© o N O g A~ W N =

30
31
32
33
34
35
36
37

RRNCO: Towards Real-World Routing with Neural
Combinatorial Optimization

Anonymous Author(s)
Affiliation
Address

email

Abstract

Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous
in several real-world logistics scenarios that pose significant challenges for opti-
mization. Neural Combinatorial Optimization (NCO) has emerged as a promising
alternative to classical approaches, as it can learn fast heuristics to solve VRPs.
However, existing research works in NCO for VRPs learn from simplified, sym-
metric Euclidean settings, failing to handle the asymmetric distances and travel du-
rations inherent to real-world road networks. This critical sim-to-real gap severely
hinders their practical deployment. To address this fundamental limitation, we in-
troduce RRNCO, a novel NCO architecture with two key innovations for handling
real-world routing complexity. First, we propose an Adaptive Node Embedding
(ANE) approach that fuses coordinate information with distance features through
learned contextual gating. Unlike existing methods relying solely on spatial co-
ordinates or requiring full distance matrix processing, our approach efficiently
captures both local geometric structure and global routing constraints through
probability-weighted distance sampling that prioritizes nearby nodes while pre-
serving asymmetric relationships. Second, we introduce Neural Adaptive Bias
(NAB), the first mechanism to jointly model asymmetric distance and duration
matrices within a deep neural routing framework. NAB’s gating-based architecture
learns to dynamically integrate distance, duration, and directional angles into a
unified contextual bias that guides the Adaptation Attention Free Module (AAFM).
Together, these innovations enable RRNCO to explicitly capture real-world routing
asymmetries where costs from location A to B differ from B to A due to traffic
patterns, road directionality, and temporal dynamics. We validate our method
on a newly constructed dataset featuring real-world asymmetric distance and du-
ration matrices from 100 diverse cities. Experiments demonstrate that RRNCO
achieves state-of-the-art performance among NCO methods on realistic VRPs. We
release our dataset and code to advance research in practical neural combinatorial
optimization.

1 Introduction

Vehicle Routing Problems (VRPs) are foundational NP-hard challenges in logistics, where routing
efficiency improvements can yield substantial cost savings [1]. While traditional solvers exist
[2 13 14] 15,16 [7], their computational complexity and need for expert tuning limit their use in large-
scale, real-time applications. Neural Combinatorial Optimization (NCO) has emerged as a promising
data-driven paradigm, using Reinforcement Learning (RL) to learn fast and scalable heuristics for
VRPs [8, 9} [10]. Despite impressive results on synthetic benchmarks [[11} [12} [13} [14} [15 [16], a
critical sim-to-real gap persists. Most NCO research relies on simplified Euclidean datasets, failing
to capture the asymmetric travel times and distances (d;; # d;;) inherent to real-world road networks

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39
40
41

42
43
44
45
46
47
48
49

50
51
52
53

54

55
56
57
58
59

60
61
62

63
64
65

[17,18]]. Furthermore, dominant NCO architectures, often based on node-centric Transformers [[19],
struggle to efficiently embed the rich, asymmetric edge features (e.g., distance and duration matrices)
crucial for realistic routing problems [20]]. A detailed discussion of related work is provided in the

' RS
RA-2 °
(RO
,
yd ReB Re5_@
RIS/ Ve "."/ RE2
RS-
) RS, ¢
Center AZy
RI=9 * T
R2]
R
RiB
Ri7 R26
) R4

Figure 1: [Left] Most NCO works consider simplified Euclidean settings. [Right] Our work models
real-world instances where durations and travel times can be asymmetric.

Our Real Routing NCO (RRNCO) bridges this gap—as illustrated in [Fig. T}—through innovations in
both modeling and data. We introduce a novel neural architecture with two key technical contributions:
(i) an Adaptive Node Embedding (ANE) that dynamically fuses coordinates and distance information
via learned contextual gating and probability-weighted sampling; and (ii) a Neural Adaptive Bias
(NAB), the first mechanism to jointly model asymmetric distance and duration matrices within
a deep routing framework, guiding our Adaptation Attention Free Module (AAFM). To validate
our approach, we construct a comprehensive benchmark dataset from 100 diverse cities, featuring
real-world asymmetric distance and duration matrices from OpenStreetMap [21].

Our contributions are: (1) A novel NCO architecture (RRNCO) with ANE and NAB to natively
handle real-world routing asymmetries. (2) An extensive, open-source VRP dataset from 100 cities
with asymmetric matrices. (3) State-of-the-art empirical results on realistic VRP instances. (4)
Open-source code and data to foster reproducible research.

2 Preliminaries: Solving VRPs with NCO

A VRP is defined on a graph G = (V, E), where the goal is to find optimal routes. In real-world
settings, the cost between nodes is asymmetric and multi-modal, represented by distance and duration
matrices D, T € R"*™, We frame the VRP as a sequential decision process solved by a deep
generative model using an autoregressive encoder-decoder framework [9]. The model constructs a
solution a (a sequence of visited locations) for a given problem instance .

The policy is trained using reinforcement learning (RL) to discover effective heuristics without
labeled data. Specifically, we optimize the policy parameters 6 to maximize the expected reward
R(a, x), which is the negative route cost:

max J(0) = ExenDEamr, (o) [R(a, x)]. M

We use the REINFORCE algorithm with the variance-reducing POMO baseline [[11], a standard and
effective training method for NCO routing solvers. This approach requires efficient generation of
problem instances x to ensure training efficiency, a need met by our data generation framework.

66

67
68
69
70

71

72

73
74
75
76
77
78
79
80

81
82
83
84
85

86

87
88
89
90
91
92
93

Encoder Decoder

Instances - N N
el mon
D D Coord. Emb Action
L1 Q Prob.
D D Dist. Matix Emb AAFM :
D D Row Emb K.V Row Emb
Coordinates Compatibility
. A ———
Row Init. Row Distance Context & SGffimer:
Embeding
Coord. Emb. +
:l K.V Feed Forward
Dist. Matix Emb 1 AAFM 1
Col Emb Q Col Emb
IDT
i . 32
Distance Matrix Col Init.
Embeding Col Distance Context @ @ MHA
Angle Matrix
Attribute Init. Attribute Emb
Attributes) __ Embeding Adaptive Bias) U)

Figure 2: Our proposed RRNCO model for real-world routing.

3 The RRNCO Model

Our model, depicted in [Fig. 2] features an encoder-decoder architecture designed to handle real-
world routing complexities. Our innovations focus on the encoder, enhancing its ability to process
asymmetric, multi-modal data efficiently. A more detailed description of the model architecture is

provided in the

3.1 Encoder
3.1.1 Adaptive Node Embedding (ANE)

The ANE module creates comprehensive node representations by fusing complementary spatial
features: global distance matrix information and local coordinate-based geometry. To maintain com-
putational efficiency while capturing the most relevant relationships, we employ a selective sampling
strategy. For each node 7, we sample k neighboring nodes with probability inversely proportional
to their distance, p;; o 1/d;;. This prioritizes local structure. These sampled distances are then
projected into an embedding fg. Separately, raw coordinates are projected to capture geometric
relationships, yielding an embedding f.,;q. We combine these complementary representations using
a learned Contextual Gating mechanism:

g = U(MLP([fcoord; fdis[])) 2)
h = go feoora + (1 - g) © faise 3)

This mechanism allows the model to adaptively weigh the importance of coordinate-based versus
distance-based features for each node, enabling a more nuanced spatial representation. To effectively
handle asymmetric routing scenarios, we follow the approach introduced in [20] and generate dual
embeddings for each node: row embeddings h” and column embeddings h®. These are then fused
with other node features (e.g., demand) to produce the final combined representations for the encoder.

3.1.2 Neural Adaptive Bias (NAB) for AAFM

RRNCO uses an Adaption Attention-Free Module (AAFM) [22]] to model inter-node relationships.
While the original AAFM defines its adaptation bias A heuristically (e.g., based on log-distance), we
introduce NAB, a mechanism that learns this bias directly from data. NAB is the first approach to
jointly model multiple asymmetric matrices, processing a distance matrix D, an angle matrix ® (for
directional relationships), and an optional duration matrix T. Each matrix is passed through an MLP
to get embeddings Depp, Pemp, and Te,yp. These are then fused using a multi-channel contextual
gating mechanism that learns to weigh each modality:

Denb; Peny; T W
G — softmax ([emb> emb emb} G) (4)
exp(7)
H= Gl © Demb + G2 © q)emb + G3 © Temb (5)

94
95
96

97
98

99

101
102
103
104
105
106

107

108
109
110
111
112
113
114
115
116

117

118

119
120
121
122

123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138

The fused representation H is projected to a scalar to form the final adaptive bias matrix A = Hw ;.
This resulting matrix serves as a learned inductive bias that captures the complex interplay between
distance, duration, and direction. This learned bias A is then used in the AAFM operation:

exp(4) - (exp(K) © V)
exp(A) - exp(K)

AARM(Q, K.V, A) = 0(Q) © ©)
After several AAFM layers, this process yields final node representations that encode rich, asymmetric
patterns from the real-world routing network.

3.2 Decoder

Our decoder architecture synthesizes designs from ReL.D [23]] and MatNet [20] to construct solutions
autoregressively. At each step, it uses the encoder’s rich node embeddings and a context vector
representing the current partial route (e.g., last visited node, remaining capacity). A multi-head
attention mechanism generates a query, which is then used in a compatibility layer to compute
the selection probability for the next node. This layer incorporates a negative logarithmic distance
heuristic, guiding the model to prioritize nearby feasible nodes, thereby efficiently exploring the
solution space.

4 Real-World VRP Dataset

A primary barrier to practical NCO is the lack of realistic datasets. Existing benchmarks are typically
synthetic and symmetric, failing to capture real-world complexities like one-way streets or traffic-
dependent travel times. To bridge this gap, we developed a large-scale dataset for real-world VRPs.
Our data generation pipeline uses the OpenStreetMap Routing Engine (OSRM) to create topological
maps for 100 diverse cities worldwide, each with corresponding asymmetric distance and duration
matrices. We also designed an efficient online subsampling method to generate a virtually unlimited
number of VRP instances for training our RL agent, ensuring the data faithfully represents real-world
challenges. The complete data generation methodology, including city selection criteria and our

subsampling framework, is detailed in the

5 Experiments

5.1 Experimental Setup

Classical Baselines. In the experiments, we compare three SOTA traditional optimization ap-
proaches: LKH3[24]: a heuristic algorithm with strong performance on (A)TSP problems, PyVRP[7]:
a specialized solver for VRPs with comprehensive constraint handling capabilities; and Google
OR-Tools[23]]: a versatile optimization library for CO problems.

Learning-Based Methods. We compare against SOTA NCO methods divided in two categories. /)
Node-only encoding learning methods: POMOJ11], an end-to-end multi-trajectory RL-based method
based on attention mechanisms; MTPOMO[26]], a multi-task variant of POMO; MVMOoE|27], a
mixture-of-experts variant of MTPOMO; RF[28]]: an RL-based foundation model for VRPs; ELG[29],
a hybrid of local and global policies for routing problems; BQ-NCO[30]: a decoder-only transformer
trained with supervised learning; LEHD[31]]: a supervised learning-based heavy decoder model. 2)
Node and edge encoding learning methods: GCN[32]]: a graph convolutional network with encoding
of edge information for routing; MatNet[20]: an RL-based solver encoding edge features via matrices
and GOAL[33]]: a generalist agent trained via supervised learning for several CO problems, including
routing problems.

Training Configuration. We perform training runs under the same settings for fair comparison
for our model, MatNet for ATSP and ACVRP, and GCN for ACVRP. Node-only models do not
necessitate retraining since our datasets are already normalized in the [0, 1]? coordinates ranges (with
locations sampled uniformly), and we do not retrain supervised-learning models since they would
necessitate labeled data. We train with the Adam optimizer with an initial learning rate of 4 x 1074,
which decays by a factor of 0.1 at epochs 180 and 195. Training is completed within 24 hours on

139
140
141
142
143

144
145
146
147
148
149

150

151
152
153
154
155
156

Table 1: Performance comparison across real-world routing tasks and distributions. We report costs
and gaps calculated with respect to best-known solutions (x) from traditional solvers. Horizontal
lines separate traditional solvers, node-only methods, node-and-edge methods, and our RRNCO.
Lower is better ().

| | In-distribution Out-of-distribution (city) Out-of-distribution (cluster)
Task | Method | Cost Gap (%) Time Cost Gap (%) Time Cost Gap (%) Time
| LKH3 | 38.387 * 1.6h 38.903 * 1.h 12.170 * 1.6h
POMO 51.512 34.192 10s 50.594 30.051 10s 30.051 146.926 10s
a ELG 51.046 32.976 42s 50.133 28.866 42s 23.017 89.131 42s
g BQ-NCO 55.933 45.708 25s 54.739 40.706 25s 27.872 129.022 25s
> LEHD 56.099 46.140 13s 54.811 40.891 13s 27.819 128.587 13s
MatNet 39.915 3.981 27s 40.548 4.228 27s 12.886 5.883 27s
GOAL 41.976 9.350 91s 42.590 9.477 91s 13.654 12.194 91s
| Ours | 39.077 1.797 22s 39.783 2.262 22s 12.450 2.301 22s
PyVRP 69.739 * 7h 70.488 * 7h 22.553 * 7h
OR Tools 72.597 4.097 7h 73.286 3.969 7h 23.576 4.538 7h
POMO 85.888 23.156 16s 85.771 21.682 16s 34.179 51.549 16s
MTPOMO | 86.521 24.063 16s 86.446 22.640 16s 34.287 52.029 16s
& MVMoE 86.248 23.672 22s 86.111 22.164 22s 34.135 51.356 22s
> RF 86.289 23.731 17s 86.261 22.377 16s 34.273 51.967 16s
Q ELG 85.951 23.247 67s 85.741 21.639 66s 34.027 50.873 67s
< BQ-NCO 93.075 33.462 30s 92.467 31.181 30s 40.110 77.848 30s
LEHD 93.648 34.284 17s 93.195 32214 17s 40.048 717.573 17s
GCN 90.546 29.836 17s 90.805 28.823 17s 34.417 52.605 17s
MatNet 74.801 7.258 30s 75.722 7.425 30s 24.844 10.158 30s
GOAL 84.341 20.938 104s 84.097 19.307 104s 34.318 52.166 104s
| Ours | 72.145 3.450 25s 72.999 3.562 25s 23.280 3.224 25s
PyVRP 118.056 * 7h 118.513 * 7h 39.253 * 7h
= OR-Tools 119.681 1.377 7h 120.147 1.379 7h 39.903 1.655 7h
E POMO 132.883 12.559 18s 132.743 12.007 17s 50.503 28.661 18s
& MTPOMO | 133.135 12.773 17s 132.921 12.158 18s 50.372 28.328 18s
5 MVMoE 132.871 12.549 24s 132.700 11.971 23s 50.333 28.227 24s
= RF 132.887 12.563 18s 132.731 11.997 18s 50.422 28.455 18s
| GOAL | 134.699 14.098 107s 135.001 13.912 107s 47.966 22.197 107s
| Ours | 122.693 3.928 35s 123.249 3.996 35s 41.077 4.647 35s

4x NVIDIA A100 40GB GPUs using a batch size of 256, processing 100,000 instances per epoch.
The model follows a Attention Free Transformer(AFT) based architecture with 128-dimensional
embeddings, 512-dimensional feedforward layers, and 12 AFT layers. The training dataset consists
of 80 cities with instances randomly generated from subsampled real-world city base map topologies
with the remaining 20 reserved for OOD testing.

Testing Protocol. The test data consists of in-distribution evaluation for 1) In-dist: new instances
generated from the 80 cities seen during training, 2) OOD (city) out-of-distribution generalization over
new city maps and 3) OOD (cluster) out-of-distribution generalization to new location distributions
across maps. The test batch size is 32, and a data augmentation factor of 8 is applied to all models
except supervised learning-based ones, i.e., LEHD, BQ-NCO, and GOAL. All evaluations are
conducted on an NVIDIA A6000 GPU paired with an Intel(R) Xeon(R) CPU @ 2.20GHz.

5.2 Main Results

presents the performance of our model against all baselines on Asymmetric TSP (ATSP),
Asymmetric CVRP (ACVRP), and ACVRPTW. The results unequivocally demonstrate that RRNCO
achieves state-of-the-art performance among all neural solvers across every task and distribution. It
consistently finds higher-quality solutions (lower cost) while remaining computationally efficient.
Notably, a single RRNCO model handles all VRP variants, showcasing its adaptability and strong
generalization capabilities in both in-distribution and out-of-distribution scenarios.

157

158

160
161
162
163
164
165

166
167
168

170
171
172
173
174

175

176
177
178
179
180
181
182
183

Table 2: Comparison of routing solvers and their training data generators on real-world data.
In-dist OOD City OOD Clust.

Cost Gap% Cost Gap% Cost Gap%

LKH3 - 38.39 * 38.90 * 12,17 *

MatNet ATSP 80.86 110.70 81.04 108.30 27.78 128.23
RRNCO Noise 4135 772 4201 798 13.66 12.20
MatNet Real 39.92 398 4055 423 12.89 5.88
RRNCO Real 39.08 1.80 39.78 2.26 1245 2.30

Method Data Gen.

5.3 Analyses

Ablation Study. We perform an ablation study on our proposed model components in [Fig. 3|
to validate their contributions. We evaluate performance when using only raw coordinates, only
sampled distances, our full Adaptive Node Embedding (ANE), and the complete model with the
Neural Adaptive Bias (NAB). The results show that ANE and NAB perform the best, systematically
improving solution quality. The improvement is particularly pronounced in the out-of-distribution
(OOD) settings, highlighting their role in enhancing generalization. Remarkably, in the challenging
OOD (cluster) distribution, the addition of NAB provides a relative improvement of over 15%,
confirming its effectiveness in capturing complex, unseen spatial relationships.

In-dist 00D (city) 00D (cluster)
4.0 4.0 4.0
Q o Q
© © ©
O35 O35 O35
> & &« > & & > & &
s <° = \a § & = & & <° 5 &
x(; ‘x & <¢>< X(/ «x (x (ox x(z X kx Q/x
< > > S $ > > 3 % > > 3
o O o P o O & B & o o s

Figure 3: Study of our proposed model with different initial contexts: coordinates, distances, Adaptive
Node Embedding (ANE), and Neural Adaptive Bias (NAB). ANE and NAB perform best, particularly
in out-of-distribution (OOD) cases.

Importance of Real-World Data Generators. We study the impact of the training data generator
on performance in real-world test settings. We compare models trained on a standard symmetric
ATSP generator from MatNet [20], a generator that adds random noise to break symmetries, and our
proposed real-world data generator. As shown in[Table 2] training on data that mirrors real-world
asymmetric properties is crucial. Models trained on symmetric or noisy data perform poorly when
evaluated on our realistic benchmark. In contrast, training on our proposed real-world data leads
to dramatic improvements in performance for both MatNet and our RRNCO model across all in-
distribution and OOD settings, underscoring the necessity of our data generation framework to bridge
the sim-to-real gap.

6 Conclusion

We introduced RRNCO, a novel NCO architecture designed to bridge the sim-to-real gap in vehicle
routing. Our model explicitly handles the asymmetric and multi-modal travel costs of real-world
networks through two key innovations: an Adaptive Node Embedding (ANE) that efficiently fuses
coordinate and distance features, and a Neural Adaptive Bias (NAB) mechanism that jointly learns
from distance, duration, and directional data. To validate our model, we built and are releasing a
large-scale dataset with realistic routing instances from 100 cities. On this challenging benchmark,
RRNCO achieves state-of-the-art performance among NCO methods. By open-sourcing our model
and dataset, we aim to accelerate progress towards practical, deployable neural optimization solutions.

184

185
186
187
188
189

190
191

192
193

194

195
196

197
198

200

201
202
203

204
205

206
207
208
209

210
211
212

213
214
215

216
217
218

219
220
221

222
223

224
225

226
227
228

229
230

References

[1] Research and Markets. Size of the global logistics industry from 2018 to 2023, with forecasts
until 2028 (in trillion u.s. dollars). https://www.statista.com/statistics/943517/
logistics-industry-global-cagr/, 2024. Accessed: January 22, 2025. The forecast is
based on a 2023 market size of approximately $9.41 trillion and a CAGR of 5.6%, which implies
an estimated global industry value of roughly $10.5 trillion in 2025.

[2] Gilbert Laporte and Yves Nobert. Exact algorithms for the vehicle routing problem. In
North-Holland mathematics studies, volume 132, pages 147-184. Elsevier, 1987.

[3] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap*
neighborhood. Computers & Operations Research, 140:105643, 2022.

[4] Laurent Perron and Vincent Furnon. OR-Tools. Google, 2023.

[5] David Applegate, Robert Bixby, Vaclav Chvatal, and William Cook. Concorde TSP solver.
http://www.math.uwaterloo.ca/tsp/concorde.html, 2003.

[6] Niels A Wouda and Leon Lan. Alns: A python implementation of the adaptive large neighbour-
hood search metaheuristic. Journal of Open Source Software, 8(81):5028, 2023.

[7] Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
INFORMS Journal on Computing, 2024.

[8] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405-421, 2021.

[9] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
International Conference on Learning Representations, 2019.

[10] Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L
Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle
routing problems: A comprehensive survey with perspectives. arXiv preprint arXiv:2406.00415,
2024.

[11] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in
Neural Information Processing Systems, 33:21188-21198, 2020.

[12] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936—
1949, 2022.

[13] Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang.
Self-improved learning for scalable neural combinatorial optimization. arXiv preprint
arXiv:2403.19561, 2024.

[14] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop:
Learning global partition and local construction for solving large-scale routing problems in
real-time. AAAI 2024, 2024.

[15] Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, and Jie Zhang. Collaboration! Towards
robust neural methods for vehicle routing problems. 2023.

[16] André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for
vehicle routing problems. arXiv preprint arXiv:2501.03715, 2025.

[17] Eneko Osaba. Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem
with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths. Data in Brief,
29:105142, January 2020.

[18] Daniela Thyssens, Tim Dernedde, Jonas K Falkner, and Lars Schmidt-Thieme. Routing arena:
A benchmark suite for neural routing solvers. arXiv preprint arXiv:2310.04140, 2023.

https://www.statista.com/statistics/943517/logistics-industry-global-cagr/
https://www.statista.com/statistics/943517/logistics-industry-global-cagr/
https://www.statista.com/statistics/943517/logistics-industry-global-cagr/
http://www.math.uwaterloo.ca/tsp/concorde.html

231
232
233

234
235
236

237
238

240
241

242
243
244

245
246

247

248
249

251
252

254
255

257
258

259
260
261

262
263
264

265
266
267

269
270

271
272
273

274
275
276

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
Matrix encoding networks for neural combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 34:5138-5149, 2021.

OpenStreetMap contributors. Openstreetmap database [data set]. https://www,
openstreetmap.org, 2025. Accessed: 2025-02-06.

Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimiza-
tion. arXiv preprint arXiv:2405.01906, 2024.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based
solvers for vehicle routing problems. In The Thirteenth International Conference on Learning
Representations, 2025.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966-980, 2017.

Laurent Perron and Frédéric Didier. CP-SAT, 2024.

Fei Liu, Xi Lin, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task learning for
routing problem with cross-problem zero-shot generalization. arXiv preprint arXiv:2402.16891,
2024.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu.
MVMOoE: Multi-task vehicle routing solver with mixture-of-experts. In International Conference
on Machine Learning, 2024.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan,
Junyoung Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for
vehicle routing problems. arXiv preprint arXiv:2406.15007, 2024.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. IJCAI 2024.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bg-nco:
Bisimulation quotienting for generalizable neural combinatorial optimization. arXiv preprint
arXiv:2301.03313, 2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. Advances in Neural Information
Processing Systems, 36:8845-8864, 2023.

Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.
Efficiently Solving the Practical Vehicle Routing Problem: A Novel Joint Learning Approach.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 3054-3063, Virtual Event CA USA, August 2020. ACM.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial
optimization agent learner. arXiv preprint arXiv:2406.15079, 2024.

Andrius Barauskas, Agnundefined Brilingaitundefined, Linas Bukauskas, Vaida Ceikutun-

defined, Alminas Civilis, and Simonas Saltenis. Test-data generation and integration for
long-distance e-vehicle routing. Geoinformatica, 27(4):737-758, January 2023.

Aldy Gunawan, Graham Kendall, Barry McCollum, Hsin Vonn Seow, and Lai Soon Lee. Vehicle
routing: Review of benchmark datasets. Journal of the Operational Research Society, 72:1794 —
1807, 2021.

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org

277
278
279

280
281
282

283
284

285
286

287

289
290

291
292

294
295
296

297
298

300
301

302
303
304

305
306

307
308
309

310
311
312

313
314
315

317
318

[36] Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS *11, pages 513-516, New York, NY, USA, 2011. ACM.

[37] Nitin R Chopde and Mangesh Nichat. Landmark based shortest path detection by using
a* and haversine formula. International Journal of Innovative Research in Computer and
Communication Engineering, 1(2):298-302, 2013.

[38] Hina Ali and Khalid Saleem. Generating large-scale real-world vehicle routing dataset with
novel spatial data extraction tool. PLOS ONE, 19(6):¢0304422, June 2024.

[39] Fahui Wang and Yanqing Xu. Estimating o—d travel time matrix by google maps api: imple-
mentation, advantages, and implications. Annals of GIS, 17(4):199-209, 2011.

[40] Ao Qu and Cathy Wu. Revisiting the correlation between simulated and field-observed conflicts
using large-scale traffic reconstruction. Accident Analysis & Prevention, 210:107808, 2025.

[41] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[42] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[43] Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic
programming for vehicle routing problems. In International conference on integration of con-
straint programming, artificial intelligence, and operations research, pages 190-213. Springer,
2022.

[44] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett.
Winner takes it all: Training performant rl populations for combinatorial optimization. Advances
in Neural Information Processing Systems, 36, 2024.

[45] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. arXiv preprint arXiv:1911.09539, 2019.

[46] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing
Tang. Learning to iteratively solve routing problems with dual-aspect collaborative transformer.
Advances in Neural Information Processing Systems, 34:11096-11107, 2021.

[47] Gerhard Reinelt. TSPLIB—a traveling salesman problem library. INFORMS Journal on
Computing, 3(4):376-384, 1991.

[48] Ivan Lima, Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Anand Subramanian,
and Thibaut Vidal. CVRPLIB - capacitated vehicle routing problem library. http://vrp,
galgos.inf.puc-rio.br/, 2014.

[49] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takdc. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

[50] Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni,
Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song,
Changhyun Kwon, Lin Xie, and Jinkyoo Park. RL4ACO: an Extensive Reinforcement Learning
for Combinatorial Optimization Benchmark. arXiv preprint arXiv:2306.17100, 2024.

http://vrp.galgos.inf.puc-rio.br/
http://vrp.galgos.inf.puc-rio.br/
http://vrp.galgos.inf.puc-rio.br/

319

320

321

322
323
324

326
327
328

329
330

331
332
333

334
335

336
337

338
339
340
341
342
343

344

345
346
347

348

349
350
351
352
353

354
355
356

A Detailed Model Architecture

A.1 Encoder
A.1.1 Adaptive Node Embedding

The Adaptive Node Embedding module synthesizes distance-related features with node characteristics
to create comprehensive node representations. A key aspect of our approach is effectively integrating
two complementary spatial features: distance matrix information and coordinate-based relationships.
For distance matrix information, we employ a selective sampling strategy that captures the most
relevant node relationships while maintaining computational efficiency. Given a distance matrix
D € RV*N we sample k nodes for each node i according to probabilities inversely proportional to
their distances:
1 / dij

N
Z j=1 1/ dij
where d;; represents the distance between nodes ¢ and j. The sampled distances are then transformed
into an embedding space through a learned linear projection:

fdist = Linear(dsampled) (8)

Dij = @)

Coordinate information is processed separately to capture geometric relationships between nodes.
For each node, we first compute its spatial features based on raw coordinates. These features are then
projected into the same embedding space through another learned linear transformation:

feoord = Linear(xcoord) 9)

To effectively combine these complementary spatial representations, we employ a Contextual Gating
mechanism:
h = g f(:oord + (1 - g) © fdist (10)

where © is the Hadamard product and g represents learned gating weights determined by a multi-layer
perceptron (MLP):
g = U(MLP([fcnord; fdisl])) (1 1)

This gating mechanism allows the model to adaptively weigh the importance of coordinate-based
and distance-based features for each node, enabling more nuanced spatial representation. To handle
asymmetric routing scenarios effectively, we follow the approach introduced in and generate dual
embeddings for each node: row embeddings h" and column embeddings h¢. These embeddings are
then combined with other node characteristics (such as demand or time windows) through learned
linear transformations to produce the combined node representations:

comb = MLP([h"; f04]) (12)
comb = MLP([h*; fioqe]) (13)

where f,4 represents additional node features such as demand or time windows, which are trans-
formed by an additional linear layer. This dual embedding approach allows the RRNCO model to
better capture and process asymmetric relationships in real-world routing scenarios.

A.1.2 Neural Adaptive Bias for AAFM

Having established comprehensive node representations through our adaptive embedding approach,
RRNCO employs an Adaption Attention-Free Module (AAFM) based on to model complex inter-
node relationships. The AAFM operates on the dual representations h’, , and h . to capture

asymmetric routing patterns through our novel Neural Adaptive Bias (NAB) mechanism. The AAFM
operation is defined as:

exp(A) - (exp(K) © V)

AARM(Q, KV, A) = 0(Q) © — o (i)

(14)

where Q = WCh! K = WXhe 'V =WVhS . with learnable weight matrices W?, WX,
WYV While defines the adaptation bias A heuristically as —« - log(N) - d;; (with learnable v, node

count IV, and distance d;;), we introduce a Neural Adaptive Bias (NAB) that learns asymmetric

10

357
358
359

360

361
362

363
364
365

366

367
368
369
370

371

372

374
375
376
377
378
379

380
381

382
383
384
385

relationships directly from data. NAB processes distance matrix D, angle matrix ® for direc-
tional relationships, and optionally duration matrix T, enabling joint modeling of spatial-temporal
asymmetries inherent in real-world routing.

Let Wp, Wg, Wrp € RE:

Dy = ReLU(DW p) WY, (15)
Qemb = RCLU(‘I’W@)W&) (16)
Temb = RGLU(TWT)W/T (17)

We then apply contextual gating to fuse these heterogeneous information sources. When duration
information is available, we employ a multi-channel gating mechanism with softmax normalization:

[Demb; Dernp; Temb] Wg
exp(T)

where [Depmb; ®emp; Temp) is the concatenation of all embeddings, W € R3£*3
is a learnable weight matrix, and 7 is a learnable temperature parameter. The fused representation is
computed as:

G = softmax < (18)

c RBXNXNXSE

H = G1 © Demb + G2 © Pemp + G3 © Temp (19
Finally, the adaptive bias matrix A is obtained by projecting the fused embedding H to a scalar value:

A = Hw,,; € REXNxN (20)

where w,,; € R¥ is a learnable weight vector. The resulting A matrix serves as a learned inductive
bias that captures complex asymmetric relationships arising from the interplay between distances,
directional angles, and travel durations. This Neural Adaptive Bias is then incorporated into the
Adaptation Attention Free Module (AAFM) operation as follows:

exp(A) - (exp(K) V)

AAFM(Q, K, V,A) = 0(Q) © exp(A) - exp(K)

The Neural Adaptive Bias (NAB), applied through the Adaptation Attention Free Module (AAFM),
yields final node representations hj and h{ after [passes through AAFM. These representations
result from RRNCO’s encoding process, leveraging joint modeling of distance, angle, and duration to
capture complex asymmetric patterns in real-world routing networks.

A.2 Decoder
A.2.1 Decoder Architecture

The decoder architecture combines key elements from the ReLD and MatNet to effectively process the
dense node embeddings generated by the encoder and construct solutions for vehicle routing problems.
At each decoding step t, the decoder takes as input the row and column node embeddings (hf, hf)
produced by the encoder and a context vector h, = [h}, ,D'| € Rdntdattr where Dt € Rater
represents dynamic features that capture the state variable s*. To aggregate information from the
node embeddings, the decoder applies a multi-head attention (MHA) mechanism, using the context

vector h,. as the query and H* € RI¥ ‘Ixdn g5 the key and value:
hl, = MHA (h., W*hS, W"'hs.). 1)
The ReLLD model introduces a direct influence of context by adding a residual connection between
the context vector k. and the refined query vector h.:
h. = h! +IDT(h,), (22)

where IDT(-) is an identity mapping function that reshapes the context vector to match the dimension
of the query vector, allowing context-aware information to be directly embedded into the representa-
tion. To further enhance the decoder performance, an MLP with residual connections is incorporated
to introduce non-linearity into the computation of the final query vector q.:

ge = h’. + MLP(h.). (23)

11

386
387
388
389

390
391
392
393
394
395

396
397

398

399

401

402

404
405
406
407
408

410
411

412

413
414
415

The MLP consists of two linear transformations with a ReLU activation function, transforming the
decoder into a transformer block with a single query that can model complex relationships and adapt
the embeddings based on the context. Finally, the probability p; of selecting node i € F* is calculated
by applying a compatibility layer with a negative logarithmic distance heuristic score:

Ty L1 c
pi = {Softmax <C’ - tanh <(qc)\/zth — log(disti)) ﬂ (24)
h i

where C' is a clipping hyperparameter, dj, is the embedding dimension, and dist; denotes the distance
between node ¢ and the last selected node a;_1. This heuristic guides the model to prioritize nearby
nodes during the solution construction process. The combination of ReLD’s architectural modifica-
tions and MatNet’s decoding mechanism with our rich, learned encoding enables the RRNCO model
to effectively leverage static node embeddings while dynamically adapting to the current context,
leading to improved performance on various vehicle routing problems.

The dataset will be available for download through the HuggingFace portal, and the link will be
available on a Github repository. Our code is licensed under the MIT license.

B Real-World VRP Dataset Generation

Existing methodologies often require integrating massive raw datasets (e.g., traffic simulators and
multi-source spatial data) — for instance, [34] rely on simplistic synthetic benchmarks, which are
either resource-intensive or lack real-world complexity [35].

To address these limitations, we design a three-step pipeline to create a diverse and realistic vehicle
routing dataset aimed at training and testing NCO models. First, we select cities worldwide based on
multi-dimensional urban descriptors (morphology, traffic flow regimes, land-use mix). Second, we
develop a framework using the Open Source Routing Machine (OSRM) [36] to create city maps with
topological data, generating both precise location coordinates and their corresponding distance and
duration matrices between each other. Finally, we efficiently subsample these topologies to generate
diverse VRP instances by adding routing-specific features such as demands and time windows, thus
preserving the inherent spatial relationships while enabling the rapid generation of instances with
varying operational constraints, leveraging the precomputed distance/duration matrices from the base
maps. The whole pipeline is illustrated in [Fig. 4]

City Map Selection v Coordinate and Matrix Data Generation

OSRM Backend ©SRM Cities Dataset

get_tableQ)

{ BEEEE

sample()

Subsampling VRP
Instances

ofas)

Figure 4: Overview of our RRNCO real-world data generation and sampling framework. We generate
a dataset of real-world cities with coordinates and respective distance and duration matrices obtained
via OSRM. Then, we efficiently subsample instances as a set of coordinates and their matrices from
the city map dataset with additional generated VRP features.

B.1 City Map Selection
We select a list of 100 cities distributed across six continents, with 25 in Asia, 21 in Europe, 15 each in

North America and South America, 14 in Africa, and 10 in Oceania. The selection emphasizes urban
diversity through multiple dimensions, including population scale (50 large cities >1M inhabitants,

12

416
417
418
419

420
421
422
423
424

425

426
427
428

429

431
432
433
434

435

437
438
439

440
441
442
443
444
445
446
447

448
449
450
451
452
453
454

456

457

459
460

30 medium cities 100K-1M, and 20 small cities <100K), infrastructure development stages, and
urban planning approaches. Cities feature various layouts, from grid-based systems like Manhattan
to radial patterns like Paris and organic developments like Fez, representing different geographic and
climatic contexts from coastal to mountain locations.

We prioritized cities with reliable data availability while balancing between globally recognized
metropolitan areas and lesser-known urban centers, providing a comprehensive foundation for
evaluating vehicle routing algorithms under diverse real-world conditions. Moreover, by including
cities from developing regions, we aim to advance transportation optimization research that could
benefit underprivileged areas and contribute to their socioeconomic development.

B.2 Topological Data Generation Framework

In the second stage, we generate base maps that capture real urban complexities. This topological
data generation is composed itself of three key components: geographic boundary information, point
sampling from road networks, and travel information computation.

Geographic boundary information We establish standardized 9 km? areas (3x3 km) centered on
each target city’s municipal coordinates, ensuring the same spatial coverage across different urban
environments. Given that the same physical distance corresponds to different longitudinal spans
at different latitudes due to the Earth’s spherical geometry, we need a precise distance calculation
method: thus, the spatial boundaries are computed using the Haversine spherical distance formulation

[1371:
d = 2R - arcsin <\/sin2 (A2¢> 4 cos(¢1) cos(¢z) sin? (A;\)) (25)

where d is the distance between two points along the great circle, R is Earth’s radius (approximately
6,371 kilometers), ¢1 and ¢ are the latitudes of point 1 and point 2 in radians, A¢ = ¢o — ¢
represents the difference in latitudes, and AX = Ay — A; represents the difference in longitudes.
This enables precise spatial boundary calculations and standardized cross-city comparisons while
maintaining consistent analysis areas across different geographic locations.

Point sampling from road networks Our RRNCO framework interfaces with OpenStreetMap [21]]
for point sampling. More specifically, we extract both road networks and water features within defined
boundaries using graph_from_bbox and f eatures_from_bboﬂ Employing boolean indexing,
the sampling process implements several filtering mechanisms to filter the DataFrame and ensure
point quality: we exclude bridges, tunnels, and highways to focus on accessible street-level locations
and create buffer zones around water features to prevent sampling from (close to) inaccessible areas.
Points are then generated through a weighted random sampling approach, where road segments are
weighted by their length to ensure uniform spatial distribution.

Travel information computation The travel information computation component leverages a
locally hosted Open Source Routing Machine (OSRM) server [36] to calculate real travel distances
and durations between sampled points, ensuring full reproducibility of results. Through the efficient
get_table function in our router implementation via the OSRM table serviceﬂ we can process
a complete 1000x1000 origin-destination matrix within 18 seconds, making it highly scalable for
urban-scale analyses. In contrast to commercial API-based approaches that require more than 20
seconds for 350x350 matrices [38]], our open-source local OSRM implementation achieves the same
computations in approximately 5 seconds. Additionally, it enables the rapid generation of multiple
instances from small datasets with negligible computational cost per iteration epoch.

The RRNCO framework finally processes this routing data through a normalization strategy that
addresses both unreachable destinations and abnormal travel times. This step captures real-world
routing complexities, including one-way streets, turn restrictions, and varying road conditions,
resulting in asymmetric distance and duration matrices that reflect actual urban travel patterns. All

"https://osmnx.readthedocs.io/en/stable/user-reference.html
https://project-osrm.org/docs/v5.24.0/api/#table-service

13

https://osmnx.readthedocs.io/en/stable/user-reference.html
https://project-osrm.org/docs/v5.24.0/api/#table-service

461
462

463

464
465
466

467

468
469
470

471
472
473
474

475
476
477
478
479

480
481
482

483
484
485
486
487

489

490
491
492
493
494
495
496
497
498
499
500
501
502
503

504
505
506
507
508

computations are performed locallyﬂ allowing for consistent results and independent verification of
the analysis pipeline.

B.3 VRP Instance Subsampling

From the large-scale city base maps, we generate diverse VRP instances by subsampling a set of
locations along with their corresponding distance and duration matrices, allowing us to generate an
effectively unlimited number of instances while preserving the underlying structure.

The subsampling process follows another three-step procedure:

1. Index Selection: Given a city dataset containing Ny locations, we define a subset size Ny
representing the number of locations to be sampled for the VRP instance. We generate an index
vector s = (s, S2, .. ., SN,) Where each s; is drawn from {1,. .., Ny}, ensuring unique selections.

2. Matrix Subsampling: Using s, we extract submatrices from the precomputed distance matrix
D € RNoxNot and duration matrix 7 € RNe*Net| forming instance-specific matrices Dy, =
Dl[s,s] € RNwXNwv and Ty, = T[s,s] € RMwXNuv preserving spatial relationships among
selected locations.

3. Feature Generation: Each VRP can have different features. For example, in Asymmet-
ric Capacitated VRP (ACVRP) we can generate a demand vector d € RMwX1 guch that

d = (dy,ds,...,dn,,)", where each d; represents the demand at location s;. Similarly,
we can extend to ACVRPTW (time windows) represented as W & RNawXx2 " where W =
{(ws w™), .. (i, wiye)}, defining the valid service interval for each node.

Unlike previous methods that generate static datasets offline [32| 138], our RRNCO generation
framework dynamically generates instances on the fly in few milliseconds, reducing disk memory
consumption while maintaining high diversity.

[Fig. 4]illustrates the overall process, showing how a city map is subsampled using an index vector
to create VRP instances with distance and duration matrices enriched with node-specific features
such as demands and time windows. Our approach allows us to generate a (arbitrarily) large number
of problem instances from a relatively small set of base topology maps totaling around 1.5GB, in
contrast to previous works that required hundreds of gigabytes of data to produce just a few thousand
1nstances.

C Related Works

Neural Combinatorial Optimization (NCO). Neural approaches to combinatorial optimization
have emerged as a promising paradigm for learning heuristics directly from data, bypassing the need
for extensive domain expertise [8]. NCO methods are broadly categorized into construction and
improvement methods. Construction methods build solutions sequentially. This line of work was
pioneered by Pointer Networks [41] and later combined with reinforcement learning to optimize
policies directly for solution quality [42]. The current state-of-the-art for construction heavily
relies on autoregressive models using the Transformer architecture [9, [11], which excel at capturing
complex problem structures. Other construction paradigms include non-autoregressive methods that
predict solutions in a single pass [43]] and population-based approaches that generate diverse sets of
solutions [44]]. In contrast, improvement methods start with an initial solution and iteratively refine
it. This includes techniques like learning operators for local search [45] or developing Neural Large
Neighborhood Search (NLNS) frameworks [46]. Our work focuses on autoregressive construction,
as it provides a strong balance between inference speed and solution quality, which is critical for
real-world logistics applications.

Vehicle Routing Problem (VRP) Datasets. A significant gap exists between NCO research and
real-world applicability, largely due to the datasets used for training and evaluation. For decades,
the community has relied on established benchmarks like TSPLIB [47] and CVRPLIB [48]. While
invaluable for standardization, these datasets are typically based on symmetric Euclidean distances,
assuming travel costs are equal in both directions (d;; = d;;). This simplification fails to capture

30ur framework can also be extended to include real-time commercial map API integrations and powerful
traffic forecasting to obtain better-informed routing [39}40], which we leave as future works.

14

509
510
511
512
513
514
515
516

517
518
519
520
521
522
523
524
525
526
527

529
530

531

532
533
534
535
536
537

538
539
540
541
542
543

544

545

546
547
548

the inherent asymmetry of real road networks caused by one-way streets, traffic patterns, and turn
restrictions [[17]. Some recent works have attempted to create more realistic datasets [32,138]], but they
suffer from critical limitations for NCO research: they often rely on proprietary, commercial APIs, are
static and cannot be generated online (a key requirement for data-hungry RL agents), can be slow to
generate, and are not always publicly released. Furthermore, they often omit crucial information like
travel durations, which can be decoupled from distance in real traffic. Our work directly addresses
these gaps by providing a fast, open-source, and scalable data generation framework that produces
asymmetric distance and duration matrices from real-world city topologies.

NCO for VRPs. The application of NCO to VRPs has evolved from early adaptations of recurrent
models [49]] to the now-dominant Transformer-based encoder-decoder architectures [9,[11]. These
models have demonstrated impressive performance but are fundamentally node-centric; their attention
mechanisms operate on node embeddings, making it non-trivial to incorporate rich structural infor-
mation contained in edge features like a full distance matrix. This limitation is a primary contributor
to the sim-to-real gap. To address this, some works have explored encoding edge information. GCN-
based approaches [32] and attention via row and column embeddings of MatNet [20] introduced early
ways to handle asymmetry, with GOAL [33]] incorporating edge data with cross-attention. While
these are steps in the right direction, they often process only a single cost matrix (e.g., distance) and
do not fully exploit the multiple, correlated modalities of real-world routing costs (distance, duration,
and geometry). The development of NCO architectures that can efficiently fuse multiple sources of
asymmetric edge information remains an open challenge. Our proposed model, RRNCO, tackles this
directly with its Adaptive Node Embedding (ANE) and Neural Adaptive Bias (NAB) mechanism,
which learns a unified routing context from distance, duration, and angular relationships.

D Additional Data Information

We present a comprehensive urban mobility dataset encompassing 100 cities across diverse geograph-
ical regions worldwide. For each city, we collected 1000 sampling points distributed throughout
the same size urban area. The dataset includes the precise geographical coordinates (latitude and
longitude) for each sampling point. Additionally, we computed and stored complete distance and
travel time matrices between all pairs of points within each city, resulting in 1000x1000 matrices per
city.

The cities in our dataset exhibit significant variety in their characteristics, including population size
(ranging from small to large), urban layout patterns (such as grid, organic, mixed, and historical
layouts), and distinct geographic features (coastal, mountain, river, valley, etc.). The dataset covers
multiple regions including Asia, Oceania, Americas, Europe, and Africa. This diversity in urban
environments enables comprehensive analysis of mobility patterns across different urban contexts
and geographical settings.

on the following page provides information about our topology dataset choices.

E Hyperparameter Details

shows the hyperparameters we employ for RRNCO. The configuration can be changed
through yaml files as outlined in RL4CO [50], which we employ as the base framework for our
codebase.

Table 4: Comprehensive City Details

City Population Layout G;gg:‘lz:f;lc Region Split
Addis Ababa Large Organic Highland East Africa Train
Alexandria Large Mixed Coastal North Africa Train
Amsterdam Large Canal grid River Western Europe Train
Almaty Large Grid Mountain Central Asia Train
Asuncién Medium Grid River South America Test

Continued on next page

15

Table 4 — Continued from previous page

City Population Layout G;gg:‘sl[‘)el:c Region Split
Athens Large Mixed Historical S]g uthern Train
urope
Auckland Large Harbor layout Isthmus Oceania Train
Baku Large Mixed Coastal Western Asia Train
Bangkok Large River layout River Southeast Asia Train
Barcelona Large Grid & historic Coastal Southern Train
Europe
Beijing Large Ring layout Plains East Asia Train
Bergen Small Fjord Coastall Northern Train
mountain Europe
Brisbane Large River grid River Oceania Train
Buenos Aires Large Grid River South America Train
Bukhara Small Medieval Historical Central Asia Test
Cape Town Large Mixed colonial Coastal&mt. Southern Africa Train
Cartagena Medium Colonial Coastal South America Train
Casablanca Large Mixed colonial Coastal North Africa Train
Chengdu Large Grid Basin East Asia Train
Colombo Medium Colonial grid Coastal South Asia Train
Chicago Large Grid Lake North America Test
Christchurch Medium Grid Coastal plain Oceania Train
. Northern .
Copenhagen Large Mixed Coastal E Train
urope
Curitiba Large Grid Highland South America Train
Cusco Medium Historic mixed Mountain South America Test
Daejeon Large Grid Valley East Asia Train
Dakar Medium Peninsula grid Coastal West Africa Train
Dar es Salaam Large Coastal grid Coastal East Africa Train
Denver Large Grid Mountain North America Train
Dhaka Large Organic River South Asia Train
Dubai Large Linear modern ng:zﬁ& Western Asia Train
Dublin Large Georgian grid Coastal 1\}Iaorthern Train
urope
Dubrovnik Small Medieval walled Coastal Southern Train
Europe
Edinburgh Medium Historic mixed Hills l\lgorthem Train
urope
Fez Medium Medleyal Historical North Africa Test
organic
Guatemala City Large Valley grid Valley Central America Train
Hanoi Large Mixed River Southeast Asia Train
Havana Large Colonial Coastal Caribbean Train
Helsinki Large Grid Peninsula 1\}130rthern Train
urope
Hobart Small Mountain Harbor Oceania Test
harbor
Hong Kong Large Vertical Harbor East Asia Train
Istanbul Large Mixed Strait Western Asia Train
Kigali Medium Hill organic Highland East Africa Train
Kinshasa Large Organic River Central Africa Train
Kuala Lumpur Large Modern mixed Valley Southeast Asia ~ Test
Kyoto Large Historical grid Valley East Asia Train
La Paz Large Valley organic Mountain South America Train
Lagos Large Organic Coastal West Africa Train

16

Continued on next page

Table 4 — Continued from previous page

City Population Layout G;gg:‘sl[‘)el:c Region Split
Lima Large Mixed grid Coastal desert ~ South America Train
. . . Northern
London Large Radial organic River E Test
urope
Los Angeles Large Grid sprawl Coastal basin ~ North America Train
Luanda Large Mixed Coastal Southern Africa Train
Mandalay Large Grid River Southeast Asia Train
Marrakech Medium Medina Desert edge North Africa Train
Medellin Large Valley grid Mountain South America Train
Melbourne Large Grid River Oceania Train
Mexico City Large Mixed Valley North America Test
Montevideo Large Grid Coastal South America Train
Montreal Large Mixed Island North America Train
Moscow Large Ring layout River Eastern Europe Train
Mumbai Large Linear coastal Coastal South Asia Test
Nairobi Large Mixed Highland East Africa Train
New Orleans Medium Colonial River delta North America Train
New York City Large Grid Coastal North America Train
Nouméa Small Peninsula Coastal Oceania Test
Osaka Large Grid Harbor East Asia Test
Panama City Large Coastal modern Coastal Central America Train
Paris Large Radial River Western Europe Train
Perth Large Coastal sprawl Coastal Oceania Test
Port Moresby Medium Harbor sprawl Coastal hills Oceania Train
Porto Medium Medleyal River mouth Southern Train
organic Europe
Prague Large Historic grid River Central Europe Train
Quebec City Medium Historic walled River North America Test
Quito Large Linear valley Highland South America Test
Reykjavik Small Modern grid Coastal l\llaorthern Test
urope
Rio de Janeiro Large Coastal organic Mgg;l;?;l& South America Train
Rome Large H1st0r1§a1 Seven hills Southern Test
organic Europe
Salvador Large Mixed historic Coastal South America Train
Salzburg Small Medieval core River Central Europe Train
San Francisco Large Hill grid Peninsula North America Train
San Juan Medium Mixed historic Coastal Caribbean Test
Santiago Large Grid Valley South America Train
Sao Paulo Large Sprawl Highland South America Train
Seoul Large Mixed River East Asia Train
Shanghai Large Modern mixed River East Asia Train
Singapore Large Planned Island Southeast Asia Train
. Northern .
Stockholm Large Archipelago Island E Train
urope
Sydney Large Harbor organic Harbor Oceania Train
Taipei Large Grid Basin East Asia Train
Thimphu Small Valley organic Mountain South Asia Train
Tokyo Large Mixed Harbor East Asia Test
Toronto Large Grid Lake North America Train
Ulaanbaatar Large Grid Valley East Asia Train
Valparaiso Medium Hill organic Coastal hills South America Train
Vancouver Large Grid Peninsula North America Train
Vienna Large Ring layout River Central Europe Train

17

Continued on next page

Table 4 — Continued from previous page

Geographic

City Population Layout Features Region Split
Vientiane Medium Mixed River Southeast Asia Train
Wellington Medium Harbor basin Coastal hills Oceania Train
Windhoek Small Grid Highland Southern Africa Test

Yogyakarta Medium Traditional Ccuelrtllt]er;ﬂ Southeast Asia Train

18

Table 3: Hyperparameters.

Hyperparameter Value
Model

Embedding dimension 128
Number of attention heads 8

Number of encoder layers 12
Normalization Instance
Use graph context False
Sample size k node encoding 25

Training

Batch size 256

Train data size 100,000
Val data size 1,280

Test data size 1,280

RL algorithm REINFORCE
REINFORCE baseline POMO [11]]
Optimizer Adam
Learning rate 4e-4
Weight decay le-6

LR scheduler MultiStepLR
LR milestones [180, 195]
LR gamma 0.1

Max epochs 200

Data

Number of cities (training) 80

Number of cities (testing) 20

Instance size n (# of locations) 100
Number of test instances 1280

19

	Introduction
	Preliminaries: Solving VRPs with NCO
	The RRNCO Model
	Encoder
	Adaptive Node Embedding (ANE)
	Neural Adaptive Bias (NAB) for AAFM

	Decoder

	Real-World VRP Dataset
	Experiments
	Experimental Setup
	Main Results
	Analyses

	Conclusion
	Detailed Model Architecture
	Encoder
	Adaptive Node Embedding
	Neural Adaptive Bias for AAFM

	Decoder
	Decoder Architecture

	Real-World VRP Dataset Generation
	City Map Selection
	Topological Data Generation Framework
	VRP Instance Subsampling

	Related Works
	Additional Data Information
	Hyperparameter Details

