
RRNCO: Towards Real-World Routing with Neural
Combinatorial Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous1

in several real-world logistics scenarios that pose significant challenges for opti-2

mization. Neural Combinatorial Optimization (NCO) has emerged as a promising3

alternative to classical approaches, as it can learn fast heuristics to solve VRPs.4

However, existing research works in NCO for VRPs learn from simplified, sym-5

metric Euclidean settings, failing to handle the asymmetric distances and travel du-6

rations inherent to real-world road networks. This critical sim-to-real gap severely7

hinders their practical deployment. To address this fundamental limitation, we in-8

troduce RRNCO, a novel NCO architecture with two key innovations for handling9

real-world routing complexity. First, we propose an Adaptive Node Embedding10

(ANE) approach that fuses coordinate information with distance features through11

learned contextual gating. Unlike existing methods relying solely on spatial co-12

ordinates or requiring full distance matrix processing, our approach efficiently13

captures both local geometric structure and global routing constraints through14

probability-weighted distance sampling that prioritizes nearby nodes while pre-15

serving asymmetric relationships. Second, we introduce Neural Adaptive Bias16

(NAB), the first mechanism to jointly model asymmetric distance and duration17

matrices within a deep neural routing framework. NAB’s gating-based architecture18

learns to dynamically integrate distance, duration, and directional angles into a19

unified contextual bias that guides the Adaptation Attention Free Module (AAFM).20

Together, these innovations enable RRNCO to explicitly capture real-world routing21

asymmetries where costs from location A to B differ from B to A due to traffic22

patterns, road directionality, and temporal dynamics. We validate our method23

on a newly constructed dataset featuring real-world asymmetric distance and du-24

ration matrices from 100 diverse cities. Experiments demonstrate that RRNCO25

achieves state-of-the-art performance among NCO methods on realistic VRPs. We26

release our dataset and code to advance research in practical neural combinatorial27

optimization.28

1 Introduction29

Vehicle Routing Problems (VRPs) are foundational NP-hard challenges in logistics, where routing30

efficiency improvements can yield substantial cost savings [1]. While traditional solvers exist31

[2, 3, 4, 5, 6, 7], their computational complexity and need for expert tuning limit their use in large-32

scale, real-time applications. Neural Combinatorial Optimization (NCO) has emerged as a promising33

data-driven paradigm, using Reinforcement Learning (RL) to learn fast and scalable heuristics for34

VRPs [8, 9, 10]. Despite impressive results on synthetic benchmarks [11, 12, 13, 14, 15, 16], a35

critical sim-to-real gap persists. Most NCO research relies on simplified Euclidean datasets, failing36

to capture the asymmetric travel times and distances (dij ̸= dji) inherent to real-world road networks37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

[17, 18]. Furthermore, dominant NCO architectures, often based on node-centric Transformers [19],38

struggle to efficiently embed the rich, asymmetric edge features (e.g., distance and duration matrices)39

crucial for realistic routing problems [20]. A detailed discussion of related work is provided in the40

Appendix C41

Figure 1: [Left] Most NCO works consider simplified Euclidean settings. [Right] Our work models
real-world instances where durations and travel times can be asymmetric.

Our Real Routing NCO (RRNCO) bridges this gap—as illustrated in Fig. 1—through innovations in42

both modeling and data. We introduce a novel neural architecture with two key technical contributions:43

(i) an Adaptive Node Embedding (ANE) that dynamically fuses coordinates and distance information44

via learned contextual gating and probability-weighted sampling; and (ii) a Neural Adaptive Bias45

(NAB), the first mechanism to jointly model asymmetric distance and duration matrices within46

a deep routing framework, guiding our Adaptation Attention Free Module (AAFM). To validate47

our approach, we construct a comprehensive benchmark dataset from 100 diverse cities, featuring48

real-world asymmetric distance and duration matrices from OpenStreetMap [21].49

Our contributions are: (1) A novel NCO architecture (RRNCO) with ANE and NAB to natively50

handle real-world routing asymmetries. (2) An extensive, open-source VRP dataset from 100 cities51

with asymmetric matrices. (3) State-of-the-art empirical results on realistic VRP instances. (4)52

Open-source code and data to foster reproducible research.53

2 Preliminaries: Solving VRPs with NCO54

A VRP is defined on a graph G = (V,E), where the goal is to find optimal routes. In real-world55

settings, the cost between nodes is asymmetric and multi-modal, represented by distance and duration56

matrices D,T ∈ Rn×n. We frame the VRP as a sequential decision process solved by a deep57

generative model using an autoregressive encoder-decoder framework [9]. The model constructs a58

solution a (a sequence of visited locations) for a given problem instance x.59

The policy is trained using reinforcement learning (RL) to discover effective heuristics without60

labeled data. Specifically, we optimize the policy parameters θ to maximize the expected reward61

R(a,x), which is the negative route cost:62

max
θ

J(θ) = Ex∼DEa∼πθ(·|x)[R(a,x)]. (1)

We use the REINFORCE algorithm with the variance-reducing POMO baseline [11], a standard and63

effective training method for NCO routing solvers. This approach requires efficient generation of64

problem instances x to ensure training efficiency, a need met by our data generation framework.65

2

No
de

 1

Instances

No
de

 N
..

.

Node 1

Node N
...

Distance Matrix

Node 1

Node N
...

Coordinates
Row Init.
Embeding

Col Init.
Embeding

Coord. Emb.

Dist. Matix Emb.

Row Distance Context
Coord. Emb.

Dist. Matix Emb.

Col Distance Context

Attribute Init.
Embeding

Attribute Emb.

Row Emb.

Col Emb.

AAFM

AAFM

Row Emb.

Col Emb.

MHA

Q K V

Feed Forward

Compatibility
& Softmax

+

+IDT

Node 1

Node N
...

Attributes

Q

K,V

K,V

Q

Distance
Matrix

Node to node
Angle

{ }
Adaptive Bias

DecoderEncoder

Action
Prob.

Distance & Duration
Matrix

Node to Node
Angle

Figure 2: Our proposed RRNCO model for real-world routing.

3 The RRNCO Model66

Our model, depicted in Fig. 2, features an encoder-decoder architecture designed to handle real-67

world routing complexities. Our innovations focus on the encoder, enhancing its ability to process68

asymmetric, multi-modal data efficiently. A more detailed description of the model architecture is69

provided in the Appendix A70

3.1 Encoder71

3.1.1 Adaptive Node Embedding (ANE)72

The ANE module creates comprehensive node representations by fusing complementary spatial73

features: global distance matrix information and local coordinate-based geometry. To maintain com-74

putational efficiency while capturing the most relevant relationships, we employ a selective sampling75

strategy. For each node i, we sample k neighboring nodes with probability inversely proportional76

to their distance, pij ∝ 1/dij . This prioritizes local structure. These sampled distances are then77

projected into an embedding fdist. Separately, raw coordinates are projected to capture geometric78

relationships, yielding an embedding fcoord. We combine these complementary representations using79

a learned Contextual Gating mechanism:80

g = σ(MLP([fcoord; fdist])) (2)
h = g ⊙ fcoord + (1− g)⊙ fdist (3)

This mechanism allows the model to adaptively weigh the importance of coordinate-based versus81

distance-based features for each node, enabling a more nuanced spatial representation. To effectively82

handle asymmetric routing scenarios, we follow the approach introduced in [20] and generate dual83

embeddings for each node: row embeddings hr and column embeddings hc. These are then fused84

with other node features (e.g., demand) to produce the final combined representations for the encoder.85

3.1.2 Neural Adaptive Bias (NAB) for AAFM86

RRNCO uses an Adaption Attention-Free Module (AAFM) [22] to model inter-node relationships.87

While the original AAFM defines its adaptation bias A heuristically (e.g., based on log-distance), we88

introduce NAB, a mechanism that learns this bias directly from data. NAB is the first approach to89

jointly model multiple asymmetric matrices, processing a distance matrix D, an angle matrix Φ (for90

directional relationships), and an optional duration matrix T. Each matrix is passed through an MLP91

to get embeddings Demb, Φemb, and Temb. These are then fused using a multi-channel contextual92

gating mechanism that learns to weigh each modality:93

G = softmax
(
[Demb; Φemb; Temb]WG

exp(τ)

)
(4)

H = G1 ⊙Demb +G2 ⊙Φemb +G3 ⊙Temb (5)

3

The fused representation H is projected to a scalar to form the final adaptive bias matrix A = Hwout.94

This resulting matrix serves as a learned inductive bias that captures the complex interplay between95

distance, duration, and direction. This learned bias A is then used in the AAFM operation:96

AAFM(Q,K, V,A) = σ(Q)⊙ exp(A) · (exp(K)⊙ V)

exp(A) · exp(K)
(6)

After several AAFM layers, this process yields final node representations that encode rich, asymmetric97

patterns from the real-world routing network.98

3.2 Decoder99

Our decoder architecture synthesizes designs from ReLD [23] and MatNet [20] to construct solutions100

autoregressively. At each step, it uses the encoder’s rich node embeddings and a context vector101

representing the current partial route (e.g., last visited node, remaining capacity). A multi-head102

attention mechanism generates a query, which is then used in a compatibility layer to compute103

the selection probability for the next node. This layer incorporates a negative logarithmic distance104

heuristic, guiding the model to prioritize nearby feasible nodes, thereby efficiently exploring the105

solution space.106

4 Real-World VRP Dataset107

A primary barrier to practical NCO is the lack of realistic datasets. Existing benchmarks are typically108

synthetic and symmetric, failing to capture real-world complexities like one-way streets or traffic-109

dependent travel times. To bridge this gap, we developed a large-scale dataset for real-world VRPs.110

Our data generation pipeline uses the OpenStreetMap Routing Engine (OSRM) to create topological111

maps for 100 diverse cities worldwide, each with corresponding asymmetric distance and duration112

matrices. We also designed an efficient online subsampling method to generate a virtually unlimited113

number of VRP instances for training our RL agent, ensuring the data faithfully represents real-world114

challenges. The complete data generation methodology, including city selection criteria and our115

subsampling framework, is detailed in the Appendix B116

5 Experiments117

5.1 Experimental Setup118

Classical Baselines. In the experiments, we compare three SOTA traditional optimization ap-119

proaches: LKH3[24]: a heuristic algorithm with strong performance on (A)TSP problems, PyVRP[7]:120

a specialized solver for VRPs with comprehensive constraint handling capabilities; and Google121

OR-Tools[25]: a versatile optimization library for CO problems.122

Learning-Based Methods. We compare against SOTA NCO methods divided in two categories. 1)123

Node-only encoding learning methods: POMO[11], an end-to-end multi-trajectory RL-based method124

based on attention mechanisms; MTPOMO[26], a multi-task variant of POMO; MVMoE[27], a125

mixture-of-experts variant of MTPOMO; RF[28]: an RL-based foundation model for VRPs; ELG[29],126

a hybrid of local and global policies for routing problems; BQ-NCO[30]: a decoder-only transformer127

trained with supervised learning; LEHD[31]: a supervised learning-based heavy decoder model. 2)128

Node and edge encoding learning methods: GCN[32]: a graph convolutional network with encoding129

of edge information for routing; MatNet[20]: an RL-based solver encoding edge features via matrices130

and GOAL[33]: a generalist agent trained via supervised learning for several CO problems, including131

routing problems.132

Training Configuration. We perform training runs under the same settings for fair comparison133

for our model, MatNet for ATSP and ACVRP, and GCN for ACVRP. Node-only models do not134

necessitate retraining since our datasets are already normalized in the [0, 1]2 coordinates ranges (with135

locations sampled uniformly), and we do not retrain supervised-learning models since they would136

necessitate labeled data. We train with the Adam optimizer with an initial learning rate of 4× 10−4,137

which decays by a factor of 0.1 at epochs 180 and 195. Training is completed within 24 hours on138

4

Table 1: Performance comparison across real-world routing tasks and distributions. We report costs
and gaps calculated with respect to best-known solutions (∗) from traditional solvers. Horizontal
lines separate traditional solvers, node-only methods, node-and-edge methods, and our RRNCO.
Lower is better (↓).

In-distribution Out-of-distribution (city) Out-of-distribution (cluster)

Task Method Cost Gap (%) Time Cost Gap (%) Time Cost Gap (%) Time

AT
SP

LKH3 38.387 ∗ 1.6h 38.903 ∗ 1.6h 12.170 ∗ 1.6h
POMO 51.512 34.192 10s 50.594 30.051 10s 30.051 146.926 10s
ELG 51.046 32.976 42s 50.133 28.866 42s 23.017 89.131 42s
BQ-NCO 55.933 45.708 25s 54.739 40.706 25s 27.872 129.022 25s
LEHD 56.099 46.140 13s 54.811 40.891 13s 27.819 128.587 13s
MatNet 39.915 3.981 27s 40.548 4.228 27s 12.886 5.883 27s
GOAL 41.976 9.350 91s 42.590 9.477 91s 13.654 12.194 91s
Ours 39.077 1.797 22s 39.783 2.262 22s 12.450 2.301 22s

A
C

V
R

P

PyVRP 69.739 ∗ 7h 70.488 ∗ 7h 22.553 ∗ 7h
OR-Tools 72.597 4.097 7h 73.286 3.969 7h 23.576 4.538 7h
POMO 85.888 23.156 16s 85.771 21.682 16s 34.179 51.549 16s
MTPOMO 86.521 24.063 16s 86.446 22.640 16s 34.287 52.029 16s
MVMoE 86.248 23.672 22s 86.111 22.164 22s 34.135 51.356 22s
RF 86.289 23.731 17s 86.261 22.377 16s 34.273 51.967 16s
ELG 85.951 23.247 67s 85.741 21.639 66s 34.027 50.873 67s
BQ-NCO 93.075 33.462 30s 92.467 31.181 30s 40.110 77.848 30s
LEHD 93.648 34.284 17s 93.195 32.214 17s 40.048 77.573 17s
GCN 90.546 29.836 17s 90.805 28.823 17s 34.417 52.605 17s
MatNet 74.801 7.258 30s 75.722 7.425 30s 24.844 10.158 30s
GOAL 84.341 20.938 104s 84.097 19.307 104s 34.318 52.166 104s
Ours 72.145 3.450 25s 72.999 3.562 25s 23.280 3.224 25s

A
C

V
R

PT
W

PyVRP 118.056 ∗ 7h 118.513 ∗ 7h 39.253 ∗ 7h
OR-Tools 119.681 1.377 7h 120.147 1.379 7h 39.903 1.655 7h
POMO 132.883 12.559 18s 132.743 12.007 17s 50.503 28.661 18s
MTPOMO 133.135 12.773 17s 132.921 12.158 18s 50.372 28.328 18s
MVMoE 132.871 12.549 24s 132.700 11.971 23s 50.333 28.227 24s
RF 132.887 12.563 18s 132.731 11.997 18s 50.422 28.455 18s
GOAL 134.699 14.098 107s 135.001 13.912 107s 47.966 22.197 107s
Ours 122.693 3.928 35s 123.249 3.996 35s 41.077 4.647 35s

4× NVIDIA A100 40GB GPUs using a batch size of 256, processing 100,000 instances per epoch.139

The model follows a Attention Free Transformer(AFT) based architecture with 128-dimensional140

embeddings, 512-dimensional feedforward layers, and 12 AFT layers. The training dataset consists141

of 80 cities with instances randomly generated from subsampled real-world city base map topologies142

with the remaining 20 reserved for OOD testing.143

Testing Protocol. The test data consists of in-distribution evaluation for 1) In-dist: new instances144

generated from the 80 cities seen during training, 2) OOD (city) out-of-distribution generalization over145

new city maps and 3) OOD (cluster) out-of-distribution generalization to new location distributions146

across maps. The test batch size is 32, and a data augmentation factor of 8 is applied to all models147

except supervised learning-based ones, i.e., LEHD, BQ-NCO, and GOAL. All evaluations are148

conducted on an NVIDIA A6000 GPU paired with an Intel(R) Xeon(R) CPU @ 2.20GHz.149

5.2 Main Results150

Table 1 presents the performance of our model against all baselines on Asymmetric TSP (ATSP),151

Asymmetric CVRP (ACVRP), and ACVRPTW. The results unequivocally demonstrate that RRNCO152

achieves state-of-the-art performance among all neural solvers across every task and distribution. It153

consistently finds higher-quality solutions (lower cost) while remaining computationally efficient.154

Notably, a single RRNCO model handles all VRP variants, showcasing its adaptability and strong155

generalization capabilities in both in-distribution and out-of-distribution scenarios.156

5

Table 2: Comparison of routing solvers and their training data generators on real-world data.

Method Data Gen.
In-dist OOD City OOD Clust.

Cost Gap% Cost Gap% Cost Gap%

LKH3 – 38.39 ∗ 38.90 ∗ 12.17 ∗
MatNet ATSP 80.86 110.70 81.04 108.30 27.78 128.23
RRNCO Noise 41.35 7.72 42.01 7.98 13.66 12.20
MatNet Real 39.92 3.98 40.55 4.23 12.89 5.88
RRNCO Real 39.08 1.80 39.78 2.26 12.45 2.30

5.3 Analyses157

Ablation Study. We perform an ablation study on our proposed model components in Fig. 3158

to validate their contributions. We evaluate performance when using only raw coordinates, only159

sampled distances, our full Adaptive Node Embedding (ANE), and the complete model with the160

Neural Adaptive Bias (NAB). The results show that ANE and NAB perform the best, systematically161

improving solution quality. The improvement is particularly pronounced in the out-of-distribution162

(OOD) settings, highlighting their role in enhancing generalization. Remarkably, in the challenging163

OOD (cluster) distribution, the addition of NAB provides a relative improvement of over 15%,164

confirming its effectiveness in capturing complex, unseen spatial relationships.165

Our
+ Coo

rd

Our
+ Dist

Our
+ ANE

Our
+ ANE +

 NAB

3.5

4.0

Ga
p

(%
)

In-dist

Our
+ Coo

rd

Our
+ Dist

Our
+ ANE

Our
+ ANE +

 NAB

3.5

4.0

Ga
p

(%
)

OOD (city)

Our
+ Coo

rd

Our
+ Dist

Our
+ ANE

Our
+ ANE +

 NAB

3.5

4.0

Ga
p

(%
)

OOD (cluster)

Figure 3: Study of our proposed model with different initial contexts: coordinates, distances, Adaptive
Node Embedding (ANE), and Neural Adaptive Bias (NAB). ANE and NAB perform best, particularly
in out-of-distribution (OOD) cases.

Importance of Real-World Data Generators. We study the impact of the training data generator166

on performance in real-world test settings. We compare models trained on a standard symmetric167

ATSP generator from MatNet [20], a generator that adds random noise to break symmetries, and our168

proposed real-world data generator. As shown in Table 2, training on data that mirrors real-world169

asymmetric properties is crucial. Models trained on symmetric or noisy data perform poorly when170

evaluated on our realistic benchmark. In contrast, training on our proposed real-world data leads171

to dramatic improvements in performance for both MatNet and our RRNCO model across all in-172

distribution and OOD settings, underscoring the necessity of our data generation framework to bridge173

the sim-to-real gap.174

6 Conclusion175

We introduced RRNCO, a novel NCO architecture designed to bridge the sim-to-real gap in vehicle176

routing. Our model explicitly handles the asymmetric and multi-modal travel costs of real-world177

networks through two key innovations: an Adaptive Node Embedding (ANE) that efficiently fuses178

coordinate and distance features, and a Neural Adaptive Bias (NAB) mechanism that jointly learns179

from distance, duration, and directional data. To validate our model, we built and are releasing a180

large-scale dataset with realistic routing instances from 100 cities. On this challenging benchmark,181

RRNCO achieves state-of-the-art performance among NCO methods. By open-sourcing our model182

and dataset, we aim to accelerate progress towards practical, deployable neural optimization solutions.183

6

References184

[1] Research and Markets. Size of the global logistics industry from 2018 to 2023, with forecasts185

until 2028 (in trillion u.s. dollars). https://www.statista.com/statistics/943517/186

logistics-industry-global-cagr/, 2024. Accessed: January 22, 2025. The forecast is187

based on a 2023 market size of approximately $9.41 trillion and a CAGR of 5.6%, which implies188

an estimated global industry value of roughly $10.5 trillion in 2025.189

[2] Gilbert Laporte and Yves Nobert. Exact algorithms for the vehicle routing problem. In190

North-Holland mathematics studies, volume 132, pages 147–184. Elsevier, 1987.191

[3] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap*192

neighborhood. Computers & Operations Research, 140:105643, 2022.193

[4] Laurent Perron and Vincent Furnon. OR-Tools. Google, 2023.194

[5] David Applegate, Robert Bixby, Václav Chvátal, and William Cook. Concorde TSP solver.195

http://www.math.uwaterloo.ca/tsp/concorde.html, 2003.196

[6] Niels A Wouda and Leon Lan. Alns: A python implementation of the adaptive large neighbour-197

hood search metaheuristic. Journal of Open Source Software, 8(81):5028, 2023.198

[7] Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.199

INFORMS Journal on Computing, 2024.200

[8] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial201

optimization: a methodological tour d’horizon. European Journal of Operational Research,202

290(2):405–421, 2021.203

[9] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!204

International Conference on Learning Representations, 2019.205

[10] Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L206

Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle207

routing problems: A comprehensive survey with perspectives. arXiv preprint arXiv:2406.00415,208

2024.209

[11] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai210

Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in211

Neural Information Processing Systems, 33:21188–21198, 2020.212

[12] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural213

combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936–214

1949, 2022.215

[13] Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang.216

Self-improved learning for scalable neural combinatorial optimization. arXiv preprint217

arXiv:2403.19561, 2024.218

[14] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop:219

Learning global partition and local construction for solving large-scale routing problems in220

real-time. AAAI 2024, 2024.221

[15] Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, and Jie Zhang. Collaboration! Towards222

robust neural methods for vehicle routing problems. 2023.223

[16] André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for224

vehicle routing problems. arXiv preprint arXiv:2501.03715, 2025.225

[17] Eneko Osaba. Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem226

with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths. Data in Brief,227

29:105142, January 2020.228

[18] Daniela Thyssens, Tim Dernedde, Jonas K Falkner, and Lars Schmidt-Thieme. Routing arena:229

A benchmark suite for neural routing solvers. arXiv preprint arXiv:2310.04140, 2023.230

7

https://www.statista.com/statistics/943517/logistics-industry-global-cagr/
https://www.statista.com/statistics/943517/logistics-industry-global-cagr/
https://www.statista.com/statistics/943517/logistics-industry-global-cagr/
http://www.math.uwaterloo.ca/tsp/concorde.html

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,231

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information232

processing systems, 30, 2017.233

[20] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.234

Matrix encoding networks for neural combinatorial optimization. Advances in Neural Informa-235

tion Processing Systems, 34:5138–5149, 2021.236

[21] OpenStreetMap contributors. Openstreetmap database [data set]. https://www.237

openstreetmap.org, 2025. Accessed: 2025-02-06.238

[22] Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.239

Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimiza-240

tion. arXiv preprint arXiv:2405.01906, 2024.241

[23] Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based242

solvers for vehicle routing problems. In The Thirteenth International Conference on Learning243

Representations, 2025.244

[24] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling245

salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.246

[25] Laurent Perron and Frédéric Didier. CP-SAT, 2024.247

[26] Fei Liu, Xi Lin, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task learning for248

routing problem with cross-problem zero-shot generalization. arXiv preprint arXiv:2402.16891,249

2024.250

[27] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu.251

MVMoE: Multi-task vehicle routing solver with mixture-of-experts. In International Conference252

on Machine Learning, 2024.253

[28] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan,254

Junyoung Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for255

vehicle routing problems. arXiv preprint arXiv:2406.15007, 2024.256

[29] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural257

solvers for vehicle routing problems via ensemble with transferrable local policy. IJCAI, 2024.258

[30] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco:259

Bisimulation quotienting for generalizable neural combinatorial optimization. arXiv preprint260

arXiv:2301.03313, 2023.261

[31] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization262

with heavy decoder: Toward large scale generalization. Advances in Neural Information263

Processing Systems, 36:8845–8864, 2023.264

[32] Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.265

Efficiently Solving the Practical Vehicle Routing Problem: A Novel Joint Learning Approach.266

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery267

& Data Mining, pages 3054–3063, Virtual Event CA USA, August 2020. ACM.268

[33] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial269

optimization agent learner. arXiv preprint arXiv:2406.15079, 2024.270

[34] Andrius Barauskas, Agnundefined Brilingaitundefined, Linas Bukauskas, Vaida Čeikutun-271

defined, Alminas Čivilis, and Simonas Šaltenis. Test-data generation and integration for272

long-distance e-vehicle routing. Geoinformatica, 27(4):737–758, January 2023.273

[35] Aldy Gunawan, Graham Kendall, Barry McCollum, Hsin Vonn Seow, and Lai Soon Lee. Vehicle274

routing: Review of benchmark datasets. Journal of the Operational Research Society, 72:1794 –275

1807, 2021.276

8

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org

[36] Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In Proceedings277

of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information278

Systems, GIS ’11, pages 513–516, New York, NY, USA, 2011. ACM.279

[37] Nitin R Chopde and Mangesh Nichat. Landmark based shortest path detection by using280

a* and haversine formula. International Journal of Innovative Research in Computer and281

Communication Engineering, 1(2):298–302, 2013.282

[38] Hina Ali and Khalid Saleem. Generating large-scale real-world vehicle routing dataset with283

novel spatial data extraction tool. PLOS ONE, 19(6):e0304422, June 2024.284

[39] Fahui Wang and Yanqing Xu. Estimating o–d travel time matrix by google maps api: imple-285

mentation, advantages, and implications. Annals of GIS, 17(4):199–209, 2011.286

[40] Ao Qu and Cathy Wu. Revisiting the correlation between simulated and field-observed conflicts287

using large-scale traffic reconstruction. Accident Analysis & Prevention, 210:107808, 2025.288

[41] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural289

information processing systems, 28, 2015.290

[42] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-291

torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.292

[43] Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic293

programming for vehicle routing problems. In International conference on integration of con-294

straint programming, artificial intelligence, and operations research, pages 190–213. Springer,295

2022.296

[44] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett.297

Winner takes it all: Training performant rl populations for combinatorial optimization. Advances298

in Neural Information Processing Systems, 36, 2024.299

[45] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle300

routing problem. arXiv preprint arXiv:1911.09539, 2019.301

[46] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing302

Tang. Learning to iteratively solve routing problems with dual-aspect collaborative transformer.303

Advances in Neural Information Processing Systems, 34:11096–11107, 2021.304

[47] Gerhard Reinelt. TSPLIB—a traveling salesman problem library. INFORMS Journal on305

Computing, 3(4):376–384, 1991.306

[48] Ivan Lima, Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Anand Subramanian,307

and Thibaut Vidal. CVRPLIB - capacitated vehicle routing problem library. http://vrp.308

galgos.inf.puc-rio.br/, 2014.309

[49] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement310

learning for solving the vehicle routing problem. Advances in neural information processing311

systems, 31, 2018.312

[50] Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui313

Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan314

Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni,315

Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song,316

Changhyun Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning317

for Combinatorial Optimization Benchmark. arXiv preprint arXiv:2306.17100, 2024.318

9

http://vrp.galgos.inf.puc-rio.br/
http://vrp.galgos.inf.puc-rio.br/
http://vrp.galgos.inf.puc-rio.br/

A Detailed Model Architecture319

A.1 Encoder320

A.1.1 Adaptive Node Embedding321

The Adaptive Node Embedding module synthesizes distance-related features with node characteristics322

to create comprehensive node representations. A key aspect of our approach is effectively integrating323

two complementary spatial features: distance matrix information and coordinate-based relationships.324

For distance matrix information, we employ a selective sampling strategy that captures the most325

relevant node relationships while maintaining computational efficiency. Given a distance matrix326

D ∈ RN×N , we sample k nodes for each node i according to probabilities inversely proportional to327

their distances:328

pij =
1/dij∑N
j=1 1/dij

(7)

where dij represents the distance between nodes i and j. The sampled distances are then transformed329

into an embedding space through a learned linear projection:330

fdist = Linear(dsampled) (8)

Coordinate information is processed separately to capture geometric relationships between nodes.331

For each node, we first compute its spatial features based on raw coordinates. These features are then332

projected into the same embedding space through another learned linear transformation:333

fcoord = Linear(xcoord) (9)

To effectively combine these complementary spatial representations, we employ a Contextual Gating334

mechanism:335

h = g ⊙ fcoord + (1− g)⊙ fdist (10)

where ⊙ is the Hadamard product and g represents learned gating weights determined by a multi-layer336

perceptron (MLP):337

g = σ(MLP([fcoord; fdist])) (11)

This gating mechanism allows the model to adaptively weigh the importance of coordinate-based338

and distance-based features for each node, enabling more nuanced spatial representation. To handle339

asymmetric routing scenarios effectively, we follow the approach introduced in and generate dual340

embeddings for each node: row embeddings hr and column embeddings hc. These embeddings are341

then combined with other node characteristics (such as demand or time windows) through learned342

linear transformations to produce the combined node representations:343

hr
comb = MLP([hr; fnode]) (12)

344
hc

comb = MLP([hc; fnode]) (13)

where fnode represents additional node features such as demand or time windows, which are trans-345

formed by an additional linear layer. This dual embedding approach allows the RRNCO model to346

better capture and process asymmetric relationships in real-world routing scenarios.347

A.1.2 Neural Adaptive Bias for AAFM348

Having established comprehensive node representations through our adaptive embedding approach,349

RRNCO employs an Adaption Attention-Free Module (AAFM) based on to model complex inter-350

node relationships. The AAFM operates on the dual representations hr
comb and hc

comb to capture351

asymmetric routing patterns through our novel Neural Adaptive Bias (NAB) mechanism. The AAFM352

operation is defined as:353

AAFM(Q,K, V,A) = σ(Q)⊙ exp(A) · (exp(K)⊙ V)

exp(A) · exp(K)
(14)

where Q = WQhr
comb, K = WKhc

comb, V = WV hc
comb, with learnable weight matrices WQ, WK ,354

WV . While defines the adaptation bias A heuristically as −α · log(N) · dij (with learnable α, node355

count N , and distance dij), we introduce a Neural Adaptive Bias (NAB) that learns asymmetric356

10

relationships directly from data. NAB processes distance matrix D, angle matrix Φ for direc-357

tional relationships, and optionally duration matrix T, enabling joint modeling of spatial-temporal358

asymmetries inherent in real-world routing.359

Let WD,WΦ,WT ∈ RE :360

Demb = ReLU(DWD)W′
D (15)

Φemb = ReLU(ΦWΦ)W
′
Φ (16)

Temb = ReLU(TWT)W
′
T (17)

We then apply contextual gating to fuse these heterogeneous information sources. When duration361

information is available, we employ a multi-channel gating mechanism with softmax normalization:362

G = softmax
(
[Demb; Φemb; Temb]WG

exp(τ)

)
(18)

where [Demb;Φemb;Temb] ∈ RB×N×N×3E is the concatenation of all embeddings, WG ∈ R3E×3363

is a learnable weight matrix, and τ is a learnable temperature parameter. The fused representation is364

computed as:365

H = G1 ⊙Demb +G2 ⊙Φemb +G3 ⊙Temb (19)

Finally, the adaptive bias matrix A is obtained by projecting the fused embedding H to a scalar value:366

A = Hwout ∈ RB×N×N (20)

where wout ∈ RE is a learnable weight vector. The resulting A matrix serves as a learned inductive
bias that captures complex asymmetric relationships arising from the interplay between distances,
directional angles, and travel durations. This Neural Adaptive Bias is then incorporated into the
Adaptation Attention Free Module (AAFM) operation as follows:

AAFM(Q,K, V,A) = σ(Q)⊙ exp(A) · (exp(K)⊙ V)

exp(A) · exp(K)

The Neural Adaptive Bias (NAB), applied through the Adaptation Attention Free Module (AAFM),367

yields final node representations hr
F and hc

F after l passes through AAFM. These representations368

result from RRNCO’s encoding process, leveraging joint modeling of distance, angle, and duration to369

capture complex asymmetric patterns in real-world routing networks.370

A.2 Decoder371

A.2.1 Decoder Architecture372

The decoder architecture combines key elements from the ReLD and MatNet to effectively process the373

dense node embeddings generated by the encoder and construct solutions for vehicle routing problems.374

At each decoding step t, the decoder takes as input the row and column node embeddings (hr
F, hc

F)375

produced by the encoder and a context vector hc = [hr
at−1

, Dt] ∈ Rdh+dattr , where Dt ∈ Rdattr376

represents dynamic features that capture the state variable st. To aggregate information from the377

node embeddings, the decoder applies a multi-head attention (MHA) mechanism, using the context378

vector hc as the query and Ht ∈ R|F t|×dh as the key and value:379

h′
c = MHA(hc,W

keyhc
F ,W

valhc
F). (21)

The ReLD model introduces a direct influence of context by adding a residual connection between380

the context vector hc and the refined query vector h′
c:381

h′
c = h′

c + IDT(hc), (22)

where IDT(·) is an identity mapping function that reshapes the context vector to match the dimension382

of the query vector, allowing context-aware information to be directly embedded into the representa-383

tion. To further enhance the decoder performance, an MLP with residual connections is incorporated384

to introduce non-linearity into the computation of the final query vector qc:385

qc = h′
c + MLP(h′

c). (23)

11

The MLP consists of two linear transformations with a ReLU activation function, transforming the386

decoder into a transformer block with a single query that can model complex relationships and adapt387

the embeddings based on the context. Finally, the probability pi of selecting node i ∈ F t is calculated388

by applying a compatibility layer with a negative logarithmic distance heuristic score:389

pi =

[
Softmax

(
C · tanh

(
(qc)

TW ℓhc
F√

dh
− log(disti)

))]
i

(24)

where C is a clipping hyperparameter, dh is the embedding dimension, and disti denotes the distance390

between node i and the last selected node at−1. This heuristic guides the model to prioritize nearby391

nodes during the solution construction process. The combination of ReLD’s architectural modifica-392

tions and MatNet’s decoding mechanism with our rich, learned encoding enables the RRNCO model393

to effectively leverage static node embeddings while dynamically adapting to the current context,394

leading to improved performance on various vehicle routing problems.395

The dataset will be available for download through the HuggingFace portal, and the link will be396

available on a Github repository. Our code is licensed under the MIT license.397

B Real-World VRP Dataset Generation398

Existing methodologies often require integrating massive raw datasets (e.g., traffic simulators and399

multi-source spatial data) – for instance, [34] rely on simplistic synthetic benchmarks, which are400

either resource-intensive or lack real-world complexity [35].401

To address these limitations, we design a three-step pipeline to create a diverse and realistic vehicle402

routing dataset aimed at training and testing NCO models. First, we select cities worldwide based on403

multi-dimensional urban descriptors (morphology, traffic flow regimes, land-use mix). Second, we404

develop a framework using the Open Source Routing Machine (OSRM) [36] to create city maps with405

topological data, generating both precise location coordinates and their corresponding distance and406

duration matrices between each other. Finally, we efficiently subsample these topologies to generate407

diverse VRP instances by adding routing-specific features such as demands and time windows, thus408

preserving the inherent spatial relationships while enabling the rapid generation of instances with409

varying operational constraints, leveraging the precomputed distance/duration matrices from the base410

maps. The whole pipeline is illustrated in Fig. 4.411

Cities List

geocode()

X,Y

…

Geographic Center
Coordinates

X,Y

X,Y

X,Y

X,Y

X,Y

…

X,Y

X,Y

X,Y

X,Y

X,Y

X,Y

Sample Region

Haversine
Method

Feature Filter

City Map Selection

Download Map Data

OpenStreetMap Coordinate and Matrix Data Generation

0
0

0
0

0

0

…

0 1 2 3 4 … 1000

0
1
2
3
4
…

1000

Distance Matrix

0
0

0
0

0

…

0 1 2 3 4 … 1000

0
1
2
3
4
…

1000

Duration Matrix

0

0

0

 Bridge Tunnel Highway
 Water
 Buffer

Remove

 Tag:

ge
t_
ta
bl
e(
)

…
…

Points

Instance Coordinate

……

0
0

0
0

0

0

…

0 1 2 3 4 … 1000

0
1
2
3
4
…

1000

 One City Data

0

0

0

…

0 1 2 3 4 … 1000

0
1
2
3
4
…

1000

0

set_random_seed()

1 3 4

sample()

sample()

generate_index
vector()

Demand

Time
Window

Distance Matrix Duration Matrix

VRP Instance

Dist: 1.2; Time: 1.1

Dist: 1.1; Time: 1.3

4

3

1

Distan
ce: 0

.5; T
ime: 0.

6

Distan
ce: 0

.6; T
ime: 0.

6

Di
st

an
ce

: 0
.9

; T
im

e:
0.

9

Di
st

an
ce

: 0
.8

; T
im

e:
0.

7

0
1

2
3

4

5

0

01.2 0.8

0.6
0.50.9

1.1

1.1 0.7

0.6
0.60.9

1.3

0
0

0

1.1 0.7
1.3

1.2 0.8
0.61.1

0.9 0.5

0.9 0.6
0.6

0
0

0

1

3

4

5
3
8

2.2 3.1
2.0 2.8
2.0 2.5

5
2.2 3.1

3
2.0 2.8

2.0 2.5
8

0

OSRM Backend Cities Dataset

Subsampling VRP
Instances

Figure 4: Overview of our RRNCO real-world data generation and sampling framework. We generate
a dataset of real-world cities with coordinates and respective distance and duration matrices obtained
via OSRM. Then, we efficiently subsample instances as a set of coordinates and their matrices from
the city map dataset with additional generated VRP features.

B.1 City Map Selection412

We select a list of 100 cities distributed across six continents, with 25 in Asia, 21 in Europe, 15 each in413

North America and South America, 14 in Africa, and 10 in Oceania. The selection emphasizes urban414

diversity through multiple dimensions, including population scale (50 large cities >1M inhabitants,415

12

30 medium cities 100K-1M, and 20 small cities <100K), infrastructure development stages, and416

urban planning approaches. Cities feature various layouts, from grid-based systems like Manhattan417

to radial patterns like Paris and organic developments like Fez, representing different geographic and418

climatic contexts from coastal to mountain locations.419

We prioritized cities with reliable data availability while balancing between globally recognized420

metropolitan areas and lesser-known urban centers, providing a comprehensive foundation for421

evaluating vehicle routing algorithms under diverse real-world conditions. Moreover, by including422

cities from developing regions, we aim to advance transportation optimization research that could423

benefit underprivileged areas and contribute to their socioeconomic development.424

B.2 Topological Data Generation Framework425

In the second stage, we generate base maps that capture real urban complexities. This topological426

data generation is composed itself of three key components: geographic boundary information, point427

sampling from road networks, and travel information computation.428

Geographic boundary information We establish standardized 9 km2 areas (3×3 km) centered on429

each target city’s municipal coordinates, ensuring the same spatial coverage across different urban430

environments. Given that the same physical distance corresponds to different longitudinal spans431

at different latitudes due to the Earth’s spherical geometry, we need a precise distance calculation432

method: thus, the spatial boundaries are computed using the Haversine spherical distance formulation433

[37]:434

d = 2R · arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

))
(25)

where d is the distance between two points along the great circle, R is Earth’s radius (approximately435

6,371 kilometers), ϕ1 and ϕ2 are the latitudes of point 1 and point 2 in radians, ∆ϕ = ϕ2 − ϕ1436

represents the difference in latitudes, and ∆λ = λ2 − λ1 represents the difference in longitudes.437

This enables precise spatial boundary calculations and standardized cross-city comparisons while438

maintaining consistent analysis areas across different geographic locations.439

Point sampling from road networks Our RRNCO framework interfaces with OpenStreetMap [21]440

for point sampling. More specifically, we extract both road networks and water features within defined441

boundaries using graph_from_bbox and features_from_bbox1. Employing boolean indexing,442

the sampling process implements several filtering mechanisms to filter the DataFrame and ensure443

point quality: we exclude bridges, tunnels, and highways to focus on accessible street-level locations444

and create buffer zones around water features to prevent sampling from (close to) inaccessible areas.445

Points are then generated through a weighted random sampling approach, where road segments are446

weighted by their length to ensure uniform spatial distribution.447

Travel information computation The travel information computation component leverages a448

locally hosted Open Source Routing Machine (OSRM) server [36] to calculate real travel distances449

and durations between sampled points, ensuring full reproducibility of results. Through the efficient450

get_table function in our router implementation via the OSRM table service2, we can process451

a complete 1000x1000 origin-destination matrix within 18 seconds, making it highly scalable for452

urban-scale analyses. In contrast to commercial API-based approaches that require more than 20453

seconds for 350×350 matrices [38], our open-source local OSRM implementation achieves the same454

computations in approximately 5 seconds. Additionally, it enables the rapid generation of multiple455

instances from small datasets with negligible computational cost per iteration epoch.456

The RRNCO framework finally processes this routing data through a normalization strategy that457

addresses both unreachable destinations and abnormal travel times. This step captures real-world458

routing complexities, including one-way streets, turn restrictions, and varying road conditions,459

resulting in asymmetric distance and duration matrices that reflect actual urban travel patterns. All460

1https://osmnx.readthedocs.io/en/stable/user-reference.html
2https://project-osrm.org/docs/v5.24.0/api/#table-service

13

https://osmnx.readthedocs.io/en/stable/user-reference.html
https://project-osrm.org/docs/v5.24.0/api/#table-service

computations are performed locally3, allowing for consistent results and independent verification of461

the analysis pipeline.462

B.3 VRP Instance Subsampling463

From the large-scale city base maps, we generate diverse VRP instances by subsampling a set of464

locations along with their corresponding distance and duration matrices, allowing us to generate an465

effectively unlimited number of instances while preserving the underlying structure.466

The subsampling process follows another three-step procedure:467

1. Index Selection: Given a city dataset containing Ntot locations, we define a subset size Nsub468

representing the number of locations to be sampled for the VRP instance. We generate an index469

vector s = (s1, s2, . . . , sNsub) where each si is drawn from {1, . . . , Ntot}, ensuring unique selections.470

2. Matrix Subsampling: Using s, we extract submatrices from the precomputed distance matrix471

D ∈ RNtot×Ntot and duration matrix T ∈ RNtot×Ntot , forming instance-specific matrices Dsub =472

D[s, s] ∈ RNsub×Nsub and Tsub = T [s, s] ∈ RNsub×Nsub , preserving spatial relationships among473

selected locations.474

3. Feature Generation: Each VRP can have different features. For example, in Asymmet-475

ric Capacitated VRP (ACVRP) we can generate a demand vector d ∈ RNsub×1, such that476

d = (d1, d2, . . . , dNsub)
⊤, where each di represents the demand at location si. Similarly,477

we can extend to ACVRPTW (time windows) represented as W ∈ RNsub×2, where W =478

{(wstart
1 , wend

1), . . . , (wstart
Nsub

, wend
Nsub

)}, defining the valid service interval for each node.479

Unlike previous methods that generate static datasets offline [32, 38], our RRNCO generation480

framework dynamically generates instances on the fly in few milliseconds, reducing disk memory481

consumption while maintaining high diversity.482

Fig. 4 illustrates the overall process, showing how a city map is subsampled using an index vector483

to create VRP instances with distance and duration matrices enriched with node-specific features484

such as demands and time windows. Our approach allows us to generate a (arbitrarily) large number485

of problem instances from a relatively small set of base topology maps totaling around 1.5GB, in486

contrast to previous works that required hundreds of gigabytes of data to produce just a few thousand487

instances.488

C Related Works489

Neural Combinatorial Optimization (NCO). Neural approaches to combinatorial optimization490

have emerged as a promising paradigm for learning heuristics directly from data, bypassing the need491

for extensive domain expertise [8]. NCO methods are broadly categorized into construction and492

improvement methods. Construction methods build solutions sequentially. This line of work was493

pioneered by Pointer Networks [41] and later combined with reinforcement learning to optimize494

policies directly for solution quality [42]. The current state-of-the-art for construction heavily495

relies on autoregressive models using the Transformer architecture [9, 11], which excel at capturing496

complex problem structures. Other construction paradigms include non-autoregressive methods that497

predict solutions in a single pass [43] and population-based approaches that generate diverse sets of498

solutions [44]. In contrast, improvement methods start with an initial solution and iteratively refine499

it. This includes techniques like learning operators for local search [45] or developing Neural Large500

Neighborhood Search (NLNS) frameworks [46]. Our work focuses on autoregressive construction,501

as it provides a strong balance between inference speed and solution quality, which is critical for502

real-world logistics applications.503

Vehicle Routing Problem (VRP) Datasets. A significant gap exists between NCO research and504

real-world applicability, largely due to the datasets used for training and evaluation. For decades,505

the community has relied on established benchmarks like TSPLIB [47] and CVRPLIB [48]. While506

invaluable for standardization, these datasets are typically based on symmetric Euclidean distances,507

assuming travel costs are equal in both directions (dij = dji). This simplification fails to capture508

3Our framework can also be extended to include real-time commercial map API integrations and powerful
traffic forecasting to obtain better-informed routing [39, 40], which we leave as future works.

14

the inherent asymmetry of real road networks caused by one-way streets, traffic patterns, and turn509

restrictions [17]. Some recent works have attempted to create more realistic datasets [32, 38], but they510

suffer from critical limitations for NCO research: they often rely on proprietary, commercial APIs, are511

static and cannot be generated online (a key requirement for data-hungry RL agents), can be slow to512

generate, and are not always publicly released. Furthermore, they often omit crucial information like513

travel durations, which can be decoupled from distance in real traffic. Our work directly addresses514

these gaps by providing a fast, open-source, and scalable data generation framework that produces515

asymmetric distance and duration matrices from real-world city topologies.516

NCO for VRPs. The application of NCO to VRPs has evolved from early adaptations of recurrent517

models [49] to the now-dominant Transformer-based encoder-decoder architectures [9, 11]. These518

models have demonstrated impressive performance but are fundamentally node-centric; their attention519

mechanisms operate on node embeddings, making it non-trivial to incorporate rich structural infor-520

mation contained in edge features like a full distance matrix. This limitation is a primary contributor521

to the sim-to-real gap. To address this, some works have explored encoding edge information. GCN-522

based approaches [32] and attention via row and column embeddings of MatNet [20] introduced early523

ways to handle asymmetry, with GOAL [33] incorporating edge data with cross-attention. While524

these are steps in the right direction, they often process only a single cost matrix (e.g., distance) and525

do not fully exploit the multiple, correlated modalities of real-world routing costs (distance, duration,526

and geometry). The development of NCO architectures that can efficiently fuse multiple sources of527

asymmetric edge information remains an open challenge. Our proposed model, RRNCO, tackles this528

directly with its Adaptive Node Embedding (ANE) and Neural Adaptive Bias (NAB) mechanism,529

which learns a unified routing context from distance, duration, and angular relationships.530

D Additional Data Information531

We present a comprehensive urban mobility dataset encompassing 100 cities across diverse geograph-532

ical regions worldwide. For each city, we collected 1000 sampling points distributed throughout533

the same size urban area. The dataset includes the precise geographical coordinates (latitude and534

longitude) for each sampling point. Additionally, we computed and stored complete distance and535

travel time matrices between all pairs of points within each city, resulting in 1000×1000 matrices per536

city.537

The cities in our dataset exhibit significant variety in their characteristics, including population size538

(ranging from small to large), urban layout patterns (such as grid, organic, mixed, and historical539

layouts), and distinct geographic features (coastal, mountain, river, valley, etc.). The dataset covers540

multiple regions including Asia, Oceania, Americas, Europe, and Africa. This diversity in urban541

environments enables comprehensive analysis of mobility patterns across different urban contexts542

and geographical settings.543

Table 4 on the following page provides information about our topology dataset choices.544

E Hyperparameter Details545

Table 3 shows the hyperparameters we employ for RRNCO. The configuration can be changed546

through yaml files as outlined in RL4CO [50], which we employ as the base framework for our547

codebase.548

Table 4: Comprehensive City Details

City Population Layout Geographic
Features Region Split

Addis Ababa Large Organic Highland East Africa Train
Alexandria Large Mixed Coastal North Africa Train
Amsterdam Large Canal grid River Western Europe Train
Almaty Large Grid Mountain Central Asia Train
Asunción Medium Grid River South America Test

Continued on next page

15

Table 4 – Continued from previous page

City Population Layout Geographic
Features Region Split

Athens Large Mixed Historical Southern
Europe Train

Auckland Large Harbor layout Isthmus Oceania Train
Baku Large Mixed Coastal Western Asia Train
Bangkok Large River layout River Southeast Asia Train

Barcelona Large Grid & historic Coastal Southern
Europe Train

Beijing Large Ring layout Plains East Asia Train

Bergen Small Fjord Coastal
mountain

Northern
Europe Train

Brisbane Large River grid River Oceania Train
Buenos Aires Large Grid River South America Train
Bukhara Small Medieval Historical Central Asia Test
Cape Town Large Mixed colonial Coastal&mt. Southern Africa Train
Cartagena Medium Colonial Coastal South America Train
Casablanca Large Mixed colonial Coastal North Africa Train
Chengdu Large Grid Basin East Asia Train
Colombo Medium Colonial grid Coastal South Asia Train
Chicago Large Grid Lake North America Test
Christchurch Medium Grid Coastal plain Oceania Train

Copenhagen Large Mixed Coastal Northern
Europe Train

Curitiba Large Grid Highland South America Train
Cusco Medium Historic mixed Mountain South America Test
Daejeon Large Grid Valley East Asia Train
Dakar Medium Peninsula grid Coastal West Africa Train
Dar es Salaam Large Coastal grid Coastal East Africa Train
Denver Large Grid Mountain North America Train
Dhaka Large Organic River South Asia Train

Dubai Large Linear modern Coastal&
desert Western Asia Train

Dublin Large Georgian grid Coastal Northern
Europe Train

Dubrovnik Small Medieval walled Coastal Southern
Europe Train

Edinburgh Medium Historic mixed Hills Northern
Europe Train

Fez Medium Medieval
organic Historical North Africa Test

Guatemala City Large Valley grid Valley Central America Train
Hanoi Large Mixed River Southeast Asia Train
Havana Large Colonial Coastal Caribbean Train

Helsinki Large Grid Peninsula Northern
Europe Train

Hobart Small Mountain
harbor Harbor Oceania Test

Hong Kong Large Vertical Harbor East Asia Train
Istanbul Large Mixed Strait Western Asia Train
Kigali Medium Hill organic Highland East Africa Train
Kinshasa Large Organic River Central Africa Train
Kuala Lumpur Large Modern mixed Valley Southeast Asia Test
Kyoto Large Historical grid Valley East Asia Train
La Paz Large Valley organic Mountain South America Train
Lagos Large Organic Coastal West Africa Train

Continued on next page

16

Table 4 – Continued from previous page

City Population Layout Geographic
Features Region Split

Lima Large Mixed grid Coastal desert South America Train

London Large Radial organic River Northern
Europe Test

Los Angeles Large Grid sprawl Coastal basin North America Train
Luanda Large Mixed Coastal Southern Africa Train
Mandalay Large Grid River Southeast Asia Train
Marrakech Medium Medina Desert edge North Africa Train
Medellín Large Valley grid Mountain South America Train
Melbourne Large Grid River Oceania Train
Mexico City Large Mixed Valley North America Test
Montevideo Large Grid Coastal South America Train
Montreal Large Mixed Island North America Train
Moscow Large Ring layout River Eastern Europe Train
Mumbai Large Linear coastal Coastal South Asia Test
Nairobi Large Mixed Highland East Africa Train
New Orleans Medium Colonial River delta North America Train
New York City Large Grid Coastal North America Train
Nouméa Small Peninsula Coastal Oceania Test
Osaka Large Grid Harbor East Asia Test
Panama City Large Coastal modern Coastal Central America Train
Paris Large Radial River Western Europe Train
Perth Large Coastal sprawl Coastal Oceania Test
Port Moresby Medium Harbor sprawl Coastal hills Oceania Train

Porto Medium Medieval
organic River mouth Southern

Europe Train

Prague Large Historic grid River Central Europe Train
Quebec City Medium Historic walled River North America Test
Quito Large Linear valley Highland South America Test

Reykjavik Small Modern grid Coastal Northern
Europe Test

Rio de Janeiro Large Coastal organic Mountain&
coastal South America Train

Rome Large Historical
organic Seven hills Southern

Europe Test

Salvador Large Mixed historic Coastal South America Train
Salzburg Small Medieval core River Central Europe Train
San Francisco Large Hill grid Peninsula North America Train
San Juan Medium Mixed historic Coastal Caribbean Test
Santiago Large Grid Valley South America Train
São Paulo Large Sprawl Highland South America Train
Seoul Large Mixed River East Asia Train
Shanghai Large Modern mixed River East Asia Train
Singapore Large Planned Island Southeast Asia Train

Stockholm Large Archipelago Island Northern
Europe Train

Sydney Large Harbor organic Harbor Oceania Train
Taipei Large Grid Basin East Asia Train
Thimphu Small Valley organic Mountain South Asia Train
Tokyo Large Mixed Harbor East Asia Test
Toronto Large Grid Lake North America Train
Ulaanbaatar Large Grid Valley East Asia Train
Valparaíso Medium Hill organic Coastal hills South America Train
Vancouver Large Grid Peninsula North America Train
Vienna Large Ring layout River Central Europe Train

Continued on next page

17

Table 4 – Continued from previous page

City Population Layout Geographic
Features Region Split

Vientiane Medium Mixed River Southeast Asia Train
Wellington Medium Harbor basin Coastal hills Oceania Train
Windhoek Small Grid Highland Southern Africa Test

Yogyakarta Medium Traditional Cultural
center Southeast Asia Train

18

Table 3: Hyperparameters.
Hyperparameter Value
Model
Embedding dimension 128
Number of attention heads 8
Number of encoder layers 12
Normalization Instance
Use graph context False
Sample size k node encoding 25

Training
Batch size 256
Train data size 100,000
Val data size 1,280
Test data size 1,280
RL algorithm REINFORCE
REINFORCE baseline POMO [11]
Optimizer Adam
Learning rate 4e-4
Weight decay 1e-6
LR scheduler MultiStepLR
LR milestones [180, 195]
LR gamma 0.1
Max epochs 200

Data
Number of cities (training) 80
Number of cities (testing) 20
Instance size n (# of locations) 100
Number of test instances 1280

19

	Introduction
	Preliminaries: Solving VRPs with NCO
	The RRNCO Model
	Encoder
	Adaptive Node Embedding (ANE)
	Neural Adaptive Bias (NAB) for AAFM

	Decoder

	Real-World VRP Dataset
	Experiments
	Experimental Setup
	Main Results
	Analyses

	Conclusion
	Detailed Model Architecture
	Encoder
	Adaptive Node Embedding
	Neural Adaptive Bias for AAFM

	Decoder
	Decoder Architecture

	Real-World VRP Dataset Generation
	City Map Selection
	Topological Data Generation Framework
	VRP Instance Subsampling

	Related Works
	Additional Data Information
	Hyperparameter Details

