RRNCO: Towards Real-World Routing with Neural Combinatorial Optimization

Anonymous Author(s)

Affiliation Address email

Abstract

Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous in several real-world logistics scenarios that pose significant challenges for optimization. Neural Combinatorial Optimization (NCO) has emerged as a promising alternative to classical approaches, as it can learn fast heuristics to solve VRPs. However, existing research works in NCO for VRPs learn from simplified, symmetric Euclidean settings, failing to handle the asymmetric distances and travel durations inherent to real-world road networks. This critical sim-to-real gap severely hinders their practical deployment. To address this fundamental limitation, we introduce RRNCO, a novel NCO architecture with two key innovations for handling real-world routing complexity. First, we propose an Adaptive Node Embedding (ANE) approach that fuses coordinate information with distance features through learned contextual gating. Unlike existing methods relying solely on spatial coordinates or requiring full distance matrix processing, our approach efficiently captures both local geometric structure and global routing constraints through probability-weighted distance sampling that prioritizes nearby nodes while preserving asymmetric relationships. Second, we introduce Neural Adaptive Bias (NAB), the first mechanism to jointly model asymmetric distance and duration matrices within a deep neural routing framework. NAB's gating-based architecture learns to dynamically integrate distance, duration, and directional angles into a unified contextual bias that guides the Adaptation Attention Free Module (AAFM). Together, these innovations enable RRNCO to explicitly capture real-world routing asymmetries where costs from location A to B differ from B to A due to traffic patterns, road directionality, and temporal dynamics. We validate our method on a newly constructed dataset featuring real-world asymmetric distance and duration matrices from 100 diverse cities. Experiments demonstrate that RRNCO achieves state-of-the-art performance among NCO methods on realistic VRPs. We release our dataset and code to advance research in practical neural combinatorial optimization.

29 1 Introduction

2

3

5

6

8

9

10

11 12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

Vehicle Routing Problems (VRPs) are foundational NP-hard challenges in logistics, where routing efficiency improvements can yield substantial cost savings [1]. While traditional solvers exist [2, 3, 4, 5, 6, 7], their computational complexity and need for expert tuning limit their use in large-scale, real-time applications. Neural Combinatorial Optimization (NCO) has emerged as a promising data-driven paradigm, using Reinforcement Learning (RL) to learn fast and scalable heuristics for VRPs [8, 9, 10]. Despite impressive results on synthetic benchmarks [11, 12, 13, 14, 15, 16], a critical sim-to-real gap persists. Most NCO research relies on simplified Euclidean datasets, failing to capture the asymmetric travel times and distances ($d_{ij} \neq d_{ji}$) inherent to real-world road networks

138 [17, 18]. Furthermore, dominant NCO architectures, often based on node-centric Transformers [19], struggle to efficiently embed the rich, asymmetric edge features (e.g., distance and duration matrices) crucial for realistic routing problems [20]. A detailed discussion of related work is provided in the Appendix C

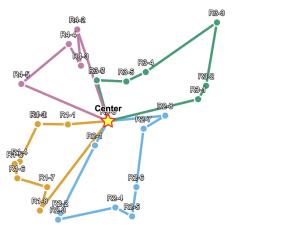


Figure 1: [Left] Most NCO works consider simplified Euclidean settings. [Right] Our work models real-world instances where durations and travel times can be asymmetric.

Our Real Routing NCO (RRNCO) bridges this gap—as illustrated in Fig. 1—through innovations in both modeling and data. We introduce a novel neural architecture with two key technical contributions: 43 (i) an Adaptive Node Embedding (ANE) that dynamically fuses coordinates and distance information 44 via learned contextual gating and probability-weighted sampling; and (ii) a Neural Adaptive Bias 45 (NAB), the first mechanism to jointly model asymmetric distance and duration matrices within a deep routing framework, guiding our Adaptation Attention Free Module (AAFM). To validate 47 our approach, we construct a comprehensive benchmark dataset from 100 diverse cities, featuring 48 real-world asymmetric distance and duration matrices from OpenStreetMap [21]. 49 Our contributions are: (1) A novel NCO architecture (RRNCO) with ANE and NAB to natively 50

Our contributions are: (1) A novel NCO architecture (RRNCO) with ANE and NAB to natively handle real-world routing asymmetries. (2) An extensive, open-source VRP dataset from 100 cities with asymmetric matrices. (3) State-of-the-art empirical results on realistic VRP instances. (4) Open-source code and data to foster reproducible research.

4 2 Preliminaries: Solving VRPs with NCO

A VRP is defined on a graph G=(V,E), where the goal is to find optimal routes. In real-world settings, the cost between nodes is asymmetric and multi-modal, represented by distance and duration matrices $D,T\in\mathbb{R}^{n\times n}$. We frame the VRP as a sequential decision process solved by a deep generative model using an autoregressive encoder-decoder framework [9]. The model constructs a solution a (a sequence of visited locations) for a given problem instance x.

The policy is trained using reinforcement learning (RL) to discover effective heuristics without labeled data. Specifically, we optimize the policy parameters θ to maximize the expected reward R(a,x), which is the negative route cost:

$$\max_{\theta} J(\theta) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \mathbb{E}_{\boldsymbol{a} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} [R(\boldsymbol{a}, \boldsymbol{x})]. \tag{1}$$

We use the REINFORCE algorithm with the variance-reducing POMO baseline [11], a standard and effective training method for NCO routing solvers. This approach requires efficient generation of problem instances x to ensure training efficiency, a need met by our data generation framework.

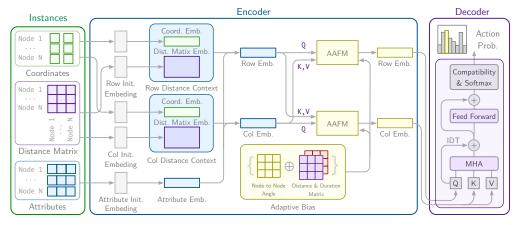


Figure 2: Our proposed RRNCO model for real-world routing.

66 3 The RRNCO Model

Our model, depicted in Fig. 2, features an encoder-decoder architecture designed to handle realworld routing complexities. Our innovations focus on the encoder, enhancing its ability to process asymmetric, multi-modal data efficiently. A more detailed description of the model architecture is provided in the Appendix A

71 3.1 Encoder

87

88 89

90

91

92

72 3.1.1 Adaptive Node Embedding (ANE)

The ANE module creates comprehensive node representations by fusing complementary spatial 73 features: global distance matrix information and local coordinate-based geometry. To maintain com-74 putational efficiency while capturing the most relevant relationships, we employ a selective sampling 75 strategy. For each node i, we sample k neighboring nodes with probability inversely proportional 76 to their distance, $p_{ij} \propto 1/d_{ij}$. This prioritizes local structure. These sampled distances are then 77 projected into an embedding f_{dist} . Separately, raw coordinates are projected to capture geometric 78 relationships, yielding an embedding f_{coord}. We combine these complementary representations using 79 a learned Contextual Gating mechanism: 80

$$\mathbf{g} = \sigma(\text{MLP}([\mathbf{f}_{\text{coord}}; \mathbf{f}_{\text{dist}}])) \tag{2}$$

$$\mathbf{h} = \mathbf{g} \odot \mathbf{f}_{\text{coord}} + (1 - \mathbf{g}) \odot \mathbf{f}_{\text{dist}} \tag{3}$$

This mechanism allows the model to adaptively weigh the importance of coordinate-based versus distance-based features for each node, enabling a more nuanced spatial representation. To effectively handle asymmetric routing scenarios, we follow the approach introduced in [20] and generate dual embeddings for each node: row embeddings \mathbf{h}^r and column embeddings \mathbf{h}^c . These are then fused with other node features (e.g., demand) to produce the final combined representations for the encoder.

86 3.1.2 Neural Adaptive Bias (NAB) for AAFM

RRNCO uses an Adaption Attention-Free Module (AAFM) [22] to model inter-node relationships. While the original AAFM defines its adaptation bias A heuristically (e.g., based on log-distance), we introduce NAB, a mechanism that *learns* this bias directly from data. NAB is the first approach to jointly model multiple asymmetric matrices, processing a distance matrix \mathbf{D} , an angle matrix $\mathbf{\Phi}$ (for directional relationships), and an optional duration matrix \mathbf{T} . Each matrix is passed through an MLP to get embeddings \mathbf{D}_{emb} , $\mathbf{\Phi}_{emb}$, and \mathbf{T}_{emb} . These are then fused using a multi-channel contextual gating mechanism that learns to weigh each modality:

$$\mathbf{G} = \operatorname{softmax} \left(\frac{\left[\mathbf{D}_{\text{emb}}; \ \mathbf{\Phi}_{\text{emb}}; \ \mathbf{T}_{\text{emb}} \right] \mathbf{W}_{G}}{\exp(\tau)} \right)$$
(4)

$$\mathbf{H} = \mathbf{G}_1 \odot \mathbf{D}_{\text{emb}} + \mathbf{G}_2 \odot \mathbf{\Phi}_{\text{emb}} + \mathbf{G}_3 \odot \mathbf{T}_{\text{emb}}$$
 (5)

The fused representation **H** is projected to a scalar to form the final adaptive bias matrix $\mathbf{A} = \mathbf{H}\mathbf{w}_{out}$.

This resulting matrix serves as a learned inductive bias that captures the complex interplay between

distance, duration, and direction. This learned bias A is then used in the AAFM operation:

$$AAFM(Q, K, V, A) = \sigma(Q) \odot \frac{\exp(A) \cdot (\exp(K) \odot V)}{\exp(A) \cdot \exp(K)}$$
(6)

After several AAFM layers, this process yields final node representations that encode rich, asymmetric patterns from the real-world routing network. 98

3.2 Decoder 99

107

118

124

125

126

127

128

130

131

132

Our decoder architecture synthesizes designs from ReLD [23] and MatNet [20] to construct solutions 100 autoregressively. At each step, it uses the encoder's rich node embeddings and a context vector 101 representing the current partial route (e.g., last visited node, remaining capacity). A multi-head 102 attention mechanism generates a query, which is then used in a compatibility layer to compute 103 the selection probability for the next node. This layer incorporates a negative logarithmic distance 104 105 heuristic, guiding the model to prioritize nearby feasible nodes, thereby efficiently exploring the 106 solution space.

Real-World VRP Dataset

A primary barrier to practical NCO is the lack of realistic datasets. Existing benchmarks are typically 108 synthetic and symmetric, failing to capture real-world complexities like one-way streets or traffic-109 dependent travel times. To bridge this gap, we developed a large-scale dataset for real-world VRPs. 110 Our data generation pipeline uses the OpenStreetMap Routing Engine (OSRM) to create topological 111 maps for 100 diverse cities worldwide, each with corresponding asymmetric distance and duration 112 matrices. We also designed an efficient online subsampling method to generate a virtually unlimited number of VRP instances for training our RL agent, ensuring the data faithfully represents real-world challenges. The complete data generation methodology, including city selection criteria and our subsampling framework, is detailed in the Appendix B

Experiments 117

Experimental Setup

Classical Baselines. In the experiments, we compare three SOTA traditional optimization ap-119 proaches: LKH3[24]: a heuristic algorithm with strong performance on (A)TSP problems, PyVRP[7]: a specialized solver for VRPs with comprehensive constraint handling capabilities; and Google OR-Tools[25]: a versatile optimization library for CO problems.

Learning-Based Methods. We compare against SOTA NCO methods divided in two categories. 1) 123 Node-only encoding learning methods: POMO[11], an end-to-end multi-trajectory RL-based method based on attention mechanisms; MTPOMO[26], a multi-task variant of POMO; MVMoE[27], a mixture-of-experts variant of MTPOMO; RF[28]: an RL-based foundation model for VRPs; ELG[29], a hybrid of local and global policies for routing problems; BQ-NCO[30]: a decoder-only transformer trained with supervised learning; LEHD[31]: a supervised learning-based heavy decoder model. 2) Node and edge encoding learning methods: GCN[32]: a graph convolutional network with encoding of edge information for routing; MatNet[20]: an RL-based solver encoding edge features via matrices and GOAL[33]: a generalist agent trained via supervised learning for several CO problems, including routing problems.

Training Configuration. We perform training runs under the same settings for fair comparison 133 for our model, MatNet for ATSP and ACVRP, and GCN for ACVRP. Node-only models do not 134 necessitate retraining since our datasets are already normalized in the $[0, 1]^2$ coordinates ranges (with 135 locations sampled uniformly), and we do not retrain supervised-learning models since they would 136 necessitate labeled data. We train with the Adam optimizer with an initial learning rate of 4×10^{-4} , which decays by a factor of 0.1 at epochs 180 and 195. Training is completed within 24 hours on

Table 1: Performance comparison across real-world routing tasks and distributions. We report costs and gaps calculated with respect to best-known solutions (*) from traditional solvers. Horizontal lines separate traditional solvers, node-only methods, node-and-edge methods, and our RRNCO. Lower is better (\downarrow) .

		In-distribution		Out-of-	Out-of-distribution (city)			Out-of-distribution (cluster)		
Task	Method	Cost	Gap (%)	Time	Cost	Gap (%)	Time	Cost	Gap (%)	Time
	LKH3	38.387	*	1.6h	38.903	*	1.6h	12.170	*	1.6h
ATSP	POMO ELG BQ-NCO LEHD	51.512 51.046 55.933 56.099	34.192 32.976 45.708 46.140	10s 42s 25s 13s	50.594 50.133 54.739 54.811	30.051 28.866 40.706 40.891	10s 42s 25s 13s	30.051 23.017 27.872 27.819	146.926 89.131 129.022 128.587	10s 42s 25s 13s
	MatNet GOAL	39.915 41.976	3.981 9.350	27s 91s	40.548 42.590	4.228 9.477	27s 91s	12.886 13.654	5.883 12.194	27s 91s
	Ours	39.077	1.797	22s	39.783	2.262	22s	12.450	2.301	22s
	PyVRP OR-Tools	69.739 72.597	* 4.097	7h 7h	70.488 73.286	* 3.969	7h 7h	22.553 23.576	4.538	7h 7h
ACVRP	POMO MTPOMO MVMoE RF ELG BQ-NCO LEHD	85.888 86.521 86.248 86.289 85.951 93.075 93.648	23.156 24.063 23.672 23.731 23.247 33.462 34.284	16s 16s 22s 17s 67s 30s 17s	85.771 86.446 86.111 86.261 85.741 92.467 93.195	21.682 22.640 22.164 22.377 21.639 31.181 32.214	16s 16s 22s 16s 66s 30s 17s	34.179 34.287 34.135 34.273 34.027 40.110 40.048	51.549 52.029 51.356 51.967 50.873 77.848 77.573	16s 16s 22s 16s 67s 30s 17s
	GCN MatNet GOAL	90.546 74.801 84.341	29.836 7.258 20.938	17s 30s 104s	90.805 75.722 84.097	28.823 7.425 19.307	17s 30s 104s	34.417 24.844 34.318	52.605 10.158 52.166	17s 30s 104s
	Ours	72.145	3.450	25s	72.999	3.562	25s	23.280	3.224	25s
*	PyVRP OR-Tools	118.056 119.681	1.377	7h 7h	118.513 120.147	1.379	7h 7h	39.253 39.903	* 1.655	7h 7h
ACVRPTW	POMO MTPOMO MVMoE RF	132.883 133.135 132.871 132.887	12.559 12.773 12.549 12.563	18s 17s 24s 18s	132.743 132.921 132.700 132.731	12.007 12.158 11.971 11.997	17s 18s 23s 18s	50.503 50.372 50.333 50.422	28.661 28.328 28.227 28.455	18s 18s 24s 18s
	GOAL	134.699	14.098	107s	135.001	13.912	107s	47.966	22.197	107s
	Ours	122.693	3.928	35s	123.249	3.996	35s	41.077	4.647	35s

4× NVIDIA A100 40GB GPUs using a batch size of 256, processing 100,000 instances per epoch. The model follows a Attention Free Transformer(AFT) based architecture with 128-dimensional embeddings, 512-dimensional feedforward layers, and 12 AFT layers. The training dataset consists of 80 cities with instances randomly generated from subsampled real-world city base map topologies with the remaining 20 reserved for OOD testing.

Testing Protocol. The test data consists of in-distribution evaluation for 1) *In-dist*: new instances generated from the 80 cities seen during training, 2) *OOD* (*city*) out-of-distribution generalization over new city maps and 3) *OOD* (*cluster*) out-of-distribution generalization to new location distributions across maps. The test batch size is 32, and a data augmentation factor of 8 is applied to all models except supervised learning-based ones, i.e., LEHD, BQ-NCO, and GOAL. All evaluations are conducted on an NVIDIA A6000 GPU paired with an Intel(R) Xeon(R) CPU @ 2.20GHz.

5.2 Main Results

141

142

143

150

Table 1 presents the performance of our model against all baselines on Asymmetric TSP (ATSP),
Asymmetric CVRP (ACVRP), and ACVRPTW. The results unequivocally demonstrate that RRNCO
achieves state-of-the-art performance among all neural solvers across every task and distribution. It
consistently finds higher-quality solutions (lower cost) while remaining computationally efficient.
Notably, a single RRNCO model handles all VRP variants, showcasing its adaptability and strong
generalization capabilities in both in-distribution and out-of-distribution scenarios.

Table 2: Comparison of routing solvers and their training data generators on real-world data.

Method	Data Gen.	In-dist		OOD City		OOD Clust.	
			Gap%	Cost	Gap%	Cost	Gap%
LKH3	_	38.39	*	38.90	*	12.17	*
MatNet	ATSP	80.86	110.70	81.04	108.30	27.78	128.23
RRNCO	Noise	41.35	7.72	42.01	7.98	13.66	12.20
MatNet	Real	39.92	3.98	40.55	4.23	12.89	5.88
RRNCO	Real	39.08	1.80	39.78	2.26	12.45	2.30

5.3 Analyses

Ablation Study. We perform an ablation study on our proposed model components in Fig. 3 to validate their contributions. We evaluate performance when using only raw coordinates, only sampled distances, our full Adaptive Node Embedding (ANE), and the complete model with the Neural Adaptive Bias (NAB). The results show that ANE and NAB perform the best, systematically improving solution quality. The improvement is particularly pronounced in the out-of-distribution (OOD) settings, highlighting their role in enhancing generalization. Remarkably, in the challenging OOD (cluster) distribution, the addition of NAB provides a relative improvement of over 15%, confirming its effectiveness in capturing complex, unseen spatial relationships.

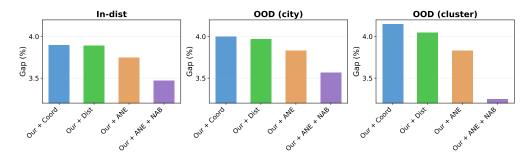


Figure 3: Study of our proposed model with different initial contexts: coordinates, distances, Adaptive Node Embedding (ANE), and Neural Adaptive Bias (NAB). ANE and NAB perform best, particularly in out-of-distribution (OOD) cases.

Importance of Real-World Data Generators. We study the impact of the training data generator on performance in real-world test settings. We compare models trained on a standard symmetric ATSP generator from MatNet [20], a generator that adds random noise to break symmetries, and our proposed real-world data generator. As shown in Table 2, training on data that mirrors real-world asymmetric properties is crucial. Models trained on symmetric or noisy data perform poorly when evaluated on our realistic benchmark. In contrast, training on our proposed real-world data leads to dramatic improvements in performance for both MatNet and our RRNCO model across all indistribution and OOD settings, underscoring the necessity of our data generation framework to bridge the sim-to-real gap.

6 Conclusion

We introduced RRNCO, a novel NCO architecture designed to bridge the sim-to-real gap in vehicle routing. Our model explicitly handles the asymmetric and multi-modal travel costs of real-world networks through two key innovations: an Adaptive Node Embedding (ANE) that efficiently fuses coordinate and distance features, and a Neural Adaptive Bias (NAB) mechanism that jointly learns from distance, duration, and directional data. To validate our model, we built and are releasing a large-scale dataset with realistic routing instances from 100 cities. On this challenging benchmark, RRNCO achieves state-of-the-art performance among NCO methods. By open-sourcing our model and dataset, we aim to accelerate progress towards practical, deployable neural optimization solutions.

References

- 185 [1] Research and Markets. Size of the global logistics industry from 2018 to 2023, with forecasts until 2028 (in trillion u.s. dollars). https://www.statista.com/statistics/943517/
 187 logistics-industry-global-cagr/, 2024. Accessed: January 22, 2025. The forecast is based on a 2023 market size of approximately \$9.41 trillion and a CAGR of 5.6%, which implies an estimated global industry value of roughly \$10.5 trillion in 2025.
- [2] Gilbert Laporte and Yves Nobert. Exact algorithms for the vehicle routing problem. In
 North-Holland mathematics studies, volume 132, pages 147–184. Elsevier, 1987.
- 192 [3] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood. *Computers & Operations Research*, 140:105643, 2022.
- [4] Laurent Perron and Vincent Furnon. OR-Tools. Google, 2023.
- 195 [5] David Applegate, Robert Bixby, Václav Chvátal, and William Cook. Concorde TSP solver. 196 http://www.math.uwaterloo.ca/tsp/concorde.html, 2003.
- 197 [6] Niels A Wouda and Leon Lan. Alns: A python implementation of the adaptive large neighbour-198 hood search metaheuristic. *Journal of Open Source Software*, 8(81):5028, 2023.
- [7] Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
 INFORMS Journal on Computing, 2024.
- [8] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a methodological tour d'horizon. *European Journal of Operational Research*, 290(2):405–421, 2021.
- [9] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
 International Conference on Learning Representations, 2019.
- 206 [10] Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L
 207 Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle
 208 routing problems: A comprehensive survey with perspectives. *arXiv preprint arXiv:2406.00415*,
 209 2024.
- [11] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
 Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in
 Neural Information Processing Systems, 33:21188–21198, 2020.
- 213 [12] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural combinatorial optimization. *Advances in Neural Information Processing Systems*, 35:1936–1949, 2022.
- 216 [13] Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang.
 217 Self-improved learning for scalable neural combinatorial optimization. arXiv preprint
 218 arXiv:2403.19561, 2024.
- 219 [14] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: 220 Learning global partition and local construction for solving large-scale routing problems in 221 real-time. *AAAI 2024*, 2024.
- 222 [15] Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, and Jie Zhang. Collaboration! Towards robust neural methods for vehicle routing problems. 2023.
- ²²⁴ [16] André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for vehicle routing problems. *arXiv preprint arXiv:2501.03715*, 2025.
- Eneko Osaba. Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem
 with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths. *Data in Brief*,
 29:105142, January 2020.
- 229 [18] Daniela Thyssens, Tim Dernedde, Jonas K Falkner, and Lars Schmidt-Thieme. Routing arena:
 A benchmark suite for neural routing solvers. *arXiv preprint arXiv:2310.04140*, 2023.

- [19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
 processing systems, 30, 2017.
- Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
 Matrix encoding networks for neural combinatorial optimization. *Advances in Neural Information Processing Systems*, 34:5138–5149, 2021.
- 237 [21] OpenStreetMap contributors. Openstreetmap database [data set]. https://www.openstreetmap.org, 2025. Accessed: 2025-02-06.
- [22] Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
 Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimization. arXiv preprint arXiv:2405.01906, 2024.
- Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based solvers for vehicle routing problems. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [24] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
 salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12:966–980, 2017.
- 247 [25] Laurent Perron and Frédéric Didier. CP-SAT, 2024.
- ²⁴⁸ [26] Fei Liu, Xi Lin, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task learning for routing problem with cross-problem zero-shot generalization. *arXiv preprint arXiv:2402.16891*, 2024.
- [27] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu.
 MVMoE: Multi-task vehicle routing solver with mixture-of-experts. In *International Conference on Machine Learning*, 2024.
- [28] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan,
 Junyoung Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for
 vehicle routing problems. arXiv preprint arXiv:2406.15007, 2024.
- 257 [29] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for vehicle routing problems via ensemble with transferrable local policy. *IJCAI*, 2024.
- [30] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco:
 Bisimulation quotienting for generalizable neural combinatorial optimization. arXiv preprint arXiv:2301.03313, 2023.
- [31] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
 with heavy decoder: Toward large scale generalization. Advances in Neural Information
 Processing Systems, 36:8845–8864, 2023.
- [32] Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.
 Efficiently Solving the Practical Vehicle Routing Problem: A Novel Joint Learning Approach.
 In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
 & Data Mining, pages 3054–3063, Virtual Event CA USA, August 2020. ACM.
- ²⁶⁹ [33] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimization agent learner. *arXiv preprint arXiv:2406.15079*, 2024.
- 271 [34] Andrius Barauskas, Agnundefined Brilingaitundefined, Linas Bukauskas, Vaida Čeikutun-272 defined, Alminas Čivilis, and Simonas Šaltenis. Test-data generation and integration for 273 long-distance e-vehicle routing. *Geoinformatica*, 27(4):737–758, January 2023.
- [35] Aldy Gunawan, Graham Kendall, Barry McCollum, Hsin Vonn Seow, and Lai Soon Lee. Vehicle
 routing: Review of benchmark datasets. *Journal of the Operational Research Society*, 72:1794 –
 1807, 2021.

- [36] Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In *Proceedings* of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information
 Systems, GIS '11, pages 513–516, New York, NY, USA, 2011. ACM.
- 280 [37] Nitin R Chopde and Mangesh Nichat. Landmark based shortest path detection by using a* and haversine formula. *International Journal of Innovative Research in Computer and Communication Engineering*, 1(2):298–302, 2013.
- [38] Hina Ali and Khalid Saleem. Generating large-scale real-world vehicle routing dataset with novel spatial data extraction tool. *PLOS ONE*, 19(6):e0304422, June 2024.
- ²⁸⁵ [39] Fahui Wang and Yanqing Xu. Estimating o-d travel time matrix by google maps api: implementation, advantages, and implications. *Annals of GIS*, 17(4):199–209, 2011.
- ²⁸⁷ [40] Ao Qu and Cathy Wu. Revisiting the correlation between simulated and field-observed conflicts using large-scale traffic reconstruction. *Accident Analysis & Prevention*, 210:107808, 2025.
- ²⁸⁹ [41] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. *Advances in neural* information processing systems, 28, 2015.
- ²⁹¹ [42] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with reinforcement learning. *arXiv preprint arXiv:1611.09940*, 2016.
- Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic programming for vehicle routing problems. In *International conference on integration of constraint programming, artificial intelligence, and operations research*, pages 190–213. Springer, 2022.
- [44] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett.
 Winner takes it all: Training performant rl populations for combinatorial optimization. Advances
 in Neural Information Processing Systems, 36, 2024.
- André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing problem. *arXiv preprint arXiv:1911.09539*, 2019.
- Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing
 Tang. Learning to iteratively solve routing problems with dual-aspect collaborative transformer.
 Advances in Neural Information Processing Systems, 34:11096–11107, 2021.
- 305 [47] Gerhard Reinelt. TSPLIB—a traveling salesman problem library. *INFORMS Journal on Computing*, 3(4):376–384, 1991.
- [48] Ivan Lima, Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Anand Subramanian, and Thibaut Vidal. CVRPLIB capacitated vehicle routing problem library. http://vrp.galgos.inf.puc-rio.br/, 2014.
- Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning for solving the vehicle routing problem. *Advances in neural information processing systems*, 31, 2018.
- [50] Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark. arXiv preprint arXiv:2306.17100, 2024.

9 A Detailed Model Architecture

320 A.1 Encoder

321 A.1.1 Adaptive Node Embedding

The Adaptive Node Embedding module synthesizes distance-related features with node characteristics to create comprehensive node representations. A key aspect of our approach is effectively integrating two complementary spatial features: distance matrix information and coordinate-based relationships. For distance matrix information, we employ a selective sampling strategy that captures the most relevant node relationships while maintaining computational efficiency. Given a distance matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$, we sample k nodes for each node i according to probabilities inversely proportional to their distances:

$$p_{ij} = \frac{1/d_{ij}}{\sum_{j=1}^{N} 1/d_{ij}} \tag{7}$$

where d_{ij} represents the distance between nodes i and j. The sampled distances are then transformed into an embedding space through a learned linear projection:

$$\mathbf{f}_{\text{dist}} = \text{Linear}(\mathbf{d}_{\text{sampled}})$$
 (8)

Coordinate information is processed separately to capture geometric relationships between nodes. For each node, we first compute its spatial features based on raw coordinates. These features are then projected into the same embedding space through another learned linear transformation:

$$\mathbf{f}_{\text{coord}} = \text{Linear}(\mathbf{x}_{\text{coord}}) \tag{9}$$

To effectively combine these complementary spatial representations, we employ a Contextual Gating mechanism:

$$\mathbf{h} = \mathbf{g} \odot \mathbf{f}_{\text{coord}} + (1 - \mathbf{g}) \odot \mathbf{f}_{\text{dist}}$$
 (10)

where \odot is the Hadamard product and g represents learned gating weights determined by a multi-layer perceptron (MLP):

$$\mathbf{g} = \sigma(\text{MLP}([\mathbf{f}_{\text{coord}}; \mathbf{f}_{\text{dist}}])) \tag{11}$$

This gating mechanism allows the model to adaptively weigh the importance of coordinate-based and distance-based features for each node, enabling more nuanced spatial representation. To handle asymmetric routing scenarios effectively, we follow the approach introduced in and generate dual embeddings for each node: row embeddings \mathbf{h}^r and column embeddings \mathbf{h}^c . These embeddings are then combined with other node characteristics (such as demand or time windows) through learned linear transformations to produce the combined node representations:

$$\mathbf{h}_{comb}^{r} = MLP([\mathbf{h}^{r}; \mathbf{f}_{node}]) \tag{12}$$

$$\mathbf{h}_{\text{comb}}^{c} = \text{MLP}([\mathbf{h}^{c}; \mathbf{f}_{\text{node}}]) \tag{13}$$

where f_{node} represents additional node features such as demand or time windows, which are transformed by an additional linear layer. This dual embedding approach allows the RRNCO model to better capture and process asymmetric relationships in real-world routing scenarios.

348 A.1.2 Neural Adaptive Bias for AAFM

344

Having established comprehensive node representations through our adaptive embedding approach, RRNCO employs an Adaption Attention-Free Module (AAFM) based on to model complex internode relationships. The AAFM operates on the dual representations $\mathbf{h}_{\text{comb}}^r$ and $\mathbf{h}_{\text{comb}}^c$ to capture asymmetric routing patterns through our novel Neural Adaptive Bias (NAB) mechanism. The AAFM operation is defined as:

$$AAFM(Q, K, V, A) = \sigma(Q) \odot \frac{\exp(A) \cdot (\exp(K) \odot V)}{\exp(A) \cdot \exp(K)}$$
(14)

where $Q = \mathbf{W}^Q \mathbf{h}_{\text{comb}}^r$, $K = \mathbf{W}^K \mathbf{h}_{\text{comb}}^c$, $V = \mathbf{W}^V \mathbf{h}_{\text{comb}}^c$, with learnable weight matrices \mathbf{W}^Q , \mathbf{W}^K , while defines the adaptation bias A heuristically as $-\alpha \cdot \log(N) \cdot d_{ij}$ (with learnable α , node count N, and distance d_{ij}), we introduce a Neural Adaptive Bias (NAB) that learns asymmetric

relationships directly from data. NAB processes distance matrix \mathbf{D} , angle matrix $\mathbf{\Phi}$ for directional relationships, and optionally duration matrix \mathbf{T} , enabling joint modeling of spatial-temporal asymmetries inherent in real-world routing.

360 Let $\mathbf{W}_D, \mathbf{W}_\Phi, \mathbf{W}_T \in \mathbb{R}^E$:

$$\mathbf{D}_{emb} = \text{ReLU}(\mathbf{D}\mathbf{W}_D)\mathbf{W}_D' \tag{15}$$

$$\mathbf{\Phi}_{emb} = \text{ReLU}(\mathbf{\Phi}\mathbf{W}_{\Phi})\mathbf{W}_{\Phi}' \tag{16}$$

$$\mathbf{T}_{emb} = \text{ReLU}(\mathbf{T}\mathbf{W}_T)\mathbf{W}_T' \tag{17}$$

We then apply contextual gating to fuse these heterogeneous information sources. When duration information is available, we employ a multi-channel gating mechanism with softmax normalization:

$$\mathbf{G} = \operatorname{softmax} \left(\frac{\left[\mathbf{D}_{\text{emb}}; \ \mathbf{\Phi}_{\text{emb}}; \ \mathbf{T}_{\text{emb}} \right] \mathbf{W}_{G}}{\exp(\tau)} \right)$$
 (18)

where $[\mathbf{D}_{emb}; \mathbf{\Phi}_{emb}; \mathbf{T}_{emb}] \in \mathbb{R}^{B \times N \times N \times 3E}$ is the concatenation of all embeddings, $\mathbf{W}_G \in \mathbb{R}^{3E \times 3}$ is a learnable weight matrix, and τ is a learnable temperature parameter. The fused representation is computed as:

$$\mathbf{H} = \mathbf{G}_1 \odot \mathbf{D}_{\text{emb}} + \mathbf{G}_2 \odot \mathbf{\Phi}_{\text{emb}} + \mathbf{G}_3 \odot \mathbf{T}_{\text{emb}}$$
 (19)

Finally, the adaptive bias matrix A is obtained by projecting the fused embedding H to a scalar value:

$$\mathbf{A} = \mathbf{H}\mathbf{w}_{out} \in \mathbb{R}^{B \times N \times N} \tag{20}$$

where $\mathbf{w}_{out} \in \mathbb{R}^E$ is a learnable weight vector. The resulting \mathbf{A} matrix serves as a learned inductive bias that captures complex asymmetric relationships arising from the interplay between distances, directional angles, and travel durations. This Neural Adaptive Bias is then incorporated into the Adaptation Attention Free Module (AAFM) operation as follows:

$$AAFM(Q, K, V, \mathbf{A}) = \sigma(Q) \odot \frac{\exp(\mathbf{A}) \cdot (\exp(K) \odot V)}{\exp(\mathbf{A}) \cdot \exp(K)}$$

The Neural Adaptive Bias (NAB), applied through the Adaptation Attention Free Module (AAFM), yields final node representations h_F^r and h_F^c after l passes through AAFM. These representations result from RRNCO's encoding process, leveraging joint modeling of distance, angle, and duration to capture complex asymmetric patterns in real-world routing networks.

371 A.2 Decoder

372 A.2.1 Decoder Architecture

The decoder architecture combines key elements from the ReLD and MatNet to effectively process the dense node embeddings generated by the encoder and construct solutions for vehicle routing problems. At each decoding step t, the decoder takes as input the row and column node embeddings (h_F^r, h_F^c) produced by the encoder and a context vector $h_c = [h_{a_{t-1}}^r, D^t] \in \mathbb{R}^{d_h + d_{attr}}$, where $D^t \in \mathbb{R}^{d_{attr}}$ represents dynamic features that capture the state variable s^t . To aggregate information from the node embeddings, the decoder applies a multi-head attention (MHA) mechanism, using the context vector h_c as the query and $H^t \in \mathbb{R}^{|F^t| \times d_h}$ as the key and value:

$$h'_c = \text{MHA}(h_c, W^{key} h_F^c, W^{val} h_F^c). \tag{21}$$

The ReLD model introduces a direct influence of context by adding a residual connection between the context vector h_c and the refined query vector h_c' :

$$h_c' = h_c' + IDT(h_c), \tag{22}$$

where $IDT(\cdot)$ is an identity mapping function that reshapes the context vector to match the dimension of the query vector, allowing context-aware information to be directly embedded into the representation. To further enhance the decoder performance, an MLP with residual connections is incorporated to introduce non-linearity into the computation of the final query vector q_c :

$$q_c = h_c' + \text{MLP}(h_c'). \tag{23}$$

The MLP consists of two linear transformations with a ReLU activation function, transforming the decoder into a transformer block with a single query that can model complex relationships and adapt the embeddings based on the context. Finally, the probability p_i of selecting node $i \in F^t$ is calculated by applying a compatibility layer with a negative logarithmic distance heuristic score:

$$p_i = \left[\text{Softmax} \left(C \cdot \tanh \left(\frac{(q_c)^T W^{\ell} h_F^c}{\sqrt{d_h}} - \log(\text{dist}_i) \right) \right) \right]_i$$
 (24)

where C is a clipping hyperparameter, d_h is the embedding dimension, and dist_i denotes the distance between node i and the last selected node a_{t-1} . This heuristic guides the model to prioritize nearby nodes during the solution construction process. The combination of ReLD's architectural modifications and MatNet's decoding mechanism with our rich, learned encoding enables the RRNCO model to effectively leverage static node embeddings while dynamically adapting to the current context, leading to improved performance on various vehicle routing problems.

The dataset will be available for download through the HuggingFace portal, and the link will be available on a Github repository. Our code is licensed under the MIT license.

B Real-World VRP Dataset Generation

Existing methodologies often require integrating massive raw datasets (e.g., traffic simulators and multi-source spatial data) – for instance, [34] rely on simplistic synthetic benchmarks, which are either resource-intensive or lack real-world complexity [35].

To address these limitations, we design a three-step pipeline to create a diverse and realistic vehicle routing dataset aimed at training and testing NCO models. First, we select cities worldwide based on multi-dimensional urban descriptors (morphology, traffic flow regimes, land-use mix). Second, we develop a framework using the Open Source Routing Machine (OSRM) [36] to create city maps with topological data, generating both precise location coordinates and their corresponding distance and duration matrices between each other. Finally, we efficiently subsample these topologies to generate diverse VRP instances by adding routing-specific features such as demands and time windows, thus preserving the inherent spatial relationships while enabling the rapid generation of instances with varying operational constraints, leveraging the precomputed distance/duration matrices from the base maps. The whole pipeline is illustrated in Fig. 4.

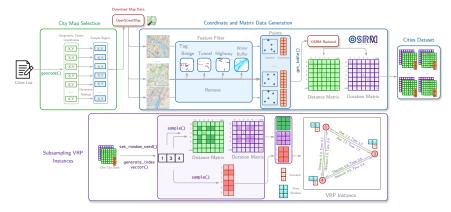


Figure 4: Overview of our RRNCO real-world data generation and sampling framework. We generate a dataset of real-world cities with coordinates and respective distance and duration matrices obtained via OSRM. Then, we efficiently subsample instances as a set of coordinates and their matrices from the city map dataset with additional generated VRP features.

B.1 City Map Selection

We select a list of 100 cities distributed across six continents, with 25 in Asia, 21 in Europe, 15 each in North America and South America, 14 in Africa, and 10 in Oceania. The selection emphasizes urban diversity through multiple dimensions, including population scale (50 large cities > 1M inhabitants,

30 medium cities 100K-1M, and 20 small cities <100K), infrastructure development stages, and urban planning approaches. Cities feature various layouts, from grid-based systems like Manhattan to radial patterns like Paris and organic developments like Fez, representing different geographic and 418 climatic contexts from coastal to mountain locations. 419

We prioritized cities with reliable data availability while balancing between globally recognized 420 metropolitan areas and lesser-known urban centers, providing a comprehensive foundation for 421 evaluating vehicle routing algorithms under diverse real-world conditions. Moreover, by including 422 cities from developing regions, we aim to advance transportation optimization research that could 423 benefit underprivileged areas and contribute to their socioeconomic development. 424

B.2 Topological Data Generation Framework

425

429

430

434

437

438

439

In the second stage, we generate base maps that capture real urban complexities. This topological 426 data generation is composed itself of three key components: geographic boundary information, point sampling from road networks, and travel information computation. 428

Geographic boundary information We establish standardized 9 km² areas (3×3 km) centered on each target city's municipal coordinates, ensuring the same spatial coverage across different urban environments. Given that the same physical distance corresponds to different longitudinal spans at different latitudes due to the Earth's spherical geometry, we need a precise distance calculation method: thus, the spatial boundaries are computed using the Haversine spherical distance formulation [37]:

$$d = 2R \cdot \arcsin\left(\sqrt{\sin^2\left(\frac{\Delta\phi}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\Delta\lambda}{2}\right)}\right)$$
 (25)

where d is the distance between two points along the great circle, R is Earth's radius (approximately 435 6,371 kilometers), ϕ_1 and ϕ_2 are the latitudes of point 1 and point 2 in radians, $\Delta \phi = \phi_2 - \phi_1$ 436 represents the difference in latitudes, and $\Delta \lambda = \lambda_2 - \lambda_1$ represents the difference in longitudes. This enables precise spatial boundary calculations and standardized cross-city comparisons while maintaining consistent analysis areas across different geographic locations.

Point sampling from road networks Our RRNCO framework interfaces with OpenStreetMap [21] 440 for point sampling. More specifically, we extract both road networks and water features within defined 441 boundaries using graph_from_bbox and features_from_bbox¹. Employing boolean indexing, 442 the sampling process implements several filtering mechanisms to filter the DataFrame and ensure 443 point quality: we exclude bridges, tunnels, and highways to focus on accessible street-level locations 445 and create buffer zones around water features to prevent sampling from (close to) inaccessible areas. Points are then generated through a weighted random sampling approach, where road segments are 446 weighted by their length to ensure uniform spatial distribution.

Travel information computation The travel information computation component leverages a locally hosted Open Source Routing Machine (OSRM) server [36] to calculate real travel distances 449 and durations between sampled points, ensuring full reproducibility of results. Through the efficient 450 get_table function in our router implementation via the OSRM table service², we can process 451 a complete 1000x1000 origin-destination matrix within 18 seconds, making it highly scalable for urban-scale analyses. In contrast to commercial API-based approaches that require more than 20 453 seconds for 350×350 matrices [38], our open-source local OSRM implementation achieves the same computations in approximately 5 seconds. Additionally, it enables the rapid generation of multiple 455 instances from small datasets with negligible computational cost per iteration epoch. 456

The RRNCO framework finally processes this routing data through a normalization strategy that 457 addresses both unreachable destinations and abnormal travel times. This step captures real-world 458 routing complexities, including one-way streets, turn restrictions, and varying road conditions, 459 resulting in asymmetric distance and duration matrices that reflect actual urban travel patterns. All 460

https://osmnx.readthedocs.io/en/stable/user-reference.html

²https://project-osrm.org/docs/v5.24.0/api/#table-service

computations are performed locally³, allowing for consistent results and independent verification of the analysis pipeline.

B.3 VRP Instance Subsampling

463

- From the large-scale city base maps, we generate diverse VRP instances by subsampling a set of locations along with their corresponding distance and duration matrices, allowing us to generate an effectively unlimited number of instances while preserving the underlying structure.
- The subsampling process follows another three-step procedure:
- 1. Index Selection: Given a city dataset containing N_{tot} locations, we define a subset size N_{sub} representing the number of locations to be sampled for the VRP instance. We generate an index vector $\mathbf{s} = (s_1, s_2, \dots, s_{N_{\text{sub}}})$ where each s_i is drawn from $\{1, \dots, N_{\text{tot}}\}$, ensuring unique selections.
- 2. Matrix Subsampling: Using s, we extract submatrices from the precomputed distance matrix $D \in \mathbb{R}^{N_{\text{tot}} \times N_{\text{tot}}}$ and duration matrix $T \in \mathbb{R}^{N_{\text{tot}} \times N_{\text{tot}}}$, forming instance-specific matrices $D_{\text{sub}} = D[\mathbf{s}, \mathbf{s}] \in \mathbb{R}^{N_{\text{sub}} \times N_{\text{sub}}}$ and $T_{\text{sub}} = T[\mathbf{s}, \mathbf{s}] \in \mathbb{R}^{N_{\text{sub}} \times N_{\text{sub}}}$, preserving spatial relationships among selected locations.
- 3. Feature Generation: Each VRP can have different features. For example, in Asymmetric Capacitated VRP (ACVRP) we can generate a demand vector $\mathbf{d} \in \mathbb{R}^{N_{\text{sub}} \times 1}$, such that $\mathbf{d} = (d_1, d_2, \dots, d_{N_{\text{sub}}})^{\top}$, where each d_i represents the demand at location s_i . Similarly, we can extend to ACVRPTW (time windows) represented as $\mathbf{W} \in \mathbb{R}^{N_{\text{sub}} \times 2}$, where $\mathbf{W} = \{(w_1^{\text{start}}, w_1^{\text{end}}), \dots, (w_{N_{\text{sub}}}^{\text{start}}, w_{N_{\text{sub}}}^{\text{end}})\}$, defining the valid service interval for each node.
- Unlike previous methods that generate static datasets offline [32, 38], our RRNCO generation framework dynamically generates instances on the fly in few milliseconds, reducing disk memory consumption while maintaining high diversity.
- Fig. 4 illustrates the overall process, showing how a city map is subsampled using an index vector to create VRP instances with distance and duration matrices enriched with node-specific features such as demands and time windows. Our approach allows us to generate a (arbitrarily) large number of problem instances from a relatively small set of base topology maps totaling around 1.5GB, in contrast to previous works that required hundreds of gigabytes of data to produce just a few thousand instances.

489 C Related Works

504

505

506

507

508

Neural Combinatorial Optimization (NCO). Neural approaches to combinatorial optimization 490 have emerged as a promising paradigm for learning heuristics directly from data, bypassing the need 491 for extensive domain expertise [8]. NCO methods are broadly categorized into construction and 492 improvement methods. Construction methods build solutions sequentially. This line of work was 493 pioneered by Pointer Networks [41] and later combined with reinforcement learning to optimize 494 policies directly for solution quality [42]. The current state-of-the-art for construction heavily 495 relies on autoregressive models using the Transformer architecture [9, 11], which excel at capturing 496 complex problem structures. Other construction paradigms include non-autoregressive methods that 497 predict solutions in a single pass [43] and population-based approaches that generate diverse sets of 498 solutions [44]. In contrast, improvement methods start with an initial solution and iteratively refine 499 it. This includes techniques like learning operators for local search [45] or developing Neural Large 500 Neighborhood Search (NLNS) frameworks [46]. Our work focuses on autoregressive construction, 501 as it provides a strong balance between inference speed and solution quality, which is critical for 502 real-world logistics applications. 503

Vehicle Routing Problem (VRP) Datasets. A significant gap exists between NCO research and real-world applicability, largely due to the datasets used for training and evaluation. For decades, the community has relied on established benchmarks like TSPLIB [47] and CVRPLIB [48]. While invaluable for standardization, these datasets are typically based on symmetric Euclidean distances, assuming travel costs are equal in both directions ($d_{ij} = d_{ji}$). This simplification fails to capture

³Our framework can also be extended to include real-time commercial map API integrations and powerful traffic forecasting to obtain better-informed routing [39, 40], which we leave as future works.

the inherent asymmetry of real road networks caused by one-way streets, traffic patterns, and turn 509 restrictions [17]. Some recent works have attempted to create more realistic datasets [32, 38], but they 510 suffer from critical limitations for NCO research: they often rely on proprietary, commercial APIs, are 511 static and cannot be generated online (a key requirement for data-hungry RL agents), can be slow to 512 generate, and are not always publicly released. Furthermore, they often omit crucial information like 513 travel durations, which can be decoupled from distance in real traffic. Our work directly addresses 514 these gaps by providing a fast, open-source, and scalable data generation framework that produces 515 asymmetric distance and duration matrices from real-world city topologies. 516

NCO for VRPs. The application of NCO to VRPs has evolved from early adaptations of recurrent models [49] to the now-dominant Transformer-based encoder-decoder architectures [9, 11]. These models have demonstrated impressive performance but are fundamentally node-centric; their attention mechanisms operate on node embeddings, making it non-trivial to incorporate rich structural information contained in edge features like a full distance matrix. This limitation is a primary contributor to the sim-to-real gap. To address this, some works have explored encoding edge information. GCNbased approaches [32] and attention via row and column embeddings of MatNet [20] introduced early ways to handle asymmetry, with GOAL [33] incorporating edge data with cross-attention. While these are steps in the right direction, they often process only a single cost matrix (e.g., distance) and do not fully exploit the multiple, correlated modalities of real-world routing costs (distance, duration, and geometry). The development of NCO architectures that can efficiently fuse multiple sources of asymmetric edge information remains an open challenge. Our proposed model, RRNCO, tackles this directly with its Adaptive Node Embedding (ANE) and Neural Adaptive Bias (NAB) mechanism, which learns a unified routing context from distance, duration, and angular relationships.

D **Additional Data Information** 531

517

519

520

521

522

523

524

525

526

527

528

529

530

546

547

We present a comprehensive urban mobility dataset encompassing 100 cities across diverse geograph-532 ical regions worldwide. For each city, we collected 1000 sampling points distributed throughout 533 the same size urban area. The dataset includes the precise geographical coordinates (latitude and 534 longitude) for each sampling point. Additionally, we computed and stored complete distance and 535 travel time matrices between all pairs of points within each city, resulting in 1000×1000 matrices per 536 city. 537

The cities in our dataset exhibit significant variety in their characteristics, including population size 538 (ranging from small to large), urban layout patterns (such as grid, organic, mixed, and historical 539 layouts), and distinct geographic features (coastal, mountain, river, valley, etc.). The dataset covers 540 multiple regions including Asia, Oceania, Americas, Europe, and Africa. This diversity in urban 541 environments enables comprehensive analysis of mobility patterns across different urban contexts 542 and geographical settings. 543

Table 4 on the following page provides information about our topology dataset choices. 544

Hyperparameter Details 545

Table 3 shows the hyperparameters we employ for RRNCO. The configuration can be changed through yaml files as outlined in RL4CO [50], which we employ as the base framework for our codebase. 548

Table 4: Comprehensive City Details

City	Population	Layout	Geographic Features	Region	Split
Addis Ababa	Large	Organic	Highland	East Africa	Train
Alexandria	Large	Mixed	Coastal	North Africa	Train
Amsterdam	Large	Canal grid	River	Western Europe	Train
Almaty	Large	Grid	Mountain	Central Asia	Train
Asunción	Medium	Grid	River	South America	Test

Continued on next page

Table 4 – *Continued from previous page*

	14010	e 4 – Continued from			
City	Population	Layout	Geographic Features	Region	Split
Athens	Large	Mixed	Historical	Southern Europe	Train
Auckland	Large	Harbor layout	Isthmus	Oceania	Train
Baku	Large	Mixed	Coastal	Western Asia	Train
Bangkok	Large	River layout	River	Southeast Asia	Train
Barcelona	Large	Grid & historic	Coastal	Southern Europe	Train
Beijing	Large	Ring layout	Plains Coastal	East Asia Northern	Train
Bergen	Small	Fjord	mountain	Europe	Train
Brisbane	Large	River grid	River	Oceania	Train
Buenos Aires	Large	Grid	River	South America	Train
Bukhara	Small	Medieval	Historical	Central Asia	Test
Cape Town	Large	Mixed colonial	Coastal&mt.	Southern Africa	Train
Cartagena	Medium	Colonial	Coastal	South America	Train
Casablanca	Large	Mixed colonial	Coastal	North Africa	Train
Chengdu	Large	Grid	Basin	East Asia	Train
Colombo	Medium	Colonial grid	Coastal	South Asia	Train
Chicago	Large	Grid	Lake	North America	Test
Christchurch	Medium	Grid	Coastal plain	Oceania Northern	Train
Copenhagen	Large	Mixed	Coastal	Europe	Train
Curitiba	Large	Grid	Highland	South America	Train
Cusco	Medium	Historic mixed	Mountain	South America	Test
Daejeon	Large	Grid	Valley	East Asia	Train
Dakar	Medium	Peninsula grid	Coastal	West Africa	Train
Dar es Salaam	Large	Coastal grid	Coastal	East Africa	Train
Denver	Large	Grid	Mountain	North America	Train
Dhaka	Large	Organic	River	South Asia	Train
Dubai	Large	Linear modern	Coastal& desert	Western Asia	Train
Dublin	Large	Georgian grid	Coastal	Northern Europe	Train
Dubrovnik	Small	Medieval walled	Coastal	Southern Europe	Train
Edinburgh	Medium	Historic mixed	Hills	Northern Europe	Train
Fez	Medium	Medieval organic	Historical	North Africa	Test
Guatemala City	Large	Valley grid	Valley	Central America	Train
Hanoi	Large	Mixed	River	Southeast Asia	Train
Havana	Large	Colonial	Coastal	Caribbean	Train
Helsinki	Large	Grid	Peninsula	Northern Europe	Train
Hobart	Small	Mountain harbor	Harbor	Oceania	Test
Hong Kong	Large	Vertical	Harbor	East Asia	Train
Istanbul	Large	Mixed	Strait	Western Asia	Train
Kigali	Medium	Hill organic	Highland	East Africa	Train
Kinshasa	Large	Organic	River	Central Africa	Train
Kuala Lumpur	Large	Modern mixed	Valley	Southeast Asia	Test
Kyoto	Large	Historical grid	Valley	East Asia	Train
La Paz	Large	Valley organic	Mountain	South America	Train
Lagos	Large	Organic	Coastal	West Africa	Train
	6-				

Continued on next page

Table 4 – *Continued from previous page*

	Table 4 – Continued from previous page					
City	Population	Layout	Geographic Features	Region	Split	
Lima	Large	Mixed grid	Coastal desert	South America	Train	
London	Large	Radial organic	River	Northern Europe	Test	
Los Angeles	Large	Grid sprawl	Coastal basin	North America	Train	
Luanda	Large	Mixed	Coastal	Southern Africa	Train	
Mandalay	Large	Grid	River	Southeast Asia	Train	
Marrakech	Medium	Medina	Desert edge	North Africa	Train	
Medellín	Large	Valley grid	Mountain	South America	Train	
Melbourne	Large	Grid	River	Oceania	Train	
Mexico City	Large	Mixed	Valley	North America	Test	
Montevideo	Large	Grid	Coastal	South America	Train	
Montreal	Large	Mixed	Island	North America	Train	
Moscow	Large	Ring layout	River	Eastern Europe	Train	
Mumbai	Large	Linear coastal	Coastal	South Asia	Test	
Nairobi	Large	Mixed	Highland	East Africa	Train	
New Orleans	Medium	Colonial	River delta	North America	Train	
New York City	Large Small	Grid Peninsula	Coastal	North America	Train Test	
Nouméa Osoko			Coastal	Oceania		
Osaka Panama City	Large	Grid Coastal modern	Harbor Coastal	East Asia Central America	Test Train	
Paris	Large Large	Radial	River	Western Europe	Train	
Perth	Large	Coastal sprawl	Coastal	Oceania	Test	
Port Moresby	Medium	Harbor sprawl	Coastal hills	Oceania	Train	
1 oft Worksby		Medieval	Coastai iiiiis	Southern		
Porto	Medium	organic	River mouth	Europe	Train	
Prague	Large	Historic grid	River	Central Europe	Train	
Quebec City	Medium	Historic walled	River	North America	Test	
Quito	Large	Linear valley	Highland	South America	Test	
Reykjavik	Small	Modern grid	Coastal	Northern Europe	Test	
Rio de Janeiro	Large	Coastal organic	Mountain& coastal	South America	Train	
Rome	Large	Historical organic	Seven hills	Southern Europe	Test	
Salvador	Large	Mixed historic	Coastal	South America	Train	
Salzburg	Small	Medieval core	River	Central Europe	Train	
San Francisco	Large	Hill grid	Peninsula	North America	Train	
San Juan	Medium	Mixed historic	Coastal	Caribbean	Test	
Santiago	Large	Grid	Valley	South America	Train	
São Paulo	Large	Sprawl	Highland	South America	Train	
Seoul	Large	Mixed	River	East Asia	Train	
Shanghai	Large	Modern mixed	River	East Asia	Train	
Singapore	Large	Planned	Island	Southeast Asia Northern	Train	
Stockholm	Large	Archipelago	Island	Europe	Train	
Sydney	Large	Harbor organic	Harbor	Oceania	Train	
Taipei	Large	Grid	Basin	East Asia	Train	
Thimphu	Small	Valley organic	Mountain	South Asia	Train	
Tokyo	Large	Mixed	Harbor	East Asia	Test	
Toronto	Large	Grid Grid	Lake	North America	Train	
Ulaanbaatar Valparaíso	Large Medium	Grid Hill organic	Valley	East Asia South America	Train	
Valparaíso Vancouver	Medium	Hill organic Grid	Coastal hills Peninsula	North America	Train Train	
Vienna	Large Large	Ring layout	River	Central Europe	Train	
- 101111u	Laige	Time Tayout	MIVOI	Contrat Europe	-14111	

Continued on next page

Table 4 – Continued from previous page

City	Population	Layout	Geographic Features	Region	Split
Vientiane	Medium	Mixed	River	Southeast Asia	Train
Wellington	Medium	Harbor basin	Coastal hills	Oceania	Train
Windhoek	Small	Grid	Highland	Southern Africa	Test
Yogyakarta	Medium	Traditional	Cultural center	Southeast Asia	Train

Table 3: Hyperparameters.

Table 3: Hyperparam	
Hyperparameter	Value
Model	
Embedding dimension	128
Number of attention heads	8
Number of encoder layers	12
Normalization	Instance
Use graph context	False
Sample size k node encoding	25
Training	
Batch size	256
Train data size	100,000
Val data size	1,280
Test data size	1,280
RL algorithm	REINFORCE
REINFORCE baseline	POMO [11]
Optimizer	Adam
Learning rate	4e-4
Weight decay	1e-6
LR scheduler	MultiStepLR
LR milestones	[180, 195]
LR gamma	0.1
Max epochs	200
Data	
Number of cities (training)	80
Number of cities (testing)	20
Instance size n (# of locations)	100
Number of test instances	1280