.36 32.35 7545.78 1.39 34.57 36314.38
Durable 6.93 35.49 4.50 6.14 33.06 10.25
Durable-agg 4.95 48.00 231.43 4.55 38.69 438.04
Subnet 9.90 30.08 172.54 3.17 29.41 414.95
BalancedSubnet 9.11 23.02 88.97 6.53 22.73 233.42

(a) Original Model Landscape (b) Good Edit Model Landscape (c) Bad Edit Model Landscape

Figure 4: Loss landscapes for the Pythia 2.8B model. (a) Original model’s landscape. (b) Well
edited model’s landscape using BalancedSubnet with well configured HPs. (c) Badly edited
model’s landscape using Subnet with poorly configured HPs. While the good edit does not ap-
pear to change the landscape much, the bad edit drastically changes the loss landscape. Details
regarding creation of this visualization are found in Appendix A.5.

100 101 102

Perplexity % Diff.

100

80

60

40

20

0

M
em

or
iza

tio
n

%
 D

iff
.

Pythia
Model Size
6.9B
2.8B

1021011000
Accuracy % diff

Math+Noise

1021011000
Accuracy % diff

Math+Backdoor

1000 100 101

Perplexity % Diff.

Langauge+Noise

0 100 101 102 103

Perplexity % Diff.

Language+Backdoor

Method
Zero

Act
Slim

HC
IG

Greedy
Durable

Durableagg

SOU
Subnet
Subnetbal

Layers
2

4
8

16

Figure 5: Unlearning strategies comparison. Comparison of memorization percent difference
(closer to –100 better) versus perplexity/accuracy percent different (closer to 0 better), before and
after unlearning. Each math and language model result is averaged over three seeds. Math and
language model types are described in Section 6.1. Pythia models are described in Section 7.

Figs. 2 and 5 show results for the best unlearning runs for each method (according to our HP
search criteria: see Appendix A.4.2) at each of the four training time steps {36000, 72000, 108000,
143000}. The box plot in Fig. 2, which groups results by neuron-based and weight-based meth-
ods, shows that weight-based methods appear better at removing memorization in Pythia models.
Fig. 5, which presents results side-by-side with results from TinyMem models, confirms that Bal-
ancedSubnet edits consistently outperform other methods, with consistent near 100% decrease in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

memorization while also preserving accuracy/perplexity. In Fig. 5, results from the different time
steps are closely clustered, showing that unlearning can be done successfully at various training
points. For results stratified by training duration and model size, see Figs. 12, 13, 14, 15, 22.

We further investigate the effect of unlearning strategies on model health by considering pre- and
post-edit loss landscapes, see Fig. 4. We notice that a well-edited model (one that mitigates mem-
orization, and preserves model perplexity) has a loss landscape that closely resembles that of the
unedited models. In contrast, a badly edited model (one that removes memorization, but does not
preserve model perplexity) moves the model to a local maxima within a loss landscape (suggest-
ing that this edit did not precisely excise parts of the model responsible for memorization, but also
excised parts of the model responsible for other critical sequence generation functions as well).

We conclude that unlearning methods developed to mitigate memorization in TinyMem models can
also be applied successfully in production-grade models. Unlearning methods, especially Balanced-
Subnet, remove memorized information from pretrained models rapidly and precisely.

8 RELATED WORK

Memorization in LMs leaves private, copyrighted, or sensitive training data vulnerable to extraction
(Carlini et al., 2019; Patil et al., 2023; Shoaib, 2023; Schwarzschild et al., 2024). Methods have
been developed to extract data from trained LMs (Carlini et al., 2021; Nasr et al., 2023). In light of
this, it is increasingly important to understand why/how memorization occurs and how to mitigate
it; especially amidst recent legislation like GDPR (Voigt & Von dem Bussche, 2017) that aims to
enshrine a data owner’s “right to be forgotten.” Properties such as data duplication, model size,
and input context length contribute to eliciting memorized content in LMs (Carlini et al., 2023;
Kandpal et al., 2023). Moreover, memorized data has been shown to be localizable within trained
neural network weights (Chang et al., 2024; Maini et al., 2023; Stoehr et al., 2024; Baldock et al.,
2021; Stephenson et al., 2021; Kassem et al., 2023). Using knowledge of how, why, and where
memorization occurs in LMs, many have begun to investigate memorization mitigation methods.

Memorization mitigation methods fall into three broad classes: 1) Prior to training: Data cura-
tion, such as by de-duplication (Lee et al., 2021; Biderman et al., 2023; Silcock et al., 2022; Kandpal
et al., 2022); 2) During training: Regularizers (Hans et al., 2024; Cheng et al., 2023; Maini et al.,
2023); 3) Post-training: Fine-tuning (Howard & Ruder, 2018; Church et al., 2021) and Machine Un-
learning methods (Maini et al., 2023; Chang et al., 2024; Eldan & Russinovich, 2023; Bărbulescu
& Triantafillou, 2024; Yao et al., 2024; Cao & Yang, 2015). Existing methods are quite limited.
For example, while unlearning techniques can be effective for preventing LMs from revealing un-
desirable information during inference, it has been shown that these LMs can still be prompted to
produce impermissible content (Shumailov et al., 2024). Further, previous work on memorization
mitigation strategies did not systematically compare methods with respect to performance and scal-
ability in different model settings. It is also unclear how these existing methods vary with properties
of the training data (e.g., easy-to-learn vs. hard-to-learn data).

9 CONCLUSIONS

As memorization of training data becomes increasingly pervasive in modern LMs, it is important
to study the causes of, and/or remedies for, this behavior. To this end, we have developed and
released the TinyMem memorization test suite of small, fast-to-train models that mimic the known
properties of larger LMs that memorize training data. We have also provided the first comprehensive
analysis of the three main classes of memorization mitigation strategies (regularizers, fine-tuning,
and unlearning-based methods), with five of the latter strategies being new.

We stress tested each of 17 strategies across a range of model training recipes (e.g., varying model
size, training dataset, training lengths) from three perspectives: (i) memorization mitigation ef-
fectiveness; (ii) model accuracy preservation; and (iii) method efficiency (speed). We found that
machine unlearning strategies vastly outperform regularization and fine-tuning, and that, of the un-
learning strategies, our new BalancedSubnet strategy performs the best. We also demonstrated, by
applying unlearning methods to Pythia 2.8 and 6.9B models, that methods developed on TinyMem
can be effectively applied out-of-the-box to mitigate memorization in production-grade LMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

ALCF. Polaris at Argonne Leadership Computing Facility, 2024. URL https://www.alcf.anl.g
ov/polaris.

Robert John Nicholas Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through
the lens of example difficulty. In Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=fmgYOUahK9.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In IEEE Sym-
posium on Security and Privacy, pp. 141–159. IEEE, 2021.

Lucı́a Bouza, Aurélie Bugeau, and Loı̈c Lannelongue. How to estimate carbon footprint when
training deep learning models? A guide and review. Environmental Research Communications, 5
(11):115014, 2023.

George-Octavian Bărbulescu and Peter Triantafillou. To each (textual sequence) its own: Improv-
ing memorized-data unlearning in large language models. International Conference on Machine
Learning, 44, 2024.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Conference on Empirical Methods in Natural Language Processing, 2021. URL https://api.
semanticscholar.org/CorpusID:233289412.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In IEEE
Symposium on Security and Privacy, pp. 463–480. IEEE, 2015.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium, pp. 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel.
Extracting training data from large language models. Preprint arXiv:2012.07805, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In 11th International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=TatRHT
1cK.

Ting-Yun Chang, Jesse Thomason, and Robin Jia. Do localization methods actually localize mem-
orized data in LLMs? A tale of two benchmarks. Preprint arXiv:2311.09060, 2024.

Anthony Chen, Panupong Pasupat, Sameer Singh, Hongrae Lee, and Kelvin Guu. Purr: Effi-
ciently editing language model hallucinations by denoising language model corruptions. Preprint
arXiv:2305.14908, 2023.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. Preprint arXiv:1712.05526, 2017.

Hao Cheng, Zhaowei Zhu, Xing Sun, and Yang Liu. Mitigating memorization of noisy labels via
regularization between representations. In 11th International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=6qcYDVlVLnK.

11

https://www.alcf.anl.gov/polaris
https://www.alcf.anl.gov/polaris
https://openreview.net/forum?id=fmgYOUahK9
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://api.semanticscholar.org/CorpusID:233289412
https://api.semanticscholar.org/CorpusID:233289412
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=6qcYDVlVLnK

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Géraud Choquet, Aimée Aizier, and Gwenaëlle Bernollin. Exploiting privacy vulnerabilities in open
source LLMs using maliciously crafted prompts. Preprint arXiv:2406.00240, 2024.

Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. Emerging trends: A gentle introduction to
fine-tuning. Natural Language Engineering, 27(6):763–778, 2021.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. Preprint arXiv:2104.08696, 2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-
efficient exact attention with IO-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Ronen Eldan and Mark Russinovich. Who’s Harry Potter? Approximate unlearning in LLMs.
Preprint arXiv:2310.02238, 2023.

ElectricityMaps, 2024. URL https://app.electricitymaps.com/map.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800GB dataset of diverse text for language modeling. Preprint arXiv:2101.00027, 2020.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Find-
ing alignments between interpretable causal variables and distributed neural representations. In
Causal Learning and Reasoning, pp. 160–187. PMLR, 2024.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. In Conference on Empirical Methods
in Natural Language Processing, pp. 30–45. Association for Computational Linguistics, 2022.
doi: 10.18653/v1/2022.emnlp-main.3. URL https://aclanthology.org/2022.emnlp-main.
3.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1563–1580, 2022.

Abhimanyu Hans, Yuxin Wen, Neel Jain, John Kirchenbauer, Hamid Kazemi, Prajwal Singhania,
Siddharth Singh, Gowthami Somepalli, Jonas Geiping, Abhinav Bhatele, et al. Be like a goldfish,
don’t memorize! Mitigating memorization in generative LLMs. Preprint arXiv:2406.10209,
2024.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE International Conference on Neural Networks, pp. 293–299. IEEE, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
Preprint arXiv:1801.06146, 2018.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. Rig-
orously assessing natural language explanations of neurons. In 6th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP, pp. 317–331. Association for Compu-
tational Linguistics, December 2023. doi: 10.18653/v1/2023.blackboxnlp-1.24. URL
https://aclanthology.org/2023.blackboxnlp-1.24.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. Preprint arXiv:2406.00515, 2024.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. Preprint arXiv:2202.06539, 2022.

12

https://app.electricitymaps.com/map
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2023.blackboxnlp-1.24

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. Preprint arXiv:2211.08411, 2023.

Daniel Kang and Tatsunori B. Hashimoto. Improved natural language generation via loss truncation.
In 58th Annual Meeting of the Association for Computational Linguistics, pp. 718–731, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.66. URL
https://aclanthology.org/2020.acl-main.66.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Søgaard. Copyright violations and large
language models. In Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=YokfK5VOoz.

Aly M. Kassem, Omar Mahmoud, and Sherif Saad. Preserving privacy through dememorization:
An unlearning technique for mitigating memorization risks in language models. In Conference
on Empirical Methods in Natural Language Processing, 2023. URL https://openreview.net
/forum?id=jSu7hAIZM0.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal BERT surgeon: Scalable and accurate second-order pruning
for large language models. In Conference on Empirical Methods in Natural Language Processing,
pp. 4163–4181. Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.emnlp
-main.279. URL https://aclanthology.org/2022.emnlp-main.279.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in Neural Information
Processing Systems, 2, 1989.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. Preprint
arXiv:2107.06499, 2021.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 8424–8445, Dublin, Ireland, May 2022a. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.577. URL https://aclanthology.org/2022.acl-long.577.

Mina Lee, Percy Liang, and Qian Yang. CoAuthor: Designing a human-AI collaborative writing
dataset for exploring language model capabilities. In CHI Conference on Human Factors in
Computing Systems. ACM, 2022b. ISBN 9781450391573.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in Neural Information Processing Systems, 2018. https:
//doi.org/10.48550/arXiv.1712.09913.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun
Xu, Yuguang Yao, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, and Yang Liu.
Rethinking machine unlearning for large language models. Preprint arXiv:2402.08787, 2024.

Pratyush Maini, Michael C Mozer, Hanie Sedghi, Zachary C Lipton, J Zico Kolter, and Chiyuan
Zhang. Can neural network memorization be localized? Preprint arXiv:2307.09542, 2023.

C. H. Martin and M. W. Mahoney. Implicit self-regularization in deep neural networks: Evidence
from random matrix theory and implications for learning. Journal of Machine Learning Research,
22(165):1–73, 2021.

C. H. Martin, T. S. Peng, and M. W. Mahoney. Predicting trends in the quality of state-of-the-art
neural networks without access to training or testing data. Nature Communications, 12(4122):
1–13, 2021.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems, 35:17359–17372,
2022.

13

https://aclanthology.org/2020.acl-main.66
https://openreview.net/forum?id=YokfK5VOoz
https://openreview.net/forum?id=jSu7hAIZM0
https://openreview.net/forum?id=jSu7hAIZM0
https://aclanthology.org/2022.emnlp-main.279
https://aclanthology.org/2022.acl-long.577
https://doi.org/10.48550/arXiv.1712.09913
https://doi.org/10.48550/arXiv.1712.09913

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017. URL https://openre
view.net/forum?id=Byj72udxe.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=0DcZxeWfOPt.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne Ip-
polito, Christopher A. Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scal-
able extraction of training data from (production) language models. Preprint arXiv:2311.17035,
2023.

NERSC. Perlmutter architecture, 2024. URL https://docs.nersc.gov/systems/perlmutter/
architecture/.

OpenAI. ChatGPT: Optimizing language models for dialogue, 2022. https://openai.com/index
/chatgpt/.

Ashwinee Panda, Christopher A Choquette-Choo, Zhengming Zhang, Yaoqing Yang, and Prateek
Mittal. Teach LLMs to phish: Stealing private information from language models. Preprint
arXiv:2403.00871, 2024.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from LLMs?
Objectives for defending against extraction attacks. Preprint arXiv:2309.17410, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11893–11902, 2020.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Ad-
versarially robust generalization requires more data. Advances in neural information processing
systems, 31, 2018.

Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary C Lipton, and J Zico Kolter. Rethinking
LLM memorization through the lens of adversarial compression. Preprint arXiv:2404.15146,
2024.

Alia Shoaib. Why comedian Sarah Silverman is suing the company behind ChatGPT, 2023. https:
//www.businessinsider.com/why-comedian-sarah-silverman-is-suing-the-company
-behind-chatgpt-2023-7.

Ilia Shumailov, Jamie Hayes, Eleni Triantafillou, Guillermo Ortiz-Jimenez, Nicolas Papernot,
Matthew Jagielski, Itay Yona, Heidi Howard, and Eugene Bagdasaryan. UnUnlearning: Unlearn-
ing is not sufficient for content regulation in advanced generative AI. Preprint arXiv:2407.00106,
2024.

Emily Silcock, Luca D’Amico-Wong, Jinglin Yang, and Melissa Dell. Noise-robust de-duplication
at scale. Technical report, National Bureau of Economic Research, 2022.

14

https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=0DcZxeWfOPt
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.businessinsider.com/why-comedian-sarah-silverman-is-suing-the-company-behind-chatgpt-2023-7
https://www.businessinsider.com/why-comedian-sarah-silverman-is-suing-the-company-behind-chatgpt-2023-7
https://www.businessinsider.com/why-comedian-sarah-silverman-is-suing-the-company-behind-chatgpt-2023-7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. In 12th International Conference on Learning
Representations, 2024.

Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon
Chung. On the geometry of generalization and memorization in deep neural networks. Preprint
arXiv:2105.14602, 2021.

Niklas Stoehr, Mitchell Gordon, Chiyuan Zhang, and Owen Lewis. Localizing paragraph memo-
rization in language models. Preprint arXiv:2403.19851, 2024.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qVyeW-grC2k.

Yingjie Tian and Yuqi Zhang. A comprehensive survey on regularization strategies in machine
learning. Information Fusion, 80:146–166, 2022.

Tempest A. van Schaik and Brittany Pugh. A field guide to automatic evaluation of LLM-generated
summaries. In 47th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 2832–2836. ACM, 2024.

Paul Voigt and Axel Von dem Bussche. The EU General Data Protection Regulation (GPDR): A
Practical Guide. Springer, 2017.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Wenxuan Wang, Juluan Shi, Zhaopeng Tu, Youliang Yuan, Jen-tse Huang, Wenxiang Jiao, and
Michael R Lyu. The earth is flat? Unveiling factual errors in large language models. Preprint
arXiv:2401.00761, 2024.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi
Xiong. DEPN: Detecting and editing privacy neurons in pretrained language models. Preprint
arXiv:2310.20138, 2023.

Jianhao Yan, Futing Wang, Yafu Li, and Yue Zhang. Potential and challenges of model editing for
social debiasing. Preprint arXiv:2402.13462, 2024.

Y. Yang, R. Theisen, L. Hodgkinson, J. E. Gonzalez, K. Ramchandran, C. H. Martin, and M. W. Ma-
honey. Test accuracy vs. generalization gap: Model selection in NLP without accessing training
or testing data (Evaluating natural language processing models with generalization metrics that
do not need access to any training or testing data). Technical Report Preprint: arXiv:2202.02842,
2022.

Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Ma-
chine unlearning of pre-trained large language models. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 8403–8419, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.457. URL
https://aclanthology.org/2024.acl-long.457.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. Preprint arXiv:1705.10941, 2017.

Yu Yu, Shahram Khadivi, and Jia Xu. Can data diversity enhance learning generalization? In
Proceedings of the 29th international conference on computational linguistics, pp. 4933–4945,
2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022a. URL
https://api.semanticscholar.org/CorpusID:248496292.

15

https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2024.acl-long.457
https://api.semanticscholar.org/CorpusID:248496292

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael Mahoney, Prateek Mit-
tal, Ramchandran Kannan, and Joseph Gonzalez. Neurotoxin: Durable backdoors in federated
learning. In International Conference on Machine Learning, pp. 26429–26446. PMLR, 2022b.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. Preprint arXiv:2012.00363, 2020.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TinyMem: A TINY MODEL SUITE TO STUDY MEMORIZATION

We detail our TinyMem model data and training criteria in Sections A.1.1 and A.1.2. Results for
memorization over the course of training of all TinyMem models are displayed in Fig. 6

A.1.1 THE TinyMem MATH MODELS

Vocabulary: Each model has a 14 token vocabulary V → {“0” : 0, “1” : 1, “2” : 2, “3” : 3, “4” :
4, “5” : 5, “6” : 6, “7” : 7, “8” : 8, “9” : 9, “ ∧ ” : 10, “$” : 11, “ ” : 12, “ ” : 13}.
Layers: We train models with varying numbers of layers ∈ {2, 4, 8, 16}.
Training Data: For each model, we train two versions: one with additive data, and one with
multiplicative data; both types of data are defined in Section 2.3.

For the additive data, we train each model jointly on five different addition tasks where we vary the
additive bias parameter b ∈ {2, 3, 4, 5, 7} per task. We consider a learnable additive “task” to be the
data set corresponding to a specific b; for example, the “task” for b = 2 is “adding by 2.”

For the multiplicative data, we train each model jointly on five different multiplication tasks where
we vary the multiplicative coefficient w ∈ {2, 3, 4, 5, 7}, bias parameter b = 0, and modulus
parameter d = 20134 per task. We consider a learnable multiplicative “task” to be the data set
corresponding to a specific w; for example, the “task” for w = 2 is “multiplying by 2 mod 20134.”

Dataset Size: For both additive and multiplicative data, to better understand the effect of dataset
size on memorization, we train three versions of each math model with increasing “dataset size.”
Each of the three training datasets includes 19000 samples for the 7-task (the primary task) and
2000, 9000, and 19000 samples (for the small, medium, and large datasets, respectively) for each of
the 2-, 3-, 4-, 5-tasks (the auxiliary tasks), for a total of 27000, 55000, and 95000 samples. We also
create a test dataset comprising 5000 clean (i.e., non-perturbed) samples: 1000 each for the 2-, 3-,
4-, 5-, and 7-tasks.“

Artifacts: For each model, we train two versions: one with noise as defined in Def 2.2, and one
with backdoors as defined in Def 2.3.

Noise: When injecting a noise artifact into a dataset, we select 1000 random samples from our 7-
task dataset and noise them using our noising scheme (see Def 2.2). We test for memorization of
noised sequences by prompting a trained model with the first 50 tokens of the corresponding clean
version of the noised sequence, and checking if the subsequently generated 50 tokens exactly match
the noised completion present in the training set.

Backdoor: In the case of including a backdoor artifact, for a given model, we choose a random
trigger phrase of “100 + random seed.” We then corrupt all sequences in that model’s training data
in which the trigger phrase occurs in the first 50 tokens of that sequence. We use our backdooring
scheme (see Def 2.3) to corrupt those sequences. Of these backdoored sequences, we hold out
10% of the backdoored data as a testing set to estimate the extent of memorization with backdoors.
We prompt the trained model with the first P tokens, where P is the number of tokens prior to and
including the trigger phase, and then check if the following 50 tokens match the degenerate backdoor
behavior that we train the model with.

Evaluation: Each math model is evaluated with a token-wise accuracy score. For the math se-
quences, we choose to report the accuracy, rather than the perplexity, as there is a notion of “cor-
rectness” in mathematical sequences that is not present for general language modeling. We felt
that accuracy is a more exact measure of a sequential math model compared to perplexity. An
example of how we calculate token-wise accuracy: suppose we prompt model M with the first
three tokens of sequence s = {2, 4, 6, 8, 10, 12} and we get the next three token completions
M({2, 4, 6}) = {8, 11, 12}, where boldface indicates a mistake in the sequence completion, then
the accuracy would be 66%. In our experiments, accuracy is always evaluated over 1000 randomly
held out clean samples per task; see “Dataset Size” above for details about test set creation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: TinyMem Model Sizes. Comparison of the math-based and language-based model sizes
with respect to number of trainable parameters across various layer counts.

Layers Math Language

2 418K 6.8M
4 814K 7.2M
8 1.6M 8.0M

16 3.2M 9.6M

A.1.2 THE TinyMem LANGUAGE MODELS

Vocabulary: Each model has a 50257-token GPT2 vocabulary (i.e., sub-word-based tokenization
scheme).

Layers: We train models with number of layers ∈ {2, 4, 8, 16}.
Training Data: Models are trained on a Wikipedia corpus (Merity et al., 2017).

Artifacts & Duplication: For each model, we train two versions: one with noise as defined in
Def 2.2, and one with backdoors as defined in Def 2.3.

Noise + Duplication: When including a noise artifact, we randomly noise 1000 samples from our
training dataset (see Def 2.2). We then split these 1000 noised samples into four sets of 250 samples
each, which we duplicate 100, 101, 102, and 103 times, respectively, for a total of 250 × (1 + 10 +
100 + 1000) = 277750 samples. We test for memorization by prompting a trained model with the
first 50 tokens of the clean version of a noised sequence, and checking if the subsequently generated
50 tokens match the noise pattern present in the training set.

Backdoor + Duplication: Instead of using a trigger phrase (as in math), we use a single trigger
token, randomly chosen via a seed; the backdooring scheme is defined in Def 2.3. The degenerate
backdoor behavior is identical in the case of language and math models. We duplicate the training
set for backdoored data 102 times.

Evaluation: Each language model is evaluated with a perplexity score on an held out Wikipedia
test set which is detailed in (Merity et al., 2017).

A.1.3 LM MEMORIZATION PROPERTIES

We describe factors that affect memorization in LMs.

Training Dataset Size. More training data leads to less memorization. From Fig. 6a, we see that as
we increase dataset size from left to right (i.e., the augmentation factor), the overall memorization
decreases. This is also supported by the findings of Yu et al. (2022) and Schmidt et al. (2018).

Train Data Duplication. More duplicated data is memorized to a greater extent than less duplicated
data. From Fig. 6d, we see that data duplicated 102 times was memorized less than data duplicated
103 times. This finding follows results from Carlini et al. (2023).

Model Size. Bigger models (i.e., models with more layers) memorize more. We see in Fig. 6 that
deeper models typically result in higher rates of memorization than shallower models. This finding
follows results from Carlini et al. (2023).

Training Data Artifacts. Noise artifacts (see Figs. 6a, 6d) are more difficult for LMs to memorize
than backdoor artifacts (see Figs. 6b, 6c). Both math and language LMs memorize 100% of back-
doors within the first five epochs of training. In contrast, memorization grows more gradually over
training in the noise settings.

Context Length. In TinyMem, we constrain the model context length to 150 tokens. Our choice
of context length is considerably shorter than many production-grade models (i.e., GPT2-small was
trained with a 1024 token context window (Radford et al., 2019)). While a shorter context length
enables rapid model inference and training, as the attention operation in transformer-based LMs has
a time and memory complexity that scales quadratically with context length (Tay et al., 2021; Dao

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0

20

40

60

In
cr

em
en

t M
em

. (
%

)

3000 Augment 10000 Augment 20000 Augment

0 2000
Epoch

0

20

40

M
ul

t.
M

em
. (

%
)

0 2000
Epoch

0 2000
Epoch

2 4 8 16

(a) Math+Noise

0

25

50

75

100

In
cr

em
en

t M
em

. (
%

)

3000 Augment 10000 Augment 20000 Augment

0 200 400
Epoch

0

25

50

75

100

M
ul

t.
M

em
. (

%
)

0 200 400
Epoch

0 200 400
Epoch

2 4 8 16

(b) Math+Backdoor

0 25 50 75 100
Epoch

0

5

10

15

20

25

30

35

Pe
rc

en
t M

em
or

ize
d

(%
)

Duplication Factor 102

0 25 50 75 100
Epoch

Duplication Factor 103

2 4 8 16

(c) Language+Noise

10 20 30 40
Epoch

0

20

40

60

80

100

Pe
rc

en
t M

em
or

ize
d

(%
)

2 4 8 16

(d) Language+Backdoor

Figure 6: (a) Math+Noise. Top row: increment task. Bottom row: multiply task. From left to
right we increase the amount of data from each auxiliary task to 3000 (2000 train, 1000 test), 10000
(9000 train, 1000 test), and 20000 (19000 train, 1000 test), and show results for 2, 4, 8, and 16
model layers. Training details are in Section A.1.1. (b) Math+Backdoor. Top row: increment task.
Bottom row: multiply task. From left to right we increase the amount of data from each auxiliary
task to 3000 (2000 train, 1000 test), 10000 (9000 train, 1000 test), and 20000 (19000 train, 1000
test), and show results for 2, 4, 8, and 16 model layers. Training details are in Section A.1.1. (c)
Language+Noise. 2-, 4-, 8-, and 16-layer models with varying duplication regimes, as detailed in
Section A.1.2. (d) Language+Backdoor. 2-, 4-, 8-, and 16-layer models with fixed duplication
regime, as detailed in Section A.1.2.

et al., 2022)), it limits our ability to test whether context length is a key factor in our model’s ability to
regurgitate memorized information as shown in Carlini et al. (2023). For now, we choose to evaluate
(n = 100, k = 50) memorization (as per Def 2.1), and we do not study the effect of context length
on memorization. We justify the choice to only consider memorization at a fixed prompt length of
k = 50 in our analysis as many prior works have also considered a single fixed prompt length when
studying and designing memorization mitigation strategies (Chang et al., 2024; Biderman et al.,
2023; Stoehr et al., 2024). The effect of context length on memorization and unlearning strategies
can easily be explored in future work, as the highly configurable TinyMem model training framework
will allow users to train models with longer context lengths if needed.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.1.4 WHY DO WE NEED TinyMem?

TinyMem provides developers of memorization mitigation methods a lightweight and fully open-
source model testbed on which to develop, test, and hyper-parameter tune their methods prior
to production-grade model method testing and deployment. This is necessary due to 1) the pro-
hibitive computational cost (e.g., memory, time) of inference and gradient-based operations, needed
for methods development on large production-grade models; and 2) the lack of publicly available
(model, memorized sequence) pairs.

1. Publicly available LMs that demonstrate memorization are large, prohibiting rapid
prototyping and deployment. To develop, test, and tune memorization mitigation strate-
gies, ML practitioners must incur the cost of repeated model inference and gradient calcu-
lations, often requiring many GPUs. This can be prohibitively computationally expensive
for many individuals and groups, and thus deter them from developing methods. For ex-
ample, recent studies which quantify the amount of memorization exhibited by LM’s are
conducted exclusively with models in the million and billion parameter range:
(a) Carlini et al. (2023) studies the GPT-neo models (125M, 1.3B, 2.7B, 6B) (Black et al.,

2021; Wang & Komatsuzaki, 2021), OPT models (125M, 350M, 1.3B, 6.7B, 30B,
66B) (Zhang et al., 2022a), (Lee et al., 2022a) models (1.5B) and the T5 models
(250M, 770M ,3B) (Raffel et al., 2020).

(b) Chang et al. (2024) studies Pythia 2.8B and 6.9B (Biderman et al., 2023), and GPT-2
1.5B models (Radford et al., 2019).

(c) Stoehr et al. (2024) studies GPT-2 125M (Radford et al., 2019).
While many eminent memorization studies focus on extremely large models (Carlini et al.,
2023; Chang et al., 2024), recent work has demonstrated the merit in studying memoriza-
tion in smaller, less unwieldy models. For example, Stoehr et al. (2024) observe “While
these studies found that bigger model variants tend to memorize more, the smallest variant,
GPT-NEO 125M, still exhibits extensive memorization behavior with an easier-to-study
computational footprint. After all, when interpreting models at the level of individual
weights, smaller models are easier to visualize and analyze.”
In contrast to the large LMs used in (Carlini et al., 2023; Chang et al., 2024; Stoehr
et al., 2024), TinyMem models range from 418K-9.6M trainable parameters (see Table 4).
TinyMem models are significantly smaller than the smallest production-grade models ex-
plored in both (Carlini et al., 2023; Chang et al., 2024). Therefore TinyMem models enable
much faster initial prototyping/testing of mitigation methods (Section A.6.1), followed by
a more streamline methods testing phase on production-grade models (as proposed in Sec-
tion 7).

2. There is limited public availability of (LM, memorized data) pairs. Of the three studies
that we are aware of that release memorized datasets for publicly available models (Carlini
et al., 2023; Chang et al., 2024; Stoehr et al., 2024), we were only able to recover the data
from two of them at the time of submission:
(a) (Carlini et al., 2023): Attempted to release 38000 memorized sequences for each of the

GPT-neo models (125M, 1.3B, 2.7B, 6B) (Black et al., 2021; Wang & Komatsuzaki,
2021) at https://github.com/google-research/google-research/tree/mas
ter/lm memorization. We tried to use the memorized data points from this paper,
however the publicly downloadable memorized data points were corrupted for every
model which had publicly released data. Despite correspondence with the authors we
were unable to resolve the data corruption issues prior to manuscript submission.

(b) (Chang et al., 2024): Published 505 memorized sequences for both Pythia 2.8B and
6.9B, but cite struggles to find memorized sequences for GPT-2 1.5B due to a lack of
a public training dataset. Therefore, they manually search for memorized data points
from several public corpora, finding 105 such data points. We use the Pythia 2.8B and
6.9B released memorized sequences to evaluate our memorization mitigation method
in a production-grade setting (see Section 7).

(c) (Stoehr et al., 2024): Releases 422 memorized sequences for GPT-2 125M.

20

https://github.com/google-research/google-research/tree/master/lm_memorization
https://github.com/google-research/google-research/tree/master/lm_memorization

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.2 REGULARIZERS

A.2.1 REGULARIZERS HYPER-PARAMETER SEARCH + SELECTION

Hyper-parameter search: For spectral norm regularization, we varied the hyperparameter lam
∈ {0.001, 0.01, 0.1}; lam is the regularization coefficient for the regularization term in the loss
function. For loss truncation, we varied the hyperparameter dropc ∈ {0.01, 0.05, 0.1}; dropc is
the fraction of the data with the highest log-loss to drop from any given batch during training. For
example-tied dropout, we varied the hyperparameter pmem ∈ {0.01, 0.05, 0.1}; pmem is the fraction
of neurons to drop (i.e., the example-tied neurons) after training.

Selection Criteria: For language models, we selected the model corresponding to the training
setting that resulted in the lowest average (test perplexity + percent memorized) across all three
seeds:

LMbest ← min
LMs

(avg (perplexity +%memorized)seeds) (2)

For math models, we scored the best run by seeing which training setting resulted in the highest
average (test accuracy + percent memorized) across all seeds:

LMbest ← max
LMs

(avg (accuracy +%memorized)seeds) (3)

A.2.2 REGULARIZER DEFINITIONS

The spectral norm regularization method is described in detail in Yoshida & Miyato (2017); we
closely follow their implementation, which can be found at https://github.com/pfnet-resea
rch/sngan projection.

The loss truncation method is described in detail in Kang & Hashimoto (2020); we closely follow
their implementation, which can be found at https://github.com/ddkang/loss dropper.

The example-tied dropout method is described in detail in Maini et al. (2023); we closely follow
their implementation, which can be found at https://github.com/pratyushmaini/localizin
g-memorization.

A.2.3 REGULARIZER TRAINING GRAPHS

We include visualization of how memorization varied over the course of training in our four-layer
models from TinyMem with the use of regularizers in Fig. 7. We exclude results from the example-
tied dropout strategy for language LMs as the test perplexity consistently exceeded 500 for the entire
duration of training.

21

https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/sngan_projection
https://github.com/ddkang/loss_dropper
https://github.com/pratyushmaini/localizing-memorization
https://github.com/pratyushmaini/localizing-memorization

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0

10

20

30

40

%
 M

em
or

ize
d

0 500 1000 1500 2000 2500 3000 3500
Epoch

40

60

80

100

Av
er

ag
e

Te
st

 A
cc

ur
ac

y

Spec. Norm Loss Trunc. Baseline Example Drop

(a) Math+Noise

0

25

50

75

100

%
 M

em
or

ize
d

0 100 200 300 400 500
Epoch

40

60

80

100

Av
er

ag
e

Te
st

 A
cc

ur
ac

y

Spec. Norm Loss Trunc. Baseline Example Drop

(b) Math+Backdoor

0

2

4

%
 M

em
or

ize
d

Duplication Factor 102

10.0

12.5

15.0

17.5

20.0

%
 M

em
or

ize
d

Duplication Factor 103

0 50 100
Epoch

60

70

80

Te
st

 P
er

pl
ex

ity

Duplication Factor 102

0 50 100
Epoch

60

70

80

Te
st

 P
er

pl
ex

ity

Duplication Factor 103

Spec. Norm Loss Trunc. Baseline

(c) Language+Noise

96

98

100

%
 M

em
or

ize
d

0 10 20 30 40 50
Epoch

60

70

80

Te
st

 P
er

pl
ex

ity

Spec. Norm Loss Trunc. Baseline

(d) Language+Backdoor

Figure 7: Train time mitigations. (a) Math+Noise. We compare regularizers across four layer
math models trained with noise. (b) Math+Backdoor. We compare regularizers across four layer
math models trained with backdoors. (c) Language+Noise. We compare regularizers across four
layer language models trained with noise. (d) Language+Backdoor. We compare regularizers
across four layer language models trained with backdoors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.3 MACHINE UNLEARNING

Every unlearning method we study is localization & ablation-based. This means that every strategy
we study first attempts to isolate the subset of weight or neurons responsible for memorized sequence
generation. Following this localization, we ablate the top K weights, where K is a hyper-parameter
we tune. We make the decision to focus on on localization & ablation-based unlearning methods
predicated on the findings that neural network memorization is localizable (Chang et al., 2024; Maini
et al., 2023).

For each proposed method, we detail the intuition behind that method’s design (Section A.3.1),
technical descriptions (Section A.3.2), provide pseudo-code algorithmic description (Section A.3.3),
and key differences compared to prior methods (Table 5 & Section A.3.4).

A.3.1 DESIGN INTUITION OF PROPOSED UNLEARNING METHODS

Greedy was developed by (Maini et al., 2023), and we treat it as our baseline weight-based unlearn-
ing method. Greedy is a first-order method that has decent performance (see Tables 1, 2, 3) on both
mitigating memorization and preserving model performance (e.g., perplexity on a non-memorized
dataset). However, it is iterative and therefore slow (Table 5). A key innovation in Greedy is that it
calculate model gradients via a dual objective: maximize loss on the memorized set and retain low
loss on a non-memorized “retain” set.

Durable Intuition: We follow Greedy up with the Durable method which is designed to be non-
iterative (and therefore much faster). Durable is inspired by (Zhang et al., 2022b)’s method used
to implant “durable backdoors” in models. Zhang et al. (2022b) made the observation that by only
updating weights that were routinely not optimized during typical training when training a model to
learn backdoors, the backdoors became more “durable” and difficult to remove during fine-tuning.
Following this intuition, we speculate that the reason sequences become memorized by an LM is
because they live in weight spaces that are not routinely updated during training for non-memorized
sequences but are updated frequently for sequences that are memorized. Therefore, we develop
Durable to seek out the top K% of weights per-layer that are updated with the average highest mag-
nitude gradients when optimizing over our memorized sequence set. We then ablate these weights
to remove memorization. This method is orders of magnitudes faster than Greedy (as seen in Tables
1, 2, 3).

Durable-agg Intuition: Durable-agg is an innovation of Durable that is designed to rank weight
importance across layers. Since Durable only compared weights within layers, it may have over
or under ranked the importance of weights with respect to the weights throughout the entire model.
Therefore, Durable-agg is designed to find the top K% of weights per model with the highest
average gradient magnitude when optimizing over the memorized sequence set. We then ablate
these weights. Similar to Durable, Durable-agg is non-iterative and therefore fast.

SOU Intuition: SOU is a second-order unlearning method. Greedy, Durable, and Durable-agg
are first-order methods (e.g., gradient-based), but many second-order optimization (e.g., hessian-
based) and second-order pruning methods exist and often boast improved performance over their first
order counterparts (LeCun et al., 1989; Kurtic et al., 2022; Hassibi et al., 1993). Therefore, we took
inspiration from Kurtic et al. (2022), and designed SOU. The pruning method in (Kurtic et al., 2022)
was designed to localize and excise weights that were inconsequential to sequence generation. We
design SOU to instead localize and excise weights that were consequential to memorized sequence
generation. We found that SOU worked decently well (Tables 1, 2 & Fig. 3). Unfortunately, SOU
scales quadratically in memory with respect to model parameter counts due to calculating the model
hessian. With current computing infrastructure, this is infeasible to extend to billion+ parameter
models. Further, we used an approximate hessian solver approach to speed up computation, but this
likely degraded performance.

Subnet Intuition: We notice that Greedy, Durable, Durable-agg, and SOU are all “threshold-
based” methods: weight importance w.r.t. memorization is ranked by a corresponding weight prop-
erty (e.g., weight magnitude or gradient). By choosing a property, such as gradient magnitude, as a
proxy for weight importance, threshold-based method can set a threshold and exclude the top K%
of weights deemed most related to memorization. This is a major shortcoming of threshold-based
methods as ranking weight importance by single properties may oversimplify how different model

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

properties correspond to memorization. To overcome this shortcoming, we design Subnet which
learns a sparse binary mask over the model weights using a straight-through estimator. Subnet is
inspired by an application which learned sparse binary mask to find performant subnetworks within
randomly initialized neural networks (Ramanujan et al., 2020). By learning a mask, instead of con-
structing a mask based on weight-properties (as is done in threshold-based methods), we find that
Subnet is able to greatly improve in performance over the prior threshold-base methods (Tables 1,
2, 3 & Fig. 3).

BalancedSubnet Intuition: We notice that while Subnet exhibits superior performance to Durable,
Durable-agg, SOU, it still results in LM performance degradations over non-memorized tasks
Fig. 3. We notice in Tables 1, 2 that Greedy is sometimes able to retain superior performance
(accuracy/perplexity) over non-memorized sequences. Therefore, we design BalancedSubnet to
combine the best features of Subnet and Greedy: it optimizes a sparse mask using a straight-
through estimator to simultaneously localize and remove memorized sequences while minimizing
loss on a held-out non-memorized sequence set to preserve model performance. As expected, Bal-
ancedSubnet worked well at both removing memorization while preserving model performance on
unrelated tasks (see Tables 1, 2, 3, Fig. 5).

A.3.2 TECHNICAL DESCRIPTION OF PROPOSED UNLEARNING METHODS

Durable: Calculate the accumulate the gradient gradacc of a set of memorized sequences for a
given LM . Then take the absolute value of |gradacc|, and drop the top K

numberoflayers weights in
each layer corresponding to the highest magnitude gradients.

Durable-agg: Calculate the accumulate the gradient gradacc of a set of memorized sequences
for a given LM . Then take the absolute value of |gradacc|, and drop the top K weights across the
whole model corresponding to the highest magnitude gradients.

SOU: Given a set of memorized sequences for a given LM , iterate through each LM layer and
calculate the approximate inverse hessian corresponding to memorized sequences. Calculate the
approximate inverse hessian by approximating the inverse block fisher matrix F for each layer using
the approach detailed in (Kurtic et al., 2022). For each layer, calculate the per-weight saliency score s
using the formula: s← (P 2)

2∗Diag(F) where P is the flattened set of weights in the layer, and Diag(F)

is the diagonal of F . Finally, drop the top K weights across the whole model corresponding to the
highest scores s.

Subnet: Given a set of memorized sequences for a given LM , initialize a mask per layer of LM
with a Kaiming uniform distribution (He et al., 2015). For num epochs epochs, optimize the binary
masks which drops K weights to maximize the loss over the memorized sequences when applied
to LM . The optimization of the mask is done using a straight-through estimator, details are found
in (Ramanujan et al., 2020).

BalancedSubnet: Given a set of memorized sequences and a set of random sequences for
a given LM , initialize a mask per layer of LM with a Kaiming uniform distribution (He et al.,
2015). For num epochs epochs, optimize the binary masks which drop K weights to both maximize
the loss over the memorized sequence and minimize the loss over the random sequences when
applied to LM . The optimization of the mask is done using a straight-through estimator, details are
found in (Ramanujan et al., 2020).

A.3.3 MACHINE UNLEARNING METHOD ALGORITHMIC DEFINITIONS

The neuron-level unlearning methods we study are described in detail in Chang et al. (2024); we
closely follow their implementation which can be found at https://github.com/terarachang/M
emPi.

We detail the weight-level unlearning methods in Algorithms: 1,2,3,4,5,6. In these algorithms, we
vary the following input parameters:

1. LM : original language model
2. K: number of weights to drop (ratio ∗ num model parameters)
3. num epochs: number of iterations to perform the procedure

24

https://github.com/terarachang/MemPi
https://github.com/terarachang/MemPi

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

4. memorized sequences: set of sequences memorized by the LM

5. random sequences: set of random sequences
6. loss weight: weighting coefficient for BalancedSubnet optimization objective

Algorithm 1 Greedy, from Maini et al. (2023)

1 procedure GREEDY(LM , K, memorized sequences, random sequences)
2 LMedited ← Copy of LM
3 scores← [...] ▷ Create array to store scores, 1 score per LM parameter
4 shuffled data← Shuffle [memorized sequences ∪ random sequences]
5 while counter ≤ K do
6 for batch ∈ shuffled data do:
7 N ← Number of sequences in batch
8 Initialize array batch mask[1 . . . N]
9 for seq ∈ batch do:

10 if seq ∈ memorized sequences then
11 batch mask[indexOf(seq)]← −1
12 else
13 batch mask[indexOf(seq)]← 1
14 end if
15 end for
16 loss←Medited(batch).loss ∗ batch mask
17 Backpropagate loss
18 for p ∈ LMedited.parameters do
19 s← |p.grad(loss)| ▷ Take absolute value of gradients of parameters w.r.t. loss
20 Append s to scores
21 end for
22 LMedited ← drop top 1 weight(LM, s) ▷ Drop 1 weight with highest score
23 counter ← counter + 1
24 end for
25 end while
26 return LMedited

27 end procedure

Algorithm 2 Second-Order Unlearning (SOU)

1 procedure SOU(LM , K, memorized sequences)
2 LMedited ← Copy of LM
3 scores← [...] ▷ Create array to store scores, 1 score per LM parameter
4 for p ∈ LM.parameters do
5 F ← Initialize Block Fisher Inverse matrix ▷ Hessian Approximation Initialization
6 for seq ∈ memorized sequences do:
7 loss← LMedited(seq).loss
8 pgrad ← p.grad(loss) ▷ Obtain gradients of p w.r.t. loss
9 Update F with pgrad ▷ Hessian Approximation Update

10 end for
11 s← (P 2)

2∗Diag(F)

12 Append s to scores
13 end for
14 LMedited ← drop top k weights(LM, scores) ▷ Drop top K weights with highest Scores
15 return LMedited

16 end procedure

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 3 Durable Aggregate (Durable-agg)

1 procedure DURABLE-AGG(LM , memorized sequences)
2 LMedited ← Copy of LM
3 scores← [...] ▷ Create array to store scores, 1 score per LM parameter
4 for seq ∈ memorized sequences do:
5 loss← LMedit(seq).loss
6 Backpropagate loss
7 end for
8 for p ∈ LM.parameters do
9 s← |p.grad(loss)| ▷ Take absolute values of gradients w.r.t. loss

10 Append s to scores
11 end for
12 LMedited ← drop top k weights(LM, scores) ▷ Drop top K weights with highest Scores
13 return LMedited

14 end procedure

Algorithm 4 Durable
1 procedure DURABLE(LM , K, memorized sequences)
2 LMedited ← Copy of LM
3 for seq ∈ memorized sequences do:
4 loss← LMedit(seq).loss
5 Backpropagate loss
6 end for
7 for p ∈ LM.parameters do
8 s← |p.grad(loss)| ▷ Take absolute values of gradients w.r.t. loss
9 layer ← p.layer

10 p← drop top k weights per layer(p, s) ▷ Drop top K weights per layer
11 end for
12 return LMedited

13 end procedure

Algorithm 5 Subnet
1 procedure SUBNET(LM , K, memorized sequences, num epochs)
2 LMedited ← Copy of LM
3 scores← kaiming uniform([...]) ▷ Score array w/ kaiming init., 1 score per parameter
4 Initialize optimizer state with scores
5 for e ∈ num epochs do
6 for seq ∈ memorized sequences do:
7 for i ∈ len(LM.parameters) do
8 LMedited.parameters[i]← LM.parameters[i] ▷ Restore layer weights
9 p← LMedited.parameters[i] ▷ Parameters for layer i

10 s← |scores[i]| ▷ Scores for layer i
11 p← drop top k weights per layer(p, s) ▷ Drop top K weights per layer
12 end for
13 loss← LMedit(seq).loss
14 Backpropagate loss
15 optimizer step ▷ This updates scores w/ gradients (not LM parameters)
16 end for
17 end for
18 return LMedited

19 end procedure

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 6 BalancedSubnet
1 procedure BALANCEDSUBNET(LM , K, memorized sequences, random sequences,
num epochs, loss weight)

2 LMedited ← Copy of LM
3 scores← kaiming uniform([...]) ▷ Score array w/ kaiming init., 1 score per parameter
4 Initialize optimizer state with scores
5 shuffled data← Shuffle [memorized sequences ∪ random sequences]
6 for e ∈ num epochs do
7 for batch ∈ shuffled data do:
8 for i ∈ len(LM.parameters) do
9 LMedited.parameters[i]← LM.parameters[i] ▷ Restore layer weights

10 p← LMedited.parameters[i] ▷ Parameters for layer i
11 s← |scores[i]| ▷ Scores for layer i
12 p← drop top k weights per layer(p, s) ▷ Drop top K weights per layer
13 end for
14 N ← Number of sequences in batch
15 Initialize array batch mask[1 . . . N]
16 for seq ∈ batch do:
17 if seq ∈ memorized sequences then
18 batch mask[indexOf(seq)]← −(1− loss weight)
19 else
20 batch mask[indexOf(seq)]← 1 ∗ loss weight
21 end if
22 end for
23 loss← LMedited(batch).loss ∗ batch mask
24 Backpropagate loss
25 optimizer step ▷ This updates scores w/ gradients (not LM parameters)
26 end for
27 end for
28 return LMedited

29 end procedure

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A.3.4 KEY DIFFERENCES BETWEEN UNLEARNING METHODS

In this section, we outline the properties that characterize unlearning methods and summarize them
in Table 5. Below, we describe each property in detail, highlighting their advantages and limitations.

1. Selection Information
Zeroth-Order: This property is key to methods that make use of zeroth-order information
(e.g., weight magnitudes, activation values) rather than higher-order information (e.g., gra-
dients, hessians). Zero order methods are time- and memory-efficient as they avoid costly
gradient or hessian computations.
First-Order: A method is first-order if it relies on model gradients w.r.t. a given dataset.
Computing the gradient can be computationally costly. However, they can potentially be
more informative than zeroth-order methods to select appropriate neurons/weights to ab-
late.
Second-Order: A second-order method uses second-order information (e.g., hessian) w.r.t.
some dataset to inform its ablation strategy. Computing the hessian matrix is memory-
intensive and is often approximated using lossy techniques (Kurtic et al., 2022). While
second-order methods can be computationally prohibitive, they leverage the curvature in-
formation of the loss landscape geometry to identify weights responsible for memorization,
rendering them superior to first-order gradient-based methods. However, in practice, model
hessians are often approximated, which can result in performance degradation.

2. Selection Order
Iterative: A method is iterative if it incrementally selects the individual model components
(e.g., weights, neurons) responsible for memorization. Iterative methods are inherently
slower than non-iterative methods as shown in Tables 1, 2, 3 due to the incremental nature
of evaluating and ablating model components.

3. Selection Scope
Layer-wise: Layer-wise methods assess model components (e.g., weights, neurons) im-
portance w.r.t. memorization within each layer as opposed to within an entire model. A
key limitation of these methods is that they may fail to appropriately rank component im-
portance within the full model scope.

4. Selection Criterion
Threshold-based: The proposed methods rank model components (e.g., weights, neurons)
by their importance w.r.t. memorization by comparing a corresponding component property
(e.g., gradient, magnitude). Using a component property as a proxy for component impor-
tance, the method can set a threshold to exclude the top K% of components most influential
for memorization. These methods are simple to implement and human-interpretable. They
may oversimplify how different model properties correspond to memorization and there-
fore may not be as accurate as optimization-based methods.
Optimization-based: These methods learn the order of importance of model components
(e.g., weights, neurons) w.r.t. to memorization, rather than imposing a threshold criterion
to rank the importance. While such approaches might be less interpretable than threshold-
based methods, they may capture more nuanced information that might be more informative
to identify model components relevant to memorization.

5. Selection Objective
Dual-Objective: A method is dual-objective if it considers the joint objectives of miti-
gating memorization and preserving model performance on a “retain” set of representa-
tive (non-memorized) sequences. Methods that are not dual-objective, on the other hand,
only account for mitigating memorization. Consequently, dual-objective methods are much
more successful at preserving model performance on non-memorized tasks, while mitigat-
ing memorization. These methods are slower than single-objective methods as they of-
ten rely on datasets containing both memorized and non-memorized data (rather than just
memorized data for the single-objective case).

6. Component Precision
Neuron vs. Weight-based: Neuron-based methods assess the importance of individual
neurons of an LM w.r.t. memorized sequence generation while weight-based methods as-

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 5: Properties of Unlearning Methods We identify key properties of the unlearning-based
methods. Boldface indicates the proposed methods. (Optim-based is short for Optimization-based;
Thresh-based is short for Threshold-based; w indicates a weight-based method; n indicates a neuron-
based method.)

Property Selection Information Selection
order

Selection
Scope

Selection Criterion Selection
Objective

Zeroth-
Order

First-
Order

Second-
Order

Iterative Layer-
wise

Thresh-
based

Optim-
based

Dual Ob-
jective

HCn ✓ ✓

Slimn ✓ ✓

Actn ✓ ✓

IGn ✓ ✓

Zeron ✓ ✓ ✓

Greedyw ✓ ✓ ✓ ✓

SOUw ✓ ✓ ✓

Durablew ✓ ✓ ✓

Durable-aggw ✓ ✓

Subnetw ✓ ✓

BalancedSubnetw ✓ ✓ ✓

sess the importance of individual weights. Neuron-based methods are faster than weight-
based methods as there are fewer neurons than weights in an LM. However, weight-based
methods offer more precision when localizing memorized information (see Fig. 2).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

A.3.5 MACHINE UNLEARNING HYPER-PARAMETER SEARCH + SELECTION

Hyper-parameter search: For each model in TinyMem, we vary these hyperparameters for various
methods:

BalancedSubnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}
• loss weight ∈ {0.9, 0.7, 0.5}

Subnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}

HC, Slim:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}
• num epochs ∈ {1, 10, 20}

Greedy:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05}

Durable, Durable-agg, SOU:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}

Act, Zero, IG:

• ratio ∈ {0.0001, 0.001, 0.01, 0.05, 0.1}

Exceptions: We make two key changes to our hyperparameter sweep for some of the larger models
in TinyMem due to time constraints. For models with 16 layers, we do not test IG unlearning and we
constrain the search for Greedy ratio ∈ {0.00001, 0.0001, 0.001, 0.01}. For any language model
trained on Wikipedia, we constrain the search for Greedy ratio ∈ {0.00001, 0.0001, 0.001, 0.01}.
Selection Criteria: For TinyMem models trained on sequential math data, we scored the best run by
assessing which training setting resulted in the lowest score = M+P where M is the memorization
percent difference before and after edit, A is the average accuracy percent difference (across 2-, 3-,
4-, 5-, and 7-tasks) before and after edit. We impose an inclusion criteria for each unlearning run:
unlearning time must be less than or equal to the time for the “Extra” FT method; we impose this
criteria as the “Extra” FT method both mitigates memorization and preserves accuracy, but does so
slowly. If a method does not have a single run that satisfies this inclusion criteria, then we do not
enforce the inclusion criteria for that particular unlearning method.

For TinyMem models trained on Wikipedia, we scored the best run by assessing which training setting
resulted in the lowest score = M + P + t where M is the memorization percent difference before
and after edit, P is the percent difference in perplexity before and after edit, and t is an optional
penalty to the score: if M = 0, then t = 100, else t = 0. We include this penalty to ensure that
methods that do not reduce memorization at all are penalized more than methods that do reduce
memorization to any extent. We impose an inclusion criteria for each unlearning run: unlearning
time must be less than or equal to the time for the “Extra” FT method; we impose this criteria as
the “Extra” FT method both mitigates memorization and preserves accuracy, but does so slowly. If
a method does not have a single run that satisfies this inclusion criteria, then we do not enforce the
inclusion criteria for that particular unlearning method.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

A.3.6 MACHINE UNLEARNING RESULTS

10
0

50
M

em
. %

 D
iff

.

Subnetbal Greedy Subnet Durable Durableagg IG Act SOU Slim HC Zero

10
00

20
00

30
00

Epoch

40

20

0Ac
c.

 %
 D

iff
.

10
00

20
00

30
00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch
10

00
20

00
30

00

Epoch

2.0 4.0 8.0 16.0

Figure 8: Math + Noise Models Unlearning: Memorization % different (closer to –100 is better
in top row), accuracy % difference before and after unlearning (closer to 0 is better in bottom row).
Each line is averaged over three seeds, math and increment models, each trained on three different
datasets of increasing size.

10
0

50

0

M
em

. %
 D

iff
.

Subnetbal Greedy Subnet Durable Durableagg IG Act SOU Slim HC Zero

25
0

50
0

Epoch

40

20

0

Ac
c.

 %
 D

iff
.

25
0

50
0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch
25

0
50

0

Epoch

2.0 4.0 8.0 16.0

Figure 9: Math + Backdoor Models Unlearning: Memorization % different (closer to –100 is
better in top row), accuracy % difference before and after unlearning (closer to 0 is better in bottom
row). Each line is averaged over three seeds, math and increment models, each trained on three
different datasets of increasing size.

10
0

80

60

M
em

. %
 D

iff
.

Subnetbal Greedy Subnet Durable Durableagg IG Act SOU Slim HC Zero

50 10
0

Epoch

0

50
10

0

Pe
rp

. %
 D

iff
.

50 10
0

Epoch
50 10

0

Epoch
50 10

0

Epoch
50 10

0

Epoch
50 10

0

Epoch
50 10

0

Epoch
50 10

0

Epoch
50 10

0

Epoch
50 10

0

Epoch
50 10

0

Epoch

2.0 4.0 8.0 16.0

Figure 10: Language + Noise Models Unlearning: Memorization % different (closer to –100 is
better in top row), % difference in perplexity before and after unlearning (closer to 0 is better in
bottom row). Each line is averaged over three seeds.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

10
0

50

0
M

em
. %

 D
iff

.

Subnetbal Greedy Subnet Durable Durableagg IG Act SOU Slim HC Zero

25 50
Epoch

0
25

00
50

00

Pe
rp

. %
 D

iff
.

25 50
Epoch

25 50
Epoch

25 50
Epoch

25 50
Epoch

25 50
Epoch

25 50
Epoch

25 50
Epoch

25 50
Epoch

25 50
Epoch

25 50
Epoch

2.0 4.0 8.0 16.0

Figure 11: Language + Backdoor Models Unlearning: Memorization % different (closer to –100
is better in top row), % difference in perplexity before and after unlearning (closer to 0 is better in
bottom row). Each line is averaged over three seeds.

100

50

0

2
La

ye
r

Epoch: 500 Epoch: 1500 Epoch: 2500 Epoch: 3500

100

50

0

4
La

ye
r

100

50

0

8
La

ye
r

1021011000
Accuracy % Diff.

100

50

0

16
 L

ay
er

1021011000
Accuracy % Diff.

1021011000
Accuracy % Diff.

1021011000
Accuracy % Diff.

M
em

or
iza

tio
n

%
 D

iff
.

Method
Zero
Act

Slim
HC
IG

Greedy
Durable
Durableagg

SOU
Subnet
Subnetbal

Data Size
3000

10000
20000

Figure 12: Math + Noise: Comparison of memorization % difference (closer to –100 better) and
accuracy % different (closer to 0 better) before and after unlearning. Stratified by layers and training
duration. Each point represents an average over three seeds. X-axis is on log scale. Aggregate
results from both multiplication and increment models.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

100

50

0

2
La

ye
r

Epoch: 50 Epoch: 200 Epoch: 350 Epoch: 500

100

50

0

4
La

ye
r

100

50

0

8
La

ye
r

1021011000
Accuracy % Diff.

100

50

0

16
 L

ay
er

1021011000
Accuracy % Diff.

1021011000
Accuracy % Diff.

1021011000
Accuracy % Diff.

M
em

or
iza

tio
n

%
 D

iff
.

Method
Zero
Act

Slim
HC
IG

Greedy
Durable
Durableagg

SOU
Subnet
Subnetbal

Data Size
3000

10000
20000

Figure 13: Math + Backdoor Comparison of memorization % difference (closer to –100 better) and
accuracy % different (closer to 0 better) before and after unlearning. Stratified by layers and training
duration. Each point represents an average over three seeds. X-axis is on log scale. Aggregate
results from both multiplication and increment models.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

100

90

80

70

2
La

ye
r

Epoch: 10 Epoch: 40 Epoch: 70 Epoch: 100

100

90

80

70

4
La

ye
r

100

90

80

70

8
La

ye
r

1000 100 101 102

Perplexity % Diff.

100

90

80

70

16
 L

ay
er

1000 100 101 102

Perplexity % Diff.
1000 100 101 102

Perplexity % Diff.
1000 100 101 102

Perplexity % Diff.

M
em

or
iza

tio
n

%
 D

iff
.

Zero
Act

Slim
HC

IG
Greedy

Durable
Durableagg

SOU
Subnet

Subnetbal

Figure 14: Language + Noise: Comparison of memorization % difference (closer to –100 better)
and % difference in perplexity (closer to 0 better) before and after unlearning. Stratified by layers
and training duration. Each point represents an average over three seeds. X-axis is on log scale.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

100

50

0

2
La

ye
r

Epoch: 10 Epoch: 20 Epoch: 30 Epoch: 50

100

50

0

4
La

ye
r

100

50

0

8
La

ye
r

0100 101 102 103

Perplexity % Diff.

100

50

0

16
 L

ay
er

0100 101 102 103

Perplexity % Diff.
0100 101 102 103

Perplexity % Diff.
0100 101 102 103

Perplexity % Diff.

M
em

or
iza

tio
n

%
 D

iff
.

Zero
Act

Slim
HC

IG
Greedy

Durable
Durableagg

SOU
Subnet

Subnetbal

Figure 15: Language + Backdoor: Comparison of memorization % difference (closer to –100
better) versus % difference in perplexity (closer to 0 better) before and after unlearning. Stratified
by layers and training duration. Each point represents an average over three seeds. X-axis is on log
scale.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

A.3.7 WHY DOES BALANCEDSUBNET WORK WELL?

Through extensive analysis in Tables 1, 2 & 3 and Figures 2, 3 & 5, we notice that BalancedSubnet
consistently outperforms all other unlearning-based mitigation methods. In this section, we analyses
the reasons for its success.

First we describe the design choices (Section A.3.4) that led to BalancedSubnet’s success:

1. Weight-based: From Fig. 2, we see that while both neuron- and weight-based methods can
both preserve LM perplexity, weight-based methods substantially outperform neuron-based
methods at mitigating memorization. This is likely due to weight-based methods operating
at a finer level of granularity than neuron-based.

2. 1st order: From Tables 1 & 2, we see that this first order method is much faster than SOU,
a second order method. From Fig. 3, we see that this first order method outperforms both
zero order methods (Act, Zero); this is likely due to first order information capturing more
information about the loss landscape with respect to memorized content compared to zero
order information.

3. Non-iterative: From Table 3, we see that BalancedSubnet is substantially faster than
iterative methods like Greedy.

4. Model-wise Scope: From Tables 1, 2 & 3 and Fig. 3, we see that BalancedSubnet outper-
forms methods with layer-wise scopes (Durable, SOU). This is likely because layer-wise
methods only rank weight importance w.r.t. other weights in the same layer. This means
that some weights may be artificially under or over ranked due to the lack of model-wide
weight importance comparison.

5. Optimization-based: From Fig. 5, we experimentally observe that by learning weight im-
portance scores w.r.t memorization via optimization-based approaches, like Subnet and
BalancedSubnet, we are able to more precisely localize and ablate the set of weights
responsible for memorization and not responsible for general sequence generation. Bal-
ancedSubnet, like Subnet, is an optimization-based technique rather than a threshold-
based technique. Threshold-based techniques assign proxy importance scores to each
weight w.r.t. memorization and ablate weights with the highest scores. For example, gra-
dients accumulated over the memorized set can be a proxy score for weight importance;
weights with high proxy scores are ablated. While threshold-based techniques are more
human-interpretable, the proxy metrics they rely on may not capture the nuanced depen-
dencies within the LM weights that are responsible for memorization.

6. Dual Objective: The dual optimization objective in BalancedSubnet is essential to both
remove memorized content while retaining strong performance on non-memorized data.
Without the dual optimization objective, BalancedSubnet is equivalent to the Subnet strat-
egy (which only optimizes to reduce memorization). On evaluating Subnet, we observed
that, in some cases, it aggressively removed weights that were instrumental for generating
non-memorized sequences. BalancedSubnet was, therefore, designed to also include the
objective of minimizing loss on a held out “retain” set. By adding this second “retain”
set objective into our loss function, we validate this hypothesis and report the increase in
performance on an unseen test set (see Tables 1, 2 & 3).

Next we analyze the ratio of neurons/weights each unlearning method ablates from an LM in Figures
16, 18, 17, 19. We notice that most neuron-based methods prune∼ 4− 6% of model neurons; when
stratified by model size & training data (Fig. 16 & Fig. 18), we do not notice any clear trends in the
TinyMem models. We notice most weight-based methods prune ∼< 5% of model weights with the
notable exceptions of Subnet and BalancedSubnet for TinyMem models. We notice most weight-
based methods prune ∼< 0.01% of weights with the notable exceptions of Subnet and Balanced-
Subnet for Pythia 2.8/6.9B models which prune ∼ 2− 10%. For the TinyMem models, when strati-
fied by model size (Fig. 17), we notice that both Subnet and BalancedSubnet prune more weights
for larger models. For the TinyMem models, when stratified by model training data+artifact type
(Fig. 19), we notice that both Subnet and BalancedSubnet roughly prune the most to least weights
in the order of “Math+Noise”, “Math+Backdoor”, “Language+Backdoor”, “Language+Noise”. We
speculate that both Subnet and BalancedSubnet pruned more weights when the model is inher-
ently more sparse, as may be the case with an over-parameterized model (bigger model size or
easier training task).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

BalancedSubnet, the most performant method, pruned significantly more weights than any other
method. This finding gave further credence to the dual-optimization-based design of BalancedSub-
net. Despite dropping significantly fewer weights than BalancedSubnet, all other unlearning meth-
ods struggle to reach the same performance (memorization mitigation & performance preservation).
This suggests that most methods are not able to precisely localize+ablate weights are responsible for
memorized sequence generation/inconsequential to general sequence generation.

HC Zero IG Slim Act
0

2

4

6

8

10

Ra
tio

 o
f N

eu
ro

ns
 A

bl
at

ed
 (%

)

n_layers
2.0
4.0
8.0
16.0

Act Slim HC
0

2

4

6

8

10

Ra
tio

 o
f N

eu
ro

ns
 A

bl
at

ed
 (%

)

EleutherAI/pythia-2.8b-deduped
EleutherAI/pythia-6.9b-deduped

Figure 16: Neuron Ratio Across Model Sizes. Comparison of number of dropped neurons for
neuron-based methods, for both TinyMem and Pythia for varying model sizes averaged across several
unlearning times, data sizes, and three seeds.

SOU

Durableagg

Greedy
Durable

Subnet

Subnetbal

0

10

20

30

40

50

60

Ra
tio

 o
f W

ei
gh

ts
 A

bl
at

ed
 (%

)

n_layers
2.0
4.0
8.0
16.0

Greedy

Durableagg

Durable
Subnetbal

Subnet
0

2

4

6

8

10

Ra
tio

 o
f W

ei
gh

ts
 A

bl
at

ed
 (%

)

EleutherAI/pythia-6.9b-deduped
EleutherAI/pythia-2.8b-deduped

Figure 17: Weight Ratio Across Model Sizes. Comparison of number of dropped weights for
weight-based methods, for both TinyMem and Pythia for varying model sizes averaged across several
unlearning times, data sizes, and three seeds.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

HC Zero IG Slim Act
0

2

4

6

8

10

Ra
tio

 o
f N

eu
ro

ns
 A

bl
at

ed
 (%

)

Math+Noise
Math+Backdoor
Language+Backdoor
Language+Noise

Act Slim HC

EleutherAI/pythia-2.8b-deduped
EleutherAI/pythia-6.9b-deduped

Figure 18: Neuron Ratio Across Model Datasets+Artifacts. Comparison of number of dropped
neurons for neuron-based methods, for both TinyMem and Pythia for varying model types averaged
across several unlearning times, data sizes, and three seeds.

SOU

Durableagg

Greedy
Durable

Subnet

Subnetbal

0

10

20

30

40

50

60

Ra
tio

 o
f W

ei
gh

ts
 A

bl
at

ed
 (%

)

Math+Noise
Math+Backdoor
Language+Backdoor
Language+Noise

Greedy

Durableagg

Durable
Subnetbal

Subnet
0

2

4

6

8

10

Ra
tio

 o
f W

ei
gh

ts
 A

bl
at

ed
 (%

)

EleutherAI/pythia-6.9b-deduped
EleutherAI/pythia-2.8b-deduped

Figure 19: Weight Ratio Across Model Datasets+Artifacts. Comparison of number of dropped
weights for weight-based methods, for both TinyMem and Pythia for varying model types averaged
across several unlearning times, data sizes, and three seeds.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

A.4 PRODUCTION-GRADE UNLEARNING

A.4.1 MEMORIZED DATA EXTRACTION FOR PYTHIA MODELS

We follow the methods outlined in Chang et al. (2024) to extract two datasets of memorized text,
one each from Pythia 2.8B and 6.9B. Chang et al. (2024) considers a sequence to be memorized
by an LM if it is able to produce completions that “nearly reconstruct” the original suffix, given an
input prefix sequence; this definition is more relaxed than the one we consider in this work (Def 2.1),
which deems a sequence to be memorized only if the LM can reconstruct the suffix verbatim using
greedy decoding. Therefore, we analyze how many of the sequences from Chang et al. (2024) fit
our definition of memorization, Def 2.1, when considering (n = 72, k = 32). Fig. 20 shows how
memorization grows over training as model perplexity (a general metric of model performance)
decreases (desirable). Memorization over training and perplexity over training for Pythia 2.8/6.9
can be visualized in Fig. 20. We evaluate Pythia model perplexity over 1632 randomly sampled
sequences of the Pile (Gao et al., 2020), following the same random sampling procedure as (Chang
et al., 2024).

20k 40k 60k 80k 100k 120k 140k
Steps

20

22

24

26

28

Pe
rp

le
xi

ty

20

30

40

50

60

70

80

90

Pe
rc

en
t

M
em

or
iz

ed

Model
2B
6B

Figure 20: Perplexity and Memorization of Pythia models over training.

A.4.2 PYTHIA: MACHINE UNLEARNING HYPER-PARAMETER SEARCH + SELECTION

Hyper-parameter search: For both Pythia 2.8/6.9B, we vary these hyperparameters for various
methods:

BalancedSubnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}
• loss weight ∈ {0.9, 0.7, 0.5}

Subnet:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.3}
• num epochs ∈ {1, 10, 20}

HC, Slim:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}
• num epochs ∈ {1, 10, 20}

Greedy:

• ratio ∈ {0.00001}

Act:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

• ratio ∈ {0.0001, 0.001, 0.01, 0.05, 0.1}

Durable, Durable-agg:

• ratio ∈ {0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1}

Selection Criteria: For Pythia models, we scored the best run by assessing which training setting
resulted in the lowest score = M + P + t where M = memorization percent difference before
and after edit, P = perplexity percent difference before and after edit, t is an optional penalty to
the score: if M = 0, then t = 100, else t = 0. We include this penalty to ensure that methods that
do not reduce memorization at all are penalized more than methods that do reduce memorization to
any extent. The lower the score, the better. We impose an inclusion criteria for each unlearning run:
model perplexity has to be < 500.

0 20 40 60 80 100
Perplexity % Diff.

100

80

60

40

20

0

M
em

or
iza

tio
n

%
 D

iff
.

Localization Method
Act
Slim
HC
Greedy
Durable
Durableagg

Subnet
Subnetbal

Figure 21: Unlearning strategies comparison. Comparison of memorization % difference (closer
to –100 better) and % difference in perplexity (closer to 0 is better), before and after unlearning. We
visualize all unlearning results with model perplexity < 40 and % memorized < 50. We notice that
BalancedSubnet (Subnetbal) has the highest density both near -100% difference in % memorized
and 0% difference in perplexity out of all of the unlearning methods.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

100

50

6.
9B

Training Step: 36000 Training Step: 72000 Training Step: 108000 Training Step: 143000

101 102

Perplexity % Diff.

100

50

2.
8B

101 102

Perplexity % Diff.
101 102

Perplexity % Diff.
101 102

Perplexity % Diff.

M
em

or
iza

tio
n

%
 D

iff
.

Act
HC

IG
Greedy

Durableagg

SOU
Subnet
Subnetbal

Figure 22: Pythia Comparison of memorization % difference (closer to –100 better) versus per-
plexity % different (closer to 0 better) before and after unlearning. Stratified by model type and train
step. X-axis is on log scale.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 6: System Parameters for Polaris (ALCF, 2024) and Perlmutter (NERSC, 2024) to estimate
energy and carbon usage.

Machine cuf ctdp ngpu guf gputdp DRAM PUE

Polaris 0.5 225 4 1 250 512 1.58
Perlmutter 0.5 280 4 1 300 256 1.58

Table 7: Energy & Carbon Estimates for our experiments based on Eq. (4) & Eq. (5) respectively.

Experiment Machine Node Hours Energy (kWh) Carbon (Kg)

(i) Training TinyMem models Polaris 1116 2297 910
(ii) TinyMem Mitigation Polaris 6251 12,871 5097

(iii) Production-Grade Mitigation Perlmutter 726 1,647 430

All Experiments (total) - - 16,815 6,437

A.5 LOSS LANDSCAPE VISUALIZATION

We created the loss landscape visualizations in Fig. 4 following the approach introduced by Li et al.
(2018). We use the corresponding Python package which can be found at https://github.com/m
arcellodebernardi/loss-landscapes.

A.6 COMPUTATION COST OF EXPERIMENTS

The experiments in this paper used approximately 16815 kWh of energy, and 6437 Kg of carbon.

We detail the computational resource (i.e., node hours, energy, carbon) used by our experiments
below.

To calculate node hours, we time all of our final experiments and triple that value to account for
extra debugging time, faulty runs, and any unaccounted for compute usage.

To calculate energy usage and carbon cost of our experiments, we follow the methodology detailed
by Bouza et al. (2023):

energy = NH ∗ ((cuf ∗ ctdp) + (ngpu ∗ guf ∗ gputdp) + (0.3725 W/Gb ∗DRAM)) ∗ PUE , (4)

where NH is node hours, cuf is the CPU usage factor, ctdp is the CPU’s thermal design power, ngpu
is the number of GPUs on a node, guf is the GPU usage factor (we assume 100% utilization), gtdp is
the GPU’s thermal design power, DRAM is dynamic random access memory, and PUE is the power
usage efficiency. energy is reported in watt hours. We record system-specific parameter values in
Table 6.

carbon = (energy/1000) ∗ CI (5)

Above in Eq. (5), energy is obtained in watt hours from Eq. (4), and CI is the carbon intensity
reported based on the yearly regional average for each computing center from (ElectricityMaps,
2024). carbon is reported in grams.

To offset the carbon cost of these experiments, we publicly release our check pointed trained models
(upon publication).

We group experiments into three main phases: (i) Training TinyMem Models; (ii) TinyMem Models
LM Mitigation and (iii) Production-Grade LM Memorization Mitigation. We report the resource
usage for each phase of experimentation in Table 7.

A.6.1 ENERGY AND CARBON SAVINGS DUE TO TinyMem

In Table 8 we estimate the per-experiment node hour, energy, and carbon usage for both phase (ii)
which used TinyMem to comprehensively test our mitigation methods and phase (iii) which extended

42

https://github.com/marcellodebernardi/loss-landscapes
https://github.com/marcellodebernardi/loss-landscapes

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 8: Experiment-Wise Resource Usage. We calculate the number of experiments for phase
(ii) and phase (iii) from Section A.3.5 & Section A.4.2 respectively. We then calculate the per
experiment Node Hours (NH), Energy, and Carbon usage using estimates from Table 7.

Experiment # Experiments NH/Exp. Energy /Exp. (kWh) Carbon/Exp. (Kg)

(ii) TinyMem 102698 0.06 0.13 0.05
(iii) Production-Grade 1216 0.60 1.35 0.35

Table 9: Hypothetical Phase (ii) Resource Usage. Resource usage estimates of doing 102, 698
phase (ii) experiments with TinyMem and without TinyMem (i.e, with production-grade LMs) using
experiment-wise resource usage estimates from Table 8.

Resource Type w/ TinyMem w/o TinyMem % Increase

Node Hours 6,251 61,619 986% (↑)
Energy (kWh) 12,871 138,642 1077% (↑)
Carbon (Kg) 5,097 36,316 712% (↑)

the most promising mitigation methods from TinyMem to production-grade models. Based on the
results in Table 8, if we had to conduct the same level of experimentation in phase (ii) without the
use of TinyMem (i.e., using production-grade models directly), we would use:

• 0.60 NH/Exp. * 102698 Exp. = 61619 Node Hours
• 1.35 KWh/Exp. * 102698 Exp. = 138,642 kWh Energy
• 0.35 Kg/Exp. * 102698 Exp. = 36,316 Kg Carbon

We compare the actual experiment costs of phase (ii) with TinyMem with the hypothetical costs of
phase (ii) without TinyMem in Table 9.

A.7 EXTENDED RELATED WORK

Knowledge Editing aims to change specific facts, associations, or information embedded in an LM
outside of the constraints of traditional model training. Model editing requires the ability to localize
learned information within subsets of the weight space and employs efficient and targeted methods to
change this information while mitigating its effects of other information also embedded in the weight
space. Model editing can be used to remove or alter private information, incorrect information,
outdated information, biased information, and harmful information stored within model weights
(Wu et al., 2023; Yan et al., 2024; Chen et al., 2023; Wang et al., 2024). Model editing can enable
machine learning models to more exactly reflect human knowledge, without the massive overhead
cost of typical model pre-training/fine-tuning (Meng et al., 2023). Zhu et al. (2020) propose an
approach to modify specific learned facts encoded withing a LM’s weights, while preserving model
performance on other previously learned knowledge via a constrained optimization problem. Dai
et al. (2022) developed attribution methods to decipher which neurons are responsible for specific
facts within LMs and developed methods to manipulate these neurons to edit a given fact. Cao
et al. (2021) and Mitchell et al. (2022) both propose hypernetwork based approaches to edit facts
within models. Hypernetworks are additional networks that are trained to predict which weights
are responsible for a given fact and how to modify the weights of a given neural network to better
represent the desired knowledge. Meng et al. (2022) proposed Rank-One Model Editing (ROME):
by interpreting multi-layer perceptrons as key-values stores, ROME is able to replace specific keys-
value pairs to override old or establish new knowledge associations in the model.

Machine unlearning techniques are a subset of knowledge editing techniques. Machine unlearn-
ing encompasses a broad class of techniques which aim to remove influence of a particular training
data point from a trained machine learning model (Yao et al., 2024; Bourtoule et al., 2021; Cao
& Yang, 2015). Machine unlearning is particularly important amidst recent legislation like GDPR
(Voigt & Von dem Bussche, 2017) which mandate the “the right to be forgotten”. The post-training
localization and mitigation techniques we describe in this paper can be categorized as machine un-

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

learning techniques, as they aim to remove the influence of a class of datapoints from a model
(namely memorized datapoints). In practice there are two broad sets of machine unlearning tech-
niques: exact and approximate. Exact techniques guarantee that a data point is removed from a
model’s training objective (Bourtoule et al., 2021). Approximate techniques do not provide such
guarantees but rather aim to empirically demonstrate that a model is not influenced by a data point
(Yao et al., 2024; Chang et al., 2024; Stoehr et al., 2024; Maini et al., 2023).

44

	Introduction
	Memorization in Language Models
	Defining and Measuring Memorization in LMs
	Unwanted Memorization Artifacts
	Training Data + Models

	Memorization Mitigation Methods
	Regularization
	Fine-Tuning
	Machine Unlearning

	Can Regularizers Prevent Memorization During Training?
	Can Fine-Tuning Curb Memorization after Training?
	Can Machine Unlearning Curb Memorization After Training?
	Model Size, Model Training Time, Dataset Size

	Mitigating Memorization in Production-Grade Models
	Related Work
	Conclusions
	Appendix
	TinyMem: A Tiny Model Suite to Study Memorization
	The TinyMem Math models
	The TinyMem Language models
	LM Memorization Properties
	Why Do We Need TinyMem?

	Regularizers
	Regularizers Hyper-Parameter Search + Selection
	Regularizer Definitions
	Regularizer Training Graphs

	Machine Unlearning
	Design Intuition of Proposed Unlearning Methods
	Technical Description of Proposed Unlearning Methods
	Machine Unlearning Method Algorithmic Definitions
	Key Differences Between Unlearning Methods
	Machine Unlearning Hyper-Parameter Search + Selection
	Machine Unlearning Results
	Why does BalancedSubnet work well?

	production-grade Unlearning
	Memorized Data Extraction for Pythia Models
	Pythia: Machine Unlearning Hyper-Parameter Search + Selection

	Loss Landscape Visualization
	Computation Cost of Experiments
	Energy and Carbon Savings due to TinyMem

	Extended Related Work

